JP2013079521A - Rock mass crusher and rock mass crushing method - Google Patents

Rock mass crusher and rock mass crushing method Download PDF

Info

Publication number
JP2013079521A
JP2013079521A JP2011219948A JP2011219948A JP2013079521A JP 2013079521 A JP2013079521 A JP 2013079521A JP 2011219948 A JP2011219948 A JP 2011219948A JP 2011219948 A JP2011219948 A JP 2011219948A JP 2013079521 A JP2013079521 A JP 2013079521A
Authority
JP
Japan
Prior art keywords
pressing
wall
distal
proximal
rock mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011219948A
Other languages
Japanese (ja)
Other versions
JP4961574B1 (en
Inventor
Mitsuko Kamishima
充子 神島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMISHIMAGUMI KK
Kamishimagumi KK
Original Assignee
KAMISHIMAGUMI KK
Kamishimagumi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMISHIMAGUMI KK, Kamishimagumi KK filed Critical KAMISHIMAGUMI KK
Priority to JP2011219948A priority Critical patent/JP4961574B1/en
Application granted granted Critical
Publication of JP4961574B1 publication Critical patent/JP4961574B1/en
Publication of JP2013079521A publication Critical patent/JP2013079521A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rock mass crusher capable of improving efficiency of crushing work.SOLUTION: A rock mass crusher which crushes rock mass R by pressing an inner wall Ha of a bored hole formed in the rock mass R includes: a plurality of pressing pieces 2 which are increased in diameter, while they are arranged in the circumferential direction inside the bored hole, to press the inner wall Ha; and a wedge member 3 which moves toward the tip side of the pressing pieces 2 while being inserted between the plurality of pressing pieces 2 to increase the diameter of the pressing pieces 2. The total number of base end side pressing faces 2a for pressing the inner wall Ha in the base end part of the plurality of pressing pieces 2 in the circumferential direction is less than the total number of tip end side pressing faces 2a for pressing the inner wall Ha in the tip end part located closer to the tip end side than the base end part in the circumferential direction.

Description

本発明は、岩盤(コンクリート構造物を含む)に形成された削孔の内壁を押圧することで岩盤を破砕する岩盤破砕装置及び岩盤破砕方法に関するものである。   The present invention relates to a rock mass crushing apparatus and a rock mass crushing method for crushing a rock mass by pressing an inner wall of a drilled hole formed in the rock mass (including a concrete structure).

従来の岩盤破砕装置として、4つの押圧片を拡径させることにより、4方向に亀裂を発生させて岩盤の破砕を行う装置が知られている(例えば、特許文献1の図6及び図8参照)。この装置によれば、岩盤の4方向に亀裂を発生させることができるので、細かく岩盤を破砕することが可能であり、破砕作業を効率的に遂行することができる。また、岩盤はその強度や剛性において異方性を有することがあり、所定の方向には亀裂を発生させやすいが、他の方向に亀裂を発生させるのは困難となる場合がある。このような場合においても、4方向に力を作用させることにより、岩盤の異方性の影響を軽減することが可能であり、一定の効率で破砕作業を遂行することができる。   As a conventional rock crushing device, there is known a device that crushes a rock mass by generating cracks in four directions by expanding the diameter of four pressing pieces (see, for example, FIGS. 6 and 8 of Patent Document 1). ). According to this apparatus, since cracks can be generated in four directions of the rock mass, the rock mass can be finely crushed, and the crushing operation can be efficiently performed. In addition, the rock mass may have anisotropy in strength and rigidity, and it is easy to generate a crack in a predetermined direction, but it may be difficult to generate a crack in another direction. Even in such a case, it is possible to reduce the influence of the anisotropy of the rock mass by applying force in four directions, and the crushing operation can be performed with a certain efficiency.

特許第3381163号公報Japanese Patent No. 3381163

押圧片を拡径させることにより岩盤を破砕する際には、通常、表面から深部に向かって破砕が進行するので、まず、岩盤の表面近傍に大きな押圧力を作用させることが必要となる。しかしながら、特許文献1に記載の岩盤破砕装置によれば、岩盤の表面から深部に至るまで4方向に同等に押圧力が作用し、岩盤の表面近傍に対して特に大きな押圧力を作用させる構成となっていない。このため、岩盤の表面近傍を破砕するのに時間を要し、破砕作業の効率が低下するおそれがあった。   When crushing the rock mass by expanding the diameter of the pressing piece, the crushing usually proceeds from the surface toward the deep part, so it is first necessary to apply a large pressing force to the vicinity of the surface of the rock mass. However, according to the rock mass crushing device described in Patent Document 1, a pressing force acts equally in four directions from the rock surface to the deep part, and a particularly large pressure force acts on the vicinity of the rock surface. is not. For this reason, it took time to crush the vicinity of the surface of the rock mass, and there was a possibility that the efficiency of crushing work might fall.

本発明は上記課題に鑑みなされたものであり、破砕作業の効率を向上させることが可能な岩盤破砕装置及び岩盤破砕方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the rock mass crushing apparatus and the rock mass crushing method which can improve the efficiency of a crushing operation | work.

上記目的を達成するため、本発明に係る岩盤破砕装置は、岩盤に形成された削孔の内壁を押圧することで岩盤を破砕する岩盤破砕装置において、削孔の内部に周方向に複数配置された状態で拡径させられることにより、内壁を押圧する複数の押圧片と、複数の押圧片の間に挿入された状態で押圧片の先端側に移動することにより、複数の押圧片を拡径させる楔部材と、を備え、複数の押圧片の基端部において内壁を押圧する基端側押圧面の周方向における総数が、基端部よりも先端側に位置する先端部において内壁を押圧する先端側押圧面の周方向における総数よりも少ないことを特徴とする。   In order to achieve the above object, a rock crushing apparatus according to the present invention includes a plurality of rock crushing apparatuses arranged in a circumferential direction inside a drilling hole in a rock crushing apparatus that crushes the rock mass by pressing an inner wall of a drilling hole formed in the rock. The diameter of the plurality of pressing pieces is increased by moving to the front end side of the pressing piece while being inserted between the plurality of pressing pieces and the plurality of pressing pieces that press the inner wall. And a total number in the circumferential direction of the proximal-side pressing surface that presses the inner wall at the proximal end portions of the plurality of pressing pieces presses the inner wall at the distal end portion located on the distal end side of the proximal end portion. It is less than the total number in the circumferential direction of the tip side pressing surface.

また、上記目的を達成するため、本発明に係る岩盤破砕方法は、岩盤に削孔を形成する削孔形成工程と、削孔の内部に複数の押圧片を周方向に配置する準備工程と、複数の押圧片を拡径させて内壁を押圧する破砕工程と、を備え、複数の押圧片の基端部において内壁を押圧する基端側押圧面の周方向における総数が、基端部よりも先端側に位置する先端部において内壁を押圧する先端側押圧面の周方向における総数よりも少ないことを特徴とする。   Moreover, in order to achieve the said objective, the rock mass crushing method which concerns on this invention is the drilling formation process which forms a hole in a rock mass, the preparatory process which arrange | positions several press pieces in the circumferential direction inside a hole, A crushing step of expanding the plurality of pressing pieces to press the inner wall, and the total number in the circumferential direction of the proximal-side pressing surface that presses the inner wall at the proximal end portion of the plurality of pressing pieces is larger than the proximal end portion. It is characterized by being less than the total number in the circumferential direction of the front end side pressing surface that presses the inner wall at the front end portion located on the front end side.

これらの本発明によれば、基端側押圧面の総数を先端側押圧面の総数よりも少なくすることにより、岩盤の表面近傍において削孔の内壁を押圧する力が分散することを抑制することができ、岩盤の表面近傍に作用する押圧力を強化することができる。したがって、岩盤の表面近傍をより速やかに破砕することが可能となり、続いて、深部の破砕も速やかに行われることになるので、破砕作業の効率を向上させることができる。   According to these present invention, by suppressing the total number of proximal-side pressing surfaces to the total number of distal-side pressing surfaces, it is possible to suppress the dispersion of the force that presses the inner wall of the drilling hole in the vicinity of the rock surface. And the pressing force acting on the vicinity of the surface of the rock can be strengthened. Therefore, the vicinity of the surface of the rock can be crushed more quickly, and then the deep portion is also crushed quickly, so that the efficiency of the crushing operation can be improved.

また、岩盤の異方性については、特に岩盤の深部において予め知ることが難しいので、深部においては多方向に力が作用することが望ましい。この点、本発明によれば、先端側押圧面の総数は基端側押圧面の総数よりも多いので、岩盤の深部においては多方向に押圧力を作用させることができ、岩盤の異方性の影響を軽減することができる。さらに、多方向に亀裂が生じることにより、一度に岩盤を細かく破砕することが可能となる。一方、岩盤の深部においては、表面近傍からの破砕の進行に乗じて比較的少ない負荷で破砕することが可能であるので、押圧力が分散されることは問題となり難い。   Also, since it is difficult to know the anisotropy of the rock mass in advance especially in the deep part of the rock, it is desirable that the force acts in multiple directions in the deep part. In this regard, according to the present invention, since the total number of distal-side pressing surfaces is larger than the total number of proximal-side pressing surfaces, it is possible to apply a pressing force in multiple directions in the deep part of the rock mass, and the anisotropy of the rock mass Can reduce the effects of Furthermore, since cracks occur in multiple directions, the rock can be crushed finely at once. On the other hand, in the deep part of the bedrock, it is possible to crush with a relatively small load by taking advantage of the progress of crushing from the vicinity of the surface, so that it is difficult to cause a problem that the pressing force is dispersed.

以上のごとく、本発明によれば、岩盤の表面近傍においては押圧力の強化を優先するとともに、岩盤の深部においては異方性の影響の軽減及び岩盤を細かく破砕することを優先することにより、破砕作業の効率を向上させることができる。   As described above, according to the present invention, priority is given to the enhancement of the pressing force in the vicinity of the surface of the rock, and in the deep part of the rock, priority is given to reducing the influence of anisotropy and finely crushing the rock. The efficiency of the crushing work can be improved.

ここで、先端側への楔部材の移動にしたがって、基端側押圧面が内壁を押圧した後に、先端側押圧面が内壁を押圧すると好適である。   Here, it is preferable that the distal-side pressing surface presses the inner wall after the proximal-side pressing surface presses the inner wall according to the movement of the wedge member toward the distal end side.

このように構成すると、楔部材の移動初期段階で基端側押圧面のみが削孔の内壁を集中的に押圧するため、岩盤の表面近傍がまず破砕され、それから先端側押圧面が内壁を押圧して岩盤の深部が破砕されることになる。すなわち、岩盤の破砕を表面近傍から深部に向かってある程度進行させてから、深部の破砕を行うことになるので、より小さな押圧力でも深部の破砕が可能となる。したがって、破砕作業の効率を一層向上させることができる。   With this configuration, only the proximal-side pressing surface intensively presses the inner wall of the drilling hole at the initial stage of movement of the wedge member, so the vicinity of the rock surface is first crushed, and then the distal-side pressing surface presses the inner wall. Then, the deep part of the bedrock will be crushed. That is, since the crushing of the rock mass is advanced to some extent from the vicinity of the surface toward the deep part, the deep part is crushed, so that the deep part can be crushed even with a smaller pressing force. Therefore, the efficiency of the crushing work can be further improved.

また、先端側への楔部材の移動前において、複数の先端側押圧面を内部に含む最小の仮想円の直径が、複数の基端側押圧面を内部に含む最小の仮想円の直径よりも小さいと好適である。   In addition, before the movement of the wedge member to the distal end side, the diameter of the smallest virtual circle that includes a plurality of distal-side pressing surfaces is larger than the diameter of the smallest virtual circle that includes a plurality of proximal-side pressing surfaces. Small is preferable.

この構成によれば、楔部材が押圧片の先端側に移動するにしたがって押圧片が拡径させられる際に、まず基端側押圧面が削孔の内壁に当接し押圧力を作用させ、次に先端側押圧面が削孔の内壁に当接して押圧力を作用させることになる。すなわち、本構成によると、基端側押圧面が内壁を押圧した後に先端側押圧面が内壁を押圧するための構造を簡潔に実現することができる。   According to this configuration, when the diameter of the pressing piece is increased as the wedge member moves to the distal end side of the pressing piece, the proximal side pressing surface first comes into contact with the inner wall of the drilling hole to apply the pressing force, and then Further, the pressing surface on the front end side comes into contact with the inner wall of the drilling hole to exert a pressing force. That is, according to this configuration, it is possible to simply realize a structure for the distal-side pressing surface to press the inner wall after the proximal-side pressing surface presses the inner wall.

また、複数の押圧片の少なくとも1つにおいて、基端側押圧面は、楔部材の挿入方向に沿って延びる基端側円弧面であり、先端側押圧面は、基端側円弧面から挿入方向に沿って先端側に延びる先端側円弧面に少なくとも1つの切欠部を設けることにより、先端側円弧面を周方向に分断して形成される部分円弧面であると好適である。   In at least one of the plurality of pressing pieces, the proximal-side pressing surface is a proximal-side arc surface extending along the insertion direction of the wedge member, and the distal-side pressing surface is inserted from the proximal-side arc surface in the insertion direction. It is preferable that the tip side arc surface is a partial arc surface formed by dividing the tip side arc surface in the circumferential direction by providing at least one notch portion on the tip side arc surface extending along the tip side.

この構成によれば、押圧片の先端部において、円弧面に切欠部を形成するだけの簡単な加工で、先端側押圧面の周方向における総数が基端側押圧面の周方向における総数よりも多い構成、換言すると基端側押圧面の周方向における総数が先端側押圧面の周方向における総数よりも少ない構成を実現することができる。   According to this configuration, the total number in the circumferential direction of the distal end side pressing surface is larger than the total number in the circumferential direction of the proximal side pressing surface by simple processing by simply forming a notch in the arc surface at the distal end portion of the pressing piece. Many configurations, in other words, a configuration in which the total number in the circumferential direction of the proximal-side pressing surface is smaller than the total number in the circumferential direction of the distal-side pressing surface can be realized.

さらに、複数の押圧片の全てに少なくとも1つの切欠部が形成されており、当該切欠部は全ての押圧片において同一の形態で形成されていると好適である。   Furthermore, it is preferable that at least one notch is formed in all of the plurality of pressing pieces, and the notch is formed in the same form in all the pressing pieces.

この構成のごとく、複数の押圧片の全てに同一の形態、すなわち同一の位置に同一の形状及び同一寸法で切欠部が形成されていると、先端側押圧面も全ての押圧片に同一の形態で形成されることになる。したがって、楔部材を先端側に移動させて先端側押圧面が削孔の内壁を押圧する状態となった場合に、各押圧片における負荷状態は同様となるので、特定の押圧片に負荷が集中するのを回避し、押圧片の寿命を延ばすことが可能となる。   As in this configuration, when a plurality of pressing pieces have the same form, i.e., when a notch is formed at the same position and with the same shape and dimensions, the tip side pressing surface is also the same form on all pressing pieces. Will be formed. Therefore, when the wedge member is moved to the tip side and the tip side pressing surface presses the inner wall of the hole, the load state in each pressing piece is the same, so the load is concentrated on a specific pressing piece. This makes it possible to extend the life of the pressing piece.

本発明に係る岩盤破砕装置の使用状態を示す図である。It is a figure which shows the use condition of the rock mass crushing apparatus which concerns on this invention. 押圧片の一部を示す斜視図である。It is a perspective view which shows a part of press piece. 破砕作業の進行を示す断面図である。It is sectional drawing which shows progress of a crushing operation | work. 別の実施形態に係る押圧片の一部を示す斜視図である。It is a perspective view which shows a part of press piece which concerns on another embodiment.

以下、本発明に係る岩盤破砕装置の実施形態について図面に基づいて説明する。岩盤破砕装置1は、図1に示すように、岩盤Rに形成した削孔Hの内部に周方向に配置される2つの押圧片2を有している。これらの押圧片2は同形状及び同寸法であり、押圧片2を形成する面の1つであるテーパ面2dが向かい合うように配設されている。押圧片2がこのように配置されることにより、テーパ面2dによって挟まれる空間は押圧片2の先端側ほど細くなる先細り形状となる。この先細り形状の空間に、この空間と同様に先細り形状に構成された楔部材3が挿入される。   Hereinafter, embodiments of a rock crushing apparatus according to the present invention will be described with reference to the drawings. As shown in FIG. 1, the rock mass crushing device 1 has two pressing pieces 2 arranged in the circumferential direction inside a drilling hole H formed in the rock mass R. These pressing pieces 2 have the same shape and the same size, and are arranged so that the tapered surfaces 2d that are one of the surfaces forming the pressing pieces 2 face each other. By arranging the pressing piece 2 in this way, the space sandwiched between the tapered surfaces 2d becomes a tapered shape that becomes thinner toward the tip end side of the pressing piece 2. A wedge member 3 having a tapered shape is inserted into the tapered space in the same manner as this space.

楔部材3は、油圧シリンダ4に油を給排することにより図1の上下方向に移動するピストンロッド5に連結されている。油圧シリンダ4に油を供給すると、図1において破線で示したように、ピストンロッド5とともに楔部材3は押圧片2の先端側に移動し、押圧片2が拡径されて削孔Hの内壁Haに押圧力を作用させる。以上のように構成された岩盤破砕装置1は、通常、図示しない作業車両のアームの先端部に取り付けられ、岩盤Rの破砕作業に用いられる。   The wedge member 3 is connected to a piston rod 5 that moves up and down in FIG. 1 by supplying and discharging oil to and from the hydraulic cylinder 4. When oil is supplied to the hydraulic cylinder 4, the wedge member 3 moves together with the piston rod 5 to the tip side of the pressing piece 2 as shown by the broken line in FIG. A pressing force is applied to Ha. The rock crushing device 1 configured as described above is usually attached to the tip of an arm of a work vehicle (not shown) and used for crushing the rock R.

図2は、押圧片2のうち、図1において削孔Hの内部に収容されている部位のみを斜視図で示したものである。押圧片2は、楔部材3を挿入する方向と直交する面における断面形状が基本的に略半円状である棒状部材から作製される。押圧片2のうち削孔Hの内壁Haと対向する面は、楔部材3の挿入方向に沿って延びる円弧面を基本形状として構成されている。なお、ここでの円弧面とはその断面が厳密に円の一部である必要はなく、断面が楕円の一部であるような場合も含むものとする。   FIG. 2 is a perspective view showing only a portion of the pressing piece 2 that is accommodated in the hole H in FIG. The pressing piece 2 is manufactured from a rod-like member whose cross-sectional shape in a plane orthogonal to the direction in which the wedge member 3 is inserted is basically a semicircular shape. The surface of the pressing piece 2 that faces the inner wall Ha of the hole H is configured with an arc surface extending along the insertion direction of the wedge member 3 as a basic shape. Note that the arc surface here does not need to be strictly a part of a circle, and includes a case where the cross section is a part of an ellipse.

本実施形態においては、図2に示すように、押圧片2の上部約1/3の部分を基端部2A、残りの下部約2/3の部分を先端部2Bとするが、基端部2A及び先端部2Bの範囲はこれに限定されるものではない。そして、上記円弧面のうち、基端部2Aの領域に含まれる基端側円弧面がそのまま基端側押圧面2aとして構成されるとともに、先端部2Bの領域に含まれる先端側円弧面に楔部材3の挿入方向に沿って延びる切欠部2cを形成し、切欠部2cによって周方向に分断された部分円弧面が先端側押圧面2bとして構成されている。すなわち、基端側押圧面2aは1つの押圧片2に対し1つだけ存在するが、先端側押圧面2bは切欠部2cによって円弧面が分断されたことによって1つの押圧片2に対し2つ存在する。なお、ここでは基端部2Aと先端部2Bとの境界線の中点から、押圧片2の先端側かつ径方向内側に向かって切削加工することにより、切削面の形状が三角形状となる切欠部2cを、両方の切欠部2に同一の形態で形成した。   In the present embodiment, as shown in FIG. 2, the upper part of the pressing piece 2 is about 1/3 as the base end 2A, and the remaining lower part of about 2/3 is the front end 2B. The range of 2A and the front-end | tip part 2B is not limited to this. Of the arcuate surfaces, the base end side arc surface included in the region of the base end portion 2A is directly configured as the base end side pressing surface 2a, and the distal end side arc surface included in the region of the tip end portion 2B is wedged. A notch portion 2c extending along the insertion direction of the member 3 is formed, and a partial arc surface divided in the circumferential direction by the notch portion 2c is configured as the distal end side pressing surface 2b. That is, there is only one proximal-side pressing surface 2a for one pressing piece 2, but there are two distal-side pressing surfaces 2b for one pressing piece 2 because the arc surface is divided by the notch 2c. Exists. In this case, the cut surface has a triangular shape by cutting from the midpoint of the boundary line between the base end portion 2A and the tip end portion 2B toward the tip end side and the radial inner side of the pressing piece 2. The part 2c was formed in the same form in both the notch parts 2. FIG.

上記のように構成された岩盤破砕装置1の動作について、図3に基づいて説明する。図3は、図1におけるA−A断面及びB−B断面における断面図を時系列で示したものである。ここで、A−A断面は押圧片2の基端部2Aの代表断面、B−B断面は押圧片2の先端部2Bの代表断面として位置づけられるものである。また、t=tは岩盤破砕装置1を削孔Hにセッティングした時点、t=tは押圧片2が拡径され基端側押圧面2aが削孔Hの内壁Haに当接した時点、t=tはさらに押圧片2が拡径され先端側押圧面2bが削孔Hの内壁Haに当接した時点を示している。 Operation | movement of the rock mass crushing apparatus 1 comprised as mentioned above is demonstrated based on FIG. FIG. 3 shows a cross-sectional view of the AA cross section and the BB cross section in FIG. 1 in time series. Here, the AA cross section is positioned as a representative cross section of the base end portion 2A of the pressing piece 2, and the BB cross section is positioned as a representative cross section of the distal end portion 2B of the pressing piece 2. T = t 0 is the time when the rock crushing device 1 is set in the hole H, and t = t 1 is the time when the pressing piece 2 is expanded and the proximal-side pressing surface 2 a contacts the inner wall Ha of the hole H. T = t 2 indicates a point in time when the diameter of the pressing piece 2 is further expanded and the tip side pressing surface 2b is in contact with the inner wall Ha of the hole H.

岩盤破砕装置1を削孔Hにセッティングしたt=tにおいては、押圧片2の基端部2Aにおいても先端部2Bにおいても、押圧片2と削孔Hの内壁Haとの間にはわずかながら間隙が存在する。ただし、全ての先端側押圧面2bを内部に含む最小の仮想円の直径Φbは、全ての基端側押圧面2aを内部に含む最小の仮想円の直径Φaよりも小さいので、先端側押圧面2bと内壁Haとの間隙が基端側押圧面2aと内壁Haとの間隙よりも大きくなっている。したがって、後述するように、楔部材3が押圧片2の先端側に移動することにより押圧片2が拡径された場合、まず基端側押圧面2aが内壁Haに当接して押圧力を作用させ(t=tの図参照)、さらに押圧片2が拡径されることにより先端側押圧面2bも内壁Haに当接して押圧力を作用させることになる(t=tの図参照)。 At t = t 0 when the rock mass crushing device 1 is set to the drilling hole H, there is a slight gap between the pressing piece 2 and the inner wall Ha of the drilling hole H in both the proximal end 2A and the distal end 2B of the pressing piece 2. However, there are gaps. However, since the diameter Φb of the smallest virtual circle including all the distal end side pressing surfaces 2b is smaller than the diameter Φa of the smallest virtual circle including all the proximal end pressing surfaces 2a, the distal side pressing surface The gap between 2b and the inner wall Ha is larger than the gap between the proximal-side pressing surface 2a and the inner wall Ha. Therefore, as will be described later, when the diameter of the pressing piece 2 is increased by moving the wedge member 3 toward the distal end side of the pressing piece 2, first, the proximal-side pressing surface 2a comes into contact with the inner wall Ha to apply the pressing force. (Refer to the diagram of t = t 1 ) Further, when the pressing piece 2 is further expanded in diameter, the distal-side pressing surface 2 b also comes into contact with the inner wall Ha to apply a pressing force (see the diagram of t = t 2 ). ).

t=tにおいては、先端側押圧面2bは削孔Hの内壁Haを押圧せず、基端側押圧面2aのみが内壁Haを押圧している。このとき、基端側押圧面2aは各押圧片2に1つずつの計2つあるのみなので、押圧力が多方向に分散されることなく、内壁Haに作用させる押圧力を図3の左右方向に集中させることができる。その結果、岩盤Rは強い力で左右方向に引っ張られ、より確実にこの左右方向と直交する上下方向に亀裂を生じさせることができる。また、この時点においては、先端側押圧面2bはまだ内壁Haを押圧していないので、押圧片2による押圧力は基端側押圧面2aにより集中することになる。よって、岩盤Rの表面近傍を速やかに破砕することが可能となる。 In t = t 1, the tip end side pressing surface 2b is not pressing the inner wall Ha of drilling H, only the base end side pressing surface 2a presses the inner wall Ha. At this time, since there are only two base end side pressing surfaces 2 a, one for each pressing piece 2, the pressing force that acts on the inner wall Ha is distributed without being distributed in multiple directions. It can be concentrated in the direction. As a result, the rock mass R is pulled in the left-right direction with a strong force, and can crack more reliably in the up-down direction perpendicular to the left-right direction. At this time point, the distal-side pressing surface 2b has not yet pressed the inner wall Ha, so that the pressing force by the pressing piece 2 is concentrated on the proximal-side pressing surface 2a. Therefore, the surface vicinity of the rock mass R can be quickly crushed.

t=tにおいては、基端側押圧面2aだけでなく、先端側押圧面2bも削孔Hの内壁Haを押圧するようになる。先端側押圧面2bは各押圧片2に2つずつ計4つ存在するので、押圧力を4方向に作用させることができる。この場合、押圧力が4方向に分散されることにより、先端側押圧面2bが内壁Haに作用させる押圧力が小さくなるが、通常、岩盤Rの表面近傍が破砕されていれば、それに乗じて岩盤Rの深部の破砕は比較的少ない負荷で行うことができるので問題とはなり難い。それよりも、押圧力が4方向に作用することにより、岩盤Rに異方性がある場合でもその影響を軽減することができるし、一度に細かく破砕することができるという点において、破砕作業の効率を向上させることができる。 In t = t 2, not only the base end side pressing surface 2a, the distal end side pressing surface 2b also to press the inner wall Ha of drilling H. Since there are a total of four tip-side pressing surfaces 2b, two for each pressing piece 2, it is possible to apply pressing forces in four directions. In this case, since the pressing force is distributed in four directions, the pressing force applied to the inner wall Ha by the tip side pressing surface 2b becomes small. Usually, if the vicinity of the surface of the rock mass R is crushed, it is multiplied by that. Since the crushing of the deep part of the bedrock R can be performed with a relatively small load, it is unlikely to be a problem. Rather, when the pressing force acts in four directions, even if the rock mass R has anisotropy, the influence can be reduced, and in the point that it can be crushed finely at the same time. Efficiency can be improved.

なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能であり、以下のように構成してもよい。   In addition, this invention is not limited to the said embodiment, Unless it deviates from the meaning, it is possible to add a various change with respect to what was mentioned above, and you may comprise as follows.

(1)上記実施形態においては、押圧片2の数を2つ、基端側押圧面2aの周方向における総数を2つ、先端側押圧面2bの周方向における総数を4つとしたが、これに限定されることはない。例えば、破砕対象となる岩盤Rがそれほど固くない場合には、押圧力を多少低下させても問題とはならないので、押圧片2の数を増やすことも可能であるし、押圧片の数を減らさずに基端側押圧面2aの周方向における総数及び先端側押圧面2bの周方向における総数を増やすことも可能である。   (1) In the above embodiment, the number of pressing pieces 2 is two, the total number in the circumferential direction of the proximal-side pressing surface 2a is two, and the total number in the circumferential direction of the distal-side pressing surface 2b is four. It is not limited to. For example, if the rock mass R to be crushed is not so hard, there is no problem even if the pressing force is slightly reduced, so the number of pressing pieces 2 can be increased, and the number of pressing pieces can be reduced. It is also possible to increase the total number in the circumferential direction of the proximal end side pressing surface 2a and the total number in the circumferential direction of the distal end side pressing surface 2b.

(2)上記実施形態においては、2つの押圧片2の両方に切欠部2cを同一の形態で形成したが、これに限定されることはない。例えば、切欠部2cを形成しない押圧片2を設けることも可能であるし、各押圧片2に形成する切欠部2cの数、位置、形状、または寸法が異なるように構成することも可能である。   (2) In the above embodiment, the notch 2c is formed in the same form on both of the two pressing pieces 2, but the present invention is not limited to this. For example, it is possible to provide a pressing piece 2 that does not form the notch 2c, and it is also possible to configure the number, position, shape, or size of the notch 2c formed in each pressing piece 2 to be different. .

(3)上記実施形態においては、切削面の形状が三角形状となるような切欠部2cを各押圧片2の周方向に1つ形成したが、これに限定されることはない。例えば、図4に示すように切削面の形状が矩形状となるような切欠部2cでもよいし、楔部材3の挿入方向に沿って延びる溝状の切欠部2cを形成することも可能である。また、各押圧片2の周方向に切欠部2cを複数設けることも可能である。   (3) In the above embodiment, one notch 2c is formed in the circumferential direction of each pressing piece 2 so that the shape of the cutting surface is triangular, but the present invention is not limited to this. For example, as shown in FIG. 4, the cut surface 2 c may have a rectangular shape, or a groove-shaped cut 2 c extending along the insertion direction of the wedge member 3 can be formed. . It is also possible to provide a plurality of notches 2 c in the circumferential direction of each pressing piece 2.

本発明は、削孔が形成された岩盤に対して、削孔の内壁を押圧することで岩盤を破砕する岩盤破砕装置及び岩盤破砕方法に適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a rock mass crushing apparatus and a rock mass crushing method for crushing a rock mass by pressing an inner wall of the borehole with respect to a rock mass in which a borehole is formed.

1 岩盤破砕装置
2 押圧片
2A 基端部
2B 先端部
2a 基端側押圧面
2b 先端側押圧面
2c 切欠部
3 楔部材
R 岩盤
H 削孔
Ha 削孔の内壁
DESCRIPTION OF SYMBOLS 1 Bedrock crushing device 2 Pressing piece 2A Base end part 2B Tip end part 2a Base end side pressing face 2b Tip side pressing face 2c Notch part 3 Wedge member R Rock bed H Drilling hole Ha Inner wall

上記目的を達成するため、本発明に係る岩盤破砕装置は、岩盤に形成された削孔の内壁を押圧することで岩盤を破砕する岩盤破砕装置において、削孔の内部に周方向に複数配置された状態で拡径させられることにより、内壁を押圧する複数の押圧片と、複数の押圧片の間に挿入された状態で押圧片の先端側に移動することにより、複数の押圧片を拡径させる楔部材と、を備え、複数の押圧片の基端部において内壁を押圧する基端側押圧面の周方向における総数が、基端部よりも先端側に位置する先端部において内壁を押圧する先端側押圧面の周方向における総数よりも少なく、先端側への楔部材の移動にしたがって、基端側押圧面が内壁を押圧した後に、先端側押圧面が内壁を押圧することを特徴とする。 In order to achieve the above object, a rock crushing apparatus according to the present invention includes a plurality of rock crushing apparatuses arranged in a circumferential direction inside a drilling hole in a rock crushing apparatus that crushes the rock mass by pressing an inner wall of a drilling hole formed in the rock. The diameter of the plurality of pressing pieces is increased by moving to the front end side of the pressing piece while being inserted between the plurality of pressing pieces and the plurality of pressing pieces that press the inner wall. And a total number in the circumferential direction of the proximal-side pressing surface that presses the inner wall at the proximal end portions of the plurality of pressing pieces presses the inner wall at the distal end portion located on the distal end side of the proximal end portion. rather less than the total number in the circumferential direction of the distal end side pressing surface, in accordance with the movement of the wedge member distally, and wherein the base end side pressing surface after pressing the inner wall, the distal end side pressing surface presses the inner wall To do.

また、上記目的を達成するため、本発明に係る岩盤破砕方法は、岩盤に削孔を形成する削孔形成工程と、削孔の内部に複数の押圧片を周方向に配置する準備工程と、複数の押圧片を拡径させて内壁を押圧する破砕工程と、を備え、複数の押圧片の基端部において内壁を押圧する基端側押圧面の周方向における総数が、基端部よりも先端側に位置する先端部において内壁を押圧する先端側押圧面の周方向における総数よりも少なく、先端側への楔部材の移動にしたがって、基端側押圧面が内壁を押圧した後に、先端側押圧面が内壁を押圧することを特徴とする。
Moreover, in order to achieve the said objective, the rock mass crushing method which concerns on this invention is the drilling formation process which forms a hole in a rock mass, the preparatory process which arrange | positions several press pieces in the circumferential direction inside a hole, A crushing step of expanding the plurality of pressing pieces to press the inner wall, and the total number in the circumferential direction of the proximal-side pressing surface that presses the inner wall at the proximal end portion of the plurality of pressing pieces is larger than the proximal end portion. rather less than the total number in the circumferential direction of the distal end side pressing surface for pressing the inner wall at the tip portion located on the distal end side, in accordance with the movement of the wedge member distally, after the base end side pressing surface presses the inner wall, the tip The side pressing surface presses the inner wall .

Claims (6)

岩盤に形成された削孔の内壁を押圧することで前記岩盤を破砕する岩盤破砕装置において、
前記削孔の内部に周方向に複数配置された状態で拡径させられることにより、前記内壁を押圧する複数の押圧片と、
前記複数の押圧片の間に挿入された状態で前記押圧片の先端側に移動することにより、前記複数の押圧片を拡径させる楔部材と、を備え、
前記複数の押圧片の基端部において前記内壁を押圧する基端側押圧面の周方向における総数が、前記基端部よりも前記先端側に位置する先端部において前記内壁を押圧する先端側押圧面の周方向における総数よりも少ないことを特徴とする岩盤破砕装置。
In the rock mass crushing device that crushes the rock mass by pressing the inner wall of the drilling hole formed in the rock mass,
A plurality of pressing pieces that press the inner wall by being expanded in diameter in a state of being arranged in the circumferential direction inside the drilling hole,
A wedge member that expands the diameter of the plurality of pressing pieces by moving to the tip side of the pressing piece while being inserted between the plurality of pressing pieces,
The distal-side pressing that presses the inner wall at the distal end located on the distal side relative to the proximal end is the total number in the circumferential direction of the proximal-side pressing surfaces that press the inner wall at the proximal ends of the plurality of pressing pieces. A rock crusher characterized by being less than the total number in the circumferential direction of the surface.
前記先端側への前記楔部材の移動にしたがって、前記基端側押圧面が前記内壁を押圧した後に、前記先端側押圧面が前記内壁を押圧する請求項1に記載の岩盤破砕装置。   The rock crushing device according to claim 1, wherein the distal-side pressing surface presses the inner wall after the proximal-side pressing surface presses the inner wall according to the movement of the wedge member toward the distal end side. 前記先端側への前記楔部材の移動前において、前記複数の先端側押圧面を内部に含む最小の仮想円の直径が、前記複数の基端側押圧面を内部に含む最小の仮想円の直径よりも小さい請求項2に記載の岩盤破砕装置。   Prior to the movement of the wedge member toward the distal end side, the diameter of the smallest virtual circle including the plurality of distal-side pressing surfaces therein is the smallest virtual circle diameter including the plurality of proximal-side pressing surfaces therein. The rock mass crushing apparatus of Claim 2 smaller than this. 前記複数の押圧片の少なくとも1つにおいて、
前記基端側押圧面は、前記楔部材の挿入方向に沿って延びる基端側円弧面であり、
前記先端側押圧面は、前記基端側円弧面から前記挿入方向に沿って前記先端側に延びる先端側円弧面に少なくとも1つの切欠部を設けることにより、前記先端側円弧面を周方向に分断して形成される部分円弧面である請求項1〜3のいずれか1項に記載の岩盤破砕装置。
In at least one of the plurality of pressing pieces,
The proximal-side pressing surface is a proximal-side arc surface extending along the insertion direction of the wedge member,
The distal-side pressing surface divides the distal-side arc surface in the circumferential direction by providing at least one notch in the distal-side arc surface extending from the proximal-side arc surface to the distal-end side along the insertion direction. The rock crushing apparatus according to any one of claims 1 to 3, wherein the rock crushing apparatus is a partially arcuate surface.
前記複数の押圧片の全てに前記少なくとも1つの切欠部が形成されており、当該切欠部は前記全ての押圧片において同一の形態で形成されている請求項4に記載の岩盤破砕装置。   The rock mass crushing apparatus according to claim 4, wherein the at least one notch is formed in all of the plurality of pressing pieces, and the notch is formed in the same form in all the pressing pieces. 岩盤に削孔を形成する削孔形成工程と、
前記削孔の内部に複数の押圧片を周方向に配置する準備工程と、
前記複数の押圧片を拡径させて前記内壁を押圧する破砕工程と、を備え、
前記複数の押圧片の基端部において前記内壁を押圧する基端側押圧面の周方向における総数が、前記基端部よりも前記先端側に位置する先端部において前記内壁を押圧する先端側押圧面の周方向における総数よりも少ないことを特徴とする岩盤破砕方法。
Drilling process to form a hole in the rock,
A preparatory step of arranging a plurality of pressing pieces in the circumferential direction inside the drilling hole;
A crushing step of expanding the plurality of pressing pieces and pressing the inner wall,
The distal-side pressing that presses the inner wall at the distal end located on the distal side relative to the proximal end is the total number in the circumferential direction of the proximal-side pressing surfaces that press the inner wall at the proximal ends of the plurality of pressing pieces. A rock crushing method characterized by being less than the total number in the circumferential direction of the surface.
JP2011219948A 2011-10-04 2011-10-04 Bedrock crushing apparatus and bedrock crushing method Active JP4961574B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219948A JP4961574B1 (en) 2011-10-04 2011-10-04 Bedrock crushing apparatus and bedrock crushing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219948A JP4961574B1 (en) 2011-10-04 2011-10-04 Bedrock crushing apparatus and bedrock crushing method

Publications (2)

Publication Number Publication Date
JP4961574B1 JP4961574B1 (en) 2012-06-27
JP2013079521A true JP2013079521A (en) 2013-05-02

Family

ID=46506065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219948A Active JP4961574B1 (en) 2011-10-04 2011-10-04 Bedrock crushing apparatus and bedrock crushing method

Country Status (1)

Country Link
JP (1) JP4961574B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387505B1 (en) * 2018-03-12 2018-09-12 株式会社神島組 Split rock tool and crushing method using the tool
KR101924593B1 (en) * 2018-02-19 2018-12-03 정노조 Rock splitter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200311B1 (en) * 2012-10-19 2013-06-05 株式会社神島組 Crushing method
JP7031102B1 (en) 2021-10-29 2022-03-08 株式会社神島組 Breaking rock tools, crushing equipment and crushing methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042151Y2 (en) * 1980-02-17 1985-12-23 直 青木 stone splitting device
JPS604694U (en) * 1983-06-21 1985-01-14 三菱重工業株式会社 rock crushing equipment
JPS61173592U (en) * 1985-04-17 1986-10-28
JP3381163B2 (en) * 2000-06-28 2003-02-24 株式会社神島組 Rock Lifting and Removal Methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924593B1 (en) * 2018-02-19 2018-12-03 정노조 Rock splitter
JP6387505B1 (en) * 2018-03-12 2018-09-12 株式会社神島組 Split rock tool and crushing method using the tool

Also Published As

Publication number Publication date
JP4961574B1 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4961574B1 (en) Bedrock crushing apparatus and bedrock crushing method
JP7031102B1 (en) Breaking rock tools, crushing equipment and crushing methods
JP6387505B1 (en) Split rock tool and crushing method using the tool
JP5352807B1 (en) Wedge type chisel, crushing method and crushing apparatus
JP5857375B1 (en) Breaker, impact transmission member, swarf tool and crushing method
JP6464396B1 (en) Split rock tool and crushing method using the tool
JP5976236B2 (en) Drill bit
JP5034001B1 (en) Centering method and crushing apparatus used therefor
JP5838435B1 (en) Split rock tool and crushing method using the tool
JP6765673B2 (en) Self-drilling rivets and rivet fastening tools
JP6963718B1 (en) Breaking rock tool and crushing method using the tool
JP5824713B1 (en) Breaker and crushing method using the breaker
JP2009261254A (en) Assistant device for shiitake-cultivation boring drill
JP2024046793A (en) Cutting tool and cutting method
JP7436770B1 (en) Rock splitting tool and crushing method using the tool
JP2013096166A (en) Crusher for bedrock and the like
JP2007138598A (en) Concrete demolishing method
KR102044131B1 (en) Easy-to-use rock crushing tool
JP3117969B1 (en) Split rock device and centering method using the device
JP7217854B1 (en) Multifunctional crushing tool, crushing device and crushing method
JP5525085B1 (en) Air hammer breaker
JP2017087314A (en) Fracture split method of connecting rod
JP3182810U (en) Chisel for hydraulic breaker
JP2009184064A (en) Fracture method of metal member and fracture device of metal member
RU2455487C1 (en) Cutter for mining machines

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4961574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250