JPH02167602A - Spindle of machine tool - Google Patents

Spindle of machine tool

Info

Publication number
JPH02167602A
JPH02167602A JP23421889A JP23421889A JPH02167602A JP H02167602 A JPH02167602 A JP H02167602A JP 23421889 A JP23421889 A JP 23421889A JP 23421889 A JP23421889 A JP 23421889A JP H02167602 A JPH02167602 A JP H02167602A
Authority
JP
Japan
Prior art keywords
spindle
main shaft
hollow cylindrical
metal
cfrp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23421889A
Other languages
Japanese (ja)
Other versions
JP2756155B2 (en
Inventor
Takahiko Iguma
猪熊 隆彦
Sadamu Baba
馬場 定
Masaharu Imao
今尾 正治
Hitoshi Kodama
斎 児玉
Takeo Gomi
武夫 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Shibaura Machine Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Toshiba Machine Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1234218A priority Critical patent/JP2756155B2/en
Priority to DE4009461A priority patent/DE4009461A1/en
Priority to US07/497,621 priority patent/US5018915A/en
Publication of JPH02167602A publication Critical patent/JPH02167602A/en
Application granted granted Critical
Publication of JP2756155B2 publication Critical patent/JP2756155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

PURPOSE:To accomplish the reduction of weight and linear expansion of a spindle of a machine tool which can not be accomplished only by metal materials, by excluding metal materials used for the spindle as much as possible while using carbon fiber reinforced plastic materials. CONSTITUTION:A spindle 1 body of a machine tool like a horizontal boring machine is constituted of hollow cylindrical structures 10a,10b made of carbon fiber reinforced plastic material(CFRP) and wound with different winding angles. When the winding angle of the CFRP is properly selected, the absolute value of coefficient of longitudinal of linear expansion can be restrained to 0.5 X10<-6> deg.C<-1>. One of winding angles of carbon fiber or aramid fiber is within the range of 0 deg.+ or -15 deg. and the other within the range of + or -(40-50) deg.. An end 11 of the spindle into which the shunk portion of a tool is inserted is made of steel materials. A hollow cylindrical member 13 made of steel material is glued integrally to the inner surface of a hollow cylinder interposing member 12. The spindle 1 having these members incorporated is formed on the outer surface with a corting layer 18 of hard metal or ceramics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は工作機械の主軸に関し、特に使用する材料とし
て金属材料を極力排除すると共に、従来から存在はして
いたが実用化は難しいとされていた素材を使い、金属材
料だけでは器底達成し得ない軽量化・線膨張の低減化を
図った工作機械の主軸に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to the main shaft of machine tools, and in particular eliminates metal materials as much as possible as materials used. This relates to the main spindle of a machine tool, which uses a previously used material to reduce weight and linear expansion, which cannot be achieved with metal materials alone.

(従来の技術) 従来のマシニングセンタ、中ぐり盤、フライス盤等の工
作機械における主軸材料としては、一般に重量が大きな
鋼又は合金鋼が使われる。
(Prior Art) Steel or alloy steel, which is heavy, is generally used as the main shaft material in conventional machine tools such as machining centers, boring machines, and milling machines.

これは、鋼又は合金鋼は弾性率が高く、また表面を硬く
することも可能であり、加工を含めて経済性の面で適当
であることによる。
This is because steel or alloy steel has a high modulus of elasticity, and the surface can be hardened, making it suitable for economical aspects including processing.

ところで、鋼の線膨張係数は11〜16X10−’°C
引の範囲であり、例えば2m長さの主軸に10°Cの温
度変化があると、2.2〜3.2 X 10− ’ m
mの寸法変化が生じることになる。これは、例えば中ぐ
り盤で平面を削り出そうとするとき、削り始めと削り終
わりの間に主軸の温度が10″C上昇するなら、0.3
nvn程度の切込み深さの差を生じさせることを意味し
、精度の高い加工物をつくる上で重大な問題となる。ま
た、鋼は比重が大きいため主軸の重量も必然的に大きく
なり、高速回転時の遠心力による変形が大きく、加工物
の寸法が不安定となり、また振動減衰性も小さいため高
速回転には不適当である。また主軸重量が大きいと、高
速回転への立上がり時間を要することにもなり、更には
そのための動力も確保しておくことが必要となる。
By the way, the coefficient of linear expansion of steel is 11~16X10-'°C
For example, if there is a temperature change of 10 °C on a 2 m long main shaft, the
A dimensional change of m will occur. For example, when cutting a flat surface with a boring machine, if the temperature of the spindle increases by 10"C between the start and end of cutting, this is 0.3
This means that a difference in depth of cut of about nvn is generated, which is a serious problem in producing highly accurate workpieces. In addition, since steel has a high specific gravity, the weight of the spindle is also inevitably large, which causes large deformation due to centrifugal force during high-speed rotation, making the dimensions of the workpiece unstable, and low vibration damping properties, making it unsuitable for high-speed rotation. Appropriate. Furthermore, if the weight of the main shaft is large, it will take time to start up to high speed rotation, and it is also necessary to secure the power for this purpose.

他方、軽量で剛性に優れる素材として、例えば従来から
炭素繊維強化プラスチツク材料CCFRP)等の繊維強
化複合材料が良く知られ、多くの分野に使用されている
。しかしながら、この種の材料が使われる分野は限られ
ており、−m的には民生部材、航空機関連部材等が主で
あり、機械の構造材として使われることは極めて稀れで
ある。その稀れな例として、特開昭61−194197
号、実開昭63−69812号等で提案されているロー
ラがある。これは従来の金属ローラにない特性を求めて
開発されたもので、上記複合材料、特にCFRPが超軽
量でかつ剛性の高い素材である点に着目しローラに通用
したものである。しかるに、この種ローラは両持ち構造
で、例えば抄紙機、印刷機、合成樹脂フィルム製造機等
に使われることが多く、紙、フィルム等の搬送にあたっ
て中央部の撓みを極力小さくすることと、ローラの急停
止時や変速時の追従性を確保することに主眼がおかれて
いるもので、機械的に苛酷な条件下での使用に耐えるに
は構造的にも十分なものとはいえない。従って、上記各
公報で提案されている技術はローラの構造体としては一
応の成果を挙げてはいるものの、例えばこれを工作機械
のような苛酷な条件下で稼動される機械部材の、特に工
作機械の主軸にそのまま適用することは不可能なことで
ある。
On the other hand, fiber-reinforced composite materials such as carbon fiber-reinforced plastic material (CCFRP) have been well known as materials that are lightweight and have excellent rigidity, and have been used in many fields. However, the fields in which this type of material is used are limited, and are mainly used in consumer parts, aircraft-related parts, etc., and are extremely rarely used as structural materials for machines. As a rare example, JP-A-61-194197
There is a roller proposed in Japanese Utility Model Application Publication No. 63-69812. This was developed in search of characteristics not found in conventional metal rollers, and was made possible by focusing on the fact that the above-mentioned composite materials, especially CFRP, are extremely lightweight and highly rigid materials. However, this type of roller has a double-sided structure and is often used in paper machines, printing machines, synthetic resin film manufacturing machines, etc., and it is important to minimize the deflection of the center part when conveying paper, film, etc. The main focus is on ensuring followability during sudden stops and gear changes, and it cannot be said that the structure is structurally sufficient to withstand use under harsh mechanical conditions. Therefore, although the techniques proposed in the above-mentioned publications have achieved some success in the construction of roller structures, they are not suitable for use in mechanical parts such as machine tools, which are operated under harsh conditions. It is impossible to apply it directly to the main shaft of a machine.

工作機械の主軸は、金属材料その化セラミックス等の硬
脆材料を切削或いは研削等により機械加工を施すにあた
り、あらゆる方向から最も荷重のかかる部分であり、し
かも片持ち構造であるがために、これに耐える素材とし
ては、既述の如く重量はあるが高弾性でかつ剛性に優れ
、表面の硬化が容易である鋼材又は合金鋼材が当然のこ
ととして使用され、一方で軽量な上に剛性の高い特性を
もつことの知られている繊維強化プラスチツク材料の如
き硬度及び耐摩耗性の低い素材の使用に関しては、実用
化が困難であるとされているのが現状である。
The main shaft of a machine tool is the part that receives the most load from all directions when machining hard and brittle materials such as metal materials and ceramics by cutting or grinding, and because it has a cantilevered structure, As mentioned above, steel or alloy steel materials are naturally used as materials that are heavy but have high elasticity and rigidity, and whose surfaces are easily hardened. At present, it is difficult to put into practical use the use of materials with low hardness and wear resistance, such as fiber-reinforced plastic materials, which are known to have such characteristics.

極く最近ではあるが、工作機械の主軸に前記繊維強化プ
ラスチツク材料とは異なるものの、類似する素材である
C/Cコンポジットを適用することが特開昭63−96
311号で提案されている。
Although it is very recent, Japanese Patent Laid-Open No. 63-96 reported that a C/C composite, which is a material similar to but different from the fiber-reinforced plastic material mentioned above, was applied to the main shaft of machine tools.
Proposed in No. 311.

しかるにC/Cコンポジット(カーボン/カーボンコン
ポジット)自体は機械部品、原子炉材料、宇宙開発用材
料等として、古くから使われている(「炭素繊維、 S
55.11.1、大釜・木材共著、近代編集社)もので
あり、本発明者等も同材料を上記提案された技術と同様
に工作JR械の主軸に適用することを試みたが、実用化
に難があるため、その開発を繊維強化プラスチツク材料
の使用に転じたものである。
However, C/C composites (carbon/carbon composites) themselves have been used for a long time as mechanical parts, nuclear reactor materials, materials for space development, etc.
55.11.1, co-authored by Ohkama and Wood, Kindai Editorial Co., Ltd.), and the present inventors also attempted to apply the same material to the main shaft of machine JR machines in the same way as the technology proposed above, but it was not put into practical use. However, due to the difficulty in developing plastic materials, the development shifted to the use of fiber-reinforced plastic materials.

即ち、C/Cコンポジットは前記繊維強化プラスチツク
複合材料を高温で熱分解し、マトリックスであるプラス
チック材料を炭化させて得られ、そのままでは物性の面
で劣るため、これに更に加工を加えて所望の部材を得る
ものである。
That is, the C/C composite is obtained by thermally decomposing the fiber-reinforced plastic composite material at high temperature and carbonizing the matrix plastic material.As it is inferior in physical properties as it is, it is further processed to obtain the desired properties. It is for obtaining parts.

従って、その製作には極めて多段階の加工行程を踏む必
要があり、どうしてもコストアップにつながり高価なも
のとなる。
Therefore, it is necessary to go through an extremely multi-step processing process to manufacture it, which inevitably increases the cost and makes it expensive.

(発明が解決しようとする課題) 本発明が解決しようとする課題は次の諸点にある。(Problem to be solved by the invention) The problems to be solved by the present invention are as follows.

(1)従来の鋼製主軸が必然的に有する高い線膨張によ
り生じる寸法安定性の悪さである。鋼材以外の金属材料
を用いて、この線膨張係数を鋼製より小さくすることも
できるが、発表されているものの中で最も小さいインバ
ー合金でもその線膨張係数は1〜3X10−6°c−1
であり、更にほこのインバー合金は難削材であること及
び高価でかつ硬度が低いことから主軸の主材料として採
用することは不適当である。
(1) Poor dimensional stability caused by the high linear expansion that conventional steel spindles inevitably have. It is also possible to use a metal material other than steel to make the linear expansion coefficient smaller than that of steel, but even the smallest announced Invar alloy has a linear expansion coefficient of 1 to 3 x 10-6°c-1.
Furthermore, Hoko's invar alloy is a difficult-to-cut material, is expensive, and has low hardness, so it is inappropriate to use it as the main material for the spindle.

(2)従来の鋼製主軸が大きな重量であるがために、そ
こから派生する様々な課題がある。即ち高速回転時の遠
心力による変形が大きくまた振動の減衰性も悪いために
、加工品質及び加工精度に対する影響が大きいこと、慣
性モーメントが大となるため、より以上の高速化が難か
しく、必要動力も大きくなることから発熱量も大きくな
り上記線膨張係数の大きいことと相撲って加工精度を悪
くする等である。
(2) Since the conventional steel spindle is heavy, there are various problems that arise from this. In other words, the deformation due to centrifugal force during high-speed rotation is large and the vibration damping properties are poor, which has a large effect on machining quality and machining accuracy, and the moment of inertia becomes large, making it difficult and necessary to increase the speed further. Since the power also increases, the amount of heat generated also increases, which competes with the above-mentioned high coefficient of linear expansion and deteriorates processing accuracy.

(3)例えばCTCコンポジット製の主軸を得るには、
多数の工程を経る必要があり、どうしても製作コストが
上がるため実用化に耐えない。
(3) For example, to obtain a main shaft made of CTC composite,
It requires a large number of steps, which inevitably increases production costs, making it impractical for practical use.

従って、本発明の目的は製作上の容易性と経済性を考慮
した上で、主軸の線膨張の低減化を図ると同時に軽量化
をも図ることである。
Therefore, an object of the present invention is to reduce the linear expansion of the main shaft and at the same time reduce the weight, taking into consideration ease and economy in manufacturing.

(課題を解決するための手段及び作用)上記目的を達成
するため、本発明は特許請求の範囲に記載したとおりの
構成を採用し、当該構成をもって上記課題の解決手段と
するものである。
(Means and operations for solving the problem) In order to achieve the above object, the present invention employs the structure as described in the claims, and uses the structure as a means for solving the above problem.

これを作用と共に更に詳細に説明すると、以下のとおり
である。
This will be explained in more detail along with its effect as follows.

まず本発明者等は、既述の如く工作機械の分野では過去
において考慮の対象とされ難かった繊維強化複合材料、
特にそのうちの炭素繊維強化プラスチツク材料(CFR
P)に着目し、主軸材料としての実用化の可能性につき
検討に入った。
First, the present inventors developed fiber-reinforced composite materials, which have been difficult to consider in the past in the field of machine tools, as mentioned above.
In particular, carbon fiber reinforced plastic materials (CFR)
Focusing on P), we began investigating the possibility of its practical application as a spindle material.

CFRPは上述のとおり、熱膨張率を低くでき、かつ軽
量化が図れる点で主軸の素材としては望ましい特性を備
えている。
As mentioned above, CFRP has desirable characteristics as a material for the main shaft in that it can have a low coefficient of thermal expansion and can be lightweight.

しかしながら、例えば中ぐり盤の主軸についてみたとき
、主軸端表面には切粉などが搦み付き易く(表面硬度が
高くないと容易に損傷を受けることになるが、CFRP
自体の硬度はマトリックス樹脂の硬度に支配されるため
、一般的には低硬度で、前記損傷をまともに受けること
になる。
However, when looking at the spindle of a boring machine, for example, chips etc. tend to get stuck on the spindle end surface (if the surface hardness is not high, it will be easily damaged, but CFRP
Since the hardness of the resin itself is controlled by the hardness of the matrix resin, it generally has a low hardness and can easily receive the damage described above.

従って、CFRPを工作機械の主軸材料として実用化を
図るには、上記鋼材を使った従来の主軸が持つ欠点を補
うと同時に、工作機械の主軸として要求される全ての要
件を満足するものでなければならない。
Therefore, in order to put CFRP into practical use as a spindle material for machine tools, it must compensate for the drawbacks of conventional spindles made of the above-mentioned steel materials, and at the same time satisfy all the requirements required for spindles of machine tools. Must be.

また、従来の鋼材を使った主軸の欠点である熱膨張をC
FRPの中空円筒状構造物についてみると、その捲付角
度を適当に選べば長平方向の線膨張係数をマイナス或い
はゼロ、大きくてもその絶対値を0.5X10−6°c
−1に抑えることが可能であることが判明した。ここで
繊維強化複合材料の繊維としては炭素繊維が好ましく、
他にアラミド繊維が考えられる。
In addition, C
Looking at FRP hollow cylindrical structures, if the wrapping angle is selected appropriately, the coefficient of linear expansion in the longitudinal direction can be negative or zero, and at most the absolute value can be 0.5 x 10-6°c.
It has been found that it is possible to suppress the value to -1. Here, carbon fiber is preferable as the fiber of the fiber-reinforced composite material.
Another possibility is aramid fiber.

上記CFRPによる中空円筒状構造物は、繊維や樹脂の
種類によっても異なるが、一般に繊維の捲付角度により
表1に示す線膨張係数が得られる。
The above hollow cylindrical structure made of CFRP generally has a linear expansion coefficient shown in Table 1 depending on the winding angle of the fibers, although this varies depending on the type of fibers and resin.

表1に示すようにCFRPは繊維の捲付角度が小さいと
ころではマイナスの線膨張係数を有し、繊維の捲付角度
が大きくなるに従って大きなプラスの線膨張係数となる
ものである。従って、これらの角度を組合わせることに
より、或いはある特定の角度を用いることにより理論的
には上記中空円筒状構造物の線膨張係数をゼロ若しくは
マイナスにすることが可能である。
As shown in Table 1, CFRP has a negative coefficient of linear expansion where the winding angle of the fibers is small, and as the winding angle of the fibers increases, the coefficient of linear expansion becomes large and positive. Therefore, by combining these angles or using a certain specific angle, it is theoretically possible to make the coefficient of linear expansion of the hollow cylindrical structure zero or negative.

表I  CFRP線膨張係数 本発明の主軸の主構成部分である中空円筒状構造物は、
その炭素繊維の捲付角度を選ぶことによって線膨張係数
の絶対値を0.5X10−’°C″′以下に低下させて
いる。この中空円筒状構造物は、例えば2m長さの主軸
に10°Cの温度変化があってもI Xl0−2mmの
寸法変化しか生しない。
Table I CFRP Linear Expansion Coefficient The hollow cylindrical structure which is the main component of the main shaft of the present invention is:
By selecting the winding angle of the carbon fiber, the absolute value of the coefficient of linear expansion is lowered to below 0.5×10-'°C''. A temperature change of °C causes only a dimensional change of IXl0-2 mm.

こうしたCFRPからなる中空円筒状構造物と銅材等の
金属を組合せると、その線膨張係数を5×10−6°c
−1以下に抑えることができ、従来の鋼材による主軸の
線膨張係数11〜16X10−6°c−1に比較して極
めて高精度の切削加工が可能となる。
When such a hollow cylindrical structure made of CFRP is combined with metal such as copper material, the coefficient of linear expansion is 5 x 10-6°c.
The coefficient of linear expansion of the main spindle made of conventional steel materials is 11 to 16×10 −6°c −1, which enables cutting with extremely high precision.

本発明の主軸は、その大部分が実質的にCFRPであれ
ばよく、一部に金属材料やセラミックスが用いられる。
Most of the main shaft of the present invention may be substantially made of CFRP, and a part thereof may be made of metal material or ceramics.

さらに炭素繊維以外の繊維、例えばガラス繊維やアラミ
ド繊維を一部に用いることも可能である。
Furthermore, it is also possible to partially use fibers other than carbon fibers, such as glass fibers and aramid fibers.

ところで大抵の場合、主軸の要求性能としては寸法安定
性のみでなく、曲げ剛性や捩り剛性も求められるが、も
し一種類の繊維角度のみで中空円筒状構造物自体の線膨
張係数がゼロとなるものを選ぶなら、他の要求性能を達
成することはできない。しかし、炭素繊維の捲付角度を
少なくとも2種類にして組合わせることにより、線膨張
係数をゼロにする方法は多くのケースを選択できるので
、他の性能を設計する自由度が増大する。高い曲げ剛性
を得るためには、繊維の捲付角度が0°であるものが最
も高い値となるので、この構成を含めることは好ましい
ことである。しかし、フィラメントワインド成形を行う
場合には、0°で巻くことは非常に困難であり、±(1
0〜15)°で巻く方が実際的である。
By the way, in most cases, the required performance of the main shaft is not only dimensional stability but also bending rigidity and torsional rigidity, but if only one type of fiber angle is used, the coefficient of linear expansion of the hollow cylindrical structure itself becomes zero. If you choose one, you will not be able to achieve other required performance. However, by combining at least two types of carbon fiber winding angles, many cases can be selected for the method of reducing the coefficient of linear expansion to zero, increasing the degree of freedom in designing other performances. In order to obtain high bending rigidity, the highest value is obtained when the fiber wrapping angle is 0°, so it is preferable to include this configuration. However, when performing filament wind molding, it is extremely difficult to wind at 0°;
It is more practical to wind at an angle of 0 to 15)°.

主軸は自身が回転し、或いはワークが回転しながら切削
作業を行うので、捩り剛性も必要である。CFRPを使
って主軸を得る場合には、繊維の捲付角度が±45°に
配列されている時に捩り剛性は最大になるので、積層構
成の中に±45°を含めることは好ましいことである。
Since the main shaft performs cutting work while rotating itself or rotating the workpiece, torsional rigidity is also required. When using CFRP to obtain the main axis, the torsional rigidity is maximized when the fiber winding angle is arranged at ±45°, so it is preferable to include ±45° in the laminated structure. .

成形の時の乱れを考えるなら、実際には士(40〜50
)°となる。
If we consider the disturbance during molding, it is actually
)°.

従って本発明に係るCFRP製の中空円筒状構造物を用
いた主軸は、炭素繊維の捲付角度が少なくとも2種類か
ら成ることが望ましく、その−方ハ+(0−15)’ 
テアリ、他方ハ±(40〜50)6であることがより好
ましい。これらの構成が何層にもわかれていてもよいし
、或いはまとまっていてもよい。また、これら以外の角
度、例えば90″が加えられることがあってもよい。
Therefore, it is desirable that the main shaft using the hollow cylindrical structure made of CFRP according to the present invention has at least two types of carbon fiber winding angles, and the - direction C+(0-15)'
On the other hand, it is more preferably (40 to 50) 6. These structures may be divided into many layers, or may be grouped together. Also, angles other than these, for example 90'' may be added.

ところで、工作機械の主軸は、上述の如く極めて苛酷な
条件下で使用するものである。即ち、主軸として具備し
ていなければならない条件には、上記熱膨張が低いこと
は当然のこととして更に■耐衝撃性の大きいこと、■表
面硬度が高いこと、■主軸自体に機械的加工が施されて
も強度の低下がないこと等が挙げられる。
Incidentally, the main spindle of a machine tool is used under extremely severe conditions as described above. In other words, the conditions that must be met for the spindle include, of course, the low thermal expansion mentioned above, but also: ■ high impact resistance, ■ high surface hardness, and ■ mechanical processing applied to the spindle itself. For example, there is no decrease in strength even when

これを、例えば横中ぐり盤の主軸について第3図を参照
しつつ説明すると、同図に斜線で示した部分が主軸1で
あり、この主軸1はフライス切削等の断続切削及び加工
面の肉厚変動により大きな衝撃、面圧を受ける。特に工
具ドライブキー2の嵌合部A及び主軸1の駆動歯車に固
定されたキー3が嵌合するキー溝部Bの両側面部では、
この衝撃及び面圧をまともに受けることになる。
To explain this, for example, with reference to Fig. 3 regarding the main shaft of a horizontal boring machine, the shaded part in the figure is the main shaft 1, and this main shaft 1 is used for interrupted cutting such as milling and machining of the machined surface. Subject to large impact and surface pressure due to thickness variations. In particular, in the fitting part A of the tool drive key 2 and both side surfaces of the key groove part B where the key 3 fixed to the drive gear of the main shaft 1 fits,
This shock and surface pressure will be taken seriously.

また、中くり切削時主軸1は回転し乍らスリーブ4内を
軸方向に移動し、所定の長さスリーブ4から突出するが
、このとき、切削によるカール状の切粉が主軸1の表面
C部に搦み付く。
In addition, during hollow cutting, the spindle 1 moves in the axial direction within the sleeve 4 while rotating, and protrudes from the sleeve 4 by a predetermined length. I'm obsessed with the club.

従って、この表面硬度が切粉以上に高くないと、主軸表
面に傷が付き易く、それだけ寿命が短かくなる。一方、
ドローバ−5及びコレット6による工具の保持力は3 
tonにも及び、工具の装着時にはこの力を主軸端のテ
ーパ面りが直接受けることになり、また工具が装着され
ていないときはコレット端部との当接面Eに上記力が作
用する。従って、前記テーパ面り及びコレット当接面E
では高面圧に十分耐える必要がある。
Therefore, unless this surface hardness is higher than that of chips, the spindle surface is likely to be scratched, and its life will be shortened accordingly. on the other hand,
The holding force of the tool by the drawbar 5 and collet 6 is 3
ton, and when a tool is attached, the taper surface of the spindle end directly receives this force, and when a tool is not attached, the force acts on the contact surface E with the collet end. Therefore, the taper surface and the collet contact surface E
Therefore, it is necessary to sufficiently withstand high surface pressure.

前記テーパ面りには、この他に切削振動も受ける。更に
主軸lの中空部には工具の着脱時に作用するサラバネ7
が収容されており、このサラバネの力は通常3〜8 t
onである。従ってサラバネ7の端面を支承する主軸1
の中空段部端面Fには、その反力が作用しており、上記
テーパ面り及びコレット当接面Eと同様に大きな面圧が
かかることになる。
The tapered surface is also subjected to cutting vibrations. Furthermore, in the hollow part of the main shaft l, there is a counter spring 7 that acts when attaching and detaching the tool.
is accommodated, and the force of this spring is usually 3 to 8 tons.
It's on. Therefore, the main shaft 1 that supports the end surface of the spring 7
The reaction force acts on the end face F of the hollow stepped portion, and a large surface pressure is applied to the end face F of the hollow stepped portion, similar to the above-mentioned taper face and the collet contact face E.

また、主軸1は第1図および第2図に示す如く、単純な
円筒部材でなく、例えば上記テーパ面、段部、キー溝、
ネジ部等の加工が施されており、こうした加工により強
度低下があってはならない。例えば、主軸後端のネジ部
Gには、主軸先端部に装着する工具の脱着時に上記中空
段部端面Fと同様にサラバネの反力3〜8 tonが作
用するためネジ切りによる強度低下は是非共避けなけれ
ばならない。CFRPを中ぐり盤の主軸に採用するとき
も例外ではなく、上記条件の全てを備える必要がある。
Moreover, as shown in FIGS. 1 and 2, the main shaft 1 is not a simple cylindrical member, but includes, for example, the tapered surface, step, key groove, etc.
Processing is applied to threaded parts, etc., and such processing must not reduce strength. For example, the reaction force of a counter spring of 3 to 8 tons acts on the threaded portion G at the rear end of the spindle when a tool attached to the tip of the spindle is attached or removed, similar to the end surface F of the hollow step, so it is important not to reduce the strength due to thread cutting. Must be avoided together. The use of CFRP as the main shaft of a boring machine is no exception, and all of the above conditions must be met.

そこで、種々の検討を加えた結果、主軸本体をCFRP
で構成し、CFRPだけでは上記条件が満足されない部
分に金属、セラミックス等を採用してCFRPの欠点を
補完することを考えた。
Therefore, as a result of various studies, we decided to make the main shaft body from CFRP.
We considered supplementing the drawbacks of CFRP by employing metals, ceramics, etc. in parts where the above conditions cannot be satisfied with CFRP alone.

熱膨張並びに剛性の点では既述の如< CFRPを使っ
てもその捲付角度等を適当に選べば実用化に十分耐え得
るという結論を得ている。しかしながら、上記した■〜
■の条件については、CFRPのみで実用化に持ち込め
ないことが実験段階で判明した。
In terms of thermal expansion and rigidity, as mentioned above, it has been concluded that even if CFRP is used, it can withstand practical use if the winding angle etc. are appropriately selected. However, the above ■~
Regarding the condition (2), it was found at the experimental stage that CFRP alone could not be put into practical use.

即ち、CFRPは耐衝撃性が低いため、例えば工具ドラ
イブキーの嵌合部A及びキー溝部Bには窒化鋼を使用す
ることにした。
That is, since CFRP has low impact resistance, it was decided to use nitrided steel, for example, for the fitting part A and the keyway part B of the tool drive key.

また、特に中ぐり盤などの主軸1では、軸方向に移動で
きることが必要であり、また任意の位置で固定もしなけ
ればならない。そのため、一般には、キー溝又はスプラ
イン等で軸方向に動くようにしておき、主軸lの外周を
スリーブ4で把持することにより固定する。従って、ス
リーブで把持される主軸外周部は表面Cの硬さが十分で
ある必要がある。CFRPのままの表面は、ミクロに見
ると炭素繊維と樹脂が混在していて、硬さを単純に表現
することは難しいが、いずれにせよ主軸の把持部として
は摩耗が生じふされしくない。更に主軸1の表面には切
粉等が搦み付き傷付き易いため、これを防止するにも高
硬度が必要である。そこで、少なくとも主軸1のスリー
ブ4に把持される部分と切削中に切粉が搦み付く部分は
、金属やセラミックによって硬度を高めることが必要と
なる。その方法としているいろあるが、例えば特開昭6
0−162793号公報に開示されているようにCFR
P製の中空円筒状構造物表面に金属メンキを施すことが
できる。特に硬質Crメッキは硬く、この用途に適当で
ある。金属メッキを施す代わりに薄い金属製円環を嵌め
込んで接着または焼きばめにより固定することもできる
。さらにその上に硬質Crメッキなどを施すこともでき
る。
Further, in particular, the main shaft 1 of a boring machine or the like must be able to move in the axial direction, and must also be fixed at an arbitrary position. Therefore, generally, the main shaft 1 is made to move in the axial direction using a keyway or a spline, and is fixed by gripping the outer periphery of the main shaft 1 with a sleeve 4. Therefore, the surface C of the outer periphery of the main shaft gripped by the sleeve needs to have sufficient hardness. When viewed microscopically, the surface of CFRP is a mixture of carbon fiber and resin, and it is difficult to simply express its hardness, but in any case, it is unsuitable for wear to occur as a gripping part for the main shaft. Furthermore, the surface of the spindle 1 is easily scratched by chips and the like, so high hardness is required to prevent this. Therefore, it is necessary to use metal or ceramic to increase the hardness of at least the portion of the spindle 1 that is gripped by the sleeve 4 and the portion where chips get stuck during cutting. There are various ways to do this, for example,
CFR as disclosed in Publication No. 0-162793
Metal coating can be applied to the surface of a hollow cylindrical structure made of P. In particular, hard Cr plating is hard and suitable for this purpose. Instead of metal plating, a thin metal ring may be fitted and fixed by adhesive or shrink fit. Furthermore, hard Cr plating or the like can be applied thereon.

CFRP製の中空円筒状構造物表面に、内層より溶射の
ための下地処理層、金属溶射処理層、中間メッキ層及び
最外メッキ層を順次形成して得た主軸は、CFRP製の
中空円筒状構造物と金属メッキ層とが強固に結合してお
り好ましい構造といえる。
The main shaft obtained by sequentially forming a base treatment layer for thermal spraying, a metal thermal spraying treatment layer, an intermediate plating layer, and an outermost plating layer on the surface of a hollow cylindrical structure made of CFRP from the inner layer is a hollow cylindrical structure made of CFRP. The structure and the metal plating layer are strongly bonded, and this can be said to be a preferable structure.

ここに溶射のための上記下地処理層とは、例えば熱伝導
率が0.001cal −CT11−’ −5ec−’
 −deg−’以上でλ−S≧0.05(λ:熱伝導率
、S:rd/gで表わされる表面積)を満足する扁平状
でない無機フィラー、あるいは表面が複雑な凹凸を有す
る無機フィラーなどの特殊形状の金属又は無機粉を熱硬
化型樹脂と配合して炭素繊維複合材表面に塗布し、熱硬
化させて形成される。また、金属溶射処理層の材質はC
u、Ni、At、Fe等表面に電気メッキが出来るもの
であればよく、特に制限するものではない。中間メッキ
層の材質については封孔性能と耐蝕性の点より選ばれる
が、この様な目的で種々実験した結果、(?u又はNi
が特に有効であることを見いだした。更に、最外メッキ
層の材質としても用途によって適宜選ばれるが、Ni及
びCγが一般的に採用され、特に表面硬度が要求される
場合はCrメッキが好都合である。
Here, the above-mentioned base treatment layer for thermal spraying has a thermal conductivity of 0.001 cal -CT11-'-5ec-', for example.
An inorganic filler that is not flat and satisfies λ-S≧0.05 (λ: thermal conductivity, S: surface area expressed in rd/g) at -deg-' or more, or an inorganic filler whose surface has complex irregularities, etc. It is formed by blending a specially shaped metal or inorganic powder with a thermosetting resin, applying it to the surface of a carbon fiber composite material, and thermosetting it. In addition, the material of the metal sprayed layer is C
There are no particular limitations, as long as the surface can be electroplated, such as u, Ni, At, Fe, etc. The material of the intermediate plating layer is selected from the viewpoint of sealing performance and corrosion resistance, and as a result of various experiments for this purpose, (?u or Ni
was found to be particularly effective. Furthermore, the material for the outermost plating layer is appropriately selected depending on the application, but Ni and Cγ are generally employed, and Cr plating is particularly advantageous when surface hardness is required.

また、CFRPの中空円筒状構造物表面に特開昭61−
98534号公報に開示されているようなセラミック溶
射を施すこともできる。アルミチー40チタニア(,4
1,03−40T 1ox)やクロミナ(Cr20.)
を用いれば、堅牢な表面を得ることができる。この他セ
ラミックの薄い円環を嵌め込んで、接着して固定するこ
ともできる。
In addition, on the surface of the hollow cylindrical structure of CFRP,
Ceramic spraying as disclosed in Japanese Patent No. 98534 can also be applied. Alumiqi 40 Titania (,4
1,03-40T 1ox) and Chromina (Cr20.)
A robust surface can be obtained by using Alternatively, a thin ceramic ring can be fitted and fixed by adhesive.

このようにして、CFRPの表面を処理して硬くした中
空円筒状構造物を主材として製造した主軸は、把持部と
して必要な上記特性をもつと同時に、切削時に発生する
切粉による擦傷からも保護されるし、また高い寸法精度
を得るためにも好ましいものである。
In this way, the main shaft manufactured from a hollow cylindrical structure whose main material is hardened by treating the surface of CFRP has the above-mentioned characteristics necessary for a gripping part, and at the same time is resistant to scratches caused by chips generated during cutting. This is preferable in terms of protection and obtaining high dimensional accuracy.

また、主軸端のテーパ面りのように高い面圧及び切削振
動を受ける部分には窒化鋼やセラミックスを使うように
し、サラバネ7の反力を受けるコレット端部当接面E及
び中空段部端面F並びに主軸後端のネジ部Gには硬調質
鋼材又はセラミックスを使用する。
In addition, nitrided steel or ceramics are used for parts that are subject to high surface pressure and cutting vibration, such as the tapered surface of the main shaft end, and the contact surface E of the collet end and the end surface of the hollow step part that receive the reaction force of the spring 7 are used. Hard tempered steel or ceramics is used for F and the threaded portion G at the rear end of the spindle.

以上、主軸の各部分への金属又はセラミックスの適用は
、主軸表面への金属メッキ又はセラミックス溶射以外に
も各部分を金属又はセラミックスで底形し、これを該当
部に嵌め込んで接着剤をもって接着することができる。
As mentioned above, in addition to metal plating or ceramic spraying on the spindle surface, metal or ceramics can be applied to each part of the spindle by forming the bottom of each part with metal or ceramics, fitting it into the corresponding part, and bonding it with adhesive. can do.

ただし、ここで留意しなければならない点は金属材料又
はセラミックス材料とCFRPでは線膨張率に差がある
ため、その差が大きいと接着面で剥離が起き易く、特に
主軸長手方向の接着長さが長い部分では剥離し易いこと
である。従って、このような部分では適用する金属又は
セラミックスは線膨張率の小さい材料を選ぶ必要がある
However, it is important to note here that there is a difference in linear expansion coefficient between metal or ceramic materials and CFRP, so if the difference is large, peeling is likely to occur at the adhesive surface, especially when the adhesive length in the longitudinal direction of the main axis is It is easy to peel off in long parts. Therefore, it is necessary to select a material with a small linear expansion coefficient as the metal or ceramic used in such a part.

以上の説明において、炭素繊維の種類は高強度タイプ、
中弾性タイプ、高弾性タイプのいずれでもよいが、高弾
性炭素繊維を用いた方が剛性の高い主軸を得ることがで
きることはいうまでもない。ここでは炭素繊維を主に説
明しているが、アラミド繊維の中にも繊維方向にマイナ
スの線膨張係数を有するものがあり、同様の用い方をす
ることも可能である。マトリックス樹脂に関しては特に
制限を設けるものではない。
In the above explanation, the types of carbon fiber are high strength type,
Either a medium elasticity type or a high elasticity type may be used, but it goes without saying that a main shaft with higher rigidity can be obtained by using high elasticity carbon fiber. Although carbon fibers are mainly explained here, some aramid fibers have a negative coefficient of linear expansion in the fiber direction, and can be used in the same way. There are no particular restrictions on the matrix resin.

熱硬化性樹脂、すなわちエポキシ樹脂、フェノール樹脂
、ポリエステル樹脂のほか、ビニルエステル樹脂、ポリ
イミド樹脂を用いることができるし、熱可塑性樹脂のナ
イロン66、ポリカーボネート、ポリエチレンテレフタ
レート、PEEK。
In addition to thermosetting resins such as epoxy resins, phenolic resins, and polyester resins, vinyl ester resins and polyimide resins can be used, and thermoplastic resins such as nylon 66, polycarbonate, polyethylene terephthalate, and PEEK can be used.

PEK 、 PPS 5PEIなども使用できる。PEK, PPS, 5PEI, etc. can also be used.

成形方法も特に限定するものではなく、フィラメントワ
インド成形性もシートラップ法も適用できる。
The molding method is also not particularly limited, and both filament wind moldability and sheet wrap methods can be applied.

(実施例) 以下、本発明を実施例と従来例との比較により具体的に
説明する。
(Example) Hereinafter, the present invention will be specifically explained by comparing an example and a conventional example.

第1図は本発明の代表的な実施例に係る横巾ぐり盤の主
軸断面を示す。
FIG. 1 shows a main shaft cross section of a width boring machine according to a typical embodiment of the present invention.

同図において、101Z、 10bは本発明に係る主軸
lの本体をなす炭素繊維の捲付角度が異なるCFRP製
中空円筒構造体の内外層である。
In the same figure, 101Z and 10b are the inner and outer layers of a CFRP hollow cylindrical structure in which the carbon fibers forming the main body of the main shaft l according to the present invention have different winding angles.

11は工具のシャンク部が嵌挿されるテーパ面をもつ主
軸端部材であり、同主軸端部材11は鋼材をもって単独
に製作され、外周面の一部に形成された小径部を前記内
層101Zの内面に形成された段部に嵌合当接して接着
一体化される。
Reference numeral 11 denotes a main shaft end member having a tapered surface into which the shank portion of the tool is inserted.The main shaft end member 11 is individually manufactured from a steel material, and a small diameter portion formed on a part of the outer peripheral surface is connected to the inner surface of the inner layer 101Z. They fit into and come into contact with the stepped portion formed on the surface and are bonded and integrated.

12はその外径が前記CFRP製中空円筒構造体の内N
 10(Zの内径に等しい中空円筒介在部材で、その一
端が前記主軸端部材11の内端面に当接するように前記
内層10aの中空部に嵌入され、接着剤をもって接着一
体化される。
12 has an outer diameter equal to the inner diameter of the CFRP hollow cylindrical structure.
10 (a hollow cylindrical intervening member having an inner diameter equal to the inner diameter of Z) is fitted into the hollow part of the inner layer 10a so that one end thereof comes into contact with the inner end surface of the main shaft end member 11, and is bonded and integrated with an adhesive.

13はコレットが収納され、サラバネの一端面が当接す
る部分まで延びて配設される、鋼材からなる一端にフラ
ンジをもつ中空円筒部材で、前記中空円筒介在部材12
の内面に接着により嵌合一体化する。
Reference numeral 13 denotes a hollow cylindrical member made of steel and having a flange at one end, which accommodates the collet and extends to a portion where one end surface of the spring spring comes into contact with the hollow cylindrical interposed member 12.
It is fitted and integrated with the inner surface of the

CFRP製中空円筒構造体の主軸後端側の外周面には、
軸に平行して延びる所定の長さの溝14が形成されると
共に間溝14にキー溝用部材15が嵌合接着されキー溝
16を構成する。更にCFRP製中空円筒構造体の後端
部内面には、ツバ付きでキー溝11aを有する中空円筒
後端部材17が接着剤により嵌合固定される。この中空
円筒後端部材17の内径は前記内層10(Zの内径に等
しく設定される。
On the outer peripheral surface of the main shaft rear end side of the CFRP hollow cylindrical structure,
A groove 14 of a predetermined length extending parallel to the axis is formed, and a key groove member 15 is fitted and adhered to the intermediate groove 14 to form a key groove 16. Furthermore, a hollow cylindrical rear end member 17 with a collar and having a keyway 11a is fitted and fixed to the inner surface of the rear end of the CFRP hollow cylindrical structure with an adhesive. The inner diameter of this hollow cylindrical rear end member 17 is set equal to the inner diameter of the inner layer 10 (Z).

こうした部材の組付けを終えた主軸lの外表面には硬質
の金属又はセラミックスの被覆層18が形成される。
A hard metal or ceramic coating layer 18 is formed on the outer surface of the main shaft 1 after these members have been assembled.

実施例1 主軸の本体となる中空円筒構造体をCFRPをもって製
作した。この中空円筒構造体は仕上がり寸法が外径11
0 ++++n、長さ1590mn+、内径64.7m
mとなるように中側性炭素繊維(三菱レイヨン製パイロ
フィル@MM−1)を用い、フィラメントワインド法で
成形した。マトリックスはエポキシ樹脂である。内N1
0 aは±4501外層10bは±10°の各捲付角度
とし、各々の厚さが18.65mm及び411II11
になるようにした。これを十分に硬化した後、必要部分
に切削加工と研削加工を施し、各加工部及び必要個所に
主軸端部材11、中空円筒介在部材12、中空円筒部材
13、キー溝用部材15及び中空円筒後端部材17をそ
れぞれ嵌合し接着固定した。その後、再び機械加工を施
して仕上げ、その外表面に導電塗装を施してから電気メ
ッキによりCuメッキ、Crメッキを順次実施し、被覆
層18を形成して、更に研削仕上げした。
Example 1 A hollow cylindrical structure serving as the main body of the main shaft was manufactured using CFRP. The finished dimension of this hollow cylindrical structure is an outer diameter of 11
0 ++++n, length 1590m+, inner diameter 64.7m
It was molded using a filament winding method using mesolateral carbon fiber (Pyrofil@MM-1 manufactured by Mitsubishi Rayon) so as to have a diameter of m. The matrix is an epoxy resin. Inside N1
0a is ±4501, outer layer 10b is each wrapped at a winding angle of ±10°, and each thickness is 18.65mm and 411II11
I made it so that After sufficiently hardening this, cutting and grinding are performed on the necessary parts, and the main shaft end member 11, hollow cylindrical intervening member 12, hollow cylindrical member 13, keyway member 15, and hollow cylinder are cut into each processed part and the necessary parts. The rear end members 17 were fitted and fixed with adhesive. Thereafter, it was finished by machining again, and the outer surface was coated with a conductive coating, and then Cu plating and Cr plating were sequentially performed by electroplating to form a coating layer 18, and further, it was finished by grinding.

ここで、主軸端部材11にはSACM645を、中空円
筒介在部材12にはインバー合金を、また中空円筒部材
13、キー溝用部材15及び中空円筒後端部材17には
SCM440硬調質鋼材を使った。
Here, SACM645 was used for the main shaft end member 11, Invar alloy was used for the hollow cylindrical intervening member 12, and SCM440 hard tempered steel was used for the hollow cylindrical member 13, the keyway member 15, and the hollow cylindrical rear end member 17. .

なお、SCM440硬調材とCFRPの線膨張差による
ずれを押え接着の剥離を無くすように、CFRP製内N
10aとSCM440硬調材製中空円筒部材13との間
に低熱膨張合金であるインバー合金製の中空円筒介在部
材12を介装している。
In addition, in order to suppress the deviation due to the linear expansion difference between SCM440 high contrast material and CFRP and eliminate the peeling of the adhesive,
A hollow cylindrical intervening member 12 made of Invar alloy, which is a low thermal expansion alloy, is interposed between 10a and a hollow cylindrical member 13 made of SCM440 hard contrast material.

こうして得た本実施例による主軸■は、全長が1815
mm、重量(IP)が32kg、曲げ剛性(El)が6
゜4X10”kgf−mm”、捩り剛性<GIp>が2
.93X1010kg、7−mm”であり、熱膨張につ
いては温度が15°C上昇した時の寸法変化が9μ収縮
(−9μ)するだけであることが判った。
The main shaft (■) obtained in this example according to this example has a total length of 1815 mm.
mm, weight (IP) is 32 kg, bending rigidity (El) is 6
゜4X10"kgf-mm", torsional rigidity <GIp> is 2
.. 93 x 1010 kg, 7-mm'', and it was found that the dimensional change in thermal expansion was only 9μ shrinkage (-9μ) when the temperature increased by 15°C.

これを従来の鋼材だけで製作した主軸(当社製)と比較
したものが表2である。
Table 2 compares this with a conventional spindle (manufactured by our company) made only of steel.

表2 (1)主軸の重量が92kgから32kgへと軽量化す
ると、次の如きメリットがある。
Table 2 (1) Reducing the weight of the main shaft from 92 kg to 32 kg has the following advantages.

■ 慣性モーメントの減少による主軸制御性能の向上、
高速化容易。
■ Improved spindle control performance by reducing moment of inertia,
Easy to speed up.

本実施例による主軸では慣性モーメン トが従来の鋼材による主軸の25%と低下し、主軸を停
止状態から高速回転に単位時間に立上がらせるに必要な
トルクも鋼材製主軸比で25%となる。
The moment of inertia of the spindle according to this embodiment is 25% lower than that of a conventional steel spindle, and the torque required to start the spindle from a stopped state to high-speed rotation in a unit time is also 25% of the steel spindle.

このことは、高速回転への立上がり時 間の短縮につながり、高速化を容易にすることを意味し
、例えばタップ加工では正逆回転を高速で繰り返すこと
を可能にする。また、例えば同一時間で3000yJ、
mまで加速するのに要するトルクも本実施例による主軸
では従来の25%で足りるため、仕事量が少なく発熱も
小さい。その結果、省エネルギー並びに熱変位の減少に
つながる。
This means that the rise time to high-speed rotation is shortened, making it easier to increase the speed. For example, in tapping, it is possible to repeat forward and reverse rotation at high speed. Also, for example, 3000yJ in the same time,
Since the torque required to accelerate up to m is only 25% of the conventional torque for the spindle according to this embodiment, the amount of work is small and the heat generation is also small. This results in energy savings and reduction in thermal displacement.

■ 主軸の位置決め精度の向上。■ Improved spindle positioning accuracy.

主軸繰出し機構をもつ工作機械では、 主軸の軽量化により主軸繰出し時の滑り抵抗が減少し、
そのため繰出し機構の駆動系の捩れ角が小さくなって位
置決め精度が向上する。
In machine tools with a spindle feeding mechanism, the weight of the spindle is reduced, which reduces the slip resistance when feeding the spindle.
Therefore, the torsion angle of the drive system of the feeding mechanism is reduced, and positioning accuracy is improved.

(2)表2によれば本実施例によ・る主軸は剛性の面で
従来例より低い値となっているが、曲げ剛性及び捩り剛
性共に上記値でも十分に実用に供し得る。
(2) According to Table 2, the main shaft according to this embodiment has a lower rigidity than the conventional example, but the above values for both bending rigidity and torsional rigidity are sufficient for practical use.

何となれば、上記従来例の値は当社の製品を例にとった
もので、低速高トルク切削を対象としており、−船釣な
同クラスのマシニングセンタ用主軸では本実施例による
トルク(75kg、51)と同程度のものが多く、従っ
て剛性の点では十分であるといえる。
The values of the conventional example above are based on our product as an example, and are intended for low-speed, high-torque cutting. ), and therefore it can be said that the rigidity is sufficient.

(3)温度が15°C上昇したときの熱膨張が、本実施
例による主軸では9μ収縮するのに対し、従来例による
主軸では250μ伸びる。
(3) When the temperature increases by 15°C, the main shaft according to this embodiment contracts by 9μ, while the conventional main shaft expands by 250μ.

これは、特に穴の深さ方向の加工精度に影響するもので
、一般に加工時は主軸回りが発熱し、従来の主軸による
と温度上昇前の1個目の穴と15゛C上昇した時の9個
目の穴では深さに250μもの差が生じることになる。
This particularly affects the machining accuracy in the depth direction of the hole, and generally heat is generated around the spindle during machining. There will be a difference in depth of 250μ in the ninth hole.

一方、本実施例による主軸では単純にみても誤差10μ
以内に納まり、高精度で加工が可能であるが、更に工具
の切削時の発熱による伸び、例えば工具長300mmの
工具を使い工具温度が5°C上昇すると15μ伸びるこ
とを合わせると、主軸と工具の合計伸びは15(μ)−
9(μ)=6(μ)となり、より好都合な結果が得られ
る。
On the other hand, the spindle according to this embodiment has an error of 10μ even when viewed simply.
However, if you take into account the elongation of the tool due to the heat generated during cutting, for example, if a tool with a tool length of 300 mm is used and the tool temperature rises by 5°C, the tool will elongate by 15 μ. The total elongation is 15(μ)−
9(μ)=6(μ), which gives a more favorable result.

実施例2 主軸の本体をなす中空円筒構造体を実施例1と同じ形状
寸法になるよう、同じ材料を用いてフィラメントワイン
ド成形を行った。これを十分に硬化した後、研削加工と
切削加工を実施し、実施例1と同様に必要な部分に同種
の鋼材・合金材を接着し、再び機械加工して仕上げた。
Example 2 Filament wind molding was performed using the same material so that the hollow cylindrical structure forming the main body of the main shaft had the same shape and dimensions as in Example 1. After this was sufficiently hardened, grinding and cutting were performed, and the same type of steel or alloy material was adhered to the necessary parts in the same manner as in Example 1, and the product was finished by machining again.

必要な部分をマスキングした後、ボンドコート塗装を行
ってから硬化し、その上にCr2O,をプラズマ溶射し
、寸法通りになるよう研削した。
After masking the necessary parts, a bond coat was applied and then cured, and Cr2O was plasma sprayed on it, and it was ground to match the dimensions.

この軸の熱膨張や剛性は、実施例1と殆んど同じであっ
た。
The thermal expansion and rigidity of this shaft were almost the same as in Example 1.

実施例3 主軸の本体をなす中空円筒構造体を実施例iと同じ形状
寸法になるよう、同じ材料を用いてフィラメントワイン
ド成形を行った。これを十分に硬化した後、研削加工と
切削加工を実施し、実施例1と同様に必要な部分に同種
の鋼材・合金材を接着し、再びa械加工して仕上げた。
Example 3 Filament wind molding was performed using the same material so that the hollow cylindrical structure forming the main body of the main shaft had the same shape and dimensions as in Example i. After this was sufficiently hardened, grinding and cutting were performed, and the same type of steel/alloy material was adhered to the necessary parts in the same manner as in Example 1, and the product was finished by a-machining again.

必要な部分をマスキングした後、外表面に溶射用下地処
理を施し、その上から銅溶射処理を施した後、電気メッ
キによりCu、メッキ、硬質Crメッキを順次実施し、
寸法通りになるよう研削した。
After masking the necessary parts, a base treatment for thermal spraying is applied to the outer surface, a copper thermal spraying treatment is applied on top of that, and then Cu, plating, and hard Cr plating are sequentially performed by electroplating.
I ground it to size.

この軸の熱膨張や剛性は、実施例1と殆んど同じであっ
た。
The thermal expansion and rigidity of this shaft were almost the same as in Example 1.

(発明の効果) 以上、詳細に説明した如く本発明によれば、工作機械の
主軸としての軽量化が実現されると共に、軸方向の熱膨
張を少なくできるため、加工精度が一段と向上した。
(Effects of the Invention) As described above in detail, according to the present invention, the weight of the main shaft of a machine tool can be reduced, and thermal expansion in the axial direction can be reduced, so that machining accuracy is further improved.

更に、この軽量化と線膨張の低減は、省エネルギー並び
に高速化につながるものである。
Furthermore, this reduction in weight and linear expansion leads to energy savings and increased speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による工作機械の主軸の一実施例を示す
縦断面図、第2図は第1図のχ−X線による横断面図、
第3図は横巾ぐり盤の主軸ヘッド部の一部縦断面図であ
る。 図の主要部分の説明 ■・・−主軸 10a−CCFRPの)内層 10b−・・(CFRPの)外層 11、12.13.15.17.18・・−金属16−
キー溝
FIG. 1 is a vertical cross-sectional view showing an embodiment of the main shaft of a machine tool according to the present invention, FIG. 2 is a cross-sectional view taken along the χ-X line of FIG.
FIG. 3 is a partial vertical sectional view of the main shaft head of the width boring machine. Explanation of the main parts of the figure ■... - Main shaft 10a - Inner layer 10b (of CCFRP) - Outer layer 11, 12.13.15.17.18... - Metal 16 -
keyway

Claims (1)

【特許請求の範囲】 1、本体を繊維強化複合材料からなる中空円筒状構造物
により構成することを特徴とする 工作機械の主軸。 2、繊維として炭素繊維又はアラミド繊維を使用する請
求項1記載の主軸。 3、中空円筒状構造物の長手方向における線膨張係数の
絶対値が0.5×10^−^6℃^−^1以下である請
求項1又は2記載の主軸。 4、繊維の捲付角度が少なくとも2種類からなる請求項
1又は2記載の主軸。 5、炭素繊維の捲付角度の少なくとも1つが0°〜±1
5°の範囲にあり、少なくとも1つが±(40〜50)
°の範囲にある請求項4記載の主軸。 6、中空円筒状構造物の外周面、内周面又は端部の一部
又は全部に金属又はセラミックス を配した請求項1乃至5記載の主軸。 7、中空円筒状構造物と金属又はセラミックスの固定が
接着材による請求項6記載の主軸。 8、中空円筒状構造物と金属又はセラミックスの固定が
金属メッキ又はセラミックス溶射 による請求項6記載の主軸。 9、中空円筒状構造物と金属又はセラミックスの間に低
熱膨張金属を介装する請求項6又 は7記載の主軸。
[Scope of Claims] 1. A main shaft of a machine tool, characterized in that the main body is constituted by a hollow cylindrical structure made of a fiber-reinforced composite material. 2. The spindle according to claim 1, wherein carbon fiber or aramid fiber is used as the fiber. 3. The main shaft according to claim 1 or 2, wherein the hollow cylindrical structure has an absolute value of linear expansion coefficient in the longitudinal direction of 0.5×10^-^6°C^-^1 or less. 4. The spindle according to claim 1 or 2, wherein the winding angle of the fibers is at least two types. 5. At least one of the winding angles of carbon fiber is 0° to ±1
5° and at least one is ±(40-50)
5. The main axis according to claim 4, which is in the range of .degree. 6. The spindle according to any one of claims 1 to 5, wherein metal or ceramic is arranged on a part or all of the outer peripheral surface, inner peripheral surface, or end of the hollow cylindrical structure. 7. The main shaft according to claim 6, wherein the hollow cylindrical structure and the metal or ceramic are fixed by an adhesive. 8. The main shaft according to claim 6, wherein the hollow cylindrical structure and the metal or ceramic are fixed by metal plating or ceramic spraying. 9. The main shaft according to claim 6 or 7, wherein a low thermal expansion metal is interposed between the hollow cylindrical structure and the metal or ceramic.
JP1234218A 1988-09-26 1989-09-08 Spindle of machine tool Expired - Fee Related JP2756155B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1234218A JP2756155B2 (en) 1988-09-26 1989-09-08 Spindle of machine tool
DE4009461A DE4009461A1 (en) 1989-09-08 1990-03-23 SPINDLE FOR A TOOL MACHINE
US07/497,621 US5018915A (en) 1989-09-08 1990-03-23 Spindles of machine tools

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24016688 1988-09-26
JP63-240166 1988-09-26
JP1234218A JP2756155B2 (en) 1988-09-26 1989-09-08 Spindle of machine tool

Publications (2)

Publication Number Publication Date
JPH02167602A true JPH02167602A (en) 1990-06-28
JP2756155B2 JP2756155B2 (en) 1998-05-25

Family

ID=26531437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234218A Expired - Fee Related JP2756155B2 (en) 1988-09-26 1989-09-08 Spindle of machine tool

Country Status (1)

Country Link
JP (1) JP2756155B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174115B1 (en) 1997-03-28 2001-01-16 Sodick Co., Ltd. Spindle for machine tools
WO2006043170A2 (en) * 2004-10-22 2006-04-27 Jobs S.P.A. A machining head for machine tools with a shaft with low thermal expansion coefficient
JP2012187702A (en) * 2011-02-24 2012-10-04 Nsk Ltd Motor built-in type spindle device
WO2013011815A1 (en) 2011-07-20 2013-01-24 日本精工株式会社 Main shaft apparatus
JP2013022698A (en) * 2011-07-22 2013-02-04 Nsk Ltd Main spindle device
JP2013022699A (en) * 2011-07-22 2013-02-04 Nsk Ltd Motor built-in type main spindle device
JP2013022674A (en) * 2011-07-20 2013-02-04 Nsk Ltd Main spindle device
JP2013082018A (en) * 2011-10-06 2013-05-09 Nsk Ltd Spindle device of built-in motor system
JP2014014883A (en) * 2012-07-06 2014-01-30 Toshiba Mach Co Ltd Spindle device, machine tool including the same, and tool holder
WO2020144240A1 (en) * 2019-01-08 2020-07-16 Gühring KG Method for producing a fiber-plastics-composite tool component and fiber-plastics-composite tool component
JP2020168671A (en) * 2019-04-02 2020-10-15 Dmg森精機株式会社 Main spindle of machine tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176823A (en) * 2012-02-29 2013-09-09 Nsk Ltd Spindle device for machine tool
KR101456890B1 (en) * 2013-05-20 2014-11-20 주식회사 스토닉 Combination structure of spindle for machine tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165101U (en) * 1984-04-09 1985-11-01 三菱重工業株式会社 Machine tool spindle
JPS6396311A (en) * 1986-10-13 1988-04-27 Agency Of Ind Science & Technol High-speed rotary part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165101U (en) * 1984-04-09 1985-11-01 三菱重工業株式会社 Machine tool spindle
JPS6396311A (en) * 1986-10-13 1988-04-27 Agency Of Ind Science & Technol High-speed rotary part

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174115B1 (en) 1997-03-28 2001-01-16 Sodick Co., Ltd. Spindle for machine tools
WO2006043170A2 (en) * 2004-10-22 2006-04-27 Jobs S.P.A. A machining head for machine tools with a shaft with low thermal expansion coefficient
WO2006043170A3 (en) * 2004-10-22 2006-06-08 Jobs Spa A machining head for machine tools with a shaft with low thermal expansion coefficient
JP2012187702A (en) * 2011-02-24 2012-10-04 Nsk Ltd Motor built-in type spindle device
TWI503201B (en) * 2011-07-20 2015-10-11 Nsk Ltd Spindle device
WO2013011815A1 (en) 2011-07-20 2013-01-24 日本精工株式会社 Main shaft apparatus
EP3100805A1 (en) 2011-07-20 2016-12-07 NSK Ltd. Spindle device
JP2013022674A (en) * 2011-07-20 2013-02-04 Nsk Ltd Main spindle device
EP3098004A1 (en) 2011-07-20 2016-11-30 NSK Ltd. Spindle device
JP2013022699A (en) * 2011-07-22 2013-02-04 Nsk Ltd Motor built-in type main spindle device
JP2013022698A (en) * 2011-07-22 2013-02-04 Nsk Ltd Main spindle device
JP2013082018A (en) * 2011-10-06 2013-05-09 Nsk Ltd Spindle device of built-in motor system
JP2014014883A (en) * 2012-07-06 2014-01-30 Toshiba Mach Co Ltd Spindle device, machine tool including the same, and tool holder
WO2020144240A1 (en) * 2019-01-08 2020-07-16 Gühring KG Method for producing a fiber-plastics-composite tool component and fiber-plastics-composite tool component
JP2020168671A (en) * 2019-04-02 2020-10-15 Dmg森精機株式会社 Main spindle of machine tool

Also Published As

Publication number Publication date
JP2756155B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US5018915A (en) Spindles of machine tools
JPH02167602A (en) Spindle of machine tool
US9446454B2 (en) Segmented orbital drill
CN103003014B (en) Main shaft apparatus
US5641252A (en) Method for producing holes in fibre reinforced composites
CN105610259B (en) Rotor component, rotary shaft, rotor, motor and lathe
JPH02238930A (en) Hollow cylindrical molded item
US6773211B2 (en) Orbital drilling cutting tool
CN102825431A (en) Machining method of high-abrasion resistance valve core
JP2010179379A (en) Drilling method
JP4083680B2 (en) High rigidity composite tool bar
KR950012531B1 (en) Yarn winding apparatus
CN105479097A (en) CuCr contact surface finishing equipment and method
CN110815504B (en) Processing technology of ceramic tile stamping die
Santhanakrishnan et al. High speed steel tool wear studies in machining of glass-fibre-reinforced plastics
JPH09277106A (en) Boring bar
CN111438962B (en) Foam sandwich carbon fiber flywheel and manufacturing method thereof
US20050153821A1 (en) Method of making a metal outer surface about a composite or polymer cylindrical core
JPS61119874A (en) Cylinder device
JP2724120B2 (en) Reamer for composite material processing
CN110170849A (en) A kind of multi-functional processing assembly of lathe
CN209868344U (en) Composite grinding wheel for ultrahigh-speed grinding
KR100589618B1 (en) Hybrid Bite Holder for Cutting Bite
KR100578070B1 (en) Composite Bite Holder Used in Multi Stage Inside Cutting
KR102298934B1 (en) Manufacturing method of compound roller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees