JP2013082170A - Method for manufacturing ceramics joined body - Google Patents

Method for manufacturing ceramics joined body Download PDF

Info

Publication number
JP2013082170A
JP2013082170A JP2011224871A JP2011224871A JP2013082170A JP 2013082170 A JP2013082170 A JP 2013082170A JP 2011224871 A JP2011224871 A JP 2011224871A JP 2011224871 A JP2011224871 A JP 2011224871A JP 2013082170 A JP2013082170 A JP 2013082170A
Authority
JP
Japan
Prior art keywords
ceramic
molding
ceramic molded
molded body
joined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011224871A
Other languages
Japanese (ja)
Inventor
Yasutake Hayakawa
康武 早川
Katsutoshi Muramatsu
勝利 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011224871A priority Critical patent/JP2013082170A/en
Publication of JP2013082170A publication Critical patent/JP2013082170A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a ceramics joined body that can control causing crack or peeling to the joint after the sintering.SOLUTION: The method for manufacturing ceramics joined body 3 includes: processes (S10, S20) that individually form first and second ceramic formed bodies 1 and 2 that comprise mutually the similar materials; a process (S30) that forms the ceramics joined body 3 by fitting the first and second ceramic formed bodies 1 and 2 by using the isostatic pressing; and a process (S40) that sinters the ceramics joined body 3. Each forming pressure when the first and second ceramic formed bodies 1 and 2 are individually formed is lower than the forming pressure of the isostatic pressing. The forming pressure of the first ceramic formed body 1 when the first and second ceramic formed bodies 1 and 2 are individually formed is lower than the forming pressure of the second ceramic formed body 2. The second ceramic formed body 2 is fitted in the first ceramic formed body 1 and the ceramics joined body 3 is obtained in the isostatic pressing.

Description

本発明は、セラミックス接合体の製造方法に関し、特に、セラミックス成形体を接合することによってセラミックス接合体を成形するセラミックス接合体の製造方法に関するものである。   The present invention relates to a method for producing a ceramic joined body, and more particularly to a method for producing a ceramic joined body for forming a ceramic joined body by joining ceramic formed bodies.

近年、軽量性、耐熱性および耐食性などが要求される装置および機器の構成部材へのセラミックスの展開が進んでいる。セラミックスが実用化されている用途として、軸受、エンジン部品などがある。しかし、軸受、エンジン部品などに用いられるセラミックスで構成された部材としてはは、比較的形状が単純な球、ころおよびリング材などがほとんどである。今後、複雑な形状または大型のセラミックス部材の製造が可能になれば、用途はますます広がっていくことが期待される。   In recent years, the development of ceramics on components of apparatus and devices that are required to be lightweight, heat resistant, and corrosion resistant has been advanced. Applications where ceramics are put into practical use include bearings and engine parts. However, most of the members made of ceramics used for bearings, engine parts, and the like are balls, rollers, ring materials, and the like that have a relatively simple shape. In the future, if complex shapes or large ceramic members can be manufactured, the use is expected to expand further.

セラミックス粉末を所望の形状に成形する方法として、所望する形状および製品の使用目的に応じて、各種の成形方法が採用されている。成形方法として、たとえば、金型プレス法、射出成形法、押出し成形法および鋳込み成形法などがある。しかし、製法上の制約により製作できる形状または大きさには限界がある。また、別の成形法として、セラミックス粉末を用いた焼結品として製作されたパーツをろう付けまたは接着剤などで接合する方法がある。しかし、この方法では接合剤自身の強度不足または母材と接合剤との熱膨張係数の差によって接合部の強度低下が生じる可能性がある。   As a method of forming the ceramic powder into a desired shape, various forming methods are adopted depending on the desired shape and the intended use of the product. Examples of the molding method include a mold press method, an injection molding method, an extrusion molding method, and a casting molding method. However, there is a limit to the shape or size that can be manufactured due to manufacturing restrictions. As another forming method, there is a method in which parts manufactured as a sintered product using ceramic powder are joined by brazing or an adhesive. However, in this method, there is a possibility that the strength of the joint portion is reduced due to insufficient strength of the joining agent itself or a difference in thermal expansion coefficient between the base material and the joining agent.

また、形状の複雑なセラミックス部材を製造する方法として次の工程を有する方法が提案されている。まず、全体を複数の部分に分割することによって、それぞれ単純な形状を有するパーツが作製される。単純な形状を有するパーツを組み合わせて接合することによって所定の形状にセラミックス部材が形成される。そして、セラミックス部材が焼結される。このようにして形状の複雑なセラミックス部材が製造される。   Further, a method having the following steps has been proposed as a method for manufacturing a ceramic member having a complicated shape. First, a part having a simple shape is produced by dividing the whole into a plurality of parts. A ceramic member is formed in a predetermined shape by combining and joining parts having simple shapes. Then, the ceramic member is sintered. In this way, a ceramic member having a complicated shape is manufactured.

上記の方法として、たとえば、特開平2−236205号公報(特許文献1)では、焼結時に液相を発生する粉末材料と高分子バインダーと溶媒とからなるスラリーを介して複数の成形体が接合された状態で、粉末材料が焼結されることによって複数の成形体を接合する方法が提案されている。この方法は接合のみであって加圧処理を加えないため、焼結後の接合部の強度が小さくなる。   As the above method, for example, in JP-A-2-236205 (Patent Document 1), a plurality of molded bodies are joined via a slurry composed of a powder material that generates a liquid phase during sintering, a polymer binder, and a solvent. In this state, a method of joining a plurality of molded bodies by sintering a powder material has been proposed. Since this method is only bonding and no pressure treatment is applied, the strength of the bonded portion after sintering is reduced.

また、たとえば、特開平5−254947号公報(特許文献2)および特開2002−254420号公報(特許文献3)では、成形体と同組成あるいは主たる成分が同じであるスラリーを介して成形体同士が加圧またはCIP(冷間等方圧)成形によって接着された状態で焼結される方法が提案されている。特開平5−254947号公報に記載された方法では、成形体同士を接合するための冷間等方圧成形はそれぞれの成形体の成形圧力以下で処理されている。また、特開2002−254420号公報に記載された方法では、成形体同士が冷間等方圧成形を用いることなく加圧によって接合されている。特開平5−254947号公報および特開2002−254420号公報に記載された方法では、同組成あるいは主たる成分が同じであるスラリーを介して成形体同士が接合されているため、接合部の強度が母材となる成形体に近い強度となることが期待される。   Further, for example, in JP-A-5-254947 (Patent Document 2) and JP-A-2002-254420 (Patent Document 3), the molded bodies are mutually connected via a slurry having the same composition or main components as the molded bodies. Has been proposed which is sintered in a state in which is bonded by pressing or CIP (cold isostatic pressing) molding. In the method described in Japanese Patent Application Laid-Open No. 5-254947, cold isostatic pressing for bonding molded bodies to each other is performed under a molding pressure of each molded body. Moreover, in the method described in Unexamined-Japanese-Patent No. 2002-254420, the molded object is joined by pressurization, without using cold isostatic pressing. In the methods described in JP-A-5-254947 and JP-A-2002-254420, since the molded bodies are bonded to each other through a slurry having the same composition or the same main component, the strength of the bonded portion is increased. It is expected to have a strength close to that of the molded body as the base material.

特開平2−236205号公報JP-A-2-236205 特開平5−254947号公報JP-A-5-254947 特開2002−254420号公報JP 2002-254420 A

しかしながら、同組成あるいは主たる成分が同じであるスラリーを介して成形体同士を接合することによって、接合部の強度が母材となる成形体に近い強度となった場合でも次の問題がある。すなわち、成形体の成形圧力以下で成形体同士を接合すると、同種材料で形成された成形体であっても、接合した部材それぞれの成形方法または成形条件に依存する焼結収縮率の差によって、焼結後の接合部にクラックまたは剥離が生じるという問題がある。   However, there are the following problems even when the molded bodies are joined to each other via a slurry having the same composition or the same main component, so that the strength of the joint is close to that of the molded body as the base material. In other words, when the compacts are joined to each other at a molding pressure equal to or lower than the compacting pressure, even if the compacts are formed of the same material, due to the difference in sintering shrinkage depending on the molding method or molding conditions of each joined member, There is a problem that cracks or peeling occurs in the joint after sintering.

本発明は、上記課題を鑑みてなされたものであり、その目的は、焼結後の接合部にクラックまたは剥離が生じることを抑制できるセラミックス接合体の製造方法を提供することである。   This invention is made | formed in view of the said subject, The objective is to provide the manufacturing method of the ceramic joined body which can suppress that a crack or peeling arises in the junction part after sintering.

本発明のセラミックス接合体の製造方法は、互いに同種材料からなる第1および第2のセラミックス成形体を個別に成形する工程と、第1および第2のセラミックス成形体を等方圧成形を用いて嵌合することによってセラミックス接合体を成形する工程と、セラミックス接合体を焼結する工程とを備えている。第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力は、等方圧成形の成形圧力より低い。第1および第2のセラミックス成形体を個別に成形する際の第1のセラミックス成形体の成形圧力は、第2のセラミックス成形体の成形圧力より低い。等方圧成形の際に第1のセラミックス成形体に第2のセラミックス成形体が嵌合されてセラミックス接合体が得られる。ここで、同種材料とは、主成分が同じ材料を意味している。   The method for manufacturing a ceramic joined body according to the present invention includes a step of individually molding the first and second ceramic molded bodies made of the same kind of material, and isotropic pressure molding of the first and second ceramic molded bodies. The method includes a step of forming a ceramic joined body by fitting and a step of sintering the ceramic joined body. The respective molding pressures when the first and second ceramic molded bodies are individually molded are lower than the molding pressure of isotropic pressure molding. The molding pressure of the first ceramic molded body when molding the first and second ceramic molded bodies individually is lower than the molding pressure of the second ceramic molded body. During the isotropic pressure forming, the second ceramic molded body is fitted to the first ceramic molded body to obtain a ceramic joined body. Here, the same kind of material means a material having the same main component.

発明者らは、接合する複数のセラミックス成形体を成形する際の成形圧力を、接合を目的とした等方圧成形の際の成形圧力よりも低い成形圧力とし、複数のセラミックス成形体が異なる成形圧力で成形され、低い成形圧力で成形されたセラミックス成形体に高い成形圧力で成形されたセラミックス成形体を嵌合させた成形体に等方圧成形による接合を行うことにより、その等方圧成形された接合体を焼結した際に嵌合部(接合部)などでクラックまたは剥離が生じることを抑制できることを見出した。この結果、ほぼ均一な特性をもつ複雑形状または大型形状の焼結体を得ることができる。   The inventors set the molding pressure when molding a plurality of ceramic compacts to be joined to a molding pressure lower than the molding pressure at the time of isotropic pressure molding for the purpose of joining, and molding the plurality of ceramic compacts differently. Isotropic pressure molding by bonding by isotropic pressure molding to a molded body in which a ceramic molded body molded at high molding pressure is fitted to a ceramic molded body molded at low pressure and molded at low molding pressure It has been found that when the bonded body is sintered, it is possible to suppress the occurrence of cracks or peeling at the fitting portion (bonding portion) or the like. As a result, a complex or large-sized sintered body having substantially uniform characteristics can be obtained.

すなわち、接合する複数のセラミックス成形体を成形する際の成形圧力を、接合を目的とした等方圧成形の際の成形圧力よりも低い成形圧力とすることで、接合を目的とした等方圧成形によってその加圧成形下で処理される複数のセラミックス成形体が、接合を目的とした等方圧成形で得られる成形体とほぼ等価な成形体となる。その結果、接合体全体がほぼ均一な圧力分布となる。接合体全体が均一な圧力分布を有するため、焼結時の収縮特性も均一となる。同時に、接合を目的とした等方圧成形によって低い成形圧力のセラミックス成形体が高い成形圧力のセラミックス成形体より大きく体積収縮するため、嵌合部では低い成形圧力のセラミックス成形体が高い成形圧力のセラミックス成形体に圧着される。そのため、焼結した際に嵌合部などでクラックまたは剥離が生じることを抑制できる。この結果、嵌合部を含めてほぼ同じ物性を持つ複雑形状または大型形状の焼結体を得ることができる。   That is, the molding pressure when molding a plurality of ceramic compacts to be joined is set to a molding pressure lower than the molding pressure at the time of isotropic pressure molding for the purpose of joining, so that the isotropic pressure for the purpose of joining. A plurality of ceramic molded bodies that are processed under pressure molding by molding are molded bodies that are substantially equivalent to molded bodies obtained by isotropic pressure molding for bonding purposes. As a result, the entire bonded body has a substantially uniform pressure distribution. Since the entire joined body has a uniform pressure distribution, the shrinkage characteristics during sintering are also uniform. At the same time, the ceramic compact of low molding pressure shrinks more than the ceramic compact of high molding pressure by isostatic pressing for the purpose of joining. Crimped to the ceramic body. Therefore, it can suppress that a crack or peeling arises in a fitting part etc. when sintering. As a result, a complex or large-sized sintered body having substantially the same physical properties including the fitting portion can be obtained.

本発明のセラミックス接合体の製造方法によれば、第1および第2のセラミックス成形体を等方圧成形を用いて嵌合することによってセラミックス接合体が成形され、第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力は等方圧成形の成形圧力より低い。そして、第1および第2のセラミックス成形体を個別に成形する際の第1のセラミックス成形体の成形圧力は、第2のセラミックス成形体の成形圧力より低く、かつ等方圧成形の際に第1のセラミックス成形体に第2のセラミックス成形体が嵌合されてセラミックス接合体が得られる。このため、等方圧成形によって、第1および第2のセラミックス成形体が等方圧成形の際の成形圧力で接合される。その結果、セラミックス接合体全体が等方圧成形で達する成形圧力で成形される。したがって、セラミックス接合体全体が均一な圧力分布となるため、焼結時の収縮特性も均一となる。同時に、嵌合部では低い成形圧力の第1のセラミックス成形体が高い成形圧力の第2のセラミックス成形体に圧着される。そのため、焼結した際に嵌合部などでクラックまたは剥離が生じることを抑制できる。   According to the method for manufacturing a ceramic joined body of the present invention, the ceramic joined body is formed by fitting the first and second ceramic formed bodies using isotropic pressure forming, and the first and second ceramic formed bodies are formed. The molding pressure when molding the body individually is lower than the molding pressure of isotropic pressure molding. The molding pressure of the first ceramic molded body when the first and second ceramic molded bodies are individually molded is lower than the molding pressure of the second ceramic molded body, and the first ceramic molded body is subjected to isostatic pressure molding. The ceramic molded body is obtained by fitting the second ceramic molded body to one ceramic molded body. For this reason, the 1st and 2nd ceramic compact is joined by the forming pressure in the case of isotropic pressure forming by isotropic pressure forming. As a result, the entire ceramic joined body is molded at a molding pressure reached by isostatic pressing. Therefore, since the entire ceramic joined body has a uniform pressure distribution, the shrinkage characteristics during sintering are also uniform. At the same time, the first ceramic molded body having a low molding pressure is pressure-bonded to the second ceramic molded body having a high molding pressure at the fitting portion. Therefore, it can suppress that a crack or peeling arises in a fitting part etc. when sintering.

上記のセラミックス接合体の製造方法において好ましくは、第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力は5MPa以上であり、かつ等方圧成形の成形圧力の2/3以下である。第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力は原理的には接合を目的とした等方圧成形の際の成形圧力より低ければ良い。しかし、第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力が等方圧成形の際の成形圧力の2/3を超えると、接合を目的とした等方圧成形で得られる成形体と等価な成形体へ補正する効果がほとんど得られない。その結果、接合部における焼結時のセラミックス接合体の収縮特性が均一とならないので、接合部に強度低下が生じる。したがって、第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力を等方圧成形の際の成形圧力の2/3以下にすることで、接合を目的とした等方圧成形で得られる成形体と等価な成形体へ補正する効果を確実に得ることができる。   Preferably, in the above method for manufacturing a ceramic joined body, each of the molding pressures when the first and second ceramic molded bodies are individually molded is 5 MPa or more, and 2/3 of the molding pressure of isotropic pressure molding. It is as follows. The respective molding pressures when the first and second ceramic molded bodies are individually molded may be lower in principle than the molding pressure at the isotropic pressure molding for the purpose of joining. However, if the molding pressure when molding the first and second ceramic molded bodies individually exceeds 2/3 of the molding pressure at the isotropic pressure molding, isotropic pressure molding for the purpose of joining is performed. The effect of correcting to a molded body equivalent to the obtained molded body is hardly obtained. As a result, the shrinkage characteristics of the ceramic joined body during sintering in the joint portion are not uniform, resulting in a decrease in strength in the joint portion. Therefore, the isotropic pressure for the purpose of joining is obtained by setting the molding pressure when molding the first and second ceramic molded bodies individually to 2/3 or less of the molding pressure at the isotropic pressure molding. The effect of correcting to a molded body equivalent to the molded body obtained by molding can be reliably obtained.

また、第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力が5MPa未満であると、それぞれの成形体の保形自体が困難であったり、保形していたとしても接合を目的とした等方圧成形時に破損する可能性がある。したがって、第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力を5MPa以上にすることで、第1および第2のセラミックス成形体のそれぞれを容易に保形することができる。また、等方圧成形時に第1および第2のセラミックス成形体が破損することを抑制できる。   In addition, if the molding pressure when molding the first and second ceramic compacts individually is less than 5 MPa, it is difficult or impossible to retain the shape of each compact. There is a possibility of breakage during isostatic pressing for the purpose of joining. Therefore, each of the first and second ceramic molded bodies can be easily retained by setting the respective molding pressures when individually molding the first and second ceramic molded bodies to 5 MPa or more. . Moreover, it can suppress that the 1st and 2nd ceramic molded object is damaged at the time of isotropic pressure forming.

上記のセラミックス接合体の製造方法において好ましくは、第1および第2のセラミックス成形体を個別に成形する際の第1および第2のセラミックス成形体のそれぞれの成形圧力の差が10%以上である。第1および第2のセラミックス成形体を個別に成形する際の第1および第2のセラミックス成形体のそれぞれの成形圧力の差が10%未満の場合には、接合を目的とした等方圧成形時に第1および第2のセラミックス成形体の成形圧力差に起因する収縮差が小さいため勘合部の圧着作用が十分に発生しない。特に、容易に勘合ができるよう勘合部に隙間を設けて第1および第2にセラミックス成形体を組み合わせる場合は、接合を目的とした等方圧成形後にもその隙間が残ってしまうため勘合部の強度が著しく低下する。したがって、第1および第2のセラミックス成形体を個別に成形する際の第1および第2のセラミックス成形体のそれぞれの成形圧力の差を10%以上にすることによって、第1および第2のセラミックス成形体の成形圧力差に起因する収縮差を大きくすることで嵌合部の圧着作用を十分に発生させることができる。   Preferably, in the above method for manufacturing a ceramic joined body, a difference in molding pressure between the first and second ceramic compacts when the first and second ceramic compacts are individually molded is 10% or more. . If the difference in molding pressure between the first and second ceramic molded bodies when molding the first and second ceramic molded bodies individually is less than 10%, isotropic pressure molding for the purpose of joining Sometimes, the shrinkage difference due to the molding pressure difference between the first and second ceramic molded bodies is small, so that the crimping action of the fitting portion does not occur sufficiently. In particular, when a gap is provided in the fitting portion so that the fitting can be easily performed and the first and second ceramic molded bodies are combined, the gap remains even after isotropic pressure forming for the purpose of joining. The strength is significantly reduced. Therefore, the first and second ceramics are formed by setting the difference in molding pressure between the first and second ceramic compacts to 10% or more when individually molding the first and second ceramic compacts. By increasing the shrinkage difference caused by the molding pressure difference of the molded body, the crimping action of the fitting portion can be sufficiently generated.

上記のセラミックス接合体の製造方法において好ましくは、第1および第2のセラミックス成形体が酸化物セラミックスおよび非酸化物セラミックスのいずれかを含んでいる。これにより、第1および第2のセラミックス成形体の材料に酸化物セラミックスおよび非酸化物セラミックスのいずれかを適用することができる。   In the method for manufacturing a ceramic joined body, preferably, the first and second ceramic formed bodies include either oxide ceramics or non-oxide ceramics. Thereby, either oxide ceramics or non-oxide ceramics can be applied to the material of the first and second ceramic molded bodies.

上記のセラミックス接合体の製造方法において好ましくは、第1および第2のセラミックス成形体の主成分が同一である。ここで、主成分とは、含有割合が最も多い成分を意味している。これにより、焼結助剤および分散強化材などの添加材が若干異なっていても、焼結した際に嵌合部などでクラックまたは剥離が生じることを抑制できるセラミックス接合体を得ることができる。   In the above-described method for manufacturing a ceramic joined body, the main components of the first and second ceramic molded bodies are preferably the same. Here, the main component means a component having the largest content ratio. Thereby, even if additive materials, such as a sintering auxiliary agent and a dispersion reinforcement, differ a little, the ceramic joined body which can suppress that a crack or peeling arises by a fitting part etc. can be obtained when sintered.

上記のセラミックス接合体の製造方法において好ましくは、第1および第2のセラミックス成形体を個別に成形する工程は、金型プレス、一軸ラバープレス、冷間等方圧プレス、押出成形、射出成形およびスリップ・キャスティングよりなる群から選ばれる1つ以上によって第1および第2のセラミックス成形体の少なくともいずれかを成形する工程を含んでいる。これにより、第1および第2のセラミックス成形体を個別に成形する際に幅広い成形手法を採用することができる。また、第1および第2のセラミックス成形体を異なる成形手法によって成形することができる。   Preferably, in the above-described method for manufacturing a ceramic joined body, the steps of individually forming the first and second ceramic compacts include a die press, a uniaxial rubber press, a cold isostatic press, extrusion molding, injection molding, and A step of forming at least one of the first and second ceramic molded bodies by one or more selected from the group consisting of slip casting. Thereby, a wide shaping | molding method is employable when shape | molding the 1st and 2nd ceramic molded object separately. Further, the first and second ceramic molded bodies can be molded by different molding techniques.

上記のセラミックス接合体の製造方法において好ましくは、等方圧成形の際に第1および第2のセラミックス成形体が互いに接合材で接着された状態で接合される。第1および第2のセラミックス成形体が互いに接合材で接着されるため、第1および第2のセラミックス成形体を正確に組み合わせることができる。   In the above method for producing a ceramic joined body, preferably, the first and second ceramic molded bodies are bonded together with a bonding material in the isostatic pressing. Since the first and second ceramic molded bodies are bonded to each other with a bonding material, the first and second ceramic molded bodies can be accurately combined.

上記のセラミックス接合体の製造方法において好ましくは、接合材が、第1および第2のセラミックス成形体の主成分と同一の主成分を有するスラリーからなる。これにより、接合部の強度を第1および第2のセラミックス成形体と同等の強度にすることができる。   In the method for manufacturing a ceramic joined body, preferably, the joining material is made of a slurry having the same main component as the main components of the first and second ceramic molded bodies. Thereby, the intensity | strength of a junction part can be made into the intensity | strength equivalent to the 1st and 2nd ceramic molded object.

上記のセラミックス接合体の製造方法において好ましくは、等方圧成形が、第1および第2のセラミックス成形体を加圧液体で加圧することによって第1および第2のセラミックス成形体を接合する湿式冷間等方圧成形である。第1および第2のセラミックス成形体が加圧液体で加圧されるため、接合体の形状にあわせた型または治具が不要である。そのため生産性を向上することができる。   In the above method for manufacturing a ceramic joined body, preferably, the isotropic pressure forming is wet cooling in which the first and second ceramic compacts are joined by pressurizing the first and second ceramic compacts with a pressurized liquid. It is isostatic pressing. Since the first and second ceramic molded bodies are pressurized with a pressurized liquid, a mold or jig matching the shape of the joined body is not necessary. Therefore, productivity can be improved.

上記のセラミックス接合体の製造方法において好ましくは湿式冷間等方圧成形の際に加圧液体と第1および第2のセラミックス成形体との間に配置された遮蔽膜によって第1および第2のセラミックス成形体が覆われた状態で、遮蔽膜を介して第1および第2のセラミックス成形体を加圧液体で加圧することによって第1および第2のセラミックス成形体が接合される。このため、遮蔽膜によって第1および第2のセラミックス成形体を加圧液体から保護することができる。   In the above method for manufacturing a ceramic joined body, the first and second shielding films are preferably disposed between the pressurized liquid and the first and second ceramic compacts during wet cold isostatic pressing. With the ceramic molded body covered, the first and second ceramic molded bodies are joined by pressing the first and second ceramic molded bodies with a pressurized liquid through the shielding film. For this reason, the first and second ceramic molded bodies can be protected from the pressurized liquid by the shielding film.

上記のセラミックス接合体の製造方法において好ましくは、遮蔽膜が開口する一端を有する袋状に形成されており、第1および第2のセラミックス成形体が遮蔽膜に収容され、かつ一端が封止された状態で遮蔽膜の内部空間が減圧される。これにより、内部空間に内包される気体による成形不良および遮蔽膜の破損を抑制できる。   Preferably, in the above method for manufacturing a ceramic joined body, the shielding film is formed in a bag shape having one end where the opening is opened, the first and second ceramic molded bodies are accommodated in the shielding film, and one end is sealed. In this state, the internal space of the shielding film is decompressed. Thereby, the shaping | molding defect by the gas enclosed by internal space and the failure | damage of a shielding film can be suppressed.

上記のセラミックス接合体の製造方法において好ましくは、遮蔽膜が、乾燥および加熱のいずれかによってゴム化する材料の浸漬塗布および噴射のいずれかで形成される被膜からなる。第1および第2のセラミックス成形体の外形に沿って被膜が密着するため、より複雑な形状に遮蔽膜を適用することができる。   Preferably, in the above method for producing a ceramic joined body, the shielding film is formed of a film formed by either dip coating or spraying of a material that becomes rubberized by either drying or heating. Since the coating adheres along the outer shape of the first and second ceramic molded bodies, the shielding film can be applied to a more complicated shape.

上記のセラミックス接合体の製造方法において好ましくは、第1および第2のセラミックス成形体の互いの接合部に被膜が入りこまないように保護部材で接合部を覆った状態で、被膜が第1および第2のセラミックス成形体上に形成される。これにより、接合部への被膜の浸透を防止することができる。   Preferably, in the method for manufacturing a ceramic joined body, the first and second ceramic molded bodies have the first and second coatings in a state in which the joint is covered with a protective member so that the coating does not enter the joint portions of the first and second ceramic molded bodies. It is formed on the second ceramic molded body. Thereby, the penetration of the coating film into the joint can be prevented.

以上説明したように、本発明のセラミックス接合体の製造方法によれば、焼結後の接合部にクラックまたは剥離が生じることを抑制できる。   As described above, according to the method for manufacturing a ceramic joined body of the present invention, it is possible to suppress the occurrence of cracks or peeling at the joined portion after sintering.

本発明の一実施の形態におけるセラミックス接合体の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the ceramic joined body in one embodiment of this invention. 本発明の一実施の形態における第1のセラミックス成形体を成形する工程の概略を示す断面図である。It is sectional drawing which shows the outline of the process of shape | molding the 1st ceramic molded object in one embodiment of this invention. 本発明の一実施の形態における第2のセラミックス成形体を成形する工程の概略を示す断面図である。It is sectional drawing which shows the outline of the process of shape | molding the 2nd ceramic molded object in one embodiment of this invention. 本発明の一実施の形態における第1および第2のセラミックス成形体を接合することによってセラミックス接合体を成形する工程の概略を示す断面図である。It is sectional drawing which shows the outline of the process of shape | molding a ceramic joined body by joining the 1st and 2nd ceramic molded body in one embodiment of this invention. 本発明の一実施の形態におけるセラミックス接合体を焼結する工程の概略を示す断面図である。It is sectional drawing which shows the outline of the process of sintering the ceramic joined body in one embodiment of this invention. 本発明の一実施の形態における第1および第2のセラミックス成形体が遮蔽膜で覆われる様子を示す概略断面図である。It is a schematic sectional drawing which shows a mode that the 1st and 2nd ceramic molded object in one embodiment of this invention is covered with a shielding film. 本発明の一実施の形態における第1および第2のセラミックス成形体が遮蔽膜で覆われた状態を示す概略断面図である。It is a schematic sectional drawing which shows the state by which the 1st and 2nd ceramic molded object in one embodiment of this invention was covered with the shielding film. 本発明の一実施の形態における第1および第2のセラミックス成形体に遮蔽膜の材料が浸漬塗布される様子を示す概略断面図である。It is a schematic sectional drawing which shows a mode that the material of a shielding film is dip-coated on the 1st and 2nd ceramic molded object in one embodiment of this invention. 本発明の一実施の形態における第1および第2のセラミックス成形体が被膜からなる遮蔽膜で覆われた状態を示す概略断面図である。It is a schematic sectional drawing which shows the state by which the 1st and 2nd ceramic molded object in one embodiment of this invention was covered with the shielding film which consists of a film. 本発明の一実施の形態における第1および第2のセラミックス成形体に遮蔽膜の材料が噴射される様子を示す概略断面図である。It is a schematic sectional drawing which shows a mode that the material of a shielding film is injected to the 1st and 2nd ceramic molded object in one embodiment of this invention. 本発明の一実施の形態における第1および第2のセラミックス成形体の接合部が保護部材で覆われた状態を示す概略平面図である。It is a schematic plan view which shows the state by which the junction part of the 1st and 2nd ceramic molded object in one embodiment of this invention was covered with the protection member. 本発明の一実施の形態における第1および第2のセラミックス成形体の接合部が保護部材で覆われた状態で被膜が形成された様子を示す概略断面図である。It is a schematic sectional drawing which shows a mode that the film was formed in the state in which the junction part of the 1st and 2nd ceramic molded object in one embodiment of this invention was covered with the protection member. 本発明の実施例の第1および第2のセラミック成形体が接合される前の状態を示す概略斜視図である。It is a schematic perspective view which shows the state before the 1st and 2nd ceramic molded object of the Example of this invention is joined. 本発明の実施例の第1および第2のセラミック成形体が接合されたセラミックス接合体を示す概略斜視図である。It is a schematic perspective view which shows the ceramic joined body to which the 1st and 2nd ceramic molded body of the Example of this invention was joined. 本発明の実施例の他の形状の第1および第2のセラミック成形体が接合される前の状態を示す概略斜視図である。It is a schematic perspective view which shows the state before the 1st and 2nd ceramic molded body of another shape of the Example of this invention is joined. 本発明の実施例の他の形状の第1および第2のセラミック成形体が接合されたセラミックス接合体を示す概略斜視図である。It is a schematic perspective view which shows the ceramic joined body to which the 1st and 2nd ceramic molded object of the other shape of the Example of this invention was joined. 本発明の実施例の他の形状のセラミックス接合体の嵌合部を示す概略断面図である。It is a schematic sectional drawing which shows the fitting part of the ceramic joined body of the other shape of the Example of this invention.

以下、本発明の一実施の形態について図に基づいて説明する。
最初に、本発明の一実施の形態のセラミックス接合体の製造方法について説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Initially, the manufacturing method of the ceramic joined body of one embodiment of the present invention is explained.

図1を参照して、本発明の一実施の形態のセラミックス接合体の製造方法の概要について説明する。本発明の一実施の形態のセラミックス接合体の製造方法では、まず、互いに同種材料からなる第1のセラミックス成形体と第2のセラミックス成形体とを個別に成形する工程が実施される。つまり、第1のセラミックス成形体の成形工程(S10)と第2のセラミックス成形体の成形工程(S20)とが個別に実施される。   With reference to FIG. 1, the outline | summary of the manufacturing method of the ceramic joined body of one embodiment of this invention is demonstrated. In the method of manufacturing a ceramic joined body according to one embodiment of the present invention, first, a step of individually forming a first ceramic molded body and a second ceramic molded body made of the same kind of material is performed. That is, the first ceramic molded body molding step (S10) and the second ceramic molded body molding step (S20) are performed separately.

次に、第1および第2のセラミックス成形体を等方圧成形を用いて嵌合することによってセラミックス接合体を成形する工程(S30)が実施される。次に、セラミックス接合体を焼結する工程(S40)が実施される。そして、第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力は、等方圧成形の成形圧力より低い。第1および第2のセラミックス成形体を個別に成形する際の第1のセラミックス成形体の成形圧力は、第2のセラミックス成形体の成形圧力より低い。等方圧成形の際に第1のセラミックス成形体に第2のセラミックス成形体が嵌合されてセラミックス接合体が得られる。   Next, the process (S30) which shape | molds a ceramic joined body by fitting a 1st and 2nd ceramic molded object using isotropic pressure forming is implemented. Next, a step (S40) of sintering the ceramic joined body is performed. And each shaping | molding pressure at the time of shape | molding a 1st and 2nd ceramic molded object separately is lower than the shaping pressure of isotropic pressure forming. The molding pressure of the first ceramic molded body when molding the first and second ceramic molded bodies individually is lower than the molding pressure of the second ceramic molded body. During the isotropic pressure forming, the second ceramic molded body is fitted to the first ceramic molded body to obtain a ceramic joined body.

続いて、本発明の一実施の形態のセラミックス接合体の製造方法についてさらに詳しく説明する。   Next, a method for manufacturing a ceramic joined body according to an embodiment of the present invention will be described in more detail.

まず、図2および図3を参照して、第1のセラミックス成形体の成形工程(S10)および第2のセラミックス成形体の成形工程(S20)では、たとえば金型プレスによって第1のセラミックス成形体1および第2のセラミックス成形体2が成形される。つまり、上金型11と下金型12と側面金型13とによってセラミックス粉末が加圧されることによって、第1のセラミックス成形体1および第2のセラミックス成形体2が成形される。第1のセラミックス成形体1はたとえば円筒形状に形成される。第2のセラミックス成形体2はたとえば円柱形状に形成される。第1のセラミックス成形体1は、内周側で第2のセラミックス成形体2を嵌合可能に形成されている。第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際のそれぞれの成形圧力は、等方圧成形の成形圧力より低い。第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際の第1のセラミックス成形体1の成形圧力は、第2のセラミックス成形体の成形圧力2より低い。この等方圧成形前の段階での第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際のそれぞれの成形圧力は5MPa以上であることが好ましい。また、第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際の第1のセラミックス成形体1および第2のセラミックス成形体2のそれぞれの成形圧力の差が10%以上であることが好ましい。、
第1のセラミックス成形体1および第2のセラミックス成形体2は酸化物セラミックスおよび非酸化物セラミックスのいずれかを含んでいる。つまり、第1のセラミックス成形体1および第2のセラミックス成形体2の材料には、アルミナおよびジルコニアなどの酸化物セラミックスおよび窒化ケイ素、炭化ケイ素、窒化アルミニウムなどの非酸化物セラミックスが適用され得る。
First, referring to FIG. 2 and FIG. 3, in the first ceramic molded body molding step (S10) and the second ceramic molded body molding step (S20), the first ceramic molded body is formed by, for example, a die press The first and second ceramic molded bodies 2 are molded. That is, when the ceramic powder is pressed by the upper mold 11, the lower mold 12, and the side mold 13, the first ceramic molded body 1 and the second ceramic molded body 2 are molded. The first ceramic molded body 1 is formed in a cylindrical shape, for example. The second ceramic molded body 2 is formed in a cylindrical shape, for example. The first ceramic molded body 1 is formed so that the second ceramic molded body 2 can be fitted on the inner peripheral side. The respective molding pressures when the first ceramic molded body 1 and the second ceramic molded body 2 are individually molded are lower than the molding pressure of isotropic pressure molding. The molding pressure of the first ceramic molded body 1 when the first ceramic molded body 1 and the second ceramic molded body 2 are individually molded is lower than the molding pressure 2 of the second ceramic molded body. Each molding pressure at the time of individually molding the first ceramic molded body 1 and the second ceramic molded body 2 before the isotropic pressure molding is preferably 5 MPa or more. In addition, the difference in molding pressure between the first ceramic molded body 1 and the second ceramic molded body 2 when the first ceramic molded body 1 and the second ceramic molded body 2 are individually molded is 10% or more. It is preferable that ,
The first ceramic molded body 1 and the second ceramic molded body 2 contain either oxide ceramics or non-oxide ceramics. That is, oxide ceramics such as alumina and zirconia and non-oxide ceramics such as silicon nitride, silicon carbide, and aluminum nitride can be applied to the materials of the first ceramic molded body 1 and the second ceramic molded body 2.

また、第1のセラミックス成形体1および第2のセラミックス成形体2の主成分が同一であることが好ましい。第1のセラミックス成形体1および第2のセラミックス成形体2は主成分の他に焼結のための助剤(焼結助剤)を有していてもよい。また、第1のセラミックス成形体1および第2のセラミックス成形体2は分散強化材を有していてもよい。また、第1のセラミックス成形体1および第2のセラミックス成形体2は不可避不純物を有している。   Moreover, it is preferable that the main component of the 1st ceramic molded object 1 and the 2nd ceramic molded object 2 is the same. The first ceramic molded body 1 and the second ceramic molded body 2 may have an auxiliary for sintering (sintering auxiliary) in addition to the main component. Further, the first ceramic molded body 1 and the second ceramic molded body 2 may have a dispersion strengthening material. Further, the first ceramic molded body 1 and the second ceramic molded body 2 have inevitable impurities.

第1のセラミックス成形体1および第2のセラミックス成形体2のそれぞれは、金型プレス、一軸ラバープレス、冷間等方圧プレス、押出成形、射出成形およびスリップ・キャスティングなどによって成形され得る。なお、第1のセラミックス成形体1および第2のセラミックス成形体2は異なる成形方法で成形されてもよい。   Each of the first ceramic molded body 1 and the second ceramic molded body 2 can be molded by a die press, a uniaxial rubber press, a cold isostatic press, extrusion molding, injection molding, slip casting, or the like. The first ceramic molded body 1 and the second ceramic molded body 2 may be molded by different molding methods.

次に、図4を参照して、セラミックス接合体を成形する工程(S30)では、等方圧成形によって第1のセラミックス成形体1および第2のセラミックス成形体2が接合される。等方圧成形として湿式冷間等方圧成形、乾式冷間等方圧成形およびゴム型冷間等方圧成形などの冷間等方圧成形が適用され得るが、湿式冷間等方圧成形が好ましい。上部材21と下部材22と側面部材23とで囲まれた空間内に配置された第1のセラミックス成形体1と第2のセラミックス成形体2とが圧力媒体である加圧液体24によって加圧される。加圧液体24によって均一に加圧されることにより、第1のセラミックス成形体1と第2のセラミックス成形体2とが接合されてセラミックス接合体3が成形される。等方圧成形の際に第1のセラミックス成形体1に第2のセラミックス成形体2が嵌合されてセラミックス接合体3が得られる。   Next, referring to FIG. 4, in the step of forming the ceramic joined body (S30), the first ceramic molded body 1 and the second ceramic molded body 2 are joined by isotropic pressure molding. Cold isostatic pressing such as wet cold isostatic pressing, dry cold isostatic pressing and rubber mold cold isostatic pressing can be applied as isostatic pressing, but wet cold isostatic pressing is applicable. Is preferred. The first ceramic molded body 1 and the second ceramic molded body 2 disposed in a space surrounded by the upper member 21, the lower member 22, and the side member 23 are pressurized by a pressurized liquid 24 that is a pressure medium. Is done. By being uniformly pressurized by the pressurized liquid 24, the first ceramic molded body 1 and the second ceramic molded body 2 are bonded to form the ceramic bonded body 3. During the isostatic pressing, the second ceramic molded body 2 is fitted to the first ceramic molded body 1 to obtain the ceramic bonded body 3.

つまり、第2のセラミックス成形体2の周囲を第1のセラミックス成形体1が挟み込むことで第1のセラミックス成形体1に第2のセラミックス成形体2が嵌合される。円柱形状の第2のセラミックス成形体2が円筒形状の第1のセラミックス成形体1を貫通するように第1のセラミックス成形体1と第2のセラミックス成形体2とが嵌合される。第2のセラミックス成形体2の周囲の全周が円筒形状の第1のセラミックス成形体1の内周側で覆われる。   That is, the second ceramic molded body 2 is fitted to the first ceramic molded body 1 by sandwiching the periphery of the second ceramic molded body 2 with the first ceramic molded body 1. The first ceramic molded body 1 and the second ceramic molded body 2 are fitted so that the cylindrical second ceramic molded body 2 penetrates the cylindrical first ceramic molded body 1. The entire circumference around the second ceramic molded body 2 is covered with the inner peripheral side of the cylindrical first ceramic molded body 1.

第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際のそれぞれの成形圧力は等方圧成形の成形圧力の2/3以下であることが好ましい。   It is preferable that the molding pressure when molding the first ceramic molded body 1 and the second ceramic molded body 2 individually is 2/3 or less of the molding pressure of isotropic pressure molding.

また、等方圧成形の際に第1のセラミックス成形体1および第2のセラミックス成形体2が互いに接合材4で接着された状態で接合されることが好ましい。接合材4は、第1のセラミックス成形体1および第2のセラミックス成形体2の主成分と同一の主成分を有するスラリーからなることが好ましい。また、接合材4は、焼結時に熱分解される高分子接着剤であってもよい。   Further, it is preferable that the first ceramic molded body 1 and the second ceramic molded body 2 are bonded in a state where they are bonded to each other by the bonding material 4 during the isotropic pressure forming. The bonding material 4 is preferably made of a slurry having the same main component as the main components of the first ceramic molded body 1 and the second ceramic molded body 2. The bonding material 4 may be a polymer adhesive that is thermally decomposed during sintering.

また、湿式冷間等方圧成形の際に、加圧液体24と第1のセラミックス成形体1および第2のセラミックス成形体2との間に遮蔽膜5が配置されていることが好ましい。遮蔽膜5は、第1のセラミックス成形体1および第2のセラミックス成形体2を保護するためのものである。そして、遮蔽膜5によって第1のセラミックス成形体1および第2のセラミックス成形体2が覆われた状態で、遮蔽膜5を介して第1のセラミックス成形体1および第2のセラミックス成形体2を加圧液体24で加圧することによって第1のセラミックス成形体1および第2のセラミックス成形体2が接合されることが好ましい。   Moreover, it is preferable that the shielding film 5 is disposed between the pressurized liquid 24 and the first ceramic molded body 1 and the second ceramic molded body 2 during wet cold isostatic pressing. The shielding film 5 is for protecting the first ceramic molded body 1 and the second ceramic molded body 2. Then, in a state where the first ceramic molded body 1 and the second ceramic molded body 2 are covered with the shielding film 5, the first ceramic molded body 1 and the second ceramic molded body 2 are interposed through the shielding film 5. It is preferable that the first ceramic molded body 1 and the second ceramic molded body 2 are joined by pressurization with the pressurized liquid 24.

次に、図5を参照して、セラミックス接合体を焼結する工程(S40)では、セラミックス接合体3が焼結炉31の内部で加熱される。これにより、セラミックス接合体3が焼結される。なお、遮蔽膜5が取り除かれた状態でセラミックス接合体は加熱される。   Next, referring to FIG. 5, in the step of sintering the ceramic joined body (S <b> 40), the ceramic joined body 3 is heated inside the sintering furnace 31. Thereby, the ceramic joined body 3 is sintered. The ceramic joined body is heated with the shielding film 5 removed.

上記の遮蔽膜5としては、ビニル袋および袋形状のゴムが適用され得る。これらの場合、内包する気体による成形不良および袋の破損を防止するため、遮蔽膜5は、減圧してパッキングすることが好ましい。図6および図7を参照して、遮蔽膜5は開口する一端を有する袋状に形成されており、第1のセラミックス成形体1および第2のセラミックス成形体2が遮蔽膜5に収容される。そして、一端が封止された状態で遮蔽膜5の内部空間6が減圧される。なお、袋形状のゴムの材料としては、天然ゴム(NR)、ニトリルゴム(NBR)などが適用され得る。   As said shielding film 5, a vinyl bag and bag-shaped rubber | gum can be applied. In these cases, the shielding film 5 is preferably packed under reduced pressure in order to prevent molding defects and bag damage due to the encapsulated gas. Referring to FIGS. 6 and 7, shielding film 5 is formed in a bag shape having one open end, and first ceramic molded body 1 and second ceramic molded body 2 are accommodated in shielding film 5. . Then, the internal space 6 of the shielding film 5 is decompressed in a state where one end is sealed. Note that natural rubber (NR), nitrile rubber (NBR), or the like can be used as the material for the bag-shaped rubber.

また、図8〜図10を参照して、遮蔽膜5は、乾燥および加熱のいずれかによってゴム化する材料42の浸漬塗布および噴射のいずれかで形成される被膜51からなっていてもよい。乾燥および加熱のいずれかによってゴム化する材料42としては、ラテックス、液状ゴムなどが適用され得る。乾燥および加熱のいずれかによってゴム化する材料42の原料としては、シリコンゴム、ウレタンゴムなどが適用され得る。   8 to 10, the shielding film 5 may be formed of a coating 51 formed by either dip coating or spraying of a material 42 that is made rubber by drying or heating. As the material 42 to be rubberized by either drying or heating, latex, liquid rubber, or the like can be applied. Silicon rubber, urethane rubber, or the like can be applied as a raw material for the material 42 that is made rubber by either drying or heating.

図8を参照して、接合材4で接着された第1のセラミックス成形体1および第2のセラミックス成形体2は、容器41内に収容された乾燥および加熱のいずれかによってゴム化する材料42に浸漬される。これにより、第1のセラミックス成形体1および第2のセラミックス成形体2の表面に均一に材料42が塗布される。図9を参照して、第1のセラミックス成形体1および第2のセラミックス成形体2が容器41外に移動されることで、表面に塗布された材料42によって被膜51が形成される。これにより、被膜51からなる遮蔽膜5が形成される。   Referring to FIG. 8, the first ceramic molded body 1 and the second ceramic molded body 2 bonded by the bonding material 4 are rubberized by either drying or heating accommodated in a container 41. Soaked in. Thereby, the material 42 is uniformly applied to the surfaces of the first ceramic molded body 1 and the second ceramic molded body 2. Referring to FIG. 9, the first ceramic molded body 1 and the second ceramic molded body 2 are moved out of the container 41, whereby a film 51 is formed by the material 42 applied to the surface. Thereby, the shielding film 5 made of the coating 51 is formed.

続いて、図10を参照して、接合材4で接着された第1のセラミックス成形体1および第2のセラミックス成形体2の表面に霧状の材料42が噴射される。これにより、表面に噴射された材料42によって、図9と同様の被膜51が形成される。よって、被膜51からなる遮蔽膜5が形成される。   Subsequently, with reference to FIG. 10, a mist-like material 42 is sprayed onto the surfaces of the first ceramic molded body 1 and the second ceramic molded body 2 bonded by the bonding material 4. Thereby, the film 51 similar to FIG. 9 is formed by the material 42 sprayed on the surface. Therefore, the shielding film 5 made of the coating 51 is formed.

また、図11および図12を参照して、乾燥および加熱のいずれかによってゴム化する材料42が浸漬塗布および噴射される場合、保護部材によって第1のセラミックス成形体1および第2のセラミックス成形体2の互いの接合部(嵌合部)7への材料42の浸透を防止することが望ましい。このため、主に図11に示すように第1のセラミックス成形体1および第2のセラミックス成形体2の互いの接合部7に、材料42で形成された被膜51が入りこまないように保護部材8で接合部7が覆われている。この状態で、主に図12に示すように被膜51が第1のセラミックス成形体1上および第2のセラミックス成形体2上に形成される。これにより、接合部7への材料42の浸透が防止される。   In addition, referring to FIGS. 11 and 12, when material 42 to be rubberized by either drying or heating is dipped and sprayed, the first ceramic molded body 1 and the second ceramic molded body are protected by a protective member. It is desirable to prevent the penetration of the material 42 into the two mutual joint portions (fitting portions) 7. Therefore, as shown mainly in FIG. 11, the protective member prevents the coating 51 formed of the material 42 from entering the joint portion 7 of the first ceramic molded body 1 and the second ceramic molded body 2. 8 is covering the joint 7. In this state, as shown mainly in FIG. 12, a film 51 is formed on the first ceramic molded body 1 and the second ceramic molded body 2. Thereby, the penetration of the material 42 into the joint portion 7 is prevented.

次に、本発明の一実施の形態のセラミックス接合体の製造方法の作用効果について説明する。   Next, the effect of the manufacturing method of the ceramic joined body of one embodiment of the present invention will be described.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、第1のセラミックス成形体1および第2のセラミックス成形体2を等方圧成形を用いて嵌合することによってセラミックス接合体3が成形され、第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際のそれぞれの成形圧力は等方圧成形の成形圧力より低い。そして、第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際の第1のセラミックス成形体1の成形圧力は、第2のセラミックス成形体2の成形圧力より低く、かつ等方圧成形の際に第1のセラミックス成形体1に第2のセラミックス成形体2が嵌合されてセラミックス接合体3が得られる。このため、等方圧成形によって、第1のセラミックス成形体1および第2のセラミックス成形体2が等方圧成形の際の成形圧力で接合される。その結果、セラミックス接合体3全体が等方圧成形で達する成形圧力で成形される。したがって、セラミックス接合体3全体が均一な圧力分布となるため、焼結時の収縮特性も均一となる。同時に、嵌合部では低い成形圧力の第1のセラミックス成形体1が高い成形圧力の第2のセラミックス成形体2に圧着される。そのため、焼結した際に嵌合部などでクラックまたは剥離が生じることを抑制できる。   According to the method for manufacturing a ceramic joined body of one embodiment of the present invention, the ceramic joined body 3 is formed by fitting the first ceramic molded body 1 and the second ceramic molded body 2 using isotropic pressure molding. Each of the molding pressures when the first ceramic molded body 1 and the second ceramic molded body 2 are individually molded is lower than the molding pressure of isotropic pressure molding. The molding pressure of the first ceramic molded body 1 when molding the first ceramic molded body 1 and the second ceramic molded body 2 individually is lower than the molding pressure of the second ceramic molded body 2 and During the isostatic pressing, the second ceramic molded body 2 is fitted to the first ceramic molded body 1 to obtain the ceramic bonded body 3. For this reason, the 1st ceramic molded object 1 and the 2nd ceramic molded object 2 are joined by the molding pressure at the time of isotropic pressure forming by isotropic pressure forming. As a result, the entire ceramic joined body 3 is molded at a molding pressure reached by isotropic pressure molding. Therefore, since the entire ceramic joined body 3 has a uniform pressure distribution, the shrinkage characteristics during sintering are also uniform. At the same time, the first ceramic molded body 1 having a low molding pressure is pressure-bonded to the second ceramic molded body 2 having a high molding pressure at the fitting portion. Therefore, it can suppress that a crack or peeling arises in a fitting part etc. when sintering.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際のそれぞれの成形圧力は5MPa以上であり、かつ等方圧成形の成形圧力の2/3以下である。第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際のそれぞれの成形圧力を等方圧成形の際の成形圧力の2/3以下にすることで、接合を目的とした等方圧成形で得られる成形体と等価な成形体へ補正する効果を確実に得ることができる。そして、第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際のそれぞれの成形圧力を5MPa以上にすることで、第1のセラミックス成形体1および第2のセラミックス成形体2のそれぞれを容易に保形することができる。また、等方圧成形時に第1のセラミックス成形体1および第2のセラミックス成形体2が破損することを抑制できる。   According to the method for manufacturing a ceramic joined body of one embodiment of the present invention, the respective molding pressures when individually molding the first ceramic molded body 1 and the second ceramic molded body 2 are 5 MPa or more, And it is 2/3 or less of the molding pressure of isotropic pressure molding. The purpose of joining is to reduce the molding pressure when molding the first ceramic molded body 1 and the second ceramic molded body 2 individually to 2/3 or less of the molding pressure during isotropic pressure molding. Thus, it is possible to reliably obtain the effect of correcting the molded body equivalent to the molded body obtained by the isotropic pressure molding. And the 1st ceramic molded object 1 and the 2nd ceramic molded object by making each forming pressure at the time of forming the 1st ceramic molded object 1 and the 2nd ceramic molded object 2 into 5 Mpa or more individually Each of the two can be easily retained. Moreover, it can suppress that the 1st ceramic molded object 1 and the 2nd ceramic molded object 2 are damaged at the time of isotropic pressure forming.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際の第1のセラミックス成形体1および第2のセラミックス成形体2のそれぞれの成形圧力の差が10%以上である。第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際の第1のセラミックス成形体1および第2のセラミックス成形体2のそれぞれの成形圧力の差を10%以上にすることによって、第1のセラミックス成形体1および第2のセラミックス成形体2の成形圧力差に起因する収縮差を大きくすることで嵌合部の圧着作用を十分に発生させることができる。   According to the method for manufacturing a ceramic joined body according to one embodiment of the present invention, the first ceramic molded body 1 and the second ceramic molded body 1 and the second ceramic molded body 1 are separately molded. The difference in molding pressure between the ceramic molded bodies 2 is 10% or more. A difference in molding pressure between the first ceramic molded body 1 and the second ceramic molded body 2 when the first ceramic molded body 1 and the second ceramic molded body 2 are individually molded is set to 10% or more. By this, the shrinkage | contraction difference resulting from the shaping | molding pressure difference of the 1st ceramic molded object 1 and the 2nd ceramic molded object 2 can be enlarged, and the crimping effect | action of a fitting part can fully be generate | occur | produced.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、第1のセラミックス成形体1および第2のセラミックス成形体2が酸化物セラミックスおよび非酸化物セラミックスのいずれかを含んでいる。これにより、第1のセラミックス成形体1および第2のセラミックス成形体2の材料に酸化物セラミックスおよび非酸化物セラミックスのいずれかを適用することができる。   According to the method for manufacturing a ceramic joined body of one embodiment of the present invention, the first ceramic molded body 1 and the second ceramic molded body 2 contain either oxide ceramics or non-oxide ceramics. Thereby, either oxide ceramics or non-oxide ceramics can be applied to the materials of the first ceramic molded body 1 and the second ceramic molded body 2.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、第1のセラミックス成形体1および第2のセラミックス成形体2の主成分が同一である。これにより、焼結助剤および分散強化材などの添加材が若干異なっていても、焼結した際に嵌合部などでクラックまたは剥離が生じることを抑制できるセラミックス接合体を得ることができる。   According to the method for manufacturing a ceramic joined body of one embodiment of the present invention, the main components of the first ceramic molded body 1 and the second ceramic molded body 2 are the same. Thereby, even if additive materials, such as a sintering auxiliary agent and a dispersion reinforcement, differ a little, the ceramic joined body which can suppress that a crack or peeling arises by a fitting part etc. can be obtained when sintered.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する工程は、金型プレス、一軸ラバープレス、冷間等方圧プレス、押出成形、射出成形およびスリップ・キャスティングよりなる群から選ばれる1つ以上によって第1のセラミックス成形体1および第2のセラミックス成形体2の少なくともいずれかを成形する工程を含んでいる。これにより、第1のセラミックス成形体1および第2のセラミックス成形体2を個別に成形する際に幅広い成形手法を採用することができる。また、第1のセラミックス成形体1および第2のセラミックス成形体2を異なる成形手法によって成形することができる。   According to the method for manufacturing a ceramic joined body according to one embodiment of the present invention, the steps of individually forming the first ceramic molded body 1 and the second ceramic molded body 2 include a die press, a uniaxial rubber press, Forming at least one of the first ceramic molded body 1 and the second ceramic molded body 2 by one or more selected from the group consisting of isostatic pressing, extrusion molding, injection molding, and slip casting. It is out. Thereby, when forming the 1st ceramic molded object 1 and the 2nd ceramic molded object 2 separately, a wide shaping | molding method is employable. Further, the first ceramic molded body 1 and the second ceramic molded body 2 can be molded by different molding techniques.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、等方圧成形の際に第1のセラミックス成形体1および第2のセラミックス成形体2が互いに接合材4で接着された状態で接合される。第1のセラミックス成形体1および第2のセラミックス成形体2が互いに接合材4で接着されるため、第1のセラミックス成形体1および第2のセラミックス成形体2を正確に組み合わせることができる。   According to the method for manufacturing a ceramic joined body of one embodiment of the present invention, the first ceramic molded body 1 and the second ceramic molded body 2 are bonded to each other with the bonding material 4 during the isotropic pressure forming. Are joined together. Since the first ceramic molded body 1 and the second ceramic molded body 2 are bonded to each other with the bonding material 4, the first ceramic molded body 1 and the second ceramic molded body 2 can be accurately combined.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、接合材4が、第1のセラミックス成形体1および第2のセラミックス成形体2の主成分と同一の主成分を有するスラリーからなる。これにより、接合部7の強度を第1のセラミックス成形体1および第2のセラミックス成形体2と同等の強度にすることができる。   According to the method for manufacturing a ceramic joined body of one embodiment of the present invention, the joining material 4 is made of a slurry having the same main component as the main components of the first ceramic molded body 1 and the second ceramic molded body 2. Become. Thereby, the intensity | strength of the junction part 7 can be made into the intensity | strength equivalent to the 1st ceramic molded object 1 and the 2nd ceramic molded object 2. FIG.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、等方圧成形が、第1のセラミックス成形体1および第2のセラミックス成形体2を加圧液体24で加圧することによって第1のセラミックス成形体1および第2のセラミックス成形体2を接合する湿式冷間等方圧成形である。第1のセラミックス成形体1および第2のセラミックス成形体2が加圧液体で加圧されるため、接合体の形状にあわせた型または治具が不要である。そのため生産性を向上することができる。   According to the method of manufacturing a ceramic joined body according to the embodiment of the present invention, the isotropic pressure forming is performed by pressurizing the first ceramic molded body 1 and the second ceramic molded body 2 with the pressurized liquid 24. 1 is a wet cold isostatic pressing method in which a ceramic molded body 1 and a second ceramic molded body 2 are joined. Since the first ceramic molded body 1 and the second ceramic molded body 2 are pressurized with a pressurized liquid, a mold or jig matching the shape of the joined body is not required. Therefore, productivity can be improved.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、湿式冷間等方圧成形の際に加圧液体24と第1のセラミックス成形体1および第2のセラミックス成形体2との間に配置された遮蔽膜5によって第1のセラミックス成形体1および第2のセラミックス成形体2が覆われた状態で、遮蔽膜5を介して第1のセラミックス成形体1および第2のセラミックス成形体2を加圧液体24で加圧することによって第1のセラミックス成形体1および第2のセラミックス成形体2が接合される。このため、遮蔽膜5によって第1のセラミックス成形体1および第2のセラミックス成形体2を加圧液体24から保護することができる。   According to the method for manufacturing a ceramic joined body according to one embodiment of the present invention, the pressure liquid 24, the first ceramic molded body 1 and the second ceramic molded body 2 are subjected to wet cold isostatic pressing. In a state where the first ceramic molded body 1 and the second ceramic molded body 2 are covered by the shielding film 5 disposed therebetween, the first ceramic molded body 1 and the second ceramic molded body are interposed through the shielding film 5. By pressurizing the body 2 with the pressurized liquid 24, the first ceramic molded body 1 and the second ceramic molded body 2 are joined. For this reason, the first ceramic molded body 1 and the second ceramic molded body 2 can be protected from the pressurized liquid 24 by the shielding film 5.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、遮蔽膜5が開口する一端を有する袋状に形成されており、第1のセラミックス成形体1および第2のセラミックス成形体2が遮蔽膜5に収容され、かつ一端が封止された状態で遮蔽膜5の内部空間6が減圧される。これにより、内部空間6に内包される気体による成形不良および遮蔽膜5の破損を抑制できる。   According to the method for manufacturing a ceramic joined body according to one embodiment of the present invention, the first ceramic molded body 1 and the second ceramic molded body 2 are formed in a bag shape having one end where the shielding film 5 is opened. Is housed in the shielding film 5 and the inner space 6 of the shielding film 5 is decompressed in a state where one end is sealed. Thereby, it is possible to suppress molding defects due to the gas contained in the internal space 6 and damage to the shielding film 5.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、遮蔽膜5が、乾燥および加熱のいずれかによってゴム化する材料の浸漬塗布および噴射のいずれかで形成される被膜51からなる。第1のセラミックス成形体1および第2のセラミックス成形体2の外形に沿って被膜51が密着するため、より複雑な形状に遮蔽膜5を適用することができる。   According to the method for manufacturing a ceramic joined body according to one embodiment of the present invention, the shielding film 5 includes the coating 51 formed by either dip coating or spraying of a material that becomes rubber by either drying or heating. . Since the coating 51 adheres along the outer shape of the first ceramic molded body 1 and the second ceramic molded body 2, the shielding film 5 can be applied to a more complicated shape.

本発明の一実施の形態のセラミックス接合体の製造方法によれば、第1のセラミックス成形体1および第2のセラミックス成形体2の互いの接合部7に被膜が入りこまないように保護部材8で接合部7を覆った状態で、被膜51が第1のセラミックス成形体1および第2のセラミックス成形体2上に形成される。これにより、接合部7への被膜51の浸透を防止することができる。   According to the method for manufacturing a ceramic joined body of one embodiment of the present invention, the protective member 8 prevents the coating from entering the joint portion 7 of the first ceramic molded body 1 and the second ceramic molded body 2. Then, the coating 51 is formed on the first ceramic molded body 1 and the second ceramic molded body 2 in a state where the joint portion 7 is covered. Thereby, the penetration of the coating 51 into the joint portion 7 can be prevented.

以下、実施例について説明する。
まず、表1に示す成形条件で部材1〜26をそれぞれ作成した。
Examples will be described below.
First, members 1 to 26 were created under the molding conditions shown in Table 1, respectively.

Figure 2013082170
Figure 2013082170

各部材には、窒化ケイ素セラミックス、アルミナセラミックスまたはジルコニアセラミックスを用いた。窒化ケイ素セラミックス(90質量%Si34‐5質量%Y‐5質量%Al、90質量%Si34‐5質量%La‐5質量%Al)は、主成分が90質量%Si34(窒化ケイ素)であり、助剤が5質量%Y(イットリウム)‐5質量%Al(アルミニウム)または5質量%La(ランタン)‐5質量%Alである。アルミナセラミックス(100質量%Al23)は主成分が100質量%Al23(酸化アルミニウム)ある。ジルコニアセラミックス(95質量%ZrO2‐5質量%Y)は主成分がZrO2(酸化ジルコニウム)であり、助剤が5質量%Yである。 For each member, silicon nitride ceramics, alumina ceramics, or zirconia ceramics were used. Silicon nitride ceramics (90 mass% Si 3 N 4 -5 mass% Y-5 mass% Al, 90 mass% Si 3 N 4 -5 mass% La-5 mass% Al) have a main component of 90 mass% Si 3 N 4 (silicon nitride) and the auxiliary agent is 5 mass% Y (yttrium) -5 mass% Al (aluminum) or 5 mass% La (lanthanum) -5 mass% Al. The main component of alumina ceramics (100% by mass Al 2 O 3 ) is 100% by mass Al 2 O 3 (aluminum oxide). The main component of zirconia ceramics (95 mass% ZrO 2 -5 mass% Y) is ZrO 2 (zirconium oxide), and the auxiliary is 5 mass% Y.

各部材の成形方法として、金型プレス、一軸ラバープレス、冷間静水等方圧プレス、押出成形、射出成型、スリップ・キャスティングを用いた。成形圧力(MPa)は各部材の成形圧力である。相対圧力(%)は後述する接合時の等方圧成形の圧力(300MPa)に対する各部材の成形圧力の割合である。成形可否は、○が各部材を成形できたことを示し、×は各部材を成形できなかったことを示す。部材1は、成形密度が小さいため成形できなかった。一方、部材2〜26は成形できた。   As a molding method of each member, a die press, a uniaxial rubber press, a cold isostatic press, extrusion molding, injection molding, and slip casting were used. The molding pressure (MPa) is the molding pressure of each member. The relative pressure (%) is the ratio of the molding pressure of each member to the pressure (300 MPa) of isotropic pressure molding at the time of joining described later. Whether or not molding is possible indicates that each member could be molded, and × indicates that each member could not be molded. The member 1 could not be molded because of a low molding density. On the other hand, members 2 to 26 could be molded.

続いて試験片について説明する。比較のために冷間等方圧成形(CIP)で一体成形された試験片を作成した。試験片は窒化ケイ素セラミックス、アルミナセラミックスおよびジルコニアセラミックスを用いてそれぞれ作成した。   Next, the test piece will be described. For comparison, a test piece integrally formed by cold isostatic pressing (CIP) was prepared. Test pieces were prepared using silicon nitride ceramics, alumina ceramics, and zirconia ceramics, respectively.

次に、表2に示す成形条件で上記の各部材を用いて本発明の比較例および実施例を作成した。上記の各部材を等方圧成形で接合した後、焼結して比較例および実施例を作成した。すなわち、図13および図14を参照して、部材Aは第2のセラミックス成形体2であり、部材Bは第1のセラミックス成形体1である。接合材4としてスラリーが用いられている。スラリーを介して部材AおよびBを接合してセラミックス接合体3を作成した。円筒形状の第1のセラミックス成形体1の内周側に円柱形状の第2のセラミックス成形体2が嵌合される。   Next, comparative examples and examples of the present invention were created using the above-described members under the molding conditions shown in Table 2. After joining each said member by isostatic pressing, it sintered and the comparative example and the Example were created. That is, with reference to FIG. 13 and FIG. 14, the member A is the second ceramic molded body 2, and the member B is the first ceramic molded body 1. A slurry is used as the bonding material 4. The members A and B were joined through the slurry to produce a ceramic joined body 3. A cylindrical second ceramic molded body 2 is fitted to the inner peripheral side of the cylindrical first ceramic molded body 1.

Figure 2013082170
Figure 2013082170

接着方法としては、第1のセラミックス成形体1および第2のセラミックス成形体2の主成分と同一の主成分を有するスラリーを塗布して第1のセラミックス成形体1と第2のセラミックス成形体2とを接着した。遮蔽膜にはビニル袋を用いた。ビニル袋の膜厚は0.05〜0.1mmである。ビニル袋の内部空間を減圧した。等方圧成形には湿式冷間等方圧成形(WET‐CIP)を採用した。湿式冷間等方圧成形での加圧圧力は300MPaとした。接合可否は、○が部材Aと部材Bとを接合できたことを示し、×は部材Aと部材Bとを接合できなかったことを示す。△は部材Aと部材Bとを十分に接合できなかったことを示す。   As a bonding method, a slurry having the same main component as the main components of the first ceramic molded body 1 and the second ceramic molded body 2 is applied, and the first ceramic molded body 1 and the second ceramic molded body 2 are applied. And glued together. A vinyl bag was used as the shielding film. The film thickness of the vinyl bag is 0.05 to 0.1 mm. The internal space of the vinyl bag was depressurized. Wet cold isostatic pressing (WET-CIP) was adopted for isostatic pressing. The pressure applied in wet cold isostatic pressing was 300 MPa. “Yes” indicates that the member A and the member B can be joined, and “x” indicates that the member A and the member B cannot be joined. Δ indicates that member A and member B could not be joined sufficiently.

接合前の部材AおよびBの成形圧力が等方圧成形の成形圧力よりも低く、かつ接合前の部材AおよびBの成形圧力がそれぞれ異なる実施例1〜3では、部材AおよびBを接合できた。これは接合を目的とした等方圧成形によってその加圧成形下で処理される複数のセラミック成形体にほぼ均一な成形圧力が加えられ、勘合部では接合を目的とした等方圧成形によって低い成形圧力の成形体のほうが勘合した高い成形圧力の成形体より大きな体積収縮をともなうためだと考えられる。   In Examples 1 to 3 in which the molding pressures of the members A and B before joining are lower than the molding pressure of isotropic pressure molding and the molding pressures of the members A and B before joining are different, the members A and B can be joined. It was. This is because a substantially uniform forming pressure is applied to a plurality of ceramic molded bodies processed under pressure forming by isotropic pressure forming for bonding, and is low by isotropic pressure forming for bonding at the fitting portion. This is thought to be due to the fact that the compact of the molding pressure has a larger volume shrinkage than the compact of the high molding pressure.

接合前の部材AおよびBの成形圧力が5MPa未満の比較例1では、等方加圧の際に破損するため接合できなかった。また、接合前の部材AおよびBの成形圧力が等方圧成形の成形圧力の2/3を超える比較例2では、等方圧成形後に簡単に部材Aが部材Bから引き抜かれた。これは部材AおよびBの成形時に生じる圧力の偏りおよび圧力の方向性を接合時の圧力では修正しきれなかったため、外観上は接合しているが、一体化までには至らなかったことが原因であると考えられる。   In Comparative Example 1 in which the molding pressures of the members A and B before joining were less than 5 MPa, they could not be joined because they were damaged during isotropic pressurization. Further, in Comparative Example 2 in which the molding pressure of the members A and B before joining exceeds 2/3 of the molding pressure of isotropic pressure molding, the member A was easily pulled out from the member B after the isotropic pressure molding. This is because the pressure deviation and the directionality of the pressure that occur during the molding of the members A and B could not be corrected by the pressure at the time of joining, so they were joined in appearance but were not integrated. It is thought that.

また、接合前の部材AおよびBの成形圧力の差が10%以上の実施例4では、部材AおよびBを接合できた。一方、接合前の部材AおよびBの成形密度の差が5%の比較例3では、等方圧成形後に簡単に部材Aが部材Bから引き抜かれた。これは等方圧成形時に嵌合部で成形圧力差に起因する収縮差が十分に生じなかったため、嵌合部の圧着作用が十分に発生しなかったためと考えられる。   Further, in Example 4 in which the difference in molding pressure between the members A and B before joining was 10% or more, the members A and B could be joined. On the other hand, in Comparative Example 3 in which the difference in molding density between the members A and B before joining was 5%, the member A was easily pulled out from the member B after isotropic pressure molding. This is probably because the shrinkage difference due to the molding pressure difference did not sufficiently occur at the fitting portion during isotropic pressure molding, and the crimping action of the fitting portion did not occur sufficiently.

また、部材AおよびBの主成分が酸化物セラミックスであるアルミナおよびジルコニア、また非酸化物セラミックスである窒化ケイ素である実施例1〜6では、いずれも部材AおよびBを接合できた。部材AおよびBの主成分がアルミナおよびジルコニアなどの酸化物セラミックス、また窒化ケイ素、炭化ケイ素および窒化アルミニウムなどの非酸化物セラミックスであれば同様の結果が得られ得る。   In Examples 1 to 6, in which the main components of the members A and B are alumina and zirconia, which are oxide ceramics, and silicon nitride, which is a non-oxide ceramic, the members A and B can be joined together. Similar results can be obtained if the main components of members A and B are oxide ceramics such as alumina and zirconia, and non-oxide ceramics such as silicon nitride, silicon carbide and aluminum nitride.

また、部材AおよびBの主たる原料が異なり、かつ主成分が異なる比較例4〜6では部材AおよびBを接合できなかった。この理由は部材AおよびBの焼結時の収縮特性が異なるためと考えられる。また、接合前の部材AおよびBの助剤は異なるが主成分は同一である実施例7では、部材AおよびBを接合できた。   Further, in Comparative Examples 4 to 6 in which the main raw materials of the members A and B were different and the main components were different, the members A and B could not be joined. The reason for this is thought to be because the shrinkage characteristics of members A and B differ during sintering. Further, in Example 7 in which the auxiliary components of the members A and B before joining were different but the main components were the same, the members A and B could be joined.

また、接合前の部材AおよびBの成形圧力の差が10%以上である実施例8〜17では、金型プレス、一軸ラバープレス,冷間静水等方加圧プレス、押出成形、射出成形、スリップ・キャスティングの異なる成形方法でも部材AおよびBを接合できた。   Further, in Examples 8 to 17 in which the difference in molding pressure between the members A and B before joining is 10% or more, a die press, a uniaxial rubber press, a cold isostatic press, extrusion molding, injection molding, The members A and B could be joined by molding methods with different slip casting.

次に、部材AおよびBの形状、接着方法および遮蔽膜を異ならせて、接合可否および柱部強度を検討した。表3に示す成形条件で本発明の比較例および実施例を作成した。   Next, the shape of the members A and B, the bonding method, and the shielding film were varied, and the possibility of joining and the strength of the column portion were examined. Comparative examples and examples of the present invention were prepared under the molding conditions shown in Table 3.

Figure 2013082170
Figure 2013082170

比較例および実施例の形状としては上記の図14に示す形状と、図15〜図17に示す形状とした。図15〜図17を参照して、部材Aは第2のセラミックス成形体2であり、部材Bは第1のセラミックス成形体1である。接合材4としてスラリーが用いられている。スラリーを介して部材AおよびBを接合してセラミックス接合体3を作成した。2つの円環形状の第1のセラミックス成形体1の互いに向かい合う面にくさび形状の第2のセラミックス成形体2が嵌合される。   The shapes of the comparative example and the example were the shapes shown in FIG. 14 and the shapes shown in FIGS. Referring to FIGS. 15 to 17, member A is the second ceramic molded body 2, and member B is the first ceramic molded body 1. A slurry is used as the bonding material 4. The members A and B were joined through the slurry to produce a ceramic joined body 3. A wedge-shaped second ceramic molded body 2 is fitted to the surfaces of the two annular first ceramic molded bodies 1 facing each other.

接着方法としては、接合材なし、接着剤またはスラリーで部材AおよびBを接着した。遮蔽膜には、ビニル袋または浸漬塗布で形成された被膜を用いた。ビニル袋では内部空間を減圧した。実施例19および実施例21では接合部を保護部材でシーリングした。等方圧成形には湿式冷間等方圧成形(WET‐CIP)を採用した。各部材を等方圧成形で接合した後、焼結して比較例および実施例を作成した。接合可否は、○が部材Aと部材Bとを接合できたことを示し、×が部材Aと部材Bとを接合できなかったことを示す。△は部材Aと部材Bとを十分に接合できなかったことを示す。柱部強度(%)は、比較対象としての削り出し部品の強度100%に対する相対強度である。柱部強度(%)は以下のように測定した。図16について、部材1をつかみ、アキシャル方向に引っ張る。このときの破断強度を柱部強度とした。   As a bonding method, the members A and B were bonded with an adhesive or a slurry without a bonding material. As the shielding film, a vinyl bag or a film formed by dip coating was used. The inner space of the vinyl bag was reduced. In Example 19 and Example 21, the joint was sealed with a protective member. Wet cold isostatic pressing (WET-CIP) was adopted for isostatic pressing. After joining each member by isostatic pressing, it sintered and produced the comparative example and the Example. Whether or not joining is possible indicates that ◯ can join the members A and B, and × indicates that the members A and B cannot be joined. Δ indicates that member A and member B could not be joined sufficiently. The column portion strength (%) is a relative strength with respect to 100% strength of the machined part as a comparison target. The column strength (%) was measured as follows. In FIG. 16, the member 1 is grasped and pulled in the axial direction. The breaking strength at this time was defined as the column portion strength.

接合材なしで部材AおよびBを接着した比較例9では、接合できなかった。接着剤で部材AおよびBを接着した比較例10では、等方圧成形後に簡単に部材Aが部材Bから引き抜かれた。一方、部材AおよびBと同一の主成分を含むスラリーを接合面に塗布した実施例18では部材AおよびBが接合できた。この理由は部材AおよびBと同一の主成分を含むスラリーを用いることで、各部材および接合界面が一体化し、一体成形品と同等の強度が得られたためと考えられる。   In Comparative Example 9 in which the members A and B were bonded without a bonding material, bonding could not be performed. In Comparative Example 10 in which the members A and B were bonded with an adhesive, the member A was easily pulled out from the member B after isotropic pressure molding. On the other hand, in Example 18 in which the slurry containing the same main component as the members A and B was applied to the bonding surface, the members A and B could be bonded. The reason for this is considered to be that by using the slurry containing the same main component as the members A and B, the members and the bonding interface were integrated, and the same strength as that of the integrally molded product was obtained.

また、減圧処理を施さない比較例11では接合できなかった。この理由は減圧処理を施さないとビニル袋が柱部根元形状に適切に追従し、部材全体が均一に加圧されないためと考えられる。部材AおよびBをスラリーで接着した後、シリコンゴム形成溶液中に浸漬させて遮蔽膜を形成した実施例20では、乾燥(シリコンゴム化)後、WET‐CIP処理を施すことにより接合できたが一部試料において接合面の剥離が認められた。この理由はシリコンゴム形成溶液が接合部(接合面)に浸透したことにより、接合が不十分になったためと考えられる。シリコンゴムで形成された遮蔽膜の膜厚は0.5〜2.0mmである。   Moreover, it was not able to join in the comparative example 11 which does not give a pressure reduction process. The reason for this is considered to be that if the decompression process is not performed, the vinyl bag appropriately follows the shape of the base of the column portion, and the entire member is not uniformly pressurized. In Example 20 in which the shielding films were formed by adhering the members A and B with a slurry and then immersed in a silicon rubber forming solution, they could be joined by performing WET-CIP treatment after drying (silicon rubber conversion). Separation of the joint surface was observed in some samples. The reason for this is considered to be that bonding is insufficient because the silicon rubber forming solution has permeated into the bonded portion (bonded surface). The thickness of the shielding film made of silicon rubber is 0.5 to 2.0 mm.

一方、接合面周辺にシーリングテープ(保護部材)を巻きつけ、シリコンゴム形成溶液中に浸漬させた実施例19および実施例21では接合でき、接合不良も見られなかった。この理由はシーリングテープがシリコンゴム形成溶液の試料中への浸透を防いだためと考えられる。   On the other hand, in Example 19 and Example 21 in which a sealing tape (protective member) was wound around the joining surface and immersed in the silicon rubber forming solution, joining was possible, and no joining failure was observed. This is probably because the sealing tape prevented the silicon rubber forming solution from penetrating into the sample.

また、比較例12では、部材AとBとを十分に接合できなかった。
また、実施例20では柱部強度が58.2%となり、実施例21では柱部強度が99.9%となった。
Further, in Comparative Example 12, the members A and B could not be sufficiently joined.
In Example 20, the column strength was 58.2%, and in Example 21, the column strength was 99.9%.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、セラミックス成形体を接合することによってセラミックス接合体を成形するセラミックス接合体の製造方法に特に有利に適用され得る。   The present invention can be particularly advantageously applied to a method for manufacturing a ceramic joined body in which a ceramic joined body is formed by joining ceramic shaped bodies.

1 第1のセラミックス成形体、2 第2のセラミックス成形体、3 セラミックス接合体、4 接合材、5 遮蔽膜、6 内部空間、7 接合部(嵌合部)、8 保護部材、42 材料、51 被膜。   DESCRIPTION OF SYMBOLS 1 1st ceramic molded object, 2nd 2nd ceramic molded object, 3 Ceramics joined body, 4 Joining material, 5 Shielding film, 6 Internal space, 7 Joining part (fitting part), 8 Protection member, 42 Material, 51 Coating.

Claims (13)

互いに同種材料からなる第1および第2のセラミックス成形体を個別に成形する工程と、
前記第1および第2のセラミックス成形体を等方圧成形を用いて嵌合することによってセラミックス接合体を成形する工程と、
前記セラミックス接合体を焼結する工程とを備え、
前記第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力は、前記等方圧成形の成形圧力より低く、かつ
前記第1および第2のセラミックス成形体を個別に成形する際の前記第1のセラミックス成形体の成形圧力は、前記第2のセラミックス成形体の成形圧力より低く、かつ
前記等方圧成形の際に前記第1のセラミックス成形体に前記第2のセラミックス成形体が嵌合されて前記セラミックス接合体が得られる、セラミックス接合体の製造方法。
Individually molding the first and second ceramic molded bodies made of the same kind of materials;
Forming a ceramic joined body by fitting the first and second ceramic shaped bodies using isotropic pressure molding; and
A step of sintering the ceramic joined body,
The molding pressure when molding the first and second ceramic molded bodies individually is lower than the molding pressure of the isotropic pressure molding, and the first and second ceramic molded bodies are molded individually. The molding pressure of the first ceramic molded body is lower than the molding pressure of the second ceramic molded body, and the second ceramic molding is applied to the first ceramic molded body during the isotropic pressure molding. A method for producing a ceramic joined body, wherein the ceramic joined body is obtained by fitting a body.
前記第1および第2のセラミックス成形体を個別に成形する際のそれぞれの成形圧力は5MPa以上であり、かつ前記等方圧成形の成形圧力の2/3以下である、請求項1に記載のセラミックス接合体の製造方法。   2. The molding pressure according to claim 1, wherein the molding pressure when molding the first and second ceramic molded bodies individually is 5 MPa or more and 2/3 or less of the molding pressure of the isotropic pressure molding. Manufacturing method of ceramic joined body. 前記第1および第2のセラミックス成形体を個別に成形する際の前記第1および第2のセラミックス成形体のそれぞれの成形圧力の差が10%以上である、請求項1または2に記載のセラミックス接合体の製造方法。   The ceramic according to claim 1 or 2, wherein a difference in molding pressure between the first and second ceramic compacts when the first and second ceramic compacts are individually molded is 10% or more. Manufacturing method of joined body. 前記第1および第2のセラミックス成形体が酸化物セラミックスおよび非酸化物セラミックスのいずれかを含む、請求項1〜3のいずれかに記載のセラミックス接合体の製造方法。   The manufacturing method of the ceramic joined body in any one of Claims 1-3 in which the said 1st and 2nd ceramic molded object contains either oxide ceramics or non-oxide ceramics. 前記第1および第2のセラミックス成形体の主成分が同一である、請求項1〜4のいずれかに記載のセラミックス接合体の製造方法。   The manufacturing method of the ceramic joined body in any one of Claims 1-4 whose main components of a said 1st and 2nd ceramic molded object are the same. 前記第1および第2のセラミックス成形体を個別に成形する工程は、金型プレス、一軸ラバープレス、冷間等方圧プレス、押出成形、射出成形およびスリップ・キャスティングよりなる群から選ばれる1つ以上によって前記第1および第2のセラミックス成形体の少なくともいずれかを成形する工程を含む、請求項1〜5のいずれかに記載のセラミックス接合体の製造方法。   The step of individually molding the first and second ceramic molded bodies is one selected from the group consisting of a die press, a uniaxial rubber press, a cold isostatic press, extrusion molding, injection molding, and slip casting. The manufacturing method of the ceramic joined body in any one of Claims 1-5 including the process of shape | molding at least any one of the said 1st and 2nd ceramic molded object by the above. 前記等方圧成形の際に前記第1および第2のセラミックス成形体が互いに接合材で接着された状態で接合される、請求項1〜6のいずれかに記載のセラミックス接合体の製造方法。   The method for manufacturing a ceramic joined body according to any one of claims 1 to 6, wherein the first and second ceramic compacts are joined together with a joining material during the isostatic pressing. 前記接合材が前記第1および第2のセラミックス成形体の主成分と同一の主成分を有するスラリーからなる、請求項7に記載のセラミックス接合体の製造方法。   The method for manufacturing a ceramic joined body according to claim 7, wherein the joining material is made of a slurry having the same main component as that of the first and second ceramic molded bodies. 前記等方圧成形が、前記第1および第2のセラミックス成形体を加圧液体で押圧することによって前記第1および第2のセラミックス成形体を接合する湿式冷間等方圧成形である、請求項1〜8のいずれかに記載のセラミックス接合体の製造方法。   The isotropic pressure forming is wet cold isostatic pressing in which the first and second ceramic compacts are joined by pressing the first and second ceramic compacts with a pressurized liquid. Item 9. A method for producing a ceramic joined body according to any one of items 1 to 8. 前記湿式冷間等方圧成形の際に前記加圧液体と前記第1および第2のセラミックス成形体との間に配置された遮蔽膜によって前記第1および第2のセラミックス成形体が覆われた状態で、前記遮蔽膜を介して前記第1および第2のセラミックス成形体を前記加圧液体で押圧することによって前記第1および第2のセラミックス成形体が接合される、請求項9に記載のセラミックス接合体の製造方法。   During the wet cold isostatic pressing, the first and second ceramic compacts are covered with a shielding film disposed between the pressurized liquid and the first and second ceramic compacts. The first and second ceramic molded bodies are bonded to each other by pressing the first and second ceramic molded bodies with the pressurized liquid through the shielding film in a state. Manufacturing method of ceramic joined body. 前記遮蔽膜が開口する一端を有する袋状に形成されており、前記第1および第2のセラミックス成形体が前記遮蔽膜に収容され、かつ前記一端が封止された状態で前記遮蔽膜の内部空間が減圧される、請求項10に記載のセラミックス接合体の製造方法。   The shielding film is formed in a bag shape having one end opened, the first and second ceramic molded bodies are accommodated in the shielding film, and the one end is sealed, and the inside of the shielding film The method for producing a ceramic joined body according to claim 10, wherein the space is decompressed. 前記遮蔽膜が、乾燥および加熱のいずれかによってゴム化する材料の浸漬塗布および噴射のいずれかで形成される被膜からなる、請求項10に記載のセラミックス接合体の製造方法。   The method for manufacturing a ceramic joined body according to claim 10, wherein the shielding film is formed of a film formed by either dip coating or spraying of a material that is rubberized by either drying or heating. 前記第1および第2のセラミックス成形体の互いの接合部に前記被膜が入りこまないように保護部材で前記接合部を覆った状態で、前記被膜が前記第1および第2のセラミックス成形体上に形成される、請求項12に記載のセラミックス接合体の製造方法。   In a state where the joint portion is covered with a protective member so that the coating film does not enter the joint portion between the first and second ceramic molded bodies, the coating film is on the first and second ceramic molded bodies. The manufacturing method of the ceramic joined body of Claim 12 formed in this.
JP2011224871A 2011-10-12 2011-10-12 Method for manufacturing ceramics joined body Pending JP2013082170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224871A JP2013082170A (en) 2011-10-12 2011-10-12 Method for manufacturing ceramics joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224871A JP2013082170A (en) 2011-10-12 2011-10-12 Method for manufacturing ceramics joined body

Publications (1)

Publication Number Publication Date
JP2013082170A true JP2013082170A (en) 2013-05-09

Family

ID=48527894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224871A Pending JP2013082170A (en) 2011-10-12 2011-10-12 Method for manufacturing ceramics joined body

Country Status (1)

Country Link
JP (1) JP2013082170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168059A (en) * 2018-05-24 2018-11-01 クラレノリタケデンタル株式会社 Zirconia calcinated body and zirconia sintered body
CN115074034A (en) * 2022-06-24 2022-09-20 华中科技大学 Adhesive for additive manufacturing of ceramic parts and adhesive method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168059A (en) * 2018-05-24 2018-11-01 クラレノリタケデンタル株式会社 Zirconia calcinated body and zirconia sintered body
CN115074034A (en) * 2022-06-24 2022-09-20 华中科技大学 Adhesive for additive manufacturing of ceramic parts and adhesive method

Similar Documents

Publication Publication Date Title
US7550107B2 (en) Method of forming CMC component
US20160243621A1 (en) Three-Dimensional Printed Hot Isostatic Pressing Containers and Processes for Making Same
EP3860785B1 (en) Method for manufacturing a part of complex shape by pressure sintering starting from a preform
CN108675798A (en) A kind of silicon nitride ceramics and preparation method thereof
WO2011100098A4 (en) Cast metal parts with cosmetic surfaces and methods of making same
FR3042992A1 (en) IMPLEMENTING A MOBILE INTERFACE FOR THE MANUFACTURE OF COMPLEX PARTS
JP2013082170A (en) Method for manufacturing ceramics joined body
US20100015265A1 (en) Pressure bladder and method for fabrication
CN110386823B (en) Preparation method of ceramic-based complex structural member based on selective laser sintering
JP2013082168A (en) Method for manufacturing ceramics joined body
JP2013082169A (en) Method for manufacturing ceramics joined body
JP2013082171A (en) Method for manufacturing ceramics joined body
KR102415577B1 (en) Crack-free fabrication of near net shape powder-based metallic parts
JP2803111B2 (en) Ceramic joining method
US9346119B2 (en) Object forming assembly
JP5067751B2 (en) Ceramic joined body and manufacturing method thereof
US7763204B2 (en) Manufacturing process and apparatus
CN114635051A (en) Preparation method of aluminum-based gradient electronic packaging composite material with high silicon content
EP3480011A1 (en) Method to create a good bonding between a free standing thermal barrier coating and a green cmc
KR101728157B1 (en) Multilayer exhaust nozzle, and a manufacturing method using the composite material
JP4666791B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
KR20120105716A (en) A method of joining ceramic materials
JP5108497B2 (en) Composite member and manufacturing method thereof
JP4280533B2 (en) Manufacturing method of ceramic joined body
JPS61202799A (en) Cold hydrostatic pressurizing method