JP2013022675A - Spindle device - Google Patents

Spindle device Download PDF

Info

Publication number
JP2013022675A
JP2013022675A JP2011159094A JP2011159094A JP2013022675A JP 2013022675 A JP2013022675 A JP 2013022675A JP 2011159094 A JP2011159094 A JP 2011159094A JP 2011159094 A JP2011159094 A JP 2011159094A JP 2013022675 A JP2013022675 A JP 2013022675A
Authority
JP
Japan
Prior art keywords
inner ring
outer peripheral
ring spacer
shaped protrusion
hook
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011159094A
Other languages
Japanese (ja)
Inventor
Shoichiro Oguri
翔一郎 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011159094A priority Critical patent/JP2013022675A/en
Priority to PCT/JP2012/066482 priority patent/WO2013011815A1/en
Priority to EP16174038.6A priority patent/EP3098004B1/en
Priority to EP12814297.3A priority patent/EP2735392B1/en
Priority to EP16174040.2A priority patent/EP3100805B1/en
Priority to CN201280000782.8A priority patent/CN103003014B/en
Priority to TW101126388A priority patent/TWI503201B/en
Publication of JP2013022675A publication Critical patent/JP2013022675A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Turning (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spindle device suppressing influence of thermal expansion and centrifugal force on a bearing to prevent malfunction such as seizing or the like caused by an increase in preload on the bearing in a high speed operating rotary shaft.SOLUTION: One pair of front side inner ring spacers 32 disposed face to face on both side surfaces of an inner ring 52 of a front side bearing 50 rotatably supporting the rotary shaft 12 have flange-shaped protrusions 32b axially protruded from outer peripheral sides and fitting on an outer peripheral surface 52a of a shoulder of the inner ring 52 and are made of a material smaller in thermal expansion coefficient and larger in specific modulus than the inner ring 52.

Description

本発明は、主軸装置に関し、特に、多軸制御の工作機械等に適用され、高速回転可能な主軸装置に関する。   The present invention relates to a spindle apparatus, and more particularly to a spindle apparatus that can be applied to a multi-axis control machine tool and can rotate at high speed.

従来、線膨張係数が異なる部材同士を嵌合する際、例えば、鋼からなる軸と、軸より線膨張係数が小さなセラミックスからなる内輪と、内周面が内輪の外周面と嵌合して軸と固く結合する間座と、を備え、軸と内輪とをすきま嵌め嵌合すると共に間座で内輪を押え込むようにして、温度上昇時に軸の熱膨張によって内輪に応力が作用しないようにして、内輪の破損を防止するようにした軸と環体との取付装置が開示されている(例えば、特許文献1参照。)。   Conventionally, when fitting members having different linear expansion coefficients, for example, a shaft made of steel, an inner ring made of ceramics having a smaller linear expansion coefficient than the shaft, and an inner peripheral surface fitted with an outer peripheral surface of the inner ring A spacer that is tightly coupled to the inner ring, and a clearance fit between the shaft and the inner ring and pressing the inner ring with the spacer so that no stress is applied to the inner ring due to thermal expansion of the shaft when the temperature rises. An attachment device for a shaft and an annular body that prevents breakage of the shaft is disclosed (for example, see Patent Document 1).

特開平1‐295025号公報Japanese Patent Laid-Open No. 1-295025

ところで、近年、工作機械主軸の高速回転化に伴い、これに対応した最適条件の設定が要望されており、高速回転に対応した軸受及びモータ設計仕様が不可欠となっている。即ち、高速回転になると、軸受内輪みぞの遠心力による膨張が大きくなることに加え、モータや主軸の温度上昇の影響で内輪の熱膨張(特に、径方向熱膨張)も大きくなる。この2つの要因が重なり、例えばアンギュラ玉軸受においては、内部すきまが減少し、軸受に予め予圧を付与した構造の場合、軸受の予圧が更に増大する。特に、高速回転中においては、内輪みぞと玉、及び外輪みぞと玉間の転がり接触部のPV値(P:接触面圧、V:すべり速度)が上昇し、潤滑油膜切れ等の潤滑不良が生じて焼付の不具合が発生する虞がある。   By the way, in recent years, with the increase in the rotation speed of machine tool spindles, the setting of optimum conditions corresponding to this has been demanded, and bearing and motor design specifications corresponding to high-speed rotation are indispensable. That is, at high speed rotation, the expansion of the bearing inner ring groove due to the centrifugal force increases, and the thermal expansion (particularly, radial thermal expansion) of the inner ring also increases due to the temperature rise of the motor and the main shaft. These two factors overlap. For example, in an angular ball bearing, the internal clearance decreases, and in the case of a structure in which preload is applied to the bearing in advance, the preload of the bearing further increases. In particular, during high-speed rotation, the PV value (P: contact surface pressure, V: sliding speed) of the rolling contact portion between the inner ring groove and ball and between the outer ring groove and ball increases, resulting in poor lubrication such as running out of the lubricating oil film. This may cause a seizure defect.

特許文献1に記載の装置は、軸と内輪とをすきま嵌め嵌合としており、軸と内輪とを零以上のしめしろ嵌合とする主軸装置には適用することができない。   The device described in Patent Document 1 is a clearance fit fitting between the shaft and the inner ring, and cannot be applied to a spindle device in which the shaft and the inner ring are fitted with an interference fit of zero or more.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、高速回転する回転軸において、熱膨張及び遠心力が軸受に及ぼす影響を抑制して、軸受の予圧の増大に起因する焼付きなどの不具合を防止することができる主軸装置を提供することにある。   The present invention has been made in view of the above-described problems, and its purpose is to suppress the influence of thermal expansion and centrifugal force on the bearing in the rotating shaft that rotates at high speed, resulting from an increase in the preload of the bearing. An object of the present invention is to provide a spindle device capable of preventing problems such as seizure.

本発明の上記目的は、下記の構成により達成される。
(1) 回転軸と、
前記回転軸をハウジングに対して回転自在にそれぞれ支持する前側及び後側軸受と、
を備え、
前記回転軸と、前記前側及び後側軸受の内輪と、が零以上のしめしろで嵌合する主軸装置であって、
前記前側及び後側軸受の少なくとも一方の内輪の両側面に対向配置されて前記回転軸に外嵌する一対の内輪間座を備え、
前記内輪間座は、外周側から軸方向に突出して前記内輪の肩部の外周面に外嵌する鍔状突部を有し、前記内輪より熱膨張係数が小さく、且つ比弾性率が大きい材料から形成されることを特徴とする主軸装置。
(2) 前記内輪の肩部の外周面は、軸方向端部に向かうに従って直径が次第に小さくなる外周テーパ部を有し、
前記内輪間座の鍔状突部の内周面は、軸方向端部に向かうに従って直径が次第に大きくなる内周テーパ部を有し、
前記内輪の外周テーパ部と、前記内輪間座の鍔状突部の内周テーパ部と、が嵌合することことを特徴とする上記(1)に記載の主軸装置。
(3) 前記内輪間座は、円環状に形成されて前記回転軸に外嵌する本体部と、該本体部とは別体に形成された前記鍔状突部と、
とからなり、
前記鍔状突部は、前記本体部の外周面に締結固定されることを特徴とする上記(1)又は(2)に記載の主軸装置。
(4) 前記鍔状突部は、円環状に形成されることを特徴とする上記(1)〜(3)の何れか1つに記載の主軸装置。
(5) 前記鍔状突部は、周方向に離間する複数の突部から形成されることを特徴とする上記(1)〜(3)の何れか1つに記載の主軸装置。
(6) 前記内輪間座は、炭素繊維複合材料により形成されることを特徴とする上記(1)から(5)の何れか1つに記載の主軸装置。
(7) 前記内輪間座に加え、更に前記回転軸が炭素繊維複合材料により形成されることを特徴とする上記(6)に記載の主軸装置。
(8) 前記主軸装置は、前記前側及び後側軸受との間で前記回転軸に外嵌されるロータと、該ロータの周囲に配置されるステータと、を有するモータが配設されるモータビルトイン方式の主軸装置であることを特徴とする上記(1)から(7)の何れか1つに記載の主軸装置。
The above object of the present invention can be achieved by the following constitution.
(1) a rotating shaft;
Front and rear bearings that respectively support the rotary shaft rotatably with respect to the housing;
With
A spindle device in which the rotating shaft and inner rings of the front and rear bearings are fitted with an interference of zero or more,
A pair of inner ring spacers disposed opposite to both side surfaces of at least one inner ring of the front and rear bearings and externally fitted to the rotary shaft;
The inner ring spacer has a hook-shaped protrusion that protrudes in the axial direction from the outer peripheral side and is fitted on the outer peripheral surface of the shoulder of the inner ring, and has a smaller thermal expansion coefficient and a higher specific modulus than the inner ring. A spindle device characterized by being formed from.
(2) The outer peripheral surface of the shoulder portion of the inner ring has an outer peripheral taper portion whose diameter gradually decreases toward the axial end portion,
The inner peripheral surface of the flange-shaped protrusion of the inner ring spacer has an inner peripheral taper portion whose diameter gradually increases toward the axial end,
The spindle device according to (1) above, wherein the outer peripheral taper portion of the inner ring and the inner peripheral taper portion of the flange-shaped protrusion of the inner ring spacer are fitted.
(3) The inner ring spacer is formed in an annular shape and externally fitted to the rotating shaft, and the hook-shaped protrusion formed separately from the main body portion,
And consist of
The spindle apparatus according to (1) or (2), wherein the hook-shaped protrusion is fastened and fixed to the outer peripheral surface of the main body.
(4) The spindle device according to any one of (1) to (3), wherein the hook-shaped protrusion is formed in an annular shape.
(5) The spindle device according to any one of (1) to (3), wherein the hook-shaped protrusion is formed from a plurality of protrusions that are spaced apart in the circumferential direction.
(6) The spindle device according to any one of (1) to (5), wherein the inner ring spacer is made of a carbon fiber composite material.
(7) In addition to the inner ring spacer, the rotating shaft is further formed of a carbon fiber composite material.
(8) The main shaft device includes a motor built-in in which a motor having a rotor fitted to the rotating shaft between the front and rear bearings and a stator arranged around the rotor is arranged. The main spindle apparatus according to any one of (1) to (7), wherein the main spindle apparatus is a type of main spindle apparatus.

上記(1)に記載の主軸装置によれば、回転軸を回転自在に支持する前側及び後側軸受の内輪の少なくとも一方の側面に対向配置されて回転軸に外嵌する内輪間座を備え、内輪間座は、外周側から軸方向に突出して内輪の肩部の外周面に外嵌する鍔状突部を有し、内輪より比弾性率が大きく、且つ熱膨張係数が小さい材料から形成される。したがって、高速回転時の遠心力による内輪間座の膨張が抑制されて、内輪の肩部の外周面に外嵌する内輪間座の鍔状突部によって内輪を拘束し、内輪の遠心力膨張を抑制することができる。さらに、主軸装置の昇温に伴う内輪間座の径方向熱膨張量は、内輪の径方向熱膨張量より小さくなるため、この熱膨張量の差分で内輪を押さえ込んで、内輪の熱膨張をより小さく押え込むことができる。これによって、軸受の内部荷重の増大を抑制して焼付きなどの発生を防止することができる。   According to the main shaft device described in (1) above, the inner ring spacer is provided so as to be opposed to at least one side surface of the inner ring of the front and rear bearings that rotatably supports the rotating shaft and to be externally fitted to the rotating shaft, The inner ring spacer has a hook-shaped protrusion that protrudes in the axial direction from the outer peripheral side and is fitted on the outer peripheral surface of the shoulder of the inner ring, and is formed of a material having a higher specific elastic modulus and a smaller thermal expansion coefficient than the inner ring. The Therefore, the expansion of the inner ring spacer due to the centrifugal force during high-speed rotation is suppressed, the inner ring is restrained by the hook-shaped protrusion of the inner ring spacer that is fitted around the outer peripheral surface of the inner ring shoulder, and the inner ring is subjected to centrifugal force expansion. Can be suppressed. Furthermore, the amount of radial thermal expansion of the inner ring spacer that accompanies the temperature rise of the spindle device is smaller than the amount of radial thermal expansion of the inner ring, so the inner ring is pressed down by the difference in the amount of thermal expansion to further increase the thermal expansion of the inner ring. Can be pressed in small. As a result, an increase in the internal load of the bearing can be suppressed and occurrence of seizure or the like can be prevented.

上記(2)に記載の主軸装置によれば、内輪の肩部の外周面に形成されて軸方向端部に向かうに従って直径が次第に小さくなる外周テーパ部が、内輪間座の鍔状突部の内周面に形成された内周テーパ部と嵌合するので、内輪と内輪間座の軸方向の締結力を調整することによって、テーパ嵌合部のはめあいを適切に調整することが可能となる。さらに、回転軸、内輪、内輪間座の軸方向における相対熱膨張差によって、内輪と内輪間座との軸方向締結力が減少することを抑制することができる。   According to the spindle device described in (2) above, the outer peripheral taper portion formed on the outer peripheral surface of the shoulder portion of the inner ring and gradually decreasing in diameter toward the end in the axial direction is formed on the flange-shaped protrusion of the inner ring spacer. Since it fits with the inner peripheral taper portion formed on the inner peripheral surface, it is possible to appropriately adjust the fit of the taper fitting portion by adjusting the axial fastening force between the inner ring and the inner ring spacer. . Further, it is possible to suppress a decrease in the axial fastening force between the inner ring and the inner ring spacer due to the relative thermal expansion difference in the axial direction between the rotating shaft, the inner ring, and the inner ring spacer.

上記(3)に記載の主軸装置によれば、内輪間座は、円環状に形成されて回転軸に外嵌する本体部と、該本体部とは別体に形成された鍔状突部と、とからなるので、内輪と内輪間座との間にしめしろを付けた状態で容易に組み付けることができる。   According to the main shaft device described in (3) above, the inner ring spacer is formed in an annular shape and externally fitted to the rotating shaft, and the hook-shaped protrusion formed separately from the main body portion. Therefore, it can be easily assembled with an interference between the inner ring and the inner ring spacer.

上記(4)に記載の主軸装置によれば、鍔状突部は、円環状に形成されるので、内輪の外周面全周に亘って内輪間座で押さえ込み、確実に内輪の遠心力膨張及び半径方向熱膨張を規制することができる。   According to the spindle device described in the above (4), since the hook-shaped protrusion is formed in an annular shape, the inner ring spacer holds down the entire outer circumference of the inner ring, and the centrifugal force expansion of the inner ring is ensured. Radial thermal expansion can be regulated.

上記(5)に記載の主軸装置によれば、鍔状突部は、周方向に離間する複数の突部から形成されるので、隣り合う突部間に形成される隙間によって、内輪の放熱性を高めることができる。   According to the spindle device described in (5) above, the hook-shaped protrusion is formed from a plurality of protrusions that are spaced apart in the circumferential direction, so that the heat dissipation of the inner ring is formed by the gap formed between the adjacent protrusions. Can be increased.

上記(6)に記載の主軸装置によれば、内輪間座は、炭素繊維複合材料により形成されるので、適正な比弾性率及び熱膨張係数を有する内輪間座の製作が可能となる。   According to the main shaft device described in (6) above, since the inner ring spacer is formed of a carbon fiber composite material, an inner ring spacer having an appropriate specific modulus and thermal expansion coefficient can be manufactured.

上記(7)に記載の主軸装置によれば、内輪間座に加え、更に回転軸が炭素繊維複合材料により形成されるので、主軸装置の軽量化、慣性力の低減が可能となり、主軸装置の移動加速度を大きくすることで、生産効率が向上する。また、モータ負荷が低減されるのでモータの小型化、更には主軸装置の小型化が可能となる。   According to the main shaft device described in (7) above, in addition to the inner ring spacer, the rotating shaft is further formed of a carbon fiber composite material, so that the main shaft device can be reduced in weight and inertial force can be reduced. Increasing the movement acceleration improves production efficiency. In addition, since the motor load is reduced, it is possible to reduce the size of the motor and further reduce the size of the spindle device.

上記(8)に記載の主軸装置によれば、前側及び後側軸受との間にモータが内蔵して配設されたモータビルトイン方式の主軸装置であるので、モータからの発熱があっても、内輪間座と内輪との熱膨張量の差分で内輪の熱膨張を小さく押え込み、モータの熱が前側及び後側軸受に及ぼす影響を抑制して焼付きなどの発生を防止することができる。   According to the spindle device described in the above (8), since it is a motor built-in type spindle device in which a motor is disposed between the front and rear bearings, even if heat is generated from the motor, It is possible to prevent the occurrence of seizure or the like by suppressing the influence of the heat of the motor on the front and rear bearings by suppressing the thermal expansion of the inner ring by the difference in the amount of thermal expansion between the inner ring spacer and the inner ring.

本発明の第1実施形態に係る主軸装置の断面図である。It is sectional drawing of the main axis | shaft apparatus which concerns on 1st Embodiment of this invention. (a)は図1に示す主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front side bearing vicinity of the main axis | shaft apparatus shown in FIG. 1, (b) is a side view of a front side inner ring spacer, (c) is a front view of a front side inner ring spacer. (a)は本発明の第2実施形態に係る主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front bearing vicinity of the main axis | shaft apparatus which concerns on 2nd Embodiment of this invention, (b) is a side view of a front inner ring spacer, (c) is a front view of a front inner ring spacer. It is. (a)は本発明の第3実施形態に係る主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front side bearing vicinity of the main axis | shaft apparatus which concerns on 3rd Embodiment of this invention, (b) is a side view of a front side inner ring spacer, (c) is a front view of a front side inner ring spacer. It is. (a)は本発明の第4実施形態に係る主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front side bearing vicinity of the main axis | shaft apparatus which concerns on 4th Embodiment of this invention, (b) is a side view of a front side inner ring spacer, (c) is a front view of a front side inner ring spacer. It is. (a)は本発明の第5実施形態に係る主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front side bearing vicinity of the main axis | shaft apparatus which concerns on 5th Embodiment of this invention, (b) is a side view of a front side inner ring spacer, (c) is a front view of a front side inner ring spacer. It is. (a)は本発明の第6実施形態に係る主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front side bearing vicinity of the main axis | shaft apparatus which concerns on 6th Embodiment of this invention, (b) is a side view of a front side inner ring spacer, (c) is a front view of a front side inner ring spacer. It is. (a)は本発明の第7実施形態に係る主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front side bearing vicinity of the main axis | shaft apparatus which concerns on 7th Embodiment of this invention, (b) is a side view of a front side inner ring spacer, (c) is a front view of a front side inner ring spacer. It is. (a)は本発明の第8実施形態に係る主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front side bearing vicinity of the main axis | shaft apparatus which concerns on 8th Embodiment of this invention, (b) is a side view of a front side inner ring spacer, (c) is a front view of a front side inner ring spacer. It is. (a)は本発明の第9実施形態に係る主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front side bearing vicinity of the main axis | shaft apparatus which concerns on 9th Embodiment of this invention, (b) is a side view of a front side inner ring spacer, (c) is a front view of a front side inner ring spacer. It is. 図10に示す主軸装置において、前側内輪間座及び内輪を締結する方法を説明するための図であり、(a)はナット締め付け前の図であり、(b)はナット締め付け後の図である。FIG. 11 is a view for explaining a method of fastening the front inner ring spacer and the inner ring in the spindle device shown in FIG. 10, (a) is a view before tightening the nut, and (b) is a view after tightening the nut. . (a)は本発明の第10実施形態に係る主軸装置の前側軸受近傍を拡大して示す断面図、(b)は前側内輪間座の側面図、(c)は前側内輪間座の正面図である。(A) is sectional drawing which expands and shows the front side bearing vicinity of the main axis | shaft apparatus which concerns on 10th Embodiment of this invention, (b) is a side view of a front side inner ring spacer, (c) is a front view of a front side inner ring spacer. It is. 本発明の第11実施形態に係る主軸装置の後側軸受近傍を拡大して示す断面図である。It is sectional drawing which expands and shows the rear side bearing vicinity of the main axis | shaft apparatus which concerns on 11th Embodiment of this invention.

以下、本発明に係る主軸装置の各実施形態を図面に基づいて詳細に説明する。   Hereinafter, each embodiment of a spindle device according to the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1に示すように、第1実施形態の主軸装置10は、モータビルトイン方式であり、その軸方向中心部には、金属材料、より具体的にクロムモリブデン鋼材(SCM材)からなる中空状の回転軸12が設けられ、回転軸12の軸芯には、図示しないドローバーが摺動自在に挿嵌されている。ドローバーは、いずれも図示しない工具ホルダを固定するコレット部を、皿ばねの力によって反工具側方向(図の右方向)に付勢しており、工具ホルダは、回転軸12のテーパ面と嵌合する。工具ホルダには工具が取り付けられており、この結果、回転軸12は、一端(図の左側)に工具をクランプして、工具を取り付け可能としている。
(First embodiment)
As shown in FIG. 1, the spindle device 10 of the first embodiment is a motor built-in system, and has a hollow shape made of a metal material, more specifically, a chromium molybdenum steel material (SCM material) at the center in the axial direction. A rotating shaft 12 is provided, and a draw bar (not shown) is slidably inserted into the shaft core of the rotating shaft 12. The draw bar urges a collet portion for fixing a tool holder (not shown) in the counter tool side direction (right direction in the figure) by the force of the disc spring, and the tool holder is fitted with the tapered surface of the rotary shaft 12. Match. A tool is attached to the tool holder, and as a result, the rotary shaft 12 can clamp the tool at one end (left side in the figure) and attach the tool.

回転軸12は、その工具側を支承する2列の前側軸受50,50と、反工具側を支承する2列の後側軸受60,60とによって、ハウジングHに回転自在に支持されている。なお、ハウジングHは、工具側から順に、フロントカバー40、前側軸受外輪押え29、外筒19、後側ハウジング24及び後蓋26によって構成されている。   The rotary shaft 12 is rotatably supported by the housing H by two rows of front bearings 50 and 50 that support the tool side, and two rows of rear bearings 60 and 60 that support the opposite tool side. The housing H is composed of a front cover 40, a front bearing outer ring presser 29, an outer cylinder 19, a rear housing 24, and a rear lid 26 in order from the tool side.

回転軸12の前側軸受50,50と後側軸受60,60間における回転軸12の外周面には、ロータ20が焼き嵌めにより外嵌されている。また、ロータ20の周囲に配置されるステータ22は、ステータ22に焼き嵌めされた冷却ジャケット23を、ハウジングHを構成する外筒19に内嵌することで、外筒19に固定される。したがって、ロータ20とステータ22はモータMを構成し、ステータ22に電力を供給することでロータ20に回転力を発生させ、回転軸12を回転させる。   The rotor 20 is fitted on the outer peripheral surface of the rotary shaft 12 between the front bearings 50 and 50 and the rear bearings 60 and 60 of the rotary shaft 12 by shrink fitting. The stator 22 arranged around the rotor 20 is fixed to the outer cylinder 19 by fitting a cooling jacket 23 shrink-fitted into the stator 22 into the outer cylinder 19 constituting the housing H. Therefore, the rotor 20 and the stator 22 constitute a motor M, and by supplying electric power to the stator 22, a rotational force is generated in the rotor 20 and the rotating shaft 12 is rotated.

各前側軸受50は、外輪51と、内輪52と、接触角を持って配置される転動体としての玉53と、保持器54と、をそれぞれ有するアンギュラ玉軸受であり、各後側軸受60は、外輪61と、内輪62と、転動体としての玉63と、保持器64と、を有するアンギュラ玉軸受である。前側軸受50,50(並列組合せ)と後側軸受60,60(並列組合せ)とは、互いに協働して背面組み合わせとなるように配置されている。   Each front bearing 50 is an angular ball bearing having an outer ring 51, an inner ring 52, a ball 53 as a rolling element arranged with a contact angle, and a cage 54. An angular ball bearing having an outer ring 61, an inner ring 62, a ball 63 as a rolling element, and a cage 64. The front bearings 50 and 50 (parallel combination) and the rear bearings 60 and 60 (parallel combination) are arranged to cooperate with each other to form a back combination.

前側軸受50,50の外輪51,51は、外筒19に内嵌されており、且つ外筒19にボルト締結された前側軸受外輪押え29によって前側外輪間座30を介して外筒19に対し軸方向に位置決め固定されている。また、前側軸受50,50の内輪52,52は、回転軸12に零以上のしめしろで外嵌されており、複数の前側内輪間座32を介して回転軸12の段部13と、回転軸12に締結されたナット31との間に狭持されて、回転軸12に対し位置決めされている。   The outer rings 51, 51 of the front bearings 50, 50 are fitted into the outer cylinder 19 and are attached to the outer cylinder 19 via the front outer ring spacer 30 by a front bearing outer ring retainer 29 bolted to the outer cylinder 19. It is positioned and fixed in the axial direction. Further, the inner rings 52, 52 of the front bearings 50, 50 are externally fitted to the rotary shaft 12 with zero or more interference, and are rotated with the step portion 13 of the rotary shaft 12 via the plurality of front inner ring spacers 32. It is sandwiched between a nut 31 fastened to the shaft 12 and positioned with respect to the rotating shaft 12.

後側軸受60,60の外輪61,61は、後側ハウジング24の内側において軸方向に摺動自在の状態とされたスリーブ25に内嵌されており、且つスリーブ25にボルト締結された後側軸受外輪押え33によって後側外輪間座34を介してスリーブ25に対し軸方向に位置決め固定されている。また、後側軸受60,60の内輪62,62は、回転軸12に零以上のしめしろで外嵌されており、且つ回転軸12に締結された他のナット35によって後側内輪間座36を介して回転軸12に対し位置決め固定されている。   The outer rings 61, 61 of the rear bearings 60, 60 are fitted into a sleeve 25 that is slidable in the axial direction inside the rear housing 24, and the rear side is bolted to the sleeve 25. The bearing outer ring retainer 33 is positioned and fixed in the axial direction with respect to the sleeve 25 via the rear outer ring spacer 34. The inner rings 62, 62 of the rear bearings 60, 60 are externally fitted to the rotary shaft 12 with zero or more interference, and the rear inner ring spacer 36 is secured by another nut 35 fastened to the rotary shaft 12. It is positioned and fixed to the rotary shaft 12 via

次に、前側、後側内輪間座32,36、及び前側、後側軸受50,60の内輪52,62について詳細に説明する。なお、前側内輪間座32と前側軸受50、及び後側内輪間座36と後側軸受60は共に同様の構成を有するので、以後の説明においては、前側内輪間座32と前側軸受50を例に説明するものとする。   Next, the front and rear inner ring spacers 32 and 36 and the inner rings 52 and 62 of the front and rear bearings 50 and 60 will be described in detail. Since the front inner ring spacer 32 and the front bearing 50, and the rear inner ring spacer 36 and the rear bearing 60 have the same configuration, in the following description, the front inner ring spacer 32 and the front bearing 50 are taken as an example. It shall be explained in

図2(a)は主軸装置10の前側軸受50近傍を拡大して示す断面図、(b)は前側内輪間座32の側面図、(c)は前側内輪間座32の正面図であり、各内輪52は、その両側面に、回転軸12に外嵌する一対の前側内輪間座32が対向配置されている。   2A is an enlarged cross-sectional view showing the vicinity of the front bearing 50 of the spindle device 10, FIG. 2B is a side view of the front inner ring spacer 32, and FIG. 2C is a front view of the front inner ring spacer 32. Each inner ring 52 has a pair of front inner ring spacers 32 that are fitted on the rotary shaft 12 so as to face each other.

前側内輪間座32は、円環状の本体部32aと、本体部32aの外周側から軸方向に突出して内輪52の肩部の外周面52aに外嵌し、本体部32aと一体形成される円環状の鍔状突部32bと、を有している。また、前側内輪間座32は、内輪52より熱膨張係数が小さく、且つ比弾性率が大きい材料、例えば、炭素繊維複合材料(CFRP)により形成されている。   The front inner ring spacer 32 is an annular main body part 32a and a circle that protrudes in the axial direction from the outer peripheral side of the main body part 32a and is fitted on the outer peripheral surface 52a of the shoulder part of the inner ring 52, and is integrally formed with the main body part 32a. And an annular hook-shaped protrusion 32b. The front inner ring spacer 32 is made of a material having a smaller coefficient of thermal expansion than the inner ring 52 and a large specific elastic modulus, such as a carbon fiber composite material (CFRP).

前側内輪間座32の鍔状突部32bは、内輪52の肩部の外周面52aに、組み付け時において零以上のしめしろで外嵌しており、内輪52の肩部の外周面52aは、全周に亘って鍔状突部32bによって径方向内側に押え付けられる。ここで、鍔状突部32bと内輪52の肩部の外周面52aとを、零以上のしめしろで嵌合させるのは、主軸装置10の運転に伴って温度上昇したとき、両者の熱膨張係数の差によってしめしろが増大する方向にあるので、両者の間にすきまが生じず、鍔状突部32bによる内輪52の肩部の外周面52aの拘束を維持できることによる。   The flange-like protrusion 32b of the front inner ring spacer 32 is fitted on the outer peripheral surface 52a of the shoulder of the inner ring 52 with zero or more interference when assembled, and the outer peripheral surface 52a of the shoulder of the inner ring 52 is It is pressed against the inside in the radial direction by the hook-shaped protrusion 32b over the entire circumference. Here, the flange-shaped protrusion 32b and the outer peripheral surface 52a of the shoulder portion of the inner ring 52 are fitted with an interference of zero or more when the temperature rises with the operation of the spindle device 10 and the thermal expansion of both. Since the interference is in the direction of increasing due to the difference in the coefficient, there is no gap between them, and the restraint of the outer peripheral surface 52a of the shoulder portion of the inner ring 52 by the flange-shaped protrusion 32b can be maintained.

なお、前側内輪間座32の鍔状突部32bと内輪52の肩部の外周面52aとの最大しめしろ(直径法)は、前側内輪間座32(鍔状突部32b)の形状や肉厚等にもよるが、組込みの容易性を考慮すると、好ましくは60μm以下、より好ましくは40μm以下、さらに好ましくは20μm以下とするのがよい。   The maximum interference (diameter method) between the flange-like protrusion 32b of the front inner ring spacer 32 and the outer peripheral surface 52a of the shoulder of the inner ring 52 is the shape and meat of the front inner ring spacer 32 (hook-like protrusion 32b). Although it depends on the thickness, considering the ease of incorporation, the thickness is preferably 60 μm or less, more preferably 40 μm or less, and even more preferably 20 μm or less.

また、鍔状突部32bと内輪52の肩部の外周面52aとの嵌合部の軸方向幅は、両者の嵌合状態を強固に維持するために、内輪52の軸方向幅の10%以上であることが望ましい。本実施形態においては、鍔状突部32bの外径を保持器54の内径よりも小径としているので、鍔状突部32bを保持器54と干渉させないようにしつつ、鍔状突部32bと内輪52の肩部の外周面52aとの嵌合部の軸方向幅を大きくすることができる。   Further, the axial width of the fitting portion between the flange-shaped protrusion 32b and the outer peripheral surface 52a of the shoulder portion of the inner ring 52 is 10% of the axial width of the inner ring 52 in order to maintain the fitting state of both. The above is desirable. In the present embodiment, since the outer diameter of the hook-shaped protrusion 32b is smaller than the inner diameter of the retainer 54, the hook-shaped protrusion 32b and the inner ring are prevented from interfering with the retainer 54. The axial width of the fitting part with the outer peripheral surface 52a of the shoulder part of 52 can be enlarged.

また、上記と同様の理由により、前側内輪間座32と回転軸12との嵌合、及び内輪52と回転軸12との嵌合は、組込時において、零以上のしめしろで嵌合するのがよい。これにより、温度上昇しても嵌合状態が維持されて、両者間のクリープが防止されると共に、鍔状突部32bと内輪52の肩部の外周面52aとの嵌合状態を強固に維持することができる。   For the same reason as described above, the fitting of the front inner ring spacer 32 and the rotating shaft 12 and the fitting of the inner ring 52 and the rotating shaft 12 are performed with an interference of zero or more when assembled. It is good. As a result, the fitting state is maintained even when the temperature rises, and creep between the two is prevented, and the fitting state between the flange-like protrusion 32b and the outer peripheral surface 52a of the shoulder portion of the inner ring 52 is firmly maintained. can do.

炭素繊維複合材料からなる前側内輪間座32は、金属からなる内輪52と比較して、比弾性率が大きく、比重が小さく、且つ熱膨張係数が小さいので、運転時の遠心力による遠心力膨張が少なくなり、且つ温度上昇による熱膨張量が少なくなる。したがって、前側内輪間座32と内輪52間の膨張量の差分で内輪52の肩部の外周面52aを鍔状突部32bで押え込み、効果的に内輪52の膨張を抑制することができる。このことは、回転軸12と内輪52とのはめあい維持にも寄与する。鍔状突部32bによる内輪52の抑え込み効果は、特に、dmnが100万以上となるような高速回転する主軸装置10において特に有効である。   The front inner ring spacer 32 made of a carbon fiber composite material has a higher specific elastic modulus, a lower specific gravity, and a smaller coefficient of thermal expansion than the inner ring 52 made of metal, and therefore, centrifugal force expansion due to centrifugal force during operation. And the amount of thermal expansion due to temperature rise is reduced. Therefore, the outer peripheral surface 52a of the shoulder portion of the inner ring 52 is pressed by the hook-shaped protrusion 32b by the difference in expansion amount between the front inner ring spacer 32 and the inner ring 52, and the expansion of the inner ring 52 can be effectively suppressed. This also contributes to maintaining the fit between the rotating shaft 12 and the inner ring 52. The effect of restraining the inner ring 52 by the hook-shaped protrusion 32b is particularly effective in the spindle device 10 that rotates at a high speed such that dmn is 1 million or more.

なお、炭素繊維複合材料としては、例えば、PAN(ポリアクリルニトリル)を主原料とした炭素繊維からなる糸を平行に引きそろえたものや、炭素繊維からなる糸で形成した織物(シート状)に、硬化剤を含むエポキシ樹脂などの熱硬化樹脂を含浸させてなるシートを多数層重ね合わせて、芯金などに巻きつけ、加熱硬化させることで製造される。   In addition, as a carbon fiber composite material, for example, a woven fabric (sheet-like) formed of yarns made of carbon fibers made of PAN (polyacrylonitrile) in parallel, or made of yarns made of carbon fibers. It is manufactured by laminating a plurality of sheets impregnated with a thermosetting resin such as an epoxy resin containing a curing agent, wrapping the sheet around a cored bar and the like, followed by heat curing.

炭素繊維複合材料の特性としては、例えば、東邦テナックス社の炭素繊維タイプ:HTAを使用すると引張強度2060MPa、引張弾性率137GPa、比重1.55g/ccであり、従来の高張力鋼などと比べて、引張強度は同等以上であり、比重は1/5程度になる。また、熱膨張率も、繊維方向・角度を最適化することにより、−5〜+5×10−6(K−1)にすることができるので、従来の炭素鋼に比べて1/2〜1/10程度にすることができる。 As characteristics of the carbon fiber composite material, for example, when carbon fiber type: HTA of Toho Tenax Co., Ltd. is used, the tensile strength is 2060 MPa, the tensile elastic modulus is 137 GPa, and the specific gravity is 1.55 g / cc. The tensile strength is equivalent or higher, and the specific gravity is about 1/5. Moreover, since the coefficient of thermal expansion can be made −5 to + 5 × 10 −6 (K −1 ) by optimizing the fiber direction and angle, it is ½ to 1 compared to conventional carbon steel. / 10 or so.

以上説明したように、本実施形態の主軸装置10によれば、回転軸12を回転自在に支持する前側軸受50の内輪52の両側面に対向配置されて回転軸12に外嵌する前側内輪間座32を備える。前側内輪間座32は、外周側から軸方向に突出して内輪52の肩部の外周面52aに外嵌する鍔状突部32bを有し、内輪52より比弾性率が大きく、且つ熱膨張係数が小さい材料から形成される。したがって、前側内輪間座32は、高速回転時の遠心力による遠心力膨張が小さいため、内輪52の肩部の外周面52aに外嵌する鍔状突部32bによって内輪52を拘束し、内輪52の遠心力膨張を抑制することができる。さらに、主軸装置10の昇温に伴う前側内輪間座32の径方向熱膨張量は、内輪52の径方向熱膨張量より小さくなるため、この熱膨張量の差分で内輪52を押さえ込んで、内輪52の熱膨張をより小さく押え込むことができる。これによって、軸受50の予圧の増加や、内部荷重の増大を抑制して焼付きなどの発生を防止することができる。   As described above, according to the main shaft device 10 of the present embodiment, the front inner ring between the front inner rings that are disposed opposite to both side surfaces of the inner ring 52 of the front bearing 50 that rotatably supports the rotary shaft 12 and is fitted on the rotary shaft 12. A seat 32 is provided. The front inner ring spacer 32 has a hook-shaped protrusion 32b that protrudes in the axial direction from the outer peripheral side and is fitted on the outer peripheral surface 52a of the shoulder of the inner ring 52, has a higher specific modulus than the inner ring 52, and has a thermal expansion coefficient. Is formed from a small material. Accordingly, since the front inner ring spacer 32 has a small centrifugal force expansion due to the centrifugal force during high-speed rotation, the inner ring 52 is constrained by the hook-shaped protrusion 32b that is fitted on the outer peripheral surface 52a of the shoulder of the inner ring 52, and the inner ring 52 is restrained. The centrifugal force expansion can be suppressed. Furthermore, since the amount of radial thermal expansion of the front inner ring spacer 32 accompanying the temperature rise of the spindle device 10 is smaller than the amount of radial thermal expansion of the inner ring 52, the inner ring 52 is pressed down by the difference in the amount of thermal expansion. The thermal expansion of 52 can be suppressed smaller. As a result, an increase in preload of the bearing 50 and an increase in internal load can be suppressed to prevent the occurrence of seizure.

また、前側内輪間座32の鍔状突部32bは、円環状に形成されるので、内輪52の肩部の外周面52a全周に亘って前側内輪間座32で押さえ込むことができ、確実に内輪52の遠心力膨張及び半径方向熱膨張を規制することができる。   Further, since the hook-shaped protrusion 32b of the front inner ring spacer 32 is formed in an annular shape, it can be pressed down by the front inner ring spacer 32 over the entire circumference of the outer peripheral surface 52a of the shoulder of the inner ring 52. Centrifugal force expansion and radial thermal expansion of the inner ring 52 can be restricted.

また、前側内輪間座32は、炭素繊維複合材料により形成されるので、適正な比弾性率及び熱膨張係数を有する前側内輪間座32の製作が可能となる。   Further, since the front inner ring spacer 32 is formed of a carbon fiber composite material, it is possible to manufacture the front inner ring spacer 32 having an appropriate specific elastic modulus and thermal expansion coefficient.

更に、前側及び後側軸受50,60との間にモータMが内蔵して配設されたモータビルトイン方式の主軸装置10であるので、モータMからの発熱があっても、前側内輪間座32と内輪52との熱膨張量の差分で内輪52の熱膨張を小さく押え込み、モータMの熱が前側軸受60に及ぼす影響を抑制して焼付きなどの発生を防止することができる。   Further, since the motor built-in type spindle device 10 is provided with the motor M built in between the front and rear bearings 50 and 60, the front inner ring spacer 32 even if heat is generated from the motor M. It is possible to prevent the occurrence of seizure or the like by suppressing the influence of the heat of the motor M on the front bearing 60 by suppressing the thermal expansion of the inner ring 52 small by the difference in thermal expansion amount between the inner ring 52 and the inner ring 52.

なお、上述の通り、本実施形態の後側軸受60及び後側内輪間座36は、前側軸受50及び前側内輪間座32と同様の構成を有しているので、同様の効果を奏することは言うまでもない。   Note that, as described above, the rear bearing 60 and the rear inner ring spacer 36 of the present embodiment have the same configuration as the front bearing 50 and the front inner ring spacer 32, so that the same effect can be obtained. Needless to say.

(第2実施形態)
次に、第2実施形態の主軸装置10について図3を参照して説明する。本実施形態の内輪52は、両側の肩部の外周面52aが小径とされて小径部52bが形成されている。また、前側内輪間座32の鍔状突部32bの内周面は、小径部52bの直径に合わせて小径となっている。換言すれば、鍔状突部32bは、第1実施形態の鍔状突部32bと比較して肉厚に形成されており、鍔状突部32bの強度が向上するので破損し難く、内輪52を強固に抑え込むことができる。その他の構成及び効果は、上述の実施形態の主軸装置と同様である。
(Second Embodiment)
Next, the spindle apparatus 10 of 2nd Embodiment is demonstrated with reference to FIG. In the inner ring 52 of the present embodiment, the outer peripheral surfaces 52a of the shoulder portions on both sides have a small diameter to form a small diameter portion 52b. Further, the inner peripheral surface of the flange-shaped protrusion 32b of the front inner ring spacer 32 has a small diameter in accordance with the diameter of the small diameter portion 52b. In other words, the hook-shaped protrusion 32b is formed to be thicker than the hook-shaped protrusion 32b of the first embodiment, and the strength of the hook-shaped protrusion 32b is improved, so that the inner ring 52 is not easily damaged. Can be firmly suppressed. Other configurations and effects are the same as those of the spindle device of the above-described embodiment.

(第3実施形態)
次に、第3実施形態の主軸装置10について図4を参照して説明する。本実施形態の内輪52は、外輪51よりも軸方向幅が広く形成されており、これに合わせて鍔状突部32bは、本体部32aの軸方向幅が狭く、鍔状突部32bの軸方向幅が広く形成されている。したがって、前側軸受50内部の構造に影響を及ぼすことなく、比較的広い軸方向幅(面積)で内輪52の肩部の外周面52aを鍔状突部32bによって抑え込むことができる。その他の構成及び効果は、上述の実施形態の主軸装置と同様である。
(Third embodiment)
Next, the spindle apparatus 10 of 3rd Embodiment is demonstrated with reference to FIG. The inner ring 52 of the present embodiment is formed to have a wider axial width than the outer ring 51, and accordingly, the hook-like protrusion 32b has a narrower axial width of the main body 32a, and the shaft of the hook-like protrusion 32b. The direction width is formed wide. Therefore, the outer peripheral surface 52a of the shoulder portion of the inner ring 52 can be suppressed by the hook-shaped protrusion 32b with a relatively wide axial width (area) without affecting the structure inside the front bearing 50. Other configurations and effects are the same as those of the spindle device of the above-described embodiment.

(第4実施形態)
次に、第4実施形態の主軸装置10について図5を参照して説明する。本実施形態の内輪52は、第2及び第3実施形態の内輪52及び前側内輪間座32の形態を併用したものであり、内輪52が幅広に形成されると共に、両側の肩部の外周面52aに小径部52bが形成されている。これにより、前側内輪間座32の鍔状突部32bの強度を向上させると共に、広い軸方向幅で内輪52の小径部52b(外周面52a)を強固に抑え込むことができる。その他の構成及び効果は、上述の実施形態の主軸装置と同様である。
(Fourth embodiment)
Next, the spindle apparatus 10 of 4th Embodiment is demonstrated with reference to FIG. The inner ring 52 of the present embodiment is a combination of the inner ring 52 and the front inner ring spacer 32 of the second and third embodiments. The inner ring 52 is formed wide and the outer peripheral surfaces of the shoulder portions on both sides. The small diameter part 52b is formed in 52a. Thereby, while improving the intensity | strength of the collar-shaped protrusion 32b of the front side inner ring | wheel spacer 32, the small diameter part 52b (outer peripheral surface 52a) of the inner ring | wheel 52 can be suppressed firmly with a wide axial direction width | variety. Other configurations and effects are the same as those of the spindle device of the above-described embodiment.

(第5実施形態)
次に、第5実施形態の主軸装置10について図6を参照して説明する。本実施形態の内輪52は、保持器54の軸方向幅を狭くすることにより、保持器54と鍔状突部32bの接触(干渉)を防ぎつつ、鍔状突部32bの外径を大きくしている。これにより、鍔状突部32bは、その肉厚を厚くして強度を向上し、効果的に内輪52の肩部の外周面52aを抑え込むことができる。その他の構成及び効果は、上述の実施形態の主軸装置と同様である。
(Fifth embodiment)
Next, the spindle apparatus 10 of 5th Embodiment is demonstrated with reference to FIG. The inner ring 52 of the present embodiment increases the outer diameter of the hook-like protrusion 32b while reducing the axial width of the holder 54 to prevent contact (interference) between the holder 54 and the hook-like protrusion 32b. ing. Thereby, the collar-shaped protrusion 32b can increase the thickness and improve the strength, and can effectively suppress the outer peripheral surface 52a of the shoulder portion of the inner ring 52. Other configurations and effects are the same as those of the spindle device of the above-described embodiment.

(第6実施形態)
次に、第6実施形態の主軸装置10について図7を参照して説明する。本実施形態の前側内輪間座32の鍔状突部32bは、互いに周方向に離間し、本体部32aから軸方向に突出する複数(本実施形態では3個)の突部32cからなり、本体部32aと一体に形成されている。このように、複数の突部32cを周方向に離間して設けることにより、隣接する突部32c間に形成された隙間によって、内輪52の持つ熱を放熱することができる。
(Sixth embodiment)
Next, the spindle apparatus 10 of 6th Embodiment is demonstrated with reference to FIG. The flange-like protrusions 32b of the front inner ring spacer 32 of the present embodiment are composed of a plurality of (three in this embodiment) protrusions 32c that are spaced apart from each other in the circumferential direction and protrude in the axial direction from the main body part 32a. It is formed integrally with the part 32a. As described above, by providing the plurality of protrusions 32c apart from each other in the circumferential direction, the heat of the inner ring 52 can be radiated by the gap formed between the adjacent protrusions 32c.

なお、突部32cの個数、周方向長さ、周方向間隔等は、内輪52の放熱性や、鍔状突部32bの強度等を考慮して適宜設定可能である。また、本実施形態の鍔状突部32bは、上述の実施形態で説明した何れの主軸装置にも適用可能であり、上述の実施形態で説明した効果に加え、更に内輪52の放熱性を向上させることが可能である。その他の構成及び効果は、上述の実施形態の主軸装置と同様である。   Note that the number, the circumferential length, the circumferential interval, and the like of the protrusions 32c can be appropriately set in consideration of the heat dissipation of the inner ring 52, the strength of the hook-shaped protrusions 32b, and the like. Moreover, the hook-shaped protrusion 32b of the present embodiment is applicable to any of the spindle devices described in the above-described embodiments, and in addition to the effects described in the above-described embodiments, further improves the heat dissipation of the inner ring 52. It is possible to make it. Other configurations and effects are the same as those of the spindle device of the above-described embodiment.

(第7実施形態)
次に、第7実施形態の主軸装置10について図8を参照して説明する。本実施形態の前側内輪間座32は、円環状に形成された本体部32aと、本体部32aとは別体に形成された鍔状突部32bと、から構成されている。鍔状突部32bは、第6実施形態と同様に、周方向に離間する3個の突部32cからなり、それぞれの突部32cがネジ37によって本体部32aの外周面に締結固定され、内輪52の肩部の外周面52aに零以上のしめしろで外嵌される。
(Seventh embodiment)
Next, the spindle apparatus 10 of 7th Embodiment is demonstrated with reference to FIG. The front inner ring spacer 32 of the present embodiment includes a main body portion 32a formed in an annular shape and a hook-shaped protrusion 32b formed separately from the main body portion 32a. Similar to the sixth embodiment, the hook-shaped protrusion 32b includes three protrusions 32c that are spaced apart from each other in the circumferential direction, and each protrusion 32c is fastened and fixed to the outer peripheral surface of the main body 32a by a screw 37. 52 is fitted on the outer peripheral surface 52a of the shoulder portion with zero or more interference.

このように、本実施形態においては、前側内輪間座32の鍔状突部32bと、内輪52の肩部の外周面52aと、を零以上のしめしろで嵌合させて組み付ける際、鍔状突部32bを構成する複数の突部32cをそれぞれネジ37によって締付ける構成としたので、組付性を向上させることが可能となる。さらに、周方向に隣り合う突部32c間に隙間が形成されるので、この隙間から内輪52の熱を放熱することができる。   As described above, in this embodiment, the hook-shaped protrusion 32b of the front inner ring spacer 32 and the outer peripheral surface 52a of the shoulder of the inner ring 52 are fitted with zero or more interference so as to be hooked. Since the plurality of protrusions 32c constituting the protrusions 32b are configured to be tightened by the screws 37, the assembling property can be improved. Furthermore, since a gap is formed between the protrusions 32c adjacent in the circumferential direction, the heat of the inner ring 52 can be radiated from this gap.

なお、本実施形態の主軸装置は、上述の実施形態で説明した何れの主軸装置にも適用可能であり、その他の構成及び効果は、上述の実施形態の主軸装置と同様である。   The spindle device of the present embodiment can be applied to any of the spindle devices described in the above-described embodiments, and other configurations and effects are the same as those of the spindle device of the above-described embodiments.

(第8実施形態)
次に、第8実施形態の主軸装置10について図9を参照して説明する。本実施形態の主軸装置10は、第6実施形態(図7参照)と同一形状の内輪52及び前側内輪間座32を備えており、回転軸12Aが前側内輪間座32と同一材料である炭素繊維複合材料により形成されている。
(Eighth embodiment)
Next, the spindle apparatus 10 of 8th Embodiment is demonstrated with reference to FIG. The spindle device 10 of this embodiment includes an inner ring 52 and a front inner ring spacer 32 having the same shape as that of the sixth embodiment (see FIG. 7), and the rotating shaft 12A is made of the same material as the front inner ring spacer 32. It is formed of a fiber composite material.

このように、前側内輪間座32に加えて回転軸12Aも炭素繊維複合材料で形成することで、主軸装置10が軽量化され、固有振動数(共振周波数)を大きくすることができる。また、同時に加減速イナーシャが小さくなるので、主軸装置10の加減速時間の低減が可能になり、結果として実加工時間を多く確保することで生産性が向上する。更に、モータへの負荷が軽減する。従って、加減速時間を同一とする場合、低トルク仕様のモータが採用可能であり、主軸装置10の小型化が図れる。   Thus, in addition to the front inner ring spacer 32, the rotary shaft 12A is also made of a carbon fiber composite material, whereby the spindle device 10 can be reduced in weight and the natural frequency (resonance frequency) can be increased. At the same time, since the acceleration / deceleration inertia is reduced, the acceleration / deceleration time of the spindle device 10 can be reduced, and as a result, a large amount of actual machining time is secured to improve productivity. Furthermore, the load on the motor is reduced. Therefore, when the acceleration / deceleration time is the same, a low torque motor can be employed, and the spindle device 10 can be downsized.

なお、回転軸12及び前側内輪間座32を同一材料(炭素繊維複合材料)で形成する場合、両者の肉厚差によって回転軸12の遠心力膨張量が前側内輪間座32の遠心力膨張量より小さくなる傾向にあるので、この遠心力による膨張量の差を考慮して、最高回転時においても、回転軸12と前側内輪間座32との間にすきまが発生しないように適正なしめしろを選定する必要がある。仮に、回転軸12と前側内輪間座32との間にすきまが生じると、内輪52の遠心力膨張及び熱膨張を前側内輪間座32で抑えきれなくなる虞がある。   In addition, when the rotating shaft 12 and the front inner ring spacer 32 are formed of the same material (carbon fiber composite material), the centrifugal force expansion amount of the rotating shaft 12 becomes the centrifugal force expansion amount of the front inner ring spacer 32 due to the difference in thickness between the two. Since there is a tendency to become smaller, it is necessary to consider the difference in the expansion amount due to the centrifugal force, and to appropriately prevent the clearance between the rotating shaft 12 and the front inner ring spacer 32 from occurring even at the maximum rotation. Must be selected. If a clearance is generated between the rotating shaft 12 and the front inner ring spacer 32, the centrifugal force expansion and thermal expansion of the inner ring 52 may not be suppressed by the front inner ring spacer 32.

なお、本実施形態の主軸装置は、上述の実施形態で説明した何れの主軸装置にも適用可能であり、その他の構成及び効果は、上述の実施形態の主軸装置と同様である。   The spindle device of the present embodiment can be applied to any of the spindle devices described in the above-described embodiments, and other configurations and effects are the same as those of the spindle device of the above-described embodiments.

(第9実施形態)
図10は第9実施形態に係る主軸装置10の前側軸受50近傍を拡大して示す断面図である。本実施形態の内輪52は、肩部の外周面52aに、軸方向端部に向かうに従って直径が次第に小さくなる外周テーパ部52cが形成されており、軸方向端部に向かうに従って肉薄となっている。また、前側内輪間座32は、鍔状突部32bの内周面に、軸方向端部に向かうに従って直径が次第に大きくなる内周テーパ部32dが形成されており、軸方向端部に向かうに従って肉厚となっている。そして、内輪52の外周テーパ部52cと、前側内輪間座32の鍔状突部32bの内周テーパ部32dと、が嵌合することによって、内輪52は径方向外側から拘束される。
(Ninth embodiment)
FIG. 10 is an enlarged sectional view showing the vicinity of the front bearing 50 of the spindle device 10 according to the ninth embodiment. The inner ring 52 of the present embodiment is formed with an outer peripheral tapered portion 52c whose diameter gradually decreases toward the axial end on the outer peripheral surface 52a of the shoulder, and becomes thinner toward the axial end. . Further, the front inner ring spacer 32 is formed with an inner peripheral taper portion 32d having a diameter gradually increasing toward the axial end portion on the inner peripheral surface of the flange-shaped protrusion 32b, and toward the axial end portion. It is thick. And the inner ring | wheel 52 is restrained from radial direction outer side by the outer peripheral taper part 52c of the inner ring | wheel 52 and the inner peripheral taper part 32d of the collar-shaped protrusion 32b of the front side inner ring | wheel spacer 32 fitting.

以下に、図11を参照して、本実施形態における内輪52及び前側内輪間座32の締結方法を詳述する。まず、図11(a)に示すように、内輪52の外周テーパ部52cと鍔状突部32bの内周テーパ部32dとを当接させた状態で、内輪52と前側内輪間座32とが、軸方向隙間ΔL(>0)を介して対向配置される。次に、前側内輪間座32に当接させたナット31(図10参照)を軸方向後方に向かって軸方向隙間ΔLが零となるまで締め付けることによって、内輪52を軸方向に位置決めするとともに、内輪52の外周テーパ部52cと鍔状突部32bの内周テーパ部32dとをしめしろ嵌合させる(図11(b)参照)。   Below, with reference to FIG. 11, the fastening method of the inner ring | wheel 52 and the front side inner ring | wheel spacer 32 in this embodiment is explained in full detail. First, as shown in FIG. 11 (a), the inner ring 52 and the front inner ring spacer 32 are in a state where the outer peripheral tapered part 52c of the inner ring 52 and the inner peripheral tapered part 32d of the hook-shaped protrusion 32b are in contact with each other. Are arranged opposite to each other via an axial gap ΔL (> 0). Next, the inner ring 52 is positioned in the axial direction by tightening the nut 31 (see FIG. 10) brought into contact with the front inner ring spacer 32 toward the rear in the axial direction until the axial clearance ΔL becomes zero, The outer peripheral taper portion 52c of the inner ring 52 and the inner peripheral taper portion 32d of the flange-shaped protrusion 32b are fitted to each other (see FIG. 11B).

このように、本実施形態の主軸装置10によれば、ナット31締め付け前(図11(a)に示す状態)の軸方向隙間ΔLの値を適切に設定することによって、内輪52と前側内輪間座32の軸方向の締結力を調整し、外周テーパ部52c及び内周テーパ部32dのはめあいを適切に調整することが可能となる。さらに、内輪52の外周テーパ部52cと、前側内輪間座32の鍔状突部32bの内周テーパ部32dと、が嵌合するので、回転軸12、内輪52、前側内輪間座32の軸方向の相対熱膨張差によって、内輪52と前側内輪間座32との軸方向締結力が減少することを抑制することができる。その他の構成及び効果は、上述の実施形態の主軸装置と同様であり、本実施形態の主軸装置10は、上記実施形態のいずれの主軸装置10にも適用可能である。   As described above, according to the spindle device 10 of the present embodiment, by appropriately setting the value of the axial clearance ΔL before the nut 31 is tightened (the state shown in FIG. 11A), the inner ring 52 and the front inner ring are separated. By adjusting the fastening force in the axial direction of the seat 32, it is possible to appropriately adjust the fit between the outer peripheral tapered portion 52c and the inner peripheral tapered portion 32d. Further, since the outer peripheral tapered portion 52c of the inner ring 52 and the inner peripheral tapered portion 32d of the flange-shaped protrusion 32b of the front inner ring spacer 32 are fitted, the shaft of the rotary shaft 12, the inner ring 52, and the front inner ring spacer 32 is provided. It is possible to suppress a reduction in the axial fastening force between the inner ring 52 and the front inner ring spacer 32 due to the relative thermal expansion difference in the direction. Other configurations and effects are the same as those of the spindle device of the above-described embodiment, and the spindle device 10 of the present embodiment can be applied to any of the spindle devices 10 of the above-described embodiment.

なお、内輪52と前側内輪間座32との軸方向締結力を減少させないための構成としては、本実施形態の構成に限定されず、例えば、内輪52、ナット31と前側内輪間座32の間に皿バネ(図示せず)などの弾性部材を配置する構成や、ナット31の締め付け力を大きくして、炭素繊維複合材料からなる前側内輪間座32を予め弾性変形させておく構成等を採用してもよい。   In addition, as a structure for not reducing the axial direction fastening force of the inner ring 52 and the front side inner ring spacer 32, it is not limited to the structure of this embodiment, For example, between the inner ring 52, the nut 31, and the front side inner ring spacer 32. A configuration in which an elastic member such as a disc spring (not shown) is disposed on the front, a configuration in which the tightening force of the nut 31 is increased, and the front inner ring spacer 32 made of a carbon fiber composite material is elastically deformed in advance is used. May be.

(第10実施形態)
上述の実施形態の主軸装置10においては、二列のアンギュラ玉軸受(前側軸受)50が、並列組合せされた構成について説明したが、図12に示した第10実施形態の主軸装置10のように、背面組合せされた構成としてもよい。なお、後側軸受60についても、同様に、背面組合わせされたアンギュラ玉軸受50によって構成してもよい。
(10th Embodiment)
In the spindle device 10 of the above-described embodiment, the configuration in which the two rows of angular ball bearings (front bearings) 50 are combined in parallel has been described. However, like the spindle device 10 of the tenth embodiment shown in FIG. Further, the back surface may be combined. Similarly, the rear bearing 60 may also be constituted by an angular ball bearing 50 combined on the back surface.

(第11実施形態)
更に、図13に示した第11実施形態の主軸装置のように、後側軸受60を円筒ころ軸受としてもよい。この場合、後側軸受60の両側面には、本体部36aと鍔状突部36bとからなる後側内輪間座36が対向配置され、後側内輪間座36の鍔状突部36bによって内輪62の肩部の外周面62aを抑え、内輪62の膨張を抑制する。
(Eleventh embodiment)
Furthermore, the rear bearing 60 may be a cylindrical roller bearing as in the spindle device of the eleventh embodiment shown in FIG. In this case, on both side surfaces of the rear bearing 60, a rear inner ring spacer 36 composed of a main body portion 36a and a hook-like protrusion 36b is disposed to face the inner ring by the hook-like protrusion 36b of the rear inner ring spacer 36. The outer peripheral surface 62a of the shoulder portion of 62 is suppressed, and the expansion of the inner ring 62 is suppressed.

尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、前側及び後側軸受50,60は、アンギュラ玉軸受として説明したが、これに限定されず、玉軸受と円筒ころ軸受との組み合わせなど、軸受の種類、列数、配置、配列などは任意に設定することができる。   In addition, this invention is not limited to each embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. For example, the front and rear bearings 50 and 60 have been described as angular ball bearings. However, the present invention is not limited to this, and the type, number of rows, arrangement, arrangement, etc. of the bearings, such as combinations of ball bearings and cylindrical roller bearings, are arbitrary. Can be set to

また、上述の実施形態では、前側軸受50及び前側内輪間座32と、後側軸受60及び後側内輪間座36と、が同様の構成を有するとしたが、必ずしも両者が同様の構成を有する必要はなく、前側及び後側軸受50,60の少なくとも一方の内輪52,62の両側面に鍔状突部32b,36bを有する一対の内輪間座32,36が対向配置されていればよい。   Further, in the above-described embodiment, the front bearing 50 and the front inner ring spacer 32 and the rear bearing 60 and the rear inner ring spacer 36 have the same configuration, but both have the same configuration. There is no need, and a pair of inner ring spacers 32, 36 having hook-shaped protrusions 32 b, 36 b on both side surfaces of at least one inner ring 52, 62 of the front and rear bearings 50, 60 may be arranged to face each other.

10 主軸装置
12 回転軸
32 前側内輪間座(内輪間座)
32a 本体部
32b 鍔状突部
32d 内周テーパ部
32c 突部
36 後側内輪間座(内輪間座)
36a 本体部
36b 鍔状突部
50 前側軸受
52 内輪
52a 外周面
52c 外周テーパ部
60 後側軸受
62 内輪
63 玉
64 保持器
H ハウジング(ハウジング)
ΔL 軸方向隙間(軸方向隙間)
10 Spindle device 12 Rotating shaft 32 Front inner ring spacer (Inner ring spacer)
32a Body portion 32b Hook-like projection 32d Inner circumferential taper portion 32c Projection 36 Rear inner ring spacer (inner ring spacer)
36a Body portion 36b Hook-like projection 50 Front bearing 52 Inner ring 52a Outer peripheral surface 52c Outer taper portion 60 Rear bearing 62 Inner ring 63 Ball 64 Cage H Housing (housing)
ΔL Axial clearance (Axial clearance)

Claims (8)

回転軸と、
前記回転軸をハウジングに対して回転自在にそれぞれ支持する前側及び後側軸受と、
を備え、
前記回転軸と、前記前側及び後側軸受の内輪と、が零以上のしめしろで嵌合する主軸装置であって、
前記前側及び後側軸受の少なくとも一方の内輪の両側面に対向配置されて前記回転軸に外嵌する一対の内輪間座を備え、
前記内輪間座は、外周側から軸方向に突出して前記内輪の外周面の肩部に外嵌する鍔状突部を有し、前記内輪より熱膨張係数が小さく、且つ比弾性率が大きい材料から形成されることを特徴とする主軸装置。
A rotation axis;
Front and rear bearings that respectively support the rotary shaft rotatably with respect to the housing;
With
A spindle device in which the rotating shaft and inner rings of the front and rear bearings are fitted with an interference of zero or more,
A pair of inner ring spacers disposed opposite to both side surfaces of at least one inner ring of the front and rear bearings and externally fitted to the rotary shaft;
The inner ring spacer has a hook-like protrusion that protrudes in the axial direction from the outer peripheral side and is fitted onto the shoulder of the outer peripheral surface of the inner ring, and has a smaller thermal expansion coefficient and a higher specific elastic modulus than the inner ring. A spindle device characterized by being formed from.
前記内輪の肩部の外周面は、軸方向端部に向かうに従って直径が次第に小さくなる外周テーパ部を有し、
前記内輪間座の鍔状突部の内周面は、軸方向端部に向かうに従って直径が次第に大きくなる内周テーパ部を有し、
前記内輪の外周テーパ部と、前記内輪間座の鍔状突部の内周テーパ部と、が嵌合することを特徴とする請求項1に記載の主軸装置。
The outer peripheral surface of the shoulder portion of the inner ring has an outer peripheral taper portion whose diameter gradually decreases toward the axial end.
The inner peripheral surface of the flange-shaped protrusion of the inner ring spacer has an inner peripheral taper portion whose diameter gradually increases toward the axial end,
2. The spindle device according to claim 1, wherein the outer peripheral taper portion of the inner ring and the inner peripheral taper portion of the flange-shaped protrusion of the inner ring spacer are fitted.
前記内輪間座は、円環状に形成されて前記回転軸に外嵌する本体部と、該本体部とは別体に形成された前記鍔状突部と、
とからなり、
前記鍔状突部は、前記本体部の外周面に締結固定されることを特徴とする請求項1又は2に記載の主軸装置。
The inner ring spacer is formed in an annular shape and externally fitted to the rotating shaft, and the hook-shaped protrusion formed separately from the main body portion,
And consist of
The spindle apparatus according to claim 1, wherein the hook-shaped protrusion is fastened and fixed to an outer peripheral surface of the main body.
前記鍔状突部は、円環状に形成されることを特徴とする請求項1〜3の何れか1項に記載の主軸装置。   The spindle apparatus according to claim 1, wherein the hook-shaped protrusion is formed in an annular shape. 前記鍔状突部は、周方向に離間する複数の突部から形成されることを特徴とする請求項1〜3の何れか1項に記載の主軸装置。   The spindle apparatus according to any one of claims 1 to 3, wherein the hook-shaped protrusion is formed from a plurality of protrusions that are spaced apart in the circumferential direction. 前記内輪間座は、炭素繊維複合材料により形成されることを特徴とする請求項1〜5の何れか1項に記載の主軸装置。   The main shaft device according to any one of claims 1 to 5, wherein the inner ring spacer is formed of a carbon fiber composite material. 前記内輪間座に加え、更に前記回転軸が炭素繊維複合材料により形成されることを特徴とする請求項6に記載の主軸装置。   The spindle apparatus according to claim 6, wherein, in addition to the inner ring spacer, the rotation shaft is made of a carbon fiber composite material. 前記主軸装置は、前記前側及び後側軸受との間で前記回転軸に外嵌されるロータと、該ロータの周囲に配置されるステータと、を有するモータが配設されるモータビルトイン方式の主軸装置であることを特徴とする請求項1〜7の何れか1項に記載の主軸装置。   The main shaft device is a motor built-in main shaft in which a motor having a rotor fitted to the rotary shaft between the front and rear bearings and a stator arranged around the rotor is disposed. The main shaft device according to claim 1, wherein the main shaft device is a device.
JP2011159094A 2011-07-20 2011-07-20 Spindle device Withdrawn JP2013022675A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011159094A JP2013022675A (en) 2011-07-20 2011-07-20 Spindle device
PCT/JP2012/066482 WO2013011815A1 (en) 2011-07-20 2012-06-28 Main shaft apparatus
EP16174038.6A EP3098004B1 (en) 2011-07-20 2012-06-28 Spindle device
EP12814297.3A EP2735392B1 (en) 2011-07-20 2012-06-28 Spindle device
EP16174040.2A EP3100805B1 (en) 2011-07-20 2012-06-28 Spindle device
CN201280000782.8A CN103003014B (en) 2011-07-20 2012-06-28 Main shaft apparatus
TW101126388A TWI503201B (en) 2011-07-20 2012-07-20 Spindle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011159094A JP2013022675A (en) 2011-07-20 2011-07-20 Spindle device

Publications (1)

Publication Number Publication Date
JP2013022675A true JP2013022675A (en) 2013-02-04

Family

ID=47781600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159094A Withdrawn JP2013022675A (en) 2011-07-20 2011-07-20 Spindle device

Country Status (1)

Country Link
JP (1) JP2013022675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114050A (en) * 2014-12-15 2016-06-23 ゼネラル・エレクトリック・カンパニイ Apparatus and system for ceramic matrix composite attachment
WO2017213451A1 (en) * 2016-06-09 2017-12-14 엘지이노텍 주식회사 Drone motor and drone comprising same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114050A (en) * 2014-12-15 2016-06-23 ゼネラル・エレクトリック・カンパニイ Apparatus and system for ceramic matrix composite attachment
WO2017213451A1 (en) * 2016-06-09 2017-12-14 엘지이노텍 주식회사 Drone motor and drone comprising same
US11180247B2 (en) 2016-06-09 2021-11-23 Lg Innotek Co., Ltd. Drone motor and drone comprising same

Similar Documents

Publication Publication Date Title
EP3388173B1 (en) Spindle apparatus
US9115756B2 (en) Replaceable axial journal for auxiliary bearings
CA2864041C (en) Roller bearing set and corresponding rotating machine
US7687968B2 (en) High speed generator rotor design incorporating positively restrained balance rings
CN104343829A (en) Auxiliary bearing of the ball bearing type for a magnetically suspended rotor system
WO2016143578A1 (en) Main shaft device
WO2014013754A1 (en) Angular contact ball bearing and duplex bearing
JP5712839B2 (en) Motor built-in spindle device
US10302128B2 (en) Combined ball bearing, main spindle device, and machine tool
US9140298B2 (en) Segmented viscoelastic bushing for rotating electrical machines bearing
JP6502128B2 (en) Spindle device
JP2013022675A (en) Spindle device
JP2016163932A (en) Main spindle device of motor built-in system
JP5887923B2 (en) Spindle device
JP5712838B2 (en) Spindle device
JP5943116B2 (en) Motor built-in spindle device
JP5899917B2 (en) Spindle device
JP2016135541A (en) Motor built-in spindle device
US2735734A (en) Kalikow
JP5811657B2 (en) Motor built-in spindle device
JP2016026900A (en) Spindle device
JP5899932B2 (en) Spindle device
JP2014047856A (en) Spindle device
JP6213548B2 (en) Spindle device
JP2013082018A (en) Spindle device of built-in motor system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007