JP2013081907A - Method and device for desalting soil - Google Patents

Method and device for desalting soil Download PDF

Info

Publication number
JP2013081907A
JP2013081907A JP2011223926A JP2011223926A JP2013081907A JP 2013081907 A JP2013081907 A JP 2013081907A JP 2011223926 A JP2011223926 A JP 2011223926A JP 2011223926 A JP2011223926 A JP 2011223926A JP 2013081907 A JP2013081907 A JP 2013081907A
Authority
JP
Japan
Prior art keywords
soil
electrode
desalting
depth
electrolytic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011223926A
Other languages
Japanese (ja)
Inventor
Hajime Nakayama
元 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011223926A priority Critical patent/JP2013081907A/en
Publication of JP2013081907A publication Critical patent/JP2013081907A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for desalting soil, which can easily remove salt content from soil without almost requiring manual operation.SOLUTION: There is provided the method for desalting soil in which a bar-like in-soil electrode 1 is buried in soil for which desalting is executed, a soil surface electrode 3 is installed on the surface of the soil for covering an area subjected to the desalting, a direct current is sent between both the electrodes, chloride ions in the soil are moved to a positive electrode side of both the electrodes and the salt content is removed from the soil having a depth required for at least crop growth.

Description

本発明は、海水が浸水した田畑から塩分を除去し、土壌の改質を行う土壌の脱塩方法及び土壌の脱塩装置に関するものである。   TECHNICAL FIELD The present invention relates to a soil desalting method and a soil desalting apparatus for removing salt from a field flooded with seawater and modifying the soil.

津波、高潮等により田畑に海水が浸水した場合、特に、田畑が完全に海水に没水した場合等では、海水が土中に浸透し、海水が引いた場合でも、土表ばかりでなく、土中にも塩分が残留する。この場合、塩害により作物の成長が阻害される。従って、米、野菜等作物を作付けする場合、先ず、田畑から、塩分を除去する必要がある。   When seawater is inundated into a field by tsunami, storm surge, etc., especially when the field is completely submerged in seawater, even if the seawater penetrates into the ground and the seawater is pulled, Salinity also remains inside. In this case, the growth of crops is inhibited by salt damage. Therefore, when planting crops such as rice and vegetables, it is first necessary to remove salt from the fields.

現在、例えば田圃から塩分を除去する方法としては、田圃に水をはり、土を掻き回し、塩分を希釈し、その後排水する。残留する塩分が所定の濃度以下となる迄、この作業を幾度か繰返すことが行われている。斯かる作業は、費用と時間が掛り、又膨大な人手作業が必要である。   At present, for example, as a method for removing salt from rice fields, water is applied to the rice fields, the soil is stirred, the salt content is diluted, and then drained. This operation is repeated several times until the residual salinity is below a predetermined concentration. Such work is costly and time consuming and requires a large amount of manual work.

更に、畑等では、大量の水を確保することが困難であり、水を用いて塩分を希釈して、除去する方法は実施できない。   Furthermore, in fields and the like, it is difficult to secure a large amount of water, and a method of diluting and removing salt using water cannot be performed.

尚、特許文献1には、コンクリートの塩害を防止する為、コンクリート表面に電解質を浸透させると共に電流を通電し、塩化物イオン(Cl- )をコンクリート表面に設けた+電極に引寄せ、塩化物イオンを除去する方法が開示されている。 In Patent Document 1, in order to prevent salt damage to concrete, an electrolyte is infiltrated into the concrete surface and an electric current is applied to attract chloride ions (Cl ) to the + electrode provided on the concrete surface, A method for removing ions is disclosed.

又、特許文献2には、干拓地、海面埋立て地等を短期的に緑化土壌に改良する方法が示され、土壌改良材として、過リン酸石灰等のリン酸供給源、石膏、硫酸カルシウム等のカルシウム供給源、パーライト、粘土焼成品等の保水性の高い無機質、落ち葉、堆肥等の有機性栄養源等を土に混入し、雨水や散水程度の通水による除去が提起されている。   Patent Document 2 discloses a method for improving a reclaimed land, sea surface landfill, etc. to a green soil in the short term. As a soil improving material, a phosphate supply source such as lime superphosphate, gypsum, calcium sulfate. It has been proposed to remove soil by mixing rainwater and watering water, such as calcium sources such as pearlite and clay, and organic nutrients such as fallen leaves and compost.

特開平7−89773号公報JP 7-89773 A 特開2006−219604号公報JP 2006-219604 A 特開2003−175383号公報JP 2003-175383 A 特開2003−27262号公報JP 2003-27262 A

本発明は斯かる実情に鑑み、簡便に而も人手作業を殆ど必要とすることなく、土壌から塩分の除去を可能とする土壌の脱塩方法及び土壌の脱塩装置を提供するものである。   In view of such circumstances, the present invention provides a soil desalting method and a soil desalting apparatus that can easily remove salt from soil without requiring manual labor.

本発明は、脱塩を実施する土壌中に棒状の土中電極を埋設し、土壌の表面に脱塩を実施する範囲を覆う土表電極を設置し、両電極間に直流電流を通電し、土壌中の塩化物イオンを両電極の内+電極側に移動させ、少なくとも作物の成長に必要な深さの土中から塩分を除去する土壌の脱塩方法に係るものである。   The present invention embeds a rod-shaped soil electrode in the soil to be desalted, installs a soil surface electrode that covers the area to be desalted on the surface of the soil, energizes a direct current between both electrodes, The present invention relates to a method for desalinating soil in which chloride ions in soil are moved to the + electrode side of both electrodes, and salt is removed from the soil at a depth necessary for growing the crop at least.

又本発明は、前記土壌の表面の脱塩範囲に電解層を形成し、前記土表電極を+電極とし、前記電解層に塩化物イオンを捕集し、脱塩処理後前記電解層を除去する土壌の脱塩方法に係るものである。   In the present invention, an electrolytic layer is formed in the desalting range of the soil surface, the soil surface electrode is a positive electrode, chloride ions are collected in the electrolytic layer, and the electrolytic layer is removed after the desalting treatment. It relates to a method of desalting soil.

又本発明は、前記土中電極の先端部が+電極として機能する様に、先端部を除いて絶縁処理し、前記先端部の深さを、作物の成長に必要な深さより深くし、塩分濃度を作物の成長に必要な深さより下方に濃縮させる土壌の脱塩方法に係るものである。   Further, the present invention provides an insulating treatment except for the tip so that the tip of the soil electrode functions as a positive electrode, and makes the depth of the tip deeper than a depth necessary for crop growth, It relates to a method for desalinating soil in which the concentration is concentrated below the depth necessary for crop growth.

又本発明は、前記土中電極の周囲に、電気抵抗の大きい嫌電流層を形成した土壌の脱塩方法に係るものである。   The present invention also relates to a soil desalting method in which an electroless layer having a large electrical resistance is formed around the soil electrode.

又本発明は、脱塩を実施する土壌中に埋設され、下端部が電極として機能し、下端部の位置が作物の成長に必要な深さより更に深い棒状の土中電極と、土壌の表面の脱塩を実施する範囲を覆う土表電極と、両電極間に直流電流を通電する定電流電源とを具備する土壌の脱塩装置に係るものである。   Further, the present invention is embedded in soil for desalination, the lower end portion functions as an electrode, the lower end portion has a rod-like soil electrode deeper than the depth necessary for crop growth, and the surface of the soil. The present invention relates to a soil desalination apparatus comprising a soil surface electrode covering a range where desalting is performed, and a constant current power source for passing a direct current between both electrodes.

又本発明は、土壌の表面の脱塩を実施する範囲を覆う電解層を形成し、該電解層は吸収材に電解液を含浸させて構成された土壌の脱塩装置に係るものである。   The present invention also relates to a soil desalination apparatus in which an electrolytic layer is formed to cover a range where the desalting of the surface of the soil is performed, and the electrolytic layer is impregnated with an electrolytic solution in an absorbent material.

本発明によれば、脱塩を実施する土壌中に棒状の土中電極を埋設し、土壌の表面に脱塩を実施する範囲を覆う土表電極を設置し、両電極間に直流電流を通電し、土壌中の塩化物イオンを両電極の内+電極側に移動させ、少なくとも作物の成長に必要な深さの土中から塩分を除去するので、簡便に而も人手作業を殆ど必要とすることなく、又水を使用することなく、土壌から塩分の除去を可能とすることができる。   According to the present invention, a rod-shaped soil electrode is embedded in the soil to be desalted, a soil surface electrode is installed on the surface of the soil to cover the area to be desalted, and a direct current is passed between both electrodes. In addition, it moves the chloride ions in the soil to the + electrode side of both electrodes and removes the salt from the soil at least at the depth necessary for the growth of the crop, so it is easy and requires almost manual work. It is possible to remove salt from the soil without using water.

又本発明によれば、脱塩を実施する土壌中に埋設され、下端部が電極として機能し、下端部の位置が作物の成長に必要な深さより更に深い棒状の土中電極と、土壌の表面の脱塩を実施する範囲を覆う土表電極と、両電極間に直流電流を通電する定電流電源とを具備するので、両電極間に通電し放電しておけば少なくとも作物の成長に必要な深さの土中から塩分を除去でき、簡便に而も人手作業を殆ど必要とすることなく、又水を使用することなく、土壌から塩分の除去を可能とすることができるという優れた効果を発揮する。   According to the present invention, the rod-shaped soil electrode embedded in the soil for desalination, the lower end functions as an electrode, and the position of the lower end is deeper than the depth necessary for the growth of the crop, It is equipped with a ground electrode that covers the area where surface desalting is to be performed and a constant current power source that allows direct current to flow between both electrodes. It can remove salt from soil at a deep depth, and can easily remove salt from soil without requiring manual labor and without using water. Demonstrate.

本発明の第1の実施例を示す模式図である。It is a schematic diagram which shows the 1st Example of this invention. 本発明の第2の実施例を示す模式図である。It is a schematic diagram which shows the 2nd Example of this invention.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

津波、高潮等により田畑が海水に浸漬し、海水が引いた後、土中に残留した塩分は塩化物イオン(−イオン)の状態で存在している。本発明では、地表に電極を設置すると共に土中に電極を埋設し、両電極間に通電し、塩化物イオンを正電極側に引寄せ、作物の栽培に必要な範囲から塩化物イオンを排除するものである。   After the fields are immersed in seawater due to tsunami, storm surge, etc., and the seawater is pulled, the salinity remaining in the soil exists in the form of chloride ions (-ions). In the present invention, electrodes are installed on the ground surface, electrodes are embedded in the soil, electricity is passed between both electrodes, chloride ions are attracted to the positive electrode side, and chloride ions are excluded from the range necessary for crop cultivation. To do.

先ず、図1を参照して第1の実施例を説明する。   First, a first embodiment will be described with reference to FIG.

図1は、第1の実施例の模式図であり、土中に所定の深さとなる様土中電極1を埋設し、土表に電解層2を形成し、該電解層2の表面、又は該電解層2内に土表電極3を敷設し、前記土中電極1と前記土表電極3に直流定電流電源4を接続する。又、前記土中電極1は前記直流定電流電源4の−電極に接続し、前記土表電極3は前記直流定電流電源4の+電極に接続する。   FIG. 1 is a schematic diagram of the first embodiment, in which a ground electrode 1 having a predetermined depth is buried in the soil, an electrolytic layer 2 is formed on the soil surface, and the surface of the electrolytic layer 2 or A ground electrode 3 is laid in the electrolytic layer 2, and a DC constant current power source 4 is connected to the soil electrode 1 and the ground electrode 3. The earth electrode 1 is connected to the negative electrode of the DC constant current power source 4, and the earth electrode 3 is connected to the positive electrode of the DC constant current power source 4.

前記土中電極1は、材質を腐食しない金属材料(溶融して金属イオンを発生しないもの)、例えばチタン製の棒状電極とし、下端部1aのみを露出させて絶縁材料で被覆する。埋設の方法としては、例えば土中に垂直に挿入するものとする。又、電極となる前記下端部1aは、チタンそのものとしてもよいが通常の状態ではチタン表面には酸化膜(TiO2 )が形成されており、電極材料としては電解効率が悪いので、表層に白金メッキ処理する、或はルテニウムの酸化物で被覆する等が好ましい。 The underground electrode 1 is a metal material that does not corrode the material (that does not melt and generate metal ions), for example, a rod-shaped electrode made of titanium, and is covered with an insulating material with only the lower end portion 1a exposed. As a method of embedding, for example, it is assumed to be inserted vertically into the soil. In addition, the lower end portion 1a serving as an electrode may be titanium itself, but in a normal state, an oxide film (TiO 2 ) is formed on the titanium surface, and the electrolysis efficiency is poor as an electrode material. It is preferable to perform gold plating or coat with ruthenium oxide.

更に、前記土中電極1を埋設する深さ、即ち前記下端部1aの深さは、脱塩処理する土壌の範囲、土壌の質にもよるが、目安として脱塩深さが1m程度で、10m四方とすると、5m以上の深さとするのが好ましい。従って、前記土中電極1は、5mの深さ迄挿入できる(押込み力に耐え得る)強度が要求され、φ10mm〜30mm程度のものが用いられる。前記土中電極1の埋設の姿勢は、垂直であっても斜めであっても良く、要は前記下端部1aの深さが、求められる脱塩の深さより深くなっていればよい。   Furthermore, the depth of embedding the electrode 1 in the soil, that is, the depth of the lower end 1a depends on the range of soil to be desalted and the quality of the soil, but the desalting depth is about 1 m as a guideline. If it is 10 m square, the depth is preferably 5 m or more. Therefore, the soil electrode 1 is required to have a strength that can be inserted to a depth of 5 m (can withstand the pushing force), and those having a diameter of about 10 mm to 30 mm are used. The underground electrode 1 may be buried vertically or obliquely. In short, it is only necessary that the depth of the lower end 1a is deeper than the required desalting depth.

更に、土壌と前記土中電極1との間に生じるギャップは、電流流路となって、土壌中を流れる電流が減少してしまう可能性がある。従って、好ましくは、前記土中電極1の周囲の電気抵抗が大きくなる様に、該土中電極1の周囲に嫌電流層6を形成する。   Furthermore, the gap generated between the soil and the soil electrode 1 becomes a current flow path, and there is a possibility that the current flowing in the soil is reduced. Therefore, preferably, the electroless layer 6 is formed around the soil electrode 1 so that the electrical resistance around the soil electrode 1 is increased.

該嫌電流層6を形成する一例としては、土壌中に残置しても、作物の成長に影響のない物質、石灰石を粉砕したもの等を前記土中電極1と土壌間に投入、或は土壌に混ぜる等する。   As an example of forming the anaerobic layer 6, a substance which does not affect the growth of crops even if left in the soil, pulverized limestone, etc. are put between the soil electrode 1 and the soil, or the soil Etc.

前記土表電極3は、脱塩したい範囲を覆う広さを有し、塩化物イオンによって腐食されない金属材料、例えば前記チタン製、或はチタンに白金メッキ処理したもの或はチタンをルテニウムの酸化物で被覆したもの等が用いられる。   The earth surface electrode 3 is wide enough to cover the area to be desalted and is not corroded by chloride ions, for example, made of the above-mentioned titanium, titanium plated with titanium, or ruthenium oxide of titanium. The one coated with is used.

又、前記電解層2は、吸収材に電解液を含浸させたものとし、吸収材としては、例えばポリアクリル酸ナトリウムを顆粒状にしたもの等が挙げられ、厚みは数cm〜10cm程度が好ましい。又、脱塩処理後は、前記電解層2を単体で除去できる様にする。更に、電解液としては、脱塩処理後に土壌に悪影響を残さないものが用いられ、特許文献2に記載されている様な土壌改良材の成分、或は特許文献3及び特許文献4に記載されている様な塩化物イオン等の陰イオンを特異的に吸着する物質等が挙げられる。   The electrolytic layer 2 is obtained by impregnating an absorbent material with an electrolytic solution. Examples of the absorbent material include those obtained by granulating sodium polyacrylate, and the thickness is preferably about several cm to 10 cm. . Further, after the desalting treatment, the electrolytic layer 2 can be removed alone. Further, as the electrolytic solution, one that does not adversely affect the soil after the desalting treatment is used, and the components of the soil improver as described in Patent Document 2 or Patent Document 3 and Patent Document 4 are described. And the like that specifically adsorb anions such as chloride ions.

前記直流定電流電源4は、脱塩に必要な電流を供給するものである。脱塩に必要とされる電流密度は、1A/m2 程度とされる。尚、脱塩に最適な電流密度は土壌の質等によって変動があり、最適な電流密度については、脱塩の対象となる土壌によって決定される。 The DC constant current power source 4 supplies a current necessary for desalting. The current density required for desalting is about 1 A / m 2 . The optimum current density for desalting varies depending on the soil quality and the like, and the optimum current density is determined by the soil to be desalted.

脱塩に必要とされる電流密度は、1A/m2 として、10m四方即ち100m2 当り100Aとなる。又、1A/m2 の定電流を流す場合の電圧は、高々数Vであるので、100Vの商用電源を前提とすれば、数Aとなり、商用電源で充分賄える容量である。更に、太陽電池等の電源と併用等すると更に合理的に脱塩の電力の供給が可能となる。 The current density required for desalination as 1A / m 2, a 10m square ie 100 m 2 per 100A. Further, since the voltage when a constant current of 1 A / m 2 is supplied is several V at most, assuming a 100 V commercial power supply, the voltage is several A, which is a capacity that can be sufficiently covered by the commercial power supply. Furthermore, if it is used in combination with a power source such as a solar battery, it becomes possible to supply power for desalination more rationally.

前記土中電極1と前記土表電極3間に定電流を通電すると、前記土中電極1、前記土表電極3が、不溶性電極(電極が溶けて金属イオンを発生しないもの)であるので、電極側から陽イオンの供給がなく、土中の陰イオンである塩化物イオンが前記土表電極3側に移動し、前記電解層2に捕集される。   When a constant current is passed between the earth electrode 1 and the earth electrode 3, the earth electrode 1 and earth electrode 3 are insoluble electrodes (those that the electrode melts and does not generate metal ions) There is no supply of cations from the electrode side, and chloride ions, which are anions in the soil, move to the soil surface electrode 3 side and are collected by the electrolytic layer 2.

尚、本実施例では、電極近傍迄移動する様な条件で電解を実施するものであり、電解反応が生じない条件とする。従って、塩素ガス(有毒)が発生せず、塩化物イオンは前記電解層2に捕集され、濃縮された状態となる。所要期間通電(電解)を行い、前記電解層2を除去し、破棄することで、遺漏なく土壌中から塩化物イオンを完全に除去できる。又、前記電解層2は、吸収材で構成されているので、取扱いは容易である。   In this embodiment, the electrolysis is performed under conditions that move to the vicinity of the electrodes, and the conditions are such that no electrolytic reaction occurs. Therefore, chlorine gas (toxic) is not generated, and chloride ions are collected and concentrated in the electrolytic layer 2. By conducting energization (electrolysis) for a required period, removing and discarding the electrolytic layer 2, chloride ions can be completely removed from the soil without omission. Further, since the electrolytic layer 2 is made of an absorbent material, it is easy to handle.

尚、電解中、塩化物イオンだけが引寄せられるわけではなく、他の陰イオン(OH- )も引寄せられるが、電極からのイオンの供給がないので、下記の変化は起らない。
4OH- →2H2 O+O2 ↑+4e-
During electrolysis, not only chloride ions are attracted, but other anions (OH ) are also attracted, but since no ions are supplied from the electrodes, the following changes do not occur.
4OH → 2H 2 O + O 2 ↑ + 4e

同様に、O2 には至らない。従って、OH- は濃化し、環境はアルカリ化が進行する。 Similarly, it does not lead to O 2 . Accordingly, OH is concentrated and the environment is alkalized.

又、塩化物イオンや、OH- が濃化した状態で電解を終了して放置すると、外部からの電解が無い状態で、電気的中性を保つ為に、陽イオン、例えば、Na+ やK+ 等が移動してくる。 In addition, when the electrolysis is terminated and left in a state where chloride ions or OH is concentrated, a cation such as Na + or K is used to maintain electrical neutrality without any external electrolysis. + Etc. move.

従って、脱塩を実施する前にNaOH、KOHが生成した場合の中和剤を土壌中に混合し、撹拌しておく。中和剤としては、例えば過リン酸石灰、硫酸カルシウム等である。   Therefore, before carrying out desalting, the neutralizing agent when NaOH and KOH are produced is mixed in the soil and stirred. Examples of the neutralizing agent include lime superphosphate and calcium sulfate.

尚、事前に中和剤を土壌中に混合する為、耕耘機等により、土壌を必要とされる深さ迄混返し、撹拌することで、土壌の均質化が図れる。この為、特異的に電流が流れ易くなっている経路が崩される為、脱塩電解が均一に行われる効果も期待できる。   In addition, since the neutralizing agent is mixed in the soil in advance, the soil can be homogenized by mixing and stirring the soil to the required depth with a tiller or the like. For this reason, since the path | route where the electric current flows easily specifically is destroyed, the effect that desalting electrolysis is performed uniformly can also be expected.

次に、図1中、曲線Aは海水が浸漬後、土中に残留する塩分濃度を示している。前記土中電極1の位置(即ち前記下端部1aの位置)は、海水が含浸した最下位置より更に下方となる様に設置する。   Next, in FIG. 1, a curve A indicates a salinity concentration remaining in the soil after seawater is immersed. The position of the underground electrode 1 (that is, the position of the lower end 1a) is set to be further below the lowest position impregnated with seawater.

前記土中電極1、前記土表電極3間に通電することで、土中の塩化物イオンは+電極である前記土表電極3側に引かれて移動し、前記電解層2内に捕集され、該電解層2を泳動した状態となる。土中に通電し、塩化物イオンが前記電解層2に捕集された状態での塩分濃度は曲線Bに示される。   By energizing between the earth electrode 1 and the earth electrode 3, chloride ions in the earth are attracted and moved to the earth electrode 3 side, which is a positive electrode, and collected in the electrolytic layer 2. Then, the electrolytic layer 2 is migrated. The salt concentration in a state where electricity is passed through the soil and chloride ions are collected in the electrolytic layer 2 is shown by a curve B.

尚、本実施例による脱塩をする場合に、土中の塩分濃度が0になる必要はなく、作物の成長に支障を及ぼさない程度に除去できればよい。又、作物の成長に支障ない塩分濃度は、作物によっても異なり、例えば、水田の場合、0.4%を上回ると稲の生育に支障をきたし、0.1%程度でも影響があるとされている。   In the case of desalting according to the present embodiment, the salinity concentration in the soil does not have to be 0, and it may be removed to the extent that does not hinder the growth of the crop. Also, the salinity that does not hinder the growth of crops varies depending on the crop. For example, in the case of paddy fields, if it exceeds 0.4%, it will hinder rice growth, and even about 0.1% is said to have an effect. Yes.

所定期間脱塩を実施した後、土中の塩分濃度が所定の値となると、前記電解層2を除去し、更に前記土中電極1、前記土表電極3を除去する。   After carrying out desalting for a predetermined period, when the salt concentration in the soil reaches a predetermined value, the electrolytic layer 2 is removed, and the soil electrode 1 and the soil surface electrode 3 are further removed.

図2は、第2の実施例を示している。   FIG. 2 shows a second embodiment.

第2の実施例では、土中電極1を直流定電流電源4の+電極に接続し、土表電極3を前記直流定電流電源4の−電極に接続したものである。尚、第2の実施例に於いて、前記土中電極1、前記土表電極3の構成等は第1の実施例と同様であるので、以下説明を省略する。   In the second embodiment, the earth electrode 1 is connected to the + electrode of the DC constant current power source 4, and the earth surface electrode 3 is connected to the − electrode of the DC constant current power source 4. In the second embodiment, the construction of the soil electrode 1 and the soil surface electrode 3 is the same as that of the first embodiment, and the description thereof will be omitted.

第2の実施例では、前記土中電極1が+電極であるので、土壌中に泳動している塩化物イオンは、前記土中電極1の下端部1aに引寄せられる。従って、塩分濃度は土中深くなる程大きくなる。図2中、曲線Aは海水が浸漬後、土中に残留する塩分濃度を示し、曲線Bは本実施例で脱塩処理を行った後の塩分濃度を示している。   In the second embodiment, since the soil electrode 1 is a positive electrode, chloride ions migrating into the soil are attracted to the lower end 1 a of the soil electrode 1. Accordingly, the salinity increases as the depth increases in the soil. In FIG. 2, curve A shows the salinity concentration remaining in the soil after the seawater is immersed, and curve B shows the salinity concentration after the desalting treatment in this example.

作物が成長する必要な土壌の深さDで、所定の塩分濃度以下になっておればよく、前記下端部1aの土中の深さは、深さDで所定の塩分濃度以下が得られる様に設定される。   It suffices if the depth D of the soil necessary for the crop to grow is less than or equal to a predetermined salinity, and the depth of the lower end portion 1a in the soil is less than a predetermined salinity at the depth D. Set to

尚、第2の実施例の場合、電解層2は省略することもできる。   In the case of the second embodiment, the electrolytic layer 2 can be omitted.

1 土中電極
1a 下端部
2 電解層
3 土表電極
4 直流定電流電源
6 嫌電流層
DESCRIPTION OF SYMBOLS 1 Underground electrode 1a Lower end part 2 Electrolytic layer 3 Earth surface electrode 4 DC constant current power supply 6 Negative current layer

Claims (6)

脱塩を実施する土壌中に棒状の土中電極を埋設し、土壌の表面に脱塩を実施する範囲を覆う土表電極を設置し、両電極間に直流電流を通電し、土壌中の塩化物イオンを両電極の内+電極側に移動させ、少なくとも作物の成長に必要な深さの土中から塩分を除去することを特徴とする土壌の脱塩方法。   A rod-shaped soil electrode is embedded in the soil to be desalted, and a soil surface electrode is installed on the surface of the soil to cover the area where desalting is to be performed. A method for desalinating soil, characterized in that salt ions are removed from the soil at a depth necessary for growing a crop at least by moving object ions to the + electrode side of both electrodes. 前記土壌の表面の脱塩範囲に電解層を形成し、前記土表電極を+電極とし、前記電解層に塩化物イオンを捕集し、脱塩処理後前記電解層を除去する請求項1の土壌の脱塩方法。   The electrolytic layer is formed in the desalting range of the surface of the soil, the soil surface electrode is used as a positive electrode, chloride ions are collected in the electrolytic layer, and the electrolytic layer is removed after the desalting treatment. Soil desalination method. 前記土中電極の先端部が+電極として機能する様に、先端部を除いて絶縁処理し、前記先端部の深さを、作物の成長に必要な深さより深くし、塩分濃度を作物の成長に必要な深さより下方に濃縮させる請求項1の土壌の脱塩方法。   The tip of the soil electrode is insulated so that the tip functions as a positive electrode, and the depth of the tip is made deeper than the depth necessary for growing the crop, and the salinity is increased. The soil desalination method according to claim 1, wherein the soil is concentrated below a depth required for the soil. 前記土中電極の周囲に、電気抵抗の大きい嫌電流層を形成した請求項1〜請求項3のいずれかの土壌の脱塩方法。   The soil desalination method according to any one of claims 1 to 3, wherein an electroless layer having a large electrical resistance is formed around the soil electrode. 脱塩を実施する土壌中に埋設され、下端部が電極として機能し、下端部の位置が作物の成長に必要な深さより更に深い棒状の土中電極と、土壌の表面の脱塩を実施する範囲を覆う土表電極と、両電極間に直流電流を通電する定電流電源とを具備することを特徴とする土壌の脱塩装置。   Desalting the surface of the soil and the rod-shaped soil electrode that is buried in the soil where desalination is performed, the lower end functions as an electrode, and the position of the lower end is deeper than the depth required for crop growth A soil desalination apparatus comprising a soil surface electrode covering a range and a constant current power source for passing a direct current between both electrodes. 土壌の表面の脱塩を実施する範囲を覆う電解層を形成し、該電解層は吸収材に電解液を含浸させて構成された請求項5の土壌の脱塩装置。   The soil desalination apparatus according to claim 5, wherein an electrolytic layer is formed to cover a range where the desalting of the surface of the soil is performed, and the electrolytic layer is formed by impregnating an absorbent with an electrolytic solution.
JP2011223926A 2011-10-11 2011-10-11 Method and device for desalting soil Pending JP2013081907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223926A JP2013081907A (en) 2011-10-11 2011-10-11 Method and device for desalting soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223926A JP2013081907A (en) 2011-10-11 2011-10-11 Method and device for desalting soil

Publications (1)

Publication Number Publication Date
JP2013081907A true JP2013081907A (en) 2013-05-09

Family

ID=48527684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223926A Pending JP2013081907A (en) 2011-10-11 2011-10-11 Method and device for desalting soil

Country Status (1)

Country Link
JP (1) JP2013081907A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228360A (en) * 2013-05-21 2014-12-08 国立大学法人秋田大学 Decontamination device and decontamination method of radioactive contamination soil
JP2015099105A (en) * 2013-11-20 2015-05-28 国立大学法人 香川大学 Decontamination apparatus and decontamination method for soil containing radioactive substances
CN107258134A (en) * 2017-06-29 2017-10-20 天津大学 A kind of saline land greening drives salt method with low-voltage DC
CN109908527A (en) * 2019-04-15 2019-06-21 武汉轻工大学 A kind of garbage flying ash processing unit and the method for handling garbage flying ash

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336842A (en) * 1992-06-11 1993-12-21 Toyo Denka Kogyo Kk Desalting method for salty soil
JPH08257542A (en) * 1995-03-20 1996-10-08 Nissui Kiko Kk Method and electrode for removing heavy metal diffused in soil
JPH0959618A (en) * 1995-08-23 1997-03-04 Kubota Corp Method for controlling salt concentration of soil and apparatus therefor
JPH09176615A (en) * 1995-12-27 1997-07-08 Toyo Denka Kogyo Kk Method for removing salt from saline soil
JPH1085717A (en) * 1996-09-17 1998-04-07 Toshiba Corp Method and device for recovering metal
JP2002224657A (en) * 2001-02-02 2002-08-13 Ohbayashi Corp Restoration method for contaminated soil
JP2002361227A (en) * 2001-06-04 2002-12-17 Babcock Hitachi Kk Method and device for treating soil
US20090142137A1 (en) * 2007-11-26 2009-06-04 Pioneer Professional Services Group Ltd. Assessment and remediation process for contaminated sites

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336842A (en) * 1992-06-11 1993-12-21 Toyo Denka Kogyo Kk Desalting method for salty soil
JPH08257542A (en) * 1995-03-20 1996-10-08 Nissui Kiko Kk Method and electrode for removing heavy metal diffused in soil
JPH0959618A (en) * 1995-08-23 1997-03-04 Kubota Corp Method for controlling salt concentration of soil and apparatus therefor
JPH09176615A (en) * 1995-12-27 1997-07-08 Toyo Denka Kogyo Kk Method for removing salt from saline soil
JPH1085717A (en) * 1996-09-17 1998-04-07 Toshiba Corp Method and device for recovering metal
JP2002224657A (en) * 2001-02-02 2002-08-13 Ohbayashi Corp Restoration method for contaminated soil
JP2002361227A (en) * 2001-06-04 2002-12-17 Babcock Hitachi Kk Method and device for treating soil
US20090142137A1 (en) * 2007-11-26 2009-06-04 Pioneer Professional Services Group Ltd. Assessment and remediation process for contaminated sites

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228360A (en) * 2013-05-21 2014-12-08 国立大学法人秋田大学 Decontamination device and decontamination method of radioactive contamination soil
JP2015099105A (en) * 2013-11-20 2015-05-28 国立大学法人 香川大学 Decontamination apparatus and decontamination method for soil containing radioactive substances
CN107258134A (en) * 2017-06-29 2017-10-20 天津大学 A kind of saline land greening drives salt method with low-voltage DC
CN109908527A (en) * 2019-04-15 2019-06-21 武汉轻工大学 A kind of garbage flying ash processing unit and the method for handling garbage flying ash

Similar Documents

Publication Publication Date Title
Bejan et al. Acid mine drainage: electrochemical approaches to prevention and remediation of acidity and toxic metals
CN102976472B (en) Groundwater remediation method by Electro-Fenton reaction using iron cathode
JP6030753B2 (en) Method and apparatus for improving saline alkaline soil.
CN104787890A (en) Intelligent floating island water treatment apparatus
JP2013081907A (en) Method and device for desalting soil
CN103896369A (en) Electrochemical device for treating pollution caused by organic matters and inorganic matters in soil and underground water and application of electrochemical device
CN106424117B (en) Mantoquita strengthens cathode electro reclamation heavy-metal contaminated soil device
Lu et al. Electrochemical decrease of sulfide in sewage by pulsed power supply
WO2010047394A1 (en) Coral cultivation method, manufacturing method for coral-growth substrate precipitated with electrodeposited minerals, and coral-growth substrate
CN110947751B (en) Device and method for restoring cadmium-polluted soil through electric auxiliary leaching
CN105642664B (en) A kind of reinforced electric power original position soil prosthetic device and method
WO2016024408A1 (en) Iron supplying member for environmental water, iron supplying member maintenance method and method for supplying iron to environmental water
JP6776080B2 (en) Bottom sediment improvement material and bottom sediment improvement method
JP2013007111A (en) Graphite electrode device and installation method thereof
KR101935714B1 (en) Method and system for removing and recovering iron from groundwater using non-corrosive electrodes
JPWO2010087050A1 (en) Method and apparatus for removing phosphorus dissolved in water
US20120037512A1 (en) Electrodes for electrolysis of water
CN108704933A (en) A kind of device and method of the hexavalent chromium polluted soil of in-situ immobilization
CN105660485B (en) A kind of coral growth substrate and its preparation method and application having aragonite enrichment function
JP2003080260A (en) Water or soil quality improving method and system
JP3222255U (en) Seaweed breeding system
CN103991935B (en) A kind of method removing Copper in Electroplating Waste Water ion
JP2004181407A (en) Method for treating contaminated underground water and soil by electrode reduction
JP3668774B2 (en) Method for purifying contaminated soil and electrode device used for the method
Lucia et al. North Sea small scale mineral deposition tests

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020