JP2013082018A - Spindle device of built-in motor system - Google Patents

Spindle device of built-in motor system Download PDF

Info

Publication number
JP2013082018A
JP2013082018A JP2011222158A JP2011222158A JP2013082018A JP 2013082018 A JP2013082018 A JP 2013082018A JP 2011222158 A JP2011222158 A JP 2011222158A JP 2011222158 A JP2011222158 A JP 2011222158A JP 2013082018 A JP2013082018 A JP 2013082018A
Authority
JP
Japan
Prior art keywords
cylindrical member
outer peripheral
peripheral surface
spindle device
fitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011222158A
Other languages
Japanese (ja)
Other versions
JP5915068B2 (en
Inventor
Yoshiaki Katsuno
美昭 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011222158A priority Critical patent/JP5915068B2/en
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to EP16174040.2A priority patent/EP3100805B1/en
Priority to EP12814297.3A priority patent/EP2735392B1/en
Priority to EP16174038.6A priority patent/EP3098004B1/en
Priority to PCT/JP2012/066482 priority patent/WO2013011815A1/en
Priority to CN201280000782.8A priority patent/CN103003014B/en
Priority to TW101126388A priority patent/TWI503201B/en
Publication of JP2013082018A publication Critical patent/JP2013082018A/en
Application granted granted Critical
Publication of JP5915068B2 publication Critical patent/JP5915068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turning (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spindle device of a built-in motor system, the device capable of suppressing rise in temperature of a rotary shaft or a bearing due to heat generation of a rotor, and capable of improving machining accuracy.SOLUTION: In a spindle device 10 of a built-in motor system, a rotary shaft 12 includes: a first cylindrical member 71 made of metal material; and a second cylindrical member 72 made of carbon fiber composite material, which is positioned on the outer peripheral surface of the first cylindrical member 71 and into the outer peripheral surface of which a rotor 20 fits; and third cylindrical members 73, 74 made of metal material, which are positioned on the outer peripheral surface of the second cylindrical member 72 and into the outer peripheral surface of which inner ring 52, 62 of front or rear bearing 50, 60 fits.

Description

本発明は、モータビルトイン方式の主軸装置に関し、特に、多軸制御の工作機械等に適用され、dmnが100万以上の高速回転可能なモータビルトイン方式の主軸装置に関する。   The present invention relates to a motor built-in spindle device, and more particularly to a motor built-in spindle device that can be applied to a multi-axis control machine tool and can rotate at a high speed with a dmn of 1 million or more.

工作機械等に適用される主軸装置の回転軸は、高速回転を行いながら、加工荷重を受けるため、加工荷重に対する剛性、あるいは、高速回転時の遠心力に対する変形抑制特性などを維持することが必要であり、その材質としては、金属が主に使用される。また、回転軸は、工具を交換して使用することから、耐摩耗性や硬さも必要である。このため、その金属の物性に応じて、固有値や熱膨張に限界があり、回転速度や加減速時間も限られている。   Because the spindle of the spindle device applied to machine tools etc. receives a machining load while rotating at high speed, it is necessary to maintain rigidity against the machining load or deformation suppression characteristics against centrifugal force during high-speed rotation. As the material, metal is mainly used. In addition, since the rotating shaft is used by exchanging tools, it needs to have wear resistance and hardness. For this reason, depending on the physical properties of the metal, there are limits to eigenvalues and thermal expansion, and the rotational speed and acceleration / deceleration time are also limited.

特許文献1に記載の工作機械では、回転軸に繊維強化複合材料を用いた横中ぐり盤が記載されている。この横中ぐり盤では、回転しながら、スリーブ内で軸方向に移動する回転軸が開示されており、軽量化・熱膨張の低減化を図るとともに、回転軸として要求される耐衝撃性、表面硬度、機械的加工による強度の観点から、回転軸の必要箇所に金属やセラミックを設けている。   In the machine tool described in Patent Document 1, a horizontal boring machine using a fiber-reinforced composite material as a rotating shaft is described. In this horizontal boring machine, a rotating shaft that moves in the axial direction within the sleeve while rotating is disclosed, and while reducing weight and reducing thermal expansion, impact resistance required for the rotating shaft, surface From the viewpoint of hardness and strength by mechanical processing, metal or ceramic is provided at a necessary portion of the rotating shaft.

また、特許文献2に記載の主軸装置では、回転軸を空気軸受によって回転可能に支持するとともに、回転軸の外周面に繊維層を形成して、回転軸の膨張を抑えるとともに、剛性を向上することが記載されている。さらに、特許文献3に記載の主軸装置では、回転軸の転がり軸受が取り付けられる外周面の両側に溝を形成して、溝内に炭素繊維層を形成することで、遠心力による膨張を抑制することが記載されている。特許文献4に記載の工具ホルダでは、テーパ部とフランジ部と工具保持部とが一体に形成され、工具保持部に形成されたテーパ穴に工具に装着されたコレットを挿入し、工具保持部の外周に形成されたねじに螺合するナットを締め付けて、工具を固定するようにしており、ナットの外周面に炭素繊維層を巻き付けてナットの変形を防止するものが記載されている。   In the spindle device described in Patent Document 2, the rotary shaft is rotatably supported by an air bearing, and a fiber layer is formed on the outer peripheral surface of the rotary shaft to suppress expansion of the rotary shaft and improve rigidity. It is described. Further, in the spindle device described in Patent Document 3, a groove is formed on both sides of the outer peripheral surface to which the rolling bearing of the rotating shaft is attached, and a carbon fiber layer is formed in the groove, thereby suppressing expansion due to centrifugal force. It is described. In the tool holder described in Patent Document 4, the tapered portion, the flange portion, and the tool holding portion are integrally formed, and a collet attached to the tool is inserted into a tapered hole formed in the tool holding portion. A tool for fixing a tool by tightening a nut screwed to a screw formed on the outer periphery is described, and a carbon fiber layer is wound around the outer peripheral surface of the nut to prevent deformation of the nut.

特開平2−167602号公報Japanese Patent Laid-Open No. 2-167602 特開平7−51903号公報Japanese Patent Laid-Open No. 7-51903 特開平6−226506号公報(第3図)JP-A-6-226506 (FIG. 3) 特開平6−218608号公報JP-A-6-218608

ところで、高速回転可能な主軸装置として、回転軸を支持する前側軸受と後側軸受との間に、モータが内蔵されたモータビルトイン方式のものが使用されている。このため、回転軸に外嵌されるロータが発熱すると、この熱が回転軸に伝わって、回転軸が膨張してしまい、加工精度に影響する可能性があった。また、回転軸に伝わった熱は、軸受の内輪にも伝わり、内輪が温度上昇して、内外輪で温度差が生じるため、軸受の予圧が過大となり、転がり接触部のPV値が上昇し、焼き付きなどの不具合が発生する虞がある。   By the way, as a main shaft device capable of rotating at a high speed, a motor built-in type in which a motor is built in between a front bearing and a rear bearing that support a rotating shaft is used. For this reason, when the rotor fitted to the rotating shaft generates heat, this heat is transmitted to the rotating shaft, and the rotating shaft expands, which may affect the processing accuracy. In addition, the heat transmitted to the rotating shaft is also transmitted to the inner ring of the bearing, the temperature of the inner ring rises, and a temperature difference occurs between the inner and outer rings. Therefore, the bearing preload becomes excessive, and the PV value of the rolling contact portion increases. There is a risk of problems such as burn-in.

通常、主軸装置全体の昇温による熱変位を抑えるため、ハウジング内のステータや軸受外径部近傍に冷却油を循環させる方法が用いられているが、冷却効果は回転軸には影響しにくく、回転軸の温度がハウジングの温度よりも高くなるという不均衡が生じる。このような不均衡状態により、軸方向熱膨張差が生じると、固定側の前側軸受と自由側の後側軸受の相対位置が変動し、後側軸受のスライド不具合が生じた場合には、軸受間の突っ張りによる異常荷重が発生し、軸受の焼付きなどの損傷につながる。   Usually, in order to suppress the thermal displacement due to the temperature rise of the entire spindle device, a method of circulating the cooling oil in the vicinity of the stator and bearing outer diameter portion in the housing is used, but the cooling effect hardly affects the rotating shaft, An imbalance occurs in which the temperature of the rotating shaft is higher than the temperature of the housing. When an axial thermal expansion difference occurs due to such an unbalanced state, the relative position of the fixed-side front bearing and the free-side rear bearing fluctuates. An abnormal load is generated due to the tension between them, which leads to damage such as seizure of the bearing.

特許文献1〜4に記載の主軸装置では、モータビルトイン式のものについて記載されておらず、上記課題を認識するものではない。   The spindle devices described in Patent Documents 1 to 4 do not describe a motor built-in type device and do not recognize the above problem.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、ロータの発熱による回転軸や軸受の温度上昇を抑制することができ、加工精度を向上することができるモータビルトイン方式の主軸装置を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a motor built-in system that can suppress a temperature rise of a rotating shaft and a bearing due to heat generation of a rotor and can improve machining accuracy. It is to provide a spindle device.

本発明の上記目的は、下記の構成により達成される。
(1) 回転軸と、
前記回転軸をハウジングに対して回転自在にそれぞれ支持する前側及び後側軸受と、
該前側及び後側軸受との間で前記回転軸に外嵌されるロータと、該ロータの周囲に配置されるステータと、を有するモータと、
を備えるモータビルトイン方式の主軸装置であって、
前記回転軸は、
金属材料からなる第1円筒部材と、
該第1円筒部材の外周面に配置され、外周面に前記ロータが嵌合し、前記第1円筒部材の金属材料より比弾性率が大きく、且つ線膨張係数が小さい材料からなる第2円筒部材と、
該第2円筒部材の前記ロータが嵌合する外周面から軸方向に離間した位置の外周面に配置され、外周面に前記前側又は後側軸受の内輪が嵌合し、金属材料からなる第3円筒部材と、
を有することを特徴とするモータビルトイン方式の主軸装置。
(2) 前記第2円筒部材は、前記第3円筒部材が配置される外周面が小径となるように段差部を有し、
前記第3円筒部材は、前記段差部の軸方向側面と前記内輪の軸方向端面との間に挟持されるフランジ部を有することを特徴とする(1)に記載のモータビルトイン方式の主軸装置。
(3) 前記第3円筒部材は、前記第2円筒部材の外周面に嵌合する薄肉スリーブであることを特徴とする(1)又は(2)に記載のモータビルトイン方式の主軸装置。
(4) 前記第3円筒部材は、前記第2円筒部材の外周面に電気的又は化学的手法により結合させた薄膜部材であることを特徴とする(1)又は(2)に記載のモータビルトイン方式の主軸装置。
(5) 前記第3円筒部材は、前記前側軸受と前記後側軸受の各内輪がそれぞれ嵌合する二つの第3円筒部材を有することを特徴とする(1)〜(4)のいずれかに記載のモータビルトイン方式の主軸装置。
(6) 前記第2円筒部材は、炭素繊維複合材料であることを特徴とする(1)〜(5)のいずれかに記載のモータビルトイン方式の主軸装置。
The above object of the present invention can be achieved by the following constitution.
(1) a rotating shaft;
Front and rear bearings that respectively support the rotary shaft rotatably with respect to the housing;
A motor having a rotor fitted to the rotary shaft between the front and rear bearings, and a stator disposed around the rotor;
A motor built-in spindle device comprising:
The rotation axis is
A first cylindrical member made of a metal material;
A second cylindrical member which is disposed on the outer peripheral surface of the first cylindrical member, the rotor is fitted to the outer peripheral surface, and which is made of a material having a higher specific elastic modulus and a smaller linear expansion coefficient than the metal material of the first cylindrical member When,
The second cylindrical member is disposed on the outer peripheral surface at a position spaced axially from the outer peripheral surface to which the rotor is fitted, and the inner ring of the front or rear bearing is fitted to the outer peripheral surface, and a third made of a metal material. A cylindrical member;
A motor built-in spindle device characterized by comprising:
(2) The second cylindrical member has a stepped portion so that an outer peripheral surface on which the third cylindrical member is disposed has a small diameter,
The third built-in spindle device according to (1), wherein the third cylindrical member has a flange portion sandwiched between an axial side surface of the stepped portion and an axial end surface of the inner ring.
(3) The motor built-in spindle device according to (1) or (2), wherein the third cylindrical member is a thin sleeve that fits to an outer peripheral surface of the second cylindrical member.
(4) The motor built-in according to (1) or (2), wherein the third cylindrical member is a thin film member bonded to an outer peripheral surface of the second cylindrical member by an electric or chemical method. System spindle device.
(5) In any one of (1) to (4), the third cylindrical member includes two third cylindrical members into which inner rings of the front bearing and the rear bearing are respectively fitted. The motor built-in spindle device as described.
(6) The motor built-in spindle device according to any one of (1) to (5), wherein the second cylindrical member is a carbon fiber composite material.

本発明のモータビルトイン方式の主軸装置によれば、回転軸は、金属材料からなる第1円筒部材と、第1円筒部材の外周面に配置され、外周面に前記ロータが嵌合し、第1円筒部材の金属材料より比弾性率が大きく、且つ線膨張係数が小さく、熱伝導率が低い材料からなる第2円筒部材と、第2円筒部材のロータが嵌合する外周面から軸方向に離間した位置の外周面に配置され、外周面に前側又は後側軸受の内輪が嵌合し、金属材料からなる第3円筒部材と、を有する。したがって、第2円筒部材によって、ロータの発熱による回転軸や軸受の温度上昇を抑制することができ、加工精度を向上することができる。また、第3円筒部材と軸受の内輪との表面硬度を同等とすることができ、両者間のしめしろ嵌合を容易に行うことができ、且つ、軸受を交換するときに、嵌め合い面にかじりや傷などの不具合の発生を抑えることができる。加えて、第3円筒部材と軸受内輪内周面の嵌合部(嵌合部円周方向全面が伝熱面積となる)より軸受の発熱分を内輪間座を介して、前側軸受ナットや第1円筒部材に伝えることができる。つまり、軸受内輪で熱が停滞し、軸受内外輪温度差によって予圧過大となり、焼付きなどの不具合が発生するのを抑止することができる。   According to the motor built-in spindle device of the present invention, the rotation shaft is disposed on the first cylindrical member made of a metal material and the outer peripheral surface of the first cylindrical member, and the rotor is fitted to the outer peripheral surface, and the first The second cylindrical member made of a material having a specific modulus greater than that of the metal material of the cylindrical member, a low coefficient of linear expansion, and a low thermal conductivity, and an outer circumferential surface on which the rotor of the second cylindrical member is fitted in the axial direction. And a third cylindrical member made of a metal material, the inner ring of the front or rear bearing being fitted to the outer peripheral surface. Therefore, the second cylindrical member can suppress the temperature rise of the rotating shaft and the bearing due to the heat generated by the rotor, and the processing accuracy can be improved. In addition, the surface hardness of the third cylindrical member and the inner ring of the bearing can be made equal, the interference fit between them can be easily performed, and when the bearing is replaced, The occurrence of defects such as galling and scratches can be suppressed. In addition, the heat generated in the bearing from the fitting portion of the third cylindrical member and the inner circumferential surface of the bearing inner ring (the entire circumferential surface of the fitting portion becomes the heat transfer area) is passed through the inner ring spacer, One cylindrical member can be transmitted. That is, it is possible to suppress the occurrence of troubles such as seizure due to heat stagnating in the bearing inner ring and excessive preload due to the temperature difference between the bearing inner and outer rings.

本発明の一実施形態に係る主軸装置の断面図である。It is sectional drawing of the main axis | shaft apparatus which concerns on one Embodiment of this invention. 回転軸の第1円筒部材と第2円筒部材との結合方法を説明するための断面図である。It is sectional drawing for demonstrating the coupling | bonding method of the 1st cylindrical member and 2nd cylindrical member of a rotating shaft. 本発明の変形例に係る主軸装置の断面図である。It is sectional drawing of the main axis | shaft apparatus which concerns on the modification of this invention. 本発明の他の変形例に係る主軸装置の断面図である。It is sectional drawing of the main axis | shaft apparatus which concerns on the other modification of this invention.

以下、本発明の一実施形態に係る主軸装置について図面に基づいて詳細に説明する。   Hereinafter, a spindle device according to an embodiment of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1に示すように、主軸装置10は、モータビルトイン方式であり、その軸方向中心部には、中空状の回転軸12が設けられ、回転軸12の軸芯には、ドローバー13が摺動自在に挿嵌されている。ドローバー13は、工具ホルダ14を固定するコレット部15を、皿ばね17の力によって反工具側方向(図の右方向)に付勢しており、工具ホルダ14は、回転軸12のテーパ面18と嵌合する。工具ホルダ14には工具(図示せず。)が取り付けられており、この結果、回転軸12は、一端(図の左側)に工具をクランプして、工具を取り付け可能としている。
(First embodiment)
As shown in FIG. 1, the spindle device 10 is a motor built-in system, and a hollow rotary shaft 12 is provided at the axial center, and a draw bar 13 slides on the axis of the rotary shaft 12. It is freely inserted. The draw bar 13 urges the collet portion 15 that fixes the tool holder 14 in the counter-tool side direction (right direction in the figure) by the force of the disc spring 17, and the tool holder 14 has a tapered surface 18 of the rotary shaft 12. Mates with. A tool (not shown) is attached to the tool holder 14, and as a result, the rotary shaft 12 clamps the tool at one end (left side in the figure) so that the tool can be attached.

また、回転軸12は、その工具側を支承する2列の前側軸受50,50と、反工具側を支承する2列の後側軸受60,60とによって、ハウジングHに回転自在に支持されている。なお、ハウジングHは、工具側から順に、フロントカバー40、前側軸受外輪押さえ29、外筒19、後側ハウジング24及び後蓋26によって構成されている。   The rotary shaft 12 is rotatably supported by the housing H by two rows of front bearings 50 and 50 that support the tool side and two rows of rear bearings 60 and 60 that support the opposite tool side. Yes. The housing H includes a front cover 40, a front bearing outer ring retainer 29, an outer cylinder 19, a rear housing 24, and a rear lid 26 in order from the tool side.

前側軸受50,50と後側軸受60,60間における回転軸12の外周面には、ロータ20が焼き嵌めにより外嵌されている。また、ロータ20の周囲に配置されるステータ22は、ステータ22に焼き嵌めされた冷却ジャケット23をハウジングHを構成する外筒19に内嵌することで、外筒19に固定される。従って、ロータ20とステータ22はモータを構成し、ステータ22に電力を供給することでロータ20に回転力を発生させ、回転軸12を回転させる。   The rotor 20 is fitted on the outer peripheral surface of the rotary shaft 12 between the front bearings 50 and 50 and the rear bearings 60 and 60 by shrink fitting. The stator 22 arranged around the rotor 20 is fixed to the outer cylinder 19 by fitting a cooling jacket 23 shrink-fitted to the stator 22 into the outer cylinder 19 constituting the housing H. Therefore, the rotor 20 and the stator 22 constitute a motor, and by supplying electric power to the stator 22, a rotational force is generated in the rotor 20 and the rotating shaft 12 is rotated.

各前側軸受50は、外輪51と、内輪52と、接触角を持って配置される転動体としての玉53と、図示しない保持器と、をそれぞれ有するアンギュラ玉軸受であり、各後側軸受60は、外輪61と、内輪62と、転動体としての玉63と、図示しない保持器と、を有するアンギュラ玉軸受である。前側軸受50,50(並列組合せ)と後側軸受60,60(並列組合せ)とは、互いに協働して背面組み合わせとなるように配置されている。   Each front bearing 50 is an angular ball bearing having an outer ring 51, an inner ring 52, a ball 53 as a rolling element arranged with a contact angle, and a cage (not shown). Is an angular ball bearing having an outer ring 61, an inner ring 62, balls 63 as rolling elements, and a cage (not shown). The front bearings 50 and 50 (parallel combination) and the rear bearings 60 and 60 (parallel combination) are arranged to cooperate with each other to form a back combination.

前側軸受50,50の外輪51,51は、外筒19に内嵌されており、且つ外筒19にボルト締結された前側軸受外輪押え29によって外輪間座30を介して外筒19に対し軸方向に位置決め固定されている。また、前側軸受50,50の内輪52,52は、回転軸12に外嵌されており、且つ回転軸12に締結されたナット31によって内輪間座32を介して回転軸12に対し軸方向に位置決め固定されている。   The outer rings 51, 51 of the front bearings 50, 50 are fitted into the outer cylinder 19, and are pivoted with respect to the outer cylinder 19 via the outer ring spacer 30 by the front bearing outer ring presser 29 that is bolted to the outer cylinder 19. Positioned and fixed in the direction. Further, the inner rings 52, 52 of the front bearings 50, 50 are externally fitted to the rotating shaft 12, and are axially connected to the rotating shaft 12 via the inner ring spacer 32 by a nut 31 fastened to the rotating shaft 12. Positioning is fixed.

後側軸受60,60の外輪61,61は後側ハウジング24の内側に後側ハウジング24に対して軸方向に摺動自在の状態とされたスリーブ25に内嵌されており、且つスリーブ25にボルト締結された後側軸受外輪押え33によって外輪間座34を介してスリーブ25に対し軸方向に位置決め固定されている。後側ハウジング24と後側軸受外輪押え33との間には、後側軸受外輪押え33を後端側に付勢するコイルばね38が介装されており、後側軸受外輪押え33、スリーブ25、外輪61,61、及び外輪間座34が一体となって後端側に移動し、各外輪61,61が軸方向に押圧されて、コイルばね38の付勢力に応じた定圧予圧が付与されるようになっている。後側軸受60,60の内輪62,62は、回転軸12に外嵌されており、回転軸12に締結された他のナット35によって、内輪間座36及び速度センサの被検出部37を介して位置決め固定されている。   The outer rings 61, 61 of the rear bearings 60, 60 are fitted inside a sleeve 25 that is slidable in the axial direction with respect to the rear housing 24 inside the rear housing 24. It is positioned and fixed in the axial direction with respect to the sleeve 25 via the outer ring spacer 34 by the rear bearing outer ring presser 33 fastened with bolts. Between the rear housing 24 and the rear bearing outer ring retainer 33, a coil spring 38 for biasing the rear bearing outer ring retainer 33 toward the rear end is interposed, and the rear bearing outer ring retainer 33 and the sleeve 25 are interposed. The outer rings 61, 61 and the outer ring spacer 34 move integrally to the rear end side, the outer rings 61, 61 are pressed in the axial direction, and a constant pressure preload corresponding to the urging force of the coil spring 38 is applied. It has become so. Inner rings 62, 62 of the rear bearings 60, 60 are fitted on the rotary shaft 12, and are inserted into the inner ring spacer 36 and the detected portion 37 of the speed sensor by another nut 35 fastened to the rotary shaft 12. The positioning is fixed.

ここで、回転軸12は、高張力鋼や炭素鋼などの金属材料からなる第1円筒部材71と、第1円筒部材71の外周面に配置され、外周面にロータ20が嵌合する、炭素繊維複合材料(CFRP)からなる第2円筒部材72と、第2円筒部材72の外周面に配置され、外周面に前側軸受50,50の内輪52,52、及び後側軸受60,60の内輪62,62がそれぞれ嵌合する、金属材料からなる二つの第3円筒部73、74と、を有する。   Here, the rotating shaft 12 is disposed on a first cylindrical member 71 made of a metal material such as high-tensile steel or carbon steel, and an outer peripheral surface of the first cylindrical member 71, and the rotor 20 is fitted on the outer peripheral surface. A second cylindrical member 72 made of a fiber composite material (CFRP), an inner ring 52, 52 of the front bearings 50, 50, and an inner ring of the rear bearings 60, 60 are arranged on the outer peripheral surface of the second cylindrical member 72. 62 and 62 have two 3rd cylindrical parts 73 and 74 which consist of a metal material which each fits.

第1円筒部材71は、第2円筒部材72より長く形成されており、第2円筒部材72が配置される小径部71aと、前側軸受50,50の内輪52,52の軸方向位置を規制するナット31が締め付けられる雄ねじ部71bを有する大径部71cと、を有する。また、第2円筒部材72から延出した小径部71aの反工具側端部には、後側軸受60,60の内輪62,62の軸方向位置を規制する他のナット35が締め付けられる雄ねじ部71dが形成される。第1円筒部材71の内部には、軸方向に移動するコレット部15やドローバー13や皿ばね17が収容されており、第1円筒部材71の内周面には、コレット部15やドローバー13や皿ばね17を摺動自在に案内する複数の摺接面71e,71f,71gが形成され、工具側の内周面には、工具ホルダ14が取り付けられるテーパ面18が形成される。   The first cylindrical member 71 is formed longer than the second cylindrical member 72 and regulates the axial positions of the small diameter portion 71a where the second cylindrical member 72 is disposed and the inner rings 52, 52 of the front bearings 50, 50. A large-diameter portion 71c having a male screw portion 71b to which the nut 31 is fastened. Further, a male screw portion to which another nut 35 for restricting the axial position of the inner rings 62 and 62 of the rear bearings 60 and 60 is fastened to the end portion on the side opposite to the tool of the small diameter portion 71a extending from the second cylindrical member 72. 71d is formed. A collet portion 15, a draw bar 13, and a disc spring 17 that move in the axial direction are housed inside the first cylindrical member 71, and the collet portion 15, the draw bar 13, A plurality of sliding contact surfaces 71e, 71f, 71g for slidably guiding the disc spring 17 are formed, and a tapered surface 18 to which the tool holder 14 is attached is formed on the inner peripheral surface on the tool side.

また、第2円筒部材72は、外周面にロータ20が嵌合する軸方向中間部に対して軸方向に離間した位置である前方部分及び後方部分において、第3円筒部材73,74が配置される外周面が小径となるように段差部72a,72bを有する。そして、第3円筒部材73,74は、段差部72aより前方及び段差部72bより後方の小径となった外周面にそのスリーブ部分73a,74aを嵌合させるとともに、スリーブ部分73a,74aの反ナット側端部から径方向外方に延出するフランジ部73b,74bを、段差部72a,72bの軸方向側面と内輪52,62の軸方向端面との間に挟持させている。
なお、フランジ部74bの外径は、ロータ20を第2円筒部材72に嵌合する際に干渉しないように、ロータ20が嵌合する外周面の外径以下に設定されている。
The second cylindrical member 72 has the third cylindrical members 73 and 74 disposed at the front and rear portions that are spaced apart from each other in the axial direction with respect to the axial intermediate portion where the rotor 20 is fitted to the outer peripheral surface. Step portions 72a and 72b are provided so that the outer peripheral surface has a small diameter. The third cylindrical members 73 and 74 are fitted with the sleeve portions 73a and 74a on the outer peripheral surface having a small diameter in front of the stepped portion 72a and rearward of the stepped portion 72b, and the nuts of the sleeve portions 73a and 74a. Flange portions 73b, 74b extending radially outward from the side end portions are sandwiched between the axial side surfaces of the stepped portions 72a, 72b and the axial end surfaces of the inner rings 52, 62.
The outer diameter of the flange portion 74b is set to be equal to or smaller than the outer diameter of the outer peripheral surface to which the rotor 20 is fitted so as not to interfere when the rotor 20 is fitted to the second cylindrical member 72.

第2円筒部材72を構成する炭素繊維複合材料は、第1円筒部材71を構成する金属材料より比弾性率が高く、比重が小さく、線膨張係数が小さいものが使用される。特に、炭素繊維複合材料の比弾性率は、回転軸12の遠心力による膨張を適正な値に抑制するため、好ましくは、使用される金属材料の2倍以上、より好ましくは3倍以上とする。炭素繊維複合材料は、繊維方向により異方性であるが、かかる荷重の方向に合わせて、成形時に繊維方向を決定する。また、繊維方向を交差させることで、等方性にして使用してもよい。さらに、円周方向の比弾性率が大きくなるように、繊維方向を決定してもよい。   As the carbon fiber composite material constituting the second cylindrical member 72, a material having a higher specific elastic modulus, a lower specific gravity, and a smaller linear expansion coefficient than the metal material constituting the first cylindrical member 71 is used. In particular, the specific elastic modulus of the carbon fiber composite material is preferably at least twice, more preferably at least three times that of the metal material used in order to suppress expansion due to the centrifugal force of the rotating shaft 12 to an appropriate value. . The carbon fiber composite material is anisotropic depending on the fiber direction, but the fiber direction is determined during molding in accordance with the direction of the load. Moreover, you may make it isotropic by making a fiber direction cross. Further, the fiber direction may be determined so that the specific elastic modulus in the circumferential direction is increased.

第2円筒部材72と第1円筒部材71との結合方法は、別々に形成されたものを締まり嵌めや接着により結合してもよく、あるいは、一体成形であってもよい。さらには、図2に示すように、十分な回転トルクを伝達するため、第2円筒部材72と第1円筒部材71との間にキー80を挿入したり、スプライン嵌合としてもよい。   As a method of joining the second cylindrical member 72 and the first cylindrical member 71, separately formed members may be joined by interference fitting or adhesion, or may be integrally formed. Furthermore, as shown in FIG. 2, in order to transmit a sufficient rotational torque, a key 80 may be inserted between the second cylindrical member 72 and the first cylindrical member 71, or spline fitting may be performed.

また、径方向外側に位置する第2円筒部材72を構成する炭素繊維複合材料は、内側に位置する第1円筒部材71を構成する金属材料より比弾性率が高く、比重が小さく、且つ、線膨張係数が小さいので、遠心力作用、温度変化によっても両者の嵌合部にすきまが生じることはなく、回転中の振動が大きくなったり、剛性が低下するなどの不具合が生じることがない。   Further, the carbon fiber composite material that constitutes the second cylindrical member 72 located on the radially outer side has a higher specific modulus, a lower specific gravity, and a wire than the metal material that constitutes the first cylindrical member 71 located on the inner side. Since the expansion coefficient is small, there is no gap in the fitting portion between them due to centrifugal force action and temperature change, and problems such as increased vibration during rotation and reduced rigidity do not occur.

例えば、第2円筒部材72を構成する炭素繊維複合材料は、PAN(ポリアクリルニトリル)を主原料とした炭素繊維からなる糸を平行に引きそろえたものや、炭素繊維からなる糸で形成した織物(シート状)に、硬化剤を含むエポキシ樹脂などの熱硬化樹脂を含浸させてなるシートを多数層重ね合わせて、芯金などに巻きつけ、加熱硬化させることで製造される。   For example, the carbon fiber composite material constituting the second cylindrical member 72 is a fabric in which yarns made of carbon fibers made of PAN (polyacrylonitrile) as a main raw material are arranged in parallel, or a fabric made of yarns made of carbon fibers. The sheet is manufactured by laminating a number of layers of a sheet formed by impregnating a thermosetting resin such as an epoxy resin containing a curing agent, winding the sheet around a cored bar, etc., and curing the sheet by heating.

炭素繊維複合材料の特性としては、例えば、東邦テナックス社の炭素繊維タイプ:HTAを使用すると引張強度2060MPa、引張弾性率137GPa、比重1.55g/ccであり、従来の高張力鋼などと比べて、引張強度は同等以上であり、比重は1/5程度になる。また、熱膨張率も、繊維方向・角度を最適化することにより、−5〜+5×10−6(K−1)にすることができるので、従来の炭素鋼に比べて1/2〜1/10程度にすることができる。 As characteristics of the carbon fiber composite material, for example, when carbon fiber type: HTA of Toho Tenax Co., Ltd. is used, the tensile strength is 2060 MPa, the tensile elastic modulus is 137 GPa, and the specific gravity is 1.55 g / cc. The tensile strength is equivalent or higher, and the specific gravity is about 1/5. Moreover, since the coefficient of thermal expansion can be made −5 to + 5 × 10 −6 (K −1 ) by optimizing the fiber direction and angle, it is ½ to 1 compared to conventional carbon steel. / 10 or so.

また、ロータ20と第2円筒部材72とは、焼きばめによるしめしろを持って嵌合される。遠心力によって、嵌め合い部分でのしめしろが減少すると、ねじりトルクによる回転すべりが発生してしまい、さらに、すきまとなった場合には、主軸の振動が大きくなったり、加工不良が生じる可能性がある。   The rotor 20 and the second cylindrical member 72 are fitted with an interference due to shrink fitting. If the interference at the mating part decreases due to centrifugal force, rotational slippage due to torsional torque will occur, and if it becomes a clearance, the vibration of the main shaft may increase or machining may be defective. There is.

このため、しめしろは、遠心力によるしめしろの減少を考慮して予め余分に設定される。例えば、遠心力によるしめしろの減少を考慮し、しめしろは、(ロータ20の内径の遠心膨張量−第2円筒部材72の外径の遠心膨張量)と同一のすきまか、或いは、それ以上に設定する。具体的には、炭素繊維複合材料の成型時の巻き付け角度を適切な値、例えば、「比弾性率=E(縦弾性係数)/ρ(密度)」が適正な値となるようにしたり、ロータ20の半径方向肉厚と炭素繊維複合材料の半径方向肉厚を適正な比や値となるようにしたり、ロータ材質と炭素繊維複合材料の選定(繊維径や結合樹脂材料の選定)などを行うことで設定される。また、これらの方法を組み合わせたり、さらに、その他の遠心膨張に影響する因子が適正な値となるようにして設定してもよい。   For this reason, the interference is set in advance in advance in consideration of reduction of interference due to centrifugal force. For example, considering the reduction in interference due to centrifugal force, the interference is the same clearance as (the centrifugal expansion amount of the inner diameter of the rotor 20 minus the centrifugal expansion amount of the outer diameter of the second cylindrical member 72) or more. Set to. Specifically, the winding angle at the time of molding the carbon fiber composite material is set to an appropriate value, for example, “specific elastic modulus = E (longitudinal elastic modulus) / ρ (density)” is set to an appropriate value, or the rotor Adjust the radial thickness of 20 and the radial thickness of the carbon fiber composite material to an appropriate ratio or value, or select the rotor material and carbon fiber composite material (select the fiber diameter and binding resin material). Is set. Further, these methods may be combined, or other factors that affect centrifugal expansion may be set to appropriate values.

加えて、成型時の巻き付け角度により、炭素繊維複合材料の線膨張係数がロータ20のものより小さく設定されると、ロータ20の温度上昇によりしめしろが減少し、すきまとなることも考えられる。このため、しめしろは、(上述した遠心膨張量分+温度上昇によるしめしろの減少分)と同一の大きさか、或いは、それ以上に設定することが好ましい。   In addition, if the linear expansion coefficient of the carbon fiber composite material is set to be smaller than that of the rotor 20 depending on the winding angle at the time of molding, it is considered that the interference is reduced due to a rise in the temperature of the rotor 20 and a clearance is formed. For this reason, it is preferable that the interference is set to be equal to or larger than (the above-mentioned centrifugal expansion amount + a decrease in interference due to temperature rise).

或いは、ロータ20の第2円筒部材72との間に金属製のスリーブ(図示せず)を介装してもよく、または、特許文献1に記載されたように、炭素繊維複合材料の外周面に金属メッキやセラミックを溶射するようにしてもよい。   Alternatively, a metal sleeve (not shown) may be interposed between the second cylindrical member 72 of the rotor 20, or as described in Patent Document 1, the outer peripheral surface of the carbon fiber composite material Alternatively, metal plating or ceramic may be sprayed.

また、しめしろを持った嵌合の他、ロータ20と第2円筒部材72との少なくとも一部に、スプラインやキーを形成し、炭素繊維複合材料を一体成型するようにしてもよい。   In addition to fitting with interference, a spline or key may be formed on at least a part of the rotor 20 and the second cylindrical member 72 to integrally mold the carbon fiber composite material.

また、第3円筒部材73,74は、第2円筒部材72の外周面に嵌合する薄肉スリーブであり、高張力鋼や炭素鋼など、表面硬度が第1円筒部材71と同等となる金属材料が選定されることが好ましい。このような薄肉スリーブからなる第3円筒部材73,74は、焼き嵌めによって第2円筒部材72の外周面にかぶせることで、または、軽度なしめしろと接着とを併用することで、第2円筒部材72の外周面に結合される。そして、第3円筒部材73,74の外周面には、前側軸受50,50の内輪52,52、後側軸受60,60の内輪62,62が、しめしろにて嵌合される。   The third cylindrical members 73 and 74 are thin-walled sleeves fitted to the outer peripheral surface of the second cylindrical member 72, and are metal materials having a surface hardness equivalent to that of the first cylindrical member 71, such as high-tensile steel or carbon steel. Is preferably selected. The third cylindrical members 73 and 74 formed of such a thin sleeve are covered with the outer peripheral surface of the second cylindrical member 72 by shrink fitting, or by using a slight interference and bonding together. The outer peripheral surface of the member 72 is coupled. The inner rings 52, 52 of the front bearings 50, 50 and the inner rings 62, 62 of the rear bearings 60, 60 are fitted to the outer peripheral surfaces of the third cylindrical members 73, 74 with interference.

なお、第1円筒部材71と結合された炭素繊維複合材料からなる第2円筒部材72の外周面は、第3円筒部材73,74との適正な嵌め合いを確保するために、仕上加工が施されており、また、金属材料からなる第3円筒部材73,74の外周面も、各内輪52,62との適正な嵌め合いを確保するために、仕上加工が施されている。   The outer peripheral surface of the second cylindrical member 72 made of a carbon fiber composite material combined with the first cylindrical member 71 is subjected to a finishing process in order to ensure proper fitting with the third cylindrical members 73 and 74. Further, the outer peripheral surfaces of the third cylindrical members 73 and 74 made of a metal material are also subjected to a finishing process in order to ensure proper fitting with the inner rings 52 and 62.

ところで、第2円筒部材72を構成する炭素繊維複合材料は、比弾性率においては金属材料に優れるものの、表面硬度は母材となる樹脂材料に依存しやすく、比較的軟らかい。また、回転軸12と各内輪52,62との間の嵌め合いは、主軸の高剛性化や軸の回転精度を向上させるため、少なくともすきま0以上のしめしろ嵌合とする必要がある。   By the way, although the carbon fiber composite material which comprises the 2nd cylindrical member 72 is excellent in a metal material in specific elastic modulus, surface hardness tends to depend on the resin material used as a base material, and is comparatively soft. Further, the fitting between the rotating shaft 12 and each of the inner rings 52 and 62 needs to be an interference fit with at least a clearance of 0 or more in order to increase the rigidity of the main shaft and improve the rotation accuracy of the shaft.

使用回転数が比較的低い主軸では、しめしろの値は小さくても問題はないが、高速回転で使用される主軸の場合、遠心力による内輪52,62の膨張が回転軸12に比べて大きくなる。このため、しめしろが小さいとすきまが大きくなり、回転軸の振動やフレッチングなどの不具合が発生することから、しめしろを大きくする必要がある。このような条件において、炭素繊維複合材料と内輪とを局所的(内輪の軸方向幅部分のみ)にしめしろ嵌合させた場合、両者間の接触面圧が局部的に増加し、炭素繊維複合材料の表面のつぶれや変形などで、嵌め合い部でうまく接合できない可能性がある。   There is no problem even if the interference value is small for a main shaft with a relatively low rotational speed, but in the case of a main shaft used at high speed rotation, the expansion of the inner rings 52 and 62 due to centrifugal force is larger than that of the rotation shaft 12. Become. For this reason, if the interference is small, the clearance becomes large and problems such as vibration of the rotating shaft and fretting occur. Therefore, it is necessary to increase the interference. Under these conditions, when the carbon fiber composite material and the inner ring are fitted together locally (only in the axial width portion of the inner ring), the contact surface pressure between them increases locally, and the carbon fiber composite There is a possibility that the mating part cannot be joined well due to the crushing or deformation of the surface of the material.

一方、本実施形態のように、第3円筒部材73,74を用いることで、炭素繊維複合材料(第2円筒部材72)と第3円筒部材73,74とは軸方向で広範囲に結合することができ、また、薄肉スリーブとすることで、仮に大きなしめしろで炭素繊維複合材料と嵌合しても、第3円筒部材73,74側の弾性変形も見込めるため、両者間の接触面圧を軽減することができる。なお、大きなしめしろ嵌合とする代わりに、小さなしめしろ嵌合として両者を接着接合すれば、接触面圧が大きくなることはない。   On the other hand, as in the present embodiment, by using the third cylindrical members 73 and 74, the carbon fiber composite material (second cylindrical member 72) and the third cylindrical members 73 and 74 are coupled in a wide range in the axial direction. In addition, by using a thin sleeve, even if it is fitted with a carbon fiber composite material with a large interference, elastic deformation on the third cylindrical members 73 and 74 side can be expected. Can be reduced. Note that the contact surface pressure does not increase if both are bonded together as a small interference fit instead of a large interference fit.

その後、さらに、第3円筒部材73,74の外周面に内輪52,62を大きなしめしろで嵌合させた場合にも直接炭素繊維複合材料の表面に局部的な面圧を与えず、第3円筒部材73,74を介して荷重が作用し、嵌め合いによる圧縮力が分散される。このような緩衝作用により、炭素繊維複合材料の表面につぶれや変形などが生じることがない。   Thereafter, even when the inner rings 52, 62 are fitted to the outer peripheral surfaces of the third cylindrical members 73, 74 with a large interference, a local surface pressure is not directly applied to the surface of the carbon fiber composite material. A load acts through the cylindrical members 73 and 74, and the compressive force due to the fitting is dispersed. By such a buffering action, the surface of the carbon fiber composite material is not crushed or deformed.

また、内輪と炭素繊維複合材料とは線膨張係数が異なるので、回転増加に伴い、主軸の温度が上昇すると遠心力効果と同様に嵌め合い部のすきまが変化する。したがって、これらの条件を考慮し、運転中(例えば、対象とする主軸の最高回転時)の第3円筒部材73,74と内輪52,62との間の嵌め合いすきまが0〜しめしろ側となるように組み込み時の嵌め合いを設定することが望ましい。   Further, since the linear expansion coefficient is different between the inner ring and the carbon fiber composite material, the clearance of the fitting portion changes in the same manner as the centrifugal force effect when the temperature of the main shaft rises as the rotation increases. Therefore, in consideration of these conditions, the fitting clearance between the third cylindrical members 73 and 74 and the inner rings 52 and 62 during operation (for example, at the maximum rotation of the target spindle) is 0 to the interference side. It is desirable to set the fit when assembled.

また、定期的なメンテナンスや突発的な軸受不具合等で軸受を交換する場合には、内輪52,62は金属材料からなる第3円筒部材73,74から引き抜かれる。この引き抜きの構造は、金属材料の回転軸に内輪が嵌合する従来構造と同様であるので、問題はない。   Further, when the bearing is replaced due to periodic maintenance or sudden bearing failure, the inner rings 52, 62 are pulled out from the third cylindrical members 73, 74 made of a metal material. Since this drawing structure is the same as the conventional structure in which the inner ring is fitted to the rotating shaft of the metal material, there is no problem.

さらに、上述したように、第3円筒部材73,74にはフランジ部73b,74bが設けられているので、反対側のナット31,35及び内輪間座32,36と共に、軸受50,60の内輪端部の軸方向固定を金属間結合とすることができる。炭素繊維複合材料は母材として合成樹脂材料を用いているので、内輪52,62と炭素繊維複合材料とをある荷重で密着結合させた場合、内輪端部と炭素繊維複合材料の接触部間の弾性変形は大きくなる傾向があり、ナット31,35による締め付け結合が弱くなる可能性がある。即ち、剛性重視で、極度に締め付け力を上げると、炭素繊維複合材料に割れや欠けなどの破損が生じる懸念がある。一方、切削精度を確保するためには、軸方向の変形剛性が必要となる。このため、第3円筒部材73,74にフランジ部73b,74bを設けることによってこれらの問題を解決することができる。
なお、炭素繊維複合材料の表面硬度が比較的高い場合は、フランジ部73b,74bを設けずに、内輪52,62の軸方向端面と第2円筒部材72の段差部72a,72bの軸方向端面とを直接接合させてもよい。
また、スリーブ部分73a,74aとフランジ部73b、74bとは、別部材によって構成されてもよい。
Further, as described above, since the third cylindrical members 73 and 74 are provided with the flange portions 73b and 74b, the inner rings of the bearings 50 and 60 are provided together with the nuts 31 and 35 and the inner ring spacers 32 and 36 on the opposite side. The axial fixing of the end can be an intermetal bond. Since the carbon fiber composite material uses a synthetic resin material as a base material, when the inner rings 52 and 62 and the carbon fiber composite material are tightly bonded with a certain load, the inner ring end portion and the contact portion of the carbon fiber composite material are between Elastic deformation tends to be large, and the tightening connection by the nuts 31 and 35 may be weakened. That is, if the tightening force is extremely increased with emphasis on rigidity, there is a concern that the carbon fiber composite material may be broken or cracked. On the other hand, in order to ensure cutting accuracy, axial deformation rigidity is required. Therefore, these problems can be solved by providing the third cylindrical members 73 and 74 with the flange portions 73b and 74b.
When the surface hardness of the carbon fiber composite material is relatively high, the axial end surfaces of the inner rings 52 and 62 and the stepped portions 72a and 72b of the second cylindrical member 72 are not provided without providing the flange portions 73b and 74b. And may be directly joined.
Further, the sleeve portions 73a and 74a and the flange portions 73b and 74b may be constituted by different members.

このように本実施形態の主軸装置10によれば、第2円筒部材72に使用される炭素繊維複合材料は熱伝導率が小さいので、ロータ20が第2円筒部材72に外嵌することで、ロータ20の発熱が回転軸12を介して前側及び後側軸受50,60の内輪52,62に伝わり難くなり、内外輪51,52,61,62での温度差が抑えられ、適正な予圧が維持される。また、線膨張係数が小さいゆえ、回転軸12自体の膨張も抑制されるので、良好な加工精度を得る事ができる。   As described above, according to the spindle device 10 of the present embodiment, since the carbon fiber composite material used for the second cylindrical member 72 has a low thermal conductivity, the rotor 20 is externally fitted to the second cylindrical member 72. The heat generated by the rotor 20 is difficult to be transmitted to the inner rings 52 and 62 of the front and rear bearings 50 and 60 via the rotating shaft 12, and the temperature difference between the inner and outer rings 51, 52, 61 and 62 is suppressed, and an appropriate preload is achieved. Maintained. Further, since the linear expansion coefficient is small, the expansion of the rotary shaft 12 itself is also suppressed, so that good machining accuracy can be obtained.

また、回転軸12は、第2円筒部材72の内側に、金属材料からなる第1円筒部材71とを備えるので、ドローバー13の摺接面71fや工具ホルダ14が取り付けられるテーパ面18が第1円筒部材71によって構成され、特定部位における耐摩耗性も確保することができる。   Moreover, since the rotating shaft 12 is provided with the 1st cylindrical member 71 which consists of metal materials inside the 2nd cylindrical member 72, the taper surface 18 to which the sliding contact surface 71f of the draw bar 13 and the tool holder 14 are attached is the 1st. It is comprised by the cylindrical member 71, and the abrasion resistance in a specific site | part can also be ensured.

さらに、ロータ20は、第2円筒部材72にしめしろを持って嵌合しているので、遠心力やロータ20の温度上昇が発生してもすきまになることが抑制され、ロータ20の回転すべりや、回転軸12の振動が増大するのを抑えることができる。   Further, since the rotor 20 is fitted to the second cylindrical member 72 with a margin, it is possible to prevent a gap from occurring even if a centrifugal force or a temperature rise of the rotor 20 occurs, and the rotor 20 rotates. In addition, an increase in vibration of the rotating shaft 12 can be suppressed.

また、第1円筒部材71は、第2円筒部材72が配置される小径部71aと、前側軸受50の軸方向位置を規制するナット31が締め付けられる雄ねじ部71bを有する大径部71cと、を有するので、ナット31を雄ねじ部72bに確実に締結することができる。
また、前側軸受50,50の内輪52,52自身の発熱は、内輪間座32やナット31から第1円筒部材71を介して工具ホルダ14などの金属部材に伝達されるので、内輪52,52の温度上昇を抑えることができる。
The first cylindrical member 71 includes a small-diameter portion 71a in which the second cylindrical member 72 is disposed, and a large-diameter portion 71c having a male screw portion 71b to which the nut 31 that regulates the axial position of the front bearing 50 is tightened. Thus, the nut 31 can be securely fastened to the male screw portion 72b.
Further, since the heat generation of the inner rings 52, 52 of the front bearings 50, 50 is transmitted from the inner ring spacer 32 and the nut 31 to the metal member such as the tool holder 14 via the first cylindrical member 71, the inner rings 52, 52 are transmitted. Temperature rise can be suppressed.

また、モータビルトイン方式の主軸装置においては、前側軸受50と後側軸受60との距離が長くなり、回転軸のラジアル方向の固有振動数が小さくなりやすい。工作機械の主軸装置の場合、特定の回転数での使用ではなく、加工物や加工条件に応じて、最高回転数までの全ての領域で使用される可能性があり、少なくとも回転軸系の固有振動数は最高回転での周波数より大きくしないと、共振作用により加工ができない、あるいは、共振域での回転軸12の異常振動が発生する虞がある。本実施形態では、金属材料と比較して比弾性率が大きい炭素繊維複合材料を使用するので、同一軸受スパンの場合、回転軸系の固有振動数(特に、ラジアル方向の固有振動数)を高くすることができ、主軸装置の最高回転数の増加が図られ、加工回転領域が広くできる。   Further, in the motor built-in spindle device, the distance between the front bearing 50 and the rear bearing 60 becomes long, and the natural frequency of the rotating shaft in the radial direction tends to be small. In the case of machine tool spindles, it may be used in all areas up to the maximum number of revolutions, depending on the workpiece and machining conditions, rather than being used at a specific number of revolutions. If the frequency is not greater than the frequency at the maximum rotation, there is a possibility that machining cannot be performed due to the resonance action, or abnormal vibration of the rotating shaft 12 in the resonance region may occur. In this embodiment, a carbon fiber composite material having a larger specific modulus than that of a metal material is used. Therefore, in the case of the same bearing span, the natural frequency of the rotating shaft system (particularly, the natural frequency in the radial direction) is increased. The maximum number of rotations of the spindle device can be increased, and the machining rotation area can be widened.

また、炭素繊維複合材料は、金属材料に比べて振動減衰性に優れるので、回転軸12の動剛性の向上が図れ、その結果、過酷な加工条件や仕上げ加工におけるびびり振動が発生しにくく、加工面粗さが良くなり、加工面の品位や光沢度の向上、並びに加工精度が安定する。   In addition, since the carbon fiber composite material is excellent in vibration damping properties compared to the metal material, the dynamic rigidity of the rotating shaft 12 can be improved, and as a result, chatter vibration is hardly generated in severe processing conditions and finishing processing. The surface roughness is improved, the quality and glossiness of the processed surface are improved, and the processing accuracy is stabilized.

さらに、主軸装置の加工時間や減速時間は、回転イナーシャJの大きさに依存する。ここで、中空円筒の回転イナーシャは以下の計算式によって与えられ、直径の4乗と比例した関係にある。
J=(D−d)・L・η・π/32
ここで、Dは中空円筒の外径、dは中空円筒の内径、Lは中空円筒の軸方向長さ、ηは比重を表している。
Further, the machining time and deceleration time of the spindle device depend on the size of the rotary inertia J. Here, the rotational inertia of the hollow cylinder is given by the following calculation formula and is in a relationship proportional to the fourth power of the diameter.
J = (D 4 −d 4 ) · L · η · π / 32
Here, D is the outer diameter of the hollow cylinder, d is the inner diameter of the hollow cylinder, L is the axial length of the hollow cylinder, and η is the specific gravity.

従って、主軸装置の主要構成部材の中で大きな重量比を占める回転軸12として、比重が小さい炭素繊維複合材料を適用することで、回転軸12全体の重量が下がり、また、回転中心から離れた第2円筒部材72に炭素繊維複合材料を適用しているので、回転イナーシャが小さくでき、主軸装置の加工時間、減速時間が大幅に短くなり、加工工具交換時間の短縮化が図れ、高効率加工が可能となる。   Therefore, by applying a carbon fiber composite material having a small specific gravity as the rotating shaft 12 occupying a large weight ratio among the main components of the main shaft device, the weight of the rotating shaft 12 as a whole is reduced, and the rotating shaft 12 is separated from the center of rotation. Since the carbon fiber composite material is applied to the second cylindrical member 72, the rotational inertia can be reduced, the machining time and the deceleration time of the spindle device can be greatly shortened, and the machining tool replacement time can be shortened, thereby achieving high efficiency machining. Is possible.

また、金属材料が内径側あるいは両端側に存在することで、回転軸の外径、内径仕上げ研削の基準面が確保され、高精度に仕上げ研削ができる。炭素繊維複合材料に基準面を設けると、摩耗や変形などが発生しやすく、高速主軸に必要な同軸度、真円度などが確保しにくい。同軸度、真円度が悪いと、アンバランスが大きく、高速回転時の振動発生、加工精度不良となる。   In addition, since the metal material is present on the inner diameter side or both end sides, the outer diameter of the rotating shaft and the reference surface for inner diameter finish grinding are ensured, and finish grinding can be performed with high accuracy. When a reference surface is provided on the carbon fiber composite material, wear and deformation are likely to occur, and it is difficult to ensure the coaxiality and roundness required for the high-speed main shaft. If the coaxiality and roundness are poor, the unbalance is large, causing vibration during high-speed rotation and poor machining accuracy.

さらに、本実施形態によれば、第2円筒部材72のロータ20が嵌合する外周面から軸方向に離間した位置の外周面には、外周面に前側及び後側軸受50,60の内輪52,62がそれぞれ嵌合する、金属材料からなる第3円筒部材73,74が配置されるので、第3円筒部材73,74と軸受50,60の内輪52,62の表面硬度を同等とすることができ、両者間のしめしろ嵌合を容易に行うことができ、且つ、軸受50,60を交換するときに、嵌め合い面にかじりや傷などの不具合の発生を抑えることができる。   Furthermore, according to the present embodiment, the inner ring 52 of the front and rear bearings 50, 60 is provided on the outer peripheral surface of the second cylindrical member 72 at a position spaced axially from the outer peripheral surface with which the rotor 20 is fitted. , 62 are fitted, and the third cylindrical members 73, 74 made of a metal material are disposed, so that the surface hardness of the third cylindrical members 73, 74 and the inner rings 52, 62 of the bearings 50, 60 are made equal. Interference fit between the two can be easily performed, and when the bearings 50 and 60 are replaced, the occurrence of problems such as galling or scratches on the mating surfaces can be suppressed.

加えて、第3円筒部材73,74と軸受内輪52,62の内周面の嵌合部(嵌合部円周方向全面が伝熱面積となる)より軸受の発熱分を内輪間座32,36を介して、前側軸受ナット31や第1円筒部材71に伝えることができる。つまり、軸受内輪52,62で熱が停滞し、軸受内外輪温度差によって予圧過大となり、焼付きなどの不具合が発生するのを抑止することができる。   In addition, the amount of heat generated by the bearing is reduced by the inner ring spacer 32, from the fitting portion of the inner peripheral surface of the third cylindrical members 73, 74 and the bearing inner rings 52, 62 (the entire circumferential surface of the fitting portion becomes the heat transfer area). It can be transmitted to the front bearing nut 31 and the first cylindrical member 71 via 36. That is, it is possible to suppress the occurrence of problems such as seizure due to heat stagnating in the bearing inner rings 52 and 62 and excessive preload due to the temperature difference between the bearing inner and outer rings.

また、第3円筒部材73,74は、第2円筒部材72の段差部72a,72bの軸方向側面と内輪52,62の軸方向端面との間に挟持されるフランジ部73b、74bを有するので、反対側のナット31,35を強く締め付けた場合でも、第2円筒部材72の割れや欠けなどの破損が生じることなく、軸受50,60の内輪端部の軸方向固定を行うことができる。   Further, the third cylindrical members 73 and 74 have flange portions 73b and 74b sandwiched between the axial side surfaces of the stepped portions 72a and 72b of the second cylindrical member 72 and the axial end surfaces of the inner rings 52 and 62. Even when the nuts 31 and 35 on the opposite side are strongly tightened, the inner ring ends of the bearings 50 and 60 can be fixed in the axial direction without causing damage such as cracking or chipping of the second cylindrical member 72.

なお、本実施形態では、第3円筒部材73,74は、第2円筒部材72の外周面に嵌合する薄肉スリーブとしたが、第3円筒部材73,74は、第2円筒部材72の外周面に電気的又は化学的手法により結合させた薄膜部材であってもよい。例えば、以下のような金属めっき等を用いると、強固な被膜が形成できる。例えば、第2円筒部材72の表面(即ち、外周面及び段差部72a,72bにおける軸方向端面)に、溶射のための下地処理層、金属溶射処理層、中間メッキ層及び最外メッキ層を、内側から順次形成することで、強固に結合する金属メッキ層が得られる。   In the present embodiment, the third cylindrical members 73 and 74 are thin sleeves that fit on the outer peripheral surface of the second cylindrical member 72, but the third cylindrical members 73 and 74 are outer peripheral surfaces of the second cylindrical member 72. It may be a thin film member bonded to the surface by an electrical or chemical method. For example, when the following metal plating is used, a strong film can be formed. For example, on the surface of the second cylindrical member 72 (that is, the outer peripheral surface and the axial end surfaces of the stepped portions 72a and 72b), a base treatment layer for thermal spraying, a metal spray treatment layer, an intermediate plating layer, and an outermost plating layer, By forming sequentially from the inside, a metal plating layer that is firmly bonded can be obtained.

ここで、下地処理層とは、例えば、熱伝導率が0.001cal・cm−1・sec−1・deg−1以上で、λ・S≧0.05(λ:熱伝導率、S:m/gで表される表面積)を満足する扁平状でない無機フィラー、あるいは表面が複雑な凹凸を有する無機フィラーなどの特殊形状の金属または無機粉を熱硬化型樹脂と配合して炭素繊維複合材料表面に塗布し、熱硬化させて形成される。また、金属溶射処理層の材質はCu、Ni、Al、Feなど表面に電気メッキができるものであればよく、特に制限するものではない。中間メッキ層の材質については、封孔性能と耐蝕性の点より選ばれるが、このような目的で種々実験した結果、Cu又はNiが特に有効である。さらに、最外メッキ層の材質としても用途によって適宜選ばれるが、Ni及びCuが一般的に採用され、特に表面硬度が要求される場合はCuメッキが好ましい。 Here, the base treatment layer has, for example, a thermal conductivity of 0.001 cal · cm −1 · sec −1 · deg −1 or more and λ · S ≧ 0.05 (λ: thermal conductivity, S: m Carbon fiber composite material by blending a non-flat inorganic filler satisfying 2 / g) or a specially shaped metal or inorganic powder, such as an inorganic filler having complex irregularities on the surface, with a thermosetting resin It is formed by applying to the surface and thermosetting. The material of the metal spray-treated layer is not particularly limited as long as it can be electroplated on the surface, such as Cu, Ni, Al, and Fe. The material of the intermediate plating layer is selected from the viewpoint of sealing performance and corrosion resistance. As a result of various experiments for such purposes, Cu or Ni is particularly effective. Further, the material of the outermost plating layer is appropriately selected depending on the application, but Ni and Cu are generally employed, and Cu plating is preferable when surface hardness is particularly required.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。
例えば、上述した実施形態は、前側軸受、後側軸受を一対のアンギュラ玉軸受によって構成したが、軸受の種類や数はこれに限定されず、使用状態に応じて適宜設計することができる。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
For example, in the above-described embodiment, the front bearing and the rear bearing are configured by a pair of angular ball bearings, but the type and number of the bearings are not limited thereto, and can be appropriately designed according to the use state.

また、図3に示すように、前側軸受50,50の内輪52,52は、回転軸12の第1円筒部材71にしめしろを有して外嵌された固定スリーブ81によって、回転軸12に対し軸方向に位置決め固定されるように構成してもよい。なお、固定スリーブ81の第1円筒部材71への組込みは、焼嵌めによって行い、固定スリーブ81の第1円筒部材71からの分解は、固定スリーブ81と第1円筒部材71との間に設けられた油圧室83に油圧を与えることによって行う。   Further, as shown in FIG. 3, the inner rings 52, 52 of the front bearings 50, 50 are attached to the rotating shaft 12 by a fixing sleeve 81 that is fitted around the first cylindrical member 71 of the rotating shaft 12 with an interference. On the other hand, it may be configured to be positioned and fixed in the axial direction. The fixing sleeve 81 is incorporated into the first cylindrical member 71 by shrink fitting, and the fixing sleeve 81 is disassembled from the first cylindrical member 71 between the fixing sleeve 81 and the first cylindrical member 71. This is done by applying hydraulic pressure to the hydraulic chamber 83.

このように構成した場合、固定スリーブ81と第1円筒部材71とがしめしろ嵌合しているので、固定スリーブ81と第1円筒部材71との有効接触面積が大きくなることで熱伝導性が向上し、前側軸受50の内輪52の発熱を固定スリーブ81を介して第1円筒部材71に効率的に逃がすことが可能となる。   In such a configuration, since the fixing sleeve 81 and the first cylindrical member 71 are fitted to each other, the effective contact area between the fixing sleeve 81 and the first cylindrical member 71 is increased, so that the thermal conductivity is increased. As a result, the heat generation of the inner ring 52 of the front bearing 50 can be efficiently released to the first cylindrical member 71 via the fixed sleeve 81.

また、固定スリーブ81が間座等を介さず内輪52に直接当接するように構成されているので、固定スリーブ81の軸方向長さを長く設定することができる。したがって、固定スリーブ81と第1円筒部材71との嵌合部の軸方向長さが長くなり、熱伝導のための接触面積をより大きくすることができる。   Further, since the fixed sleeve 81 is configured to directly contact the inner ring 52 without using a spacer or the like, the axial length of the fixed sleeve 81 can be set long. Therefore, the axial length of the fitting portion between the fixed sleeve 81 and the first cylindrical member 71 is increased, and the contact area for heat conduction can be further increased.

このように、前側軸受50の内輪52の発熱を、固定スリーブ81を介してより効率よく第1円筒部材71側に伝達することができるので、内輪52の温度が下がり、内輪52及び外輪51の温度差を少なくすることができる。したがって、前側軸受50の回転中の予圧増加が軽減され、内輪52と玉53、及び外輪51と玉53の転がり接触部のPV値が抑制できるので、前側軸受50が焼き付くことを防ぐことができる。   As described above, the heat generation of the inner ring 52 of the front bearing 50 can be more efficiently transmitted to the first cylindrical member 71 side via the fixed sleeve 81, so that the temperature of the inner ring 52 decreases and the inner ring 52 and the outer ring 51 The temperature difference can be reduced. Therefore, an increase in the preload during rotation of the front bearing 50 is reduced, and the PV values of the rolling contact portions of the inner ring 52 and the ball 53 and the outer ring 51 and the ball 53 can be suppressed, so that the front bearing 50 can be prevented from being seized. .

また、固定スリーブ81と回転軸12の第1円筒部材71とはしめしろ嵌合しているので、回転軸12に対して固定スリーブ81が傾くことが抑制され、内輪52を均一に固定することが可能となり、加工精度をより向上させることができる。   Further, since the fixing sleeve 81 and the first cylindrical member 71 of the rotating shaft 12 are fitted to each other, the tilting of the fixing sleeve 81 with respect to the rotating shaft 12 is suppressed, and the inner ring 52 can be fixed uniformly. This makes it possible to improve the processing accuracy.

なお、上述の実施形態のように、内輪52をナット31によって軸方向に位置決め固定する場合であっても、ナット31の軸方向長さを長く確保したり、ねじピッチを短くしたり(細目ねじナットの採用)、ナット31と第1円筒部材71、及び間座32と第2円筒部材72のはめあい隙間を極めて小さくしたりする(例えば、中間ばめはめあい)等の仕様とすることで、熱伝導の有効接触面積を大きくして、内輪52の発熱を逃がすことが可能である。
また同様に、内輪52をナット31によって軸方向に位置決め固定する場合であっても、ナット31組込み時にその傾き補正を行うことで、内輪52を均一に固定し、加工精度の確保することが可能である。
Even when the inner ring 52 is positioned and fixed in the axial direction by the nut 31 as in the above-described embodiment, the axial length of the nut 31 is ensured long, or the screw pitch is shortened (fine screw). By adopting specifications such as extremely small fitting gaps between the nut 31 and the first cylindrical member 71 and between the spacer 32 and the second cylindrical member 72 (for example, intermediate fitting) It is possible to increase the effective contact area of conduction and release the heat generated in the inner ring 52.
Similarly, even when the inner ring 52 is positioned and fixed in the axial direction by the nut 31, by correcting the inclination when the nut 31 is assembled, the inner ring 52 can be fixed uniformly and processing accuracy can be ensured. It is.

なお、工具側に配設された前側軸受50は、切削荷重を負荷する軸受であり、当該負荷により発熱量が高くなる。また、主軸装置10の工具側には、工具ホルダ14を保持するテーパ面18が設けられているので、軸剛性や軸系の固有振動数を確保するために肉厚を要し、前側軸受50の内径が大きくなる傾向にあり、その結果前側軸受50のdmn値が大きくなる。したがって、上記のように固定スリーブ81を設けて前側軸受50の発熱を効率的に逃がす構成とすることは非常に効果的である。   In addition, the front side bearing 50 arrange | positioned at the tool side is a bearing which loads a cutting load, and the emitted-heat amount becomes high with the said load. Further, since the taper surface 18 for holding the tool holder 14 is provided on the tool side of the spindle device 10, a wall thickness is required to ensure the shaft rigidity and the natural frequency of the shaft system, and the front bearing 50 Tends to increase, and as a result, the dmn value of the front bearing 50 increases. Therefore, it is very effective to provide the fixed sleeve 81 as described above so as to efficiently release the heat generated by the front bearing 50.

一方、反工具側に配設される後側軸受60は、前側軸受50に比べて切削荷重が直接負荷せず、前側軸受50に比べてサイズも小さくなることから、上述の実施形態のようにナット35によって軸方向に位置決めされる構成であっても差し支えない。しかしながら、軸方向のスペースが確保できる余裕がある場合等、必要に応じて、後側軸受60,60の内輪62,62が、ナット35を用いずに、第1円筒部材71にしめしろを有して外嵌された固定スリーブによって回転軸12に対し軸方向に位置決め固定されるように構成してもよい(不図示)。   On the other hand, the rear bearing 60 disposed on the side opposite to the tool is not directly subjected to a cutting load as compared with the front bearing 50 and is smaller in size than the front bearing 50. Therefore, as in the above-described embodiment. A configuration in which the nut 35 is positioned in the axial direction may be used. However, the inner rings 62, 62 of the rear bearings 60, 60 have an interference with the first cylindrical member 71 without using the nut 35 as necessary, for example, when there is a margin for securing an axial space. Then, it may be configured to be positioned and fixed in the axial direction with respect to the rotating shaft 12 by a fixing sleeve fitted outside (not shown).

また、図4に示す、本発明の他の変形例に係る主軸装置のように、前側軸受50,50及び後側軸受60,60にそれぞれ定位置予圧が付与される構成であってもよい。この場合、前側軸受50,50と後側軸受60,60とは、それぞれ背面組み合わせとなるように配置されている。
このような主軸装置においても、上記実施形態と同様の効果を奏することができる。
Moreover, the structure which a fixed position preload is each given to the front bearings 50 and 50 and the rear bearings 60 and 60 may be sufficient like the main axis | shaft apparatus which concerns on the other modification of this invention shown in FIG. In this case, the front bearings 50 and 50 and the rear bearings 60 and 60 are arranged so as to be a back combination.
Even in such a spindle device, the same effects as those of the above-described embodiment can be obtained.

さらに、本発明が適用される主軸装置としては、前側軸受50,50に定位置予圧が付与されるように一対のアンギュラ玉軸受で構成し、後側軸受60を単列の円筒ころ軸受で構成するようなものであってもよい。   Further, the spindle device to which the present invention is applied is constituted by a pair of angular ball bearings so that a fixed position preload is applied to the front bearings 50, 50, and the rear bearing 60 is constituted by a single row cylindrical roller bearing. It may be something like that.

10 主軸装置
12 回転軸
20 ロータ
22 ステータ
50 前側軸受
60 後側軸受
71 第1円筒部
72 第2円筒部
H ハウジング
DESCRIPTION OF SYMBOLS 10 Main shaft apparatus 12 Rotating shaft 20 Rotor 22 Stator 50 Front side bearing 60 Rear side bearing 71 1st cylindrical part 72 2nd cylindrical part H Housing

Claims (6)

回転軸と、
前記回転軸をハウジングに対して回転自在にそれぞれ支持する前側及び後側軸受と、
該前側及び後側軸受との間で前記回転軸に外嵌されるロータと、該ロータの周囲に配置されるステータと、を有するモータと、
を備えるモータビルトイン方式の主軸装置であって、
前記回転軸は、
金属材料からなる第1円筒部材と、
該第1円筒部材の外周面に配置され、外周面に前記ロータが嵌合し、前記第1円筒部材の金属材料より比弾性率が大きく、且つ線膨張係数が小さい材料からなる第2円筒部材と、
該第2円筒部材の前記ロータが嵌合する外周面から軸方向に離間した位置の外周面に配置され、外周面に前記前側又は後側軸受の内輪が嵌合し、金属材料からなる第3円筒部材と、
を有することを特徴とするモータビルトイン方式の主軸装置。
A rotation axis;
Front and rear bearings that respectively support the rotary shaft rotatably with respect to the housing;
A motor having a rotor fitted to the rotary shaft between the front and rear bearings, and a stator disposed around the rotor;
A motor built-in spindle device comprising:
The rotation axis is
A first cylindrical member made of a metal material;
A second cylindrical member which is disposed on the outer peripheral surface of the first cylindrical member, the rotor is fitted to the outer peripheral surface, and which is made of a material having a higher specific elastic modulus and a smaller linear expansion coefficient than the metal material of the first cylindrical member. When,
The second cylindrical member is disposed on the outer peripheral surface at a position spaced axially from the outer peripheral surface to which the rotor is fitted, and the inner ring of the front or rear bearing is fitted to the outer peripheral surface, and a third made of a metal material. A cylindrical member;
A motor built-in spindle device characterized by comprising:
前記第2円筒部材は、前記第3円筒部材が配置される外周面が小径となるように段差部を有し、
前記第3円筒部材は、前記段差部の軸方向側面と前記内輪の軸方向端面との間に挟持されるフランジ部を有することを特徴とする請求項1に記載のモータビルトイン方式の主軸装置。
The second cylindrical member has a stepped portion so that an outer peripheral surface on which the third cylindrical member is disposed has a small diameter,
2. The motor built-in spindle device according to claim 1, wherein the third cylindrical member has a flange portion sandwiched between an axial side surface of the stepped portion and an axial end surface of the inner ring.
前記第3円筒部材は、前記第2円筒部材の外周面に嵌合する薄肉スリーブであることを特徴とする請求項1又は2に記載のモータビルトイン方式の主軸装置。   3. The motor built-in spindle device according to claim 1, wherein the third cylindrical member is a thin sleeve fitted to an outer peripheral surface of the second cylindrical member. 前記第3円筒部材は、前記第2円筒部材の外周面に電気的又は化学的手法により結合させた薄膜部材であることを特徴とする請求項1又は2に記載のモータビルトイン方式の主軸装置。   3. The motor built-in spindle device according to claim 1, wherein the third cylindrical member is a thin film member bonded to an outer peripheral surface of the second cylindrical member by an electric or chemical method. 前記第3円筒部材は、前記前側軸受と前記後側軸受の各内輪がそれぞれ嵌合する二つの第3円筒部材を有することを特徴とする請求項1〜4のいずれか1項に記載のモータビルトイン方式の主軸装置。   5. The motor according to claim 1, wherein the third cylindrical member has two third cylindrical members into which inner rings of the front bearing and the rear bearing are respectively fitted. Built-in spindle device. 前記第2円筒部材は、炭素繊維複合材料であることを特徴とする請求項1〜5のいずれか1項に記載のモータビルトイン方式の主軸装置。   The motor-built-in spindle device according to any one of claims 1 to 5, wherein the second cylindrical member is a carbon fiber composite material.
JP2011222158A 2011-07-20 2011-10-06 Motor built-in spindle device Active JP5915068B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011222158A JP5915068B2 (en) 2011-10-06 2011-10-06 Motor built-in spindle device
EP12814297.3A EP2735392B1 (en) 2011-07-20 2012-06-28 Spindle device
EP16174038.6A EP3098004B1 (en) 2011-07-20 2012-06-28 Spindle device
PCT/JP2012/066482 WO2013011815A1 (en) 2011-07-20 2012-06-28 Main shaft apparatus
EP16174040.2A EP3100805B1 (en) 2011-07-20 2012-06-28 Spindle device
CN201280000782.8A CN103003014B (en) 2011-07-20 2012-06-28 Main shaft apparatus
TW101126388A TWI503201B (en) 2011-07-20 2012-07-20 Spindle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222158A JP5915068B2 (en) 2011-10-06 2011-10-06 Motor built-in spindle device

Publications (2)

Publication Number Publication Date
JP2013082018A true JP2013082018A (en) 2013-05-09
JP5915068B2 JP5915068B2 (en) 2016-05-11

Family

ID=48527777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222158A Active JP5915068B2 (en) 2011-07-20 2011-10-06 Motor built-in spindle device

Country Status (1)

Country Link
JP (1) JP5915068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109332732A (en) * 2018-11-19 2019-02-15 浙江万丰科技开发股份有限公司 One kind can trailing type stability mainshaft mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161202A (en) * 1983-02-28 1984-09-12 Okuma Mach Works Ltd Structure of bearing opposing surface and slide guide surface of machine tool
JPS642565U (en) * 1987-06-22 1989-01-09
JPH02167602A (en) * 1988-09-26 1990-06-28 Toshiba Mach Co Ltd Spindle of machine tool
JPH0751903A (en) * 1993-08-06 1995-02-28 Hitachi Seiko Ltd Main spindle device of machine tool
WO2006043170A2 (en) * 2004-10-22 2006-04-27 Jobs S.P.A. A machining head for machine tools with a shaft with low thermal expansion coefficient

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161202A (en) * 1983-02-28 1984-09-12 Okuma Mach Works Ltd Structure of bearing opposing surface and slide guide surface of machine tool
JPS642565U (en) * 1987-06-22 1989-01-09
JPH02167602A (en) * 1988-09-26 1990-06-28 Toshiba Mach Co Ltd Spindle of machine tool
JPH0751903A (en) * 1993-08-06 1995-02-28 Hitachi Seiko Ltd Main spindle device of machine tool
WO2006043170A2 (en) * 2004-10-22 2006-04-27 Jobs S.P.A. A machining head for machine tools with a shaft with low thermal expansion coefficient

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109332732A (en) * 2018-11-19 2019-02-15 浙江万丰科技开发股份有限公司 One kind can trailing type stability mainshaft mechanism
CN109332732B (en) * 2018-11-19 2024-01-12 浙江万丰科技开发股份有限公司 But follow-up stability spindle unit

Also Published As

Publication number Publication date
JP5915068B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2013011815A1 (en) Main shaft apparatus
JP5712839B2 (en) Motor built-in spindle device
JP2013022674A (en) Main spindle device
JP6210124B2 (en) Motor built-in spindle device
JP5915068B2 (en) Motor built-in spindle device
JP2014094442A (en) Main spindle device of motor built-in system and machine tool including the same
JP5887923B2 (en) Spindle device
US10302128B2 (en) Combined ball bearing, main spindle device, and machine tool
JP5712838B2 (en) Spindle device
JP6210123B2 (en) Motor built-in spindle device
JP5943116B2 (en) Motor built-in spindle device
JP5712840B2 (en) Motor built-in spindle device
JP5899917B2 (en) Spindle device
JP6019943B2 (en) Spindle device
JP2016026900A (en) Spindle device
JP5811657B2 (en) Motor built-in spindle device
JP2013022675A (en) Spindle device
JP5899932B2 (en) Spindle device
JP2014046411A (en) Spindle device, and flinger for spindle device
JP2014047854A (en) Spindle device and flinger for spindle device
JP2014066345A (en) Spindle device and flinger for spindle device
JP6213548B2 (en) Spindle device
JP5936228B2 (en) Spindle device and flinger for spindle device
JP2014047855A (en) Spindle device
JP6175801B2 (en) Spindle device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R150 Certificate of patent or registration of utility model

Ref document number: 5915068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150