JP2013079413A - Method for producing high-nitrogen steel - Google Patents

Method for producing high-nitrogen steel Download PDF

Info

Publication number
JP2013079413A
JP2013079413A JP2011219129A JP2011219129A JP2013079413A JP 2013079413 A JP2013079413 A JP 2013079413A JP 2011219129 A JP2011219129 A JP 2011219129A JP 2011219129 A JP2011219129 A JP 2011219129A JP 2013079413 A JP2013079413 A JP 2013079413A
Authority
JP
Japan
Prior art keywords
slag
steel
nitrogen
iron nitride
silicon iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011219129A
Other languages
Japanese (ja)
Inventor
Shunichi Haneda
俊一 羽田
Sekio Fukaya
関男 深谷
Takashi Yamauchi
貴司 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2011219129A priority Critical patent/JP2013079413A/en
Publication of JP2013079413A publication Critical patent/JP2013079413A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress variation in nitrogen content rate to a low level, and also to improve an operation efficiency.SOLUTION: A method for producing a high-nitrogen steel refines a molten steel 3 that has been refined in a refining vessel 2, further by a circulation degassing process. The method includes a step of loading a ferrosilicon nitride 1 with the largest grain size of 1 mm or less into the refining vessel 2, prior to the circulation degassing process.

Description

本発明は高窒素鋼の製造方法に関し、特に、窒素含有率のばらつきが小さい高窒素鋼を得ることができる製造方法に関する。   The present invention relates to a method for producing high nitrogen steel, and more particularly to a method for producing high nitrogen steel having a small variation in nitrogen content.

高窒素鋼における窒素含有率のばらつきを小さく抑えることができる製造方法として、例えば特許文献1には精錬容器内での精錬末期や循環脱ガス処理中に窒化珪素鉄の粉末を添加することが提案されている。   As a manufacturing method that can suppress the variation in the nitrogen content in high nitrogen steel, for example, Patent Document 1 proposes to add silicon iron nitride powder during the refining stage in the refining vessel or during the cyclic degassing process. Has been.

特開平7−70691JP-A-7-70691

しかし窒化珪素鉄を添加する上記提案の方法でも、未だ窒素含有率のばらつきは充分には抑えられず、しかも窒化珪素鉄の添加時に多量のスラグフォーミングを生じるためにその添加量が限定されるとともに、続く循環脱ガス処理中のスラグの抜けが悪いために操業効率が悪くなるという問題があった。   However, even with the above proposed method of adding silicon iron nitride, the variation in nitrogen content is still not sufficiently suppressed, and the amount of addition is limited because a large amount of slag forming occurs when silicon iron nitride is added. Further, there is a problem that the operation efficiency is deteriorated due to poor slag removal during the subsequent circulation degassing treatment.

そこで、本発明はこのような課題を解決するもので、窒素含有率のばらつきを小さく抑えることができるとともに操業効率も向上させることが可能な高窒素鋼の製造方法を提供することを目的とする。   Then, this invention solves such a subject and it aims at providing the manufacturing method of the high nitrogen steel which can improve the operation efficiency while being able to suppress the dispersion | variation in nitrogen content rate small. .

発明者等は種々実験を行った結果、窒化珪素鉄の粉末を添加する従来の方法で窒素含有率のばらつきや多量のフォーミングを生じる原因が、これまで通常使用されていた窒化珪素鉄の粉末粒径が3mm〜10mmと粗いことが原因であることに思い至って本発明を案出した。   As a result of various experiments, the inventors have found that the conventional method of adding silicon iron nitride powder causes a variation in nitrogen content and a large amount of foaming. The present invention has been devised based on the idea that the diameter is as coarse as 3 mm to 10 mm.

すなわち本発明は、精錬容器(2)内で精錬した溶鋼(3)を循環脱ガス処理によってさらに精錬する高窒素鋼の製造方法において、前記循環脱ガス処理に先立って前記精錬容器(2)中に最大粒径1mm以下の窒化珪素鉄(1)を投入することを特徴とする高窒素鋼の製造方法である。   That is, the present invention relates to a method for producing high nitrogen steel in which the molten steel (3) refined in the refining vessel (2) is further refined by circulating degassing treatment, and the refining vessel (2) is provided prior to the circulating degassing treatment. Is a method for producing high nitrogen steel, characterized in that silicon iron nitride (1) having a maximum particle size of 1 mm or less is introduced into the steel.

本発明によれば、最大粒径1mm以下の窒化珪素鉄は精錬容器内の溶鋼の表面を覆うスラグ内に留められて溶鋼には達せず、しかもスラグへの溶け込みが早いためにフォーミングの発生も小さく抑えられる。したがって脱ガス処理時に脱ガス槽内に進入したスラグは精錬容器内に速やかに戻り、溶鋼のみが脱ガス雰囲気に晒されて溶鋼中から不要ガス成分や介在物が除去される。これによれば、スラグ中の窒素分が高く維持され、しかもその変動が抑えられるから、窒素含有率のばらつきの小さい高窒素鋼を得ることができるとともに、フォーミングが抑えられて操業効率も向上する。   According to the present invention, silicon iron nitride having a maximum particle size of 1 mm or less is retained in the slag that covers the surface of the molten steel in the refining vessel and does not reach the molten steel, and the formation of forming occurs due to the rapid penetration into the slag. Can be kept small. Therefore, the slag that has entered the degassing tank during the degassing process quickly returns to the refining vessel, and only the molten steel is exposed to the degassing atmosphere, and unnecessary gas components and inclusions are removed from the molten steel. According to this, since the nitrogen content in the slag is maintained at a high level and the fluctuation is suppressed, it is possible to obtain a high nitrogen steel with a small variation in the nitrogen content, and the forming is suppressed and the operation efficiency is improved. .

なお、上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the said parenthesis shows the correspondence with the specific means as described in embodiment mentioned later.

以上のように、本発明の高窒素鋼の製造方法によれば、窒素含有率のばらつきを小さく抑えることができるとともに操業効率も向上させることができる。   As mentioned above, according to the manufacturing method of the high nitrogen steel of this invention, the dispersion | variation in nitrogen content rate can be suppressed small, and operation efficiency can also be improved.

本発明方法の工程を説明する取鍋の概略垂直断面図である。It is a general | schematic vertical sectional view of the ladle explaining the process of this invention method. スラグ中の窒素濃度を本発明方法と従来方法で比較したグラフである。It is the graph which compared the nitrogen concentration in slag with the method of this invention, and the conventional method. 本発明方法の工程を説明する脱ガス槽の概略垂直断面図である。It is a general | schematic vertical sectional view of the degassing tank explaining the process of this invention method. スラグ抜けまでの時間を本発明方法と従来方法で比較したグラフである。It is the graph which compared the time to slug removal by the method of the present invention and the conventional method. 本発明方法の工程を説明する取鍋の概略垂直断面図である。It is a general | schematic vertical sectional view of the ladle explaining the process of this invention method. 高窒素鋼の窒素濃度範囲を本発明方法と従来方法で比較したグラフである。It is the graph which compared the nitrogen concentration range of high nitrogen steel with the method of this invention, and the conventional method. 従来方法の工程を説明する取鍋の概略垂直断面図である。It is a general | schematic vertical sectional view of the ladle explaining the process of the conventional method. 従来方法の工程を説明する脱ガス槽の概略垂直断面図である。It is a general | schematic vertical sectional view of the degassing tank explaining the process of the conventional method.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention.

本発明方法は循環脱ガス処理(RH脱ガス処理)に先立つ取鍋精錬の末期に、窒化珪素鉄(N−FSi)の粉末を精錬容器たる取鍋内へ投入する。この場合の粉末の粒径は最大で1mm以下とする。このような粉末は、窒化珪素鉄を粉砕後、特定メッシュの篩で1mmより粒径の大きい粉末を排除することにより得られる。窒化珪素鉄としては例えば窒化珪素(Si3N4)成分を75%〜80%含有し、12%〜17%の遊離の鉄分を含む複合耐火原材料を使用できる。   In the method of the present invention, silicon iron nitride (N-FSi) powder is put into a ladle serving as a refining vessel at the final stage of ladle refining prior to circulation degassing (RH degassing). In this case, the maximum particle size of the powder is 1 mm or less. Such a powder can be obtained by pulverizing silicon nitride iron and then removing the powder having a particle size larger than 1 mm with a sieve of a specific mesh. As silicon iron nitride, for example, a composite refractory raw material containing 75% to 80% silicon nitride (Si3N4) component and containing 12% to 17% free iron can be used.

最大粒径1mm以下の窒化珪素鉄1は図1に示すように、取鍋2内へ投入されると、取鍋2内の溶鋼3の表面を覆うスラグ4内に留められて溶鋼3には達しない。そして、スラグ4への溶け込みが早いためにスラグフォーミングの発生が小さく抑えられる。すなわち、図2の線Xで示すように、最大粒径1mm以下の本発明の窒化珪素鉄粉末を添加した場合には添加後の時間経過に伴ってスラグ中の窒素濃度が順調に増加する。これに対して、従来の粉末粒径が3mm〜10mmの窒化珪素鉄粉末を添加した場合には同図の線Yで示すように、添加後の時間が経過してもスラグ中の窒素濃度は上昇しない。これは投入された窒化珪素鉄が溶鋼まで至ってしまうためと思われる。なお、図2における窒化珪素鉄粉末の添加量は15kgである。   As shown in FIG. 1, when silicon iron nitride 1 having a maximum particle size of 1 mm or less is put into ladle 2, it is retained in slag 4 covering the surface of molten steel 3 in ladle 2, and in molten steel 3 Not reach. And since melt | dissolution to the slag 4 is quick, generation | occurrence | production of slag forming is suppressed small. That is, as shown by the line X in FIG. 2, when the silicon iron nitride powder of the present invention having a maximum particle size of 1 mm or less is added, the nitrogen concentration in the slag increases smoothly with the passage of time after the addition. On the other hand, when silicon iron nitride powder having a conventional powder particle size of 3 mm to 10 mm is added, as shown by line Y in FIG. Does not rise. This is probably because the injected silicon iron nitride reaches the molten steel. In addition, the addition amount of the silicon iron nitride powder in FIG. 2 is 15 kg.

取鍋精錬終了後には図3に示すように循環脱ガス処理に移行する。フォーミングが抑えられているため、脱ガス槽5内に進入したスラグ4は図中の矢印で示すように循環させられて取鍋2内に速やかに戻り(スラグ抜け)、溶鋼3のみが脱ガス雰囲気に晒されて溶鋼3中から不要ガス成分や介在物が除去される。すなわち、図4に示すように、最大粒径1mm以下の本発明の窒化珪素鉄粉末を添加した場合(図中の黒丸印)にはスラグ抜けまでの時間が2分〜7分程度と短時間であるのに対して、粉末粒径が3mm〜10mmの従来の窒化珪素鉄粉末を添加した場合(図中の白角印)は6分〜12分程度と長時間になる。なお、図4中の横軸は窒化珪素鉄粉末の添加量を60kg/chとして同一鋼種を連続処理した場合のch(チャージ)数を示したもので、従来の窒化珪素鉄粉末では脱ガス槽内に次第にスラグが付着するためにch数が多くなるとスラグ抜けまでの時間が長くなるのに対して、本発明の窒化珪素鉄粉末ではスラグ付着の影響を受けず、スラグ抜けまでの時間がch数に関係なく短く維持される。   After the ladle refining is completed, the process proceeds to the circulating degassing process as shown in FIG. Since the forming is suppressed, the slag 4 that has entered the degassing tank 5 is circulated as shown by the arrow in the figure and quickly returned to the ladle 2 (slag removal), and only the molten steel 3 is degassed. Unnecessary gas components and inclusions are removed from the molten steel 3 by being exposed to the atmosphere. That is, as shown in FIG. 4, when the silicon iron nitride powder of the present invention having a maximum particle size of 1 mm or less is added (black circle mark in the figure), the time until slag removal is as short as 2 to 7 minutes. On the other hand, when a conventional silicon iron nitride powder having a powder particle size of 3 mm to 10 mm is added (white square marks in the figure), it takes about 6 to 12 minutes. The horizontal axis in FIG. 4 indicates the number of ch (charges) when the same steel type is continuously processed with the addition amount of silicon iron nitride powder being 60 kg / ch. In the conventional silicon iron nitride powder, the degassing tank is shown. Since the slag gradually adheres inside and the number of channels increases, the time until slag removal becomes longer, whereas the silicon iron nitride powder of the present invention is not affected by slag adhesion, and the time until slag removal Keep short regardless of number.

循環脱ガス処理終了後は、図5に示すように、スラグ4中に留められた窒化珪素鉄からの窒素(N)分がスラグメタル界面反応によって溶鋼3中に移行する。本発明においてはスラグ4中の窒素濃度が上述のように高く維持できるから、溶鋼3中への窒素分の移行が効率的に行われる。   After completion of the circulation degassing process, as shown in FIG. 5, the nitrogen (N) content from the silicon nitride iron retained in the slag 4 is transferred into the molten steel 3 by the slag metal interface reaction. In the present invention, since the nitrogen concentration in the slag 4 can be kept high as described above, the nitrogen content is efficiently transferred into the molten steel 3.

以上の工程によって窒素含有率のばらつきの小さい高窒素鋼が得られる。これを図6に示す。図6は上記工程で得られた高窒素鋼の窒素濃度範囲を示し、粒径が最大1mm以下の本発明の窒化珪素鉄粉末を使用した場合には高窒素鋼の窒素濃度は0.005%〜0.007%の範囲に収まるのに対して、従来の3mm〜10mmの粉末粒径の窒化珪素鉄粉末を使用した場合には高窒素鋼の窒素濃度範囲は0.001%〜0.007%と大きくばらつく。なお、この場合の窒化珪素鉄粉末の添加量は60kgである。   High nitrogen steel with small variation in nitrogen content can be obtained by the above process. This is shown in FIG. FIG. 6 shows the nitrogen concentration range of the high nitrogen steel obtained in the above process. When the silicon iron nitride powder of the present invention having a maximum particle size of 1 mm or less is used, the nitrogen concentration of the high nitrogen steel is 0.005%. Whereas the conventional silicon iron nitride powder having a particle diameter of 3 mm to 10 mm is used, the nitrogen concentration range of the high nitrogen steel is 0.001% to 0.007. %. In this case, the amount of silicon iron nitride powder added is 60 kg.

この原因は以下のように考えられる。すなわち、粉末粒径が大きい場合には図7に示すように、窒化珪素鉄粉末1´を取鍋2内に投入すると、窒化珪素鉄粉末1´がスラグ4内に留まらず、溶鋼3内にまで侵入して脱ガス処理時に窒素分が脱気されてしまう。また、粒径が大きいために添加後にフォーミングが持続して大量に発生する。続く循環脱ガス処理(図8)においては、脱ガス槽5内に侵入したスラグ4内で、未反応の窒化珪素鉄1´によるフォーミングが生じてスラグ4の抜けが悪くなるとともに、溶鋼3内に溶解している窒素分が脱ガス雰囲気中へ脱気されてしまう。この結果、循環脱ガス処理終了後の溶鋼3中の窒素分やスラグ4中に留められた窒化珪素鉄の窒素分が大きく変動して、得られる高窒素鋼の窒素濃度範囲が大きくばらつくのである。   The cause is considered as follows. That is, when the powder particle size is large, as shown in FIG. 7, when the silicon nitride iron powder 1 ′ is put into the ladle 2, the silicon nitride iron powder 1 ′ does not stay in the slag 4 but enters the molten steel 3. And nitrogen is degassed during the degassing process. In addition, since the particle size is large, forming continues after the addition and occurs in large quantities. In the subsequent circulation degassing treatment (FIG. 8), forming by unreacted silicon iron nitride 1 ′ occurs in the slag 4 that has entered the degassing tank 5, and the slag 4 is not easily removed. Nitrogen dissolved in the gas is degassed into the degas atmosphere. As a result, the nitrogen content in the molten steel 3 after the circulation degassing treatment and the nitrogen content of the silicon iron nitride retained in the slag 4 vary greatly, and the nitrogen concentration range of the resulting high nitrogen steel varies greatly. .

本発明においては、高窒素鋼の窒素濃度範囲のばらつきを抑えることができるとともに、窒化珪素鉄添加時のフォーミングを小さく抑えることができるため窒化珪素鉄の添加量を多くしてさらに窒素濃度の高い高窒素鋼を得ることができ、かつ循環脱ガス処理におけるスラグの抜けが良いから操業効率を高めることができる。   In the present invention, the variation in the nitrogen concentration range of the high nitrogen steel can be suppressed, and the forming at the time of addition of silicon iron nitride can be suppressed small. Therefore, the addition amount of silicon iron nitride is increased to further increase the nitrogen concentration. High nitrogen steel can be obtained, and since the slag can be easily removed in the circulating degassing process, the operation efficiency can be increased.

1…窒化珪素鉄、2…取鍋(精錬容器)、3…溶鋼。   1 ... silicon iron nitride, 2 ... ladle (smelting vessel), 3 ... molten steel.

Claims (1)

精錬容器内で精錬した溶鋼を循環脱ガス処理によってさらに精錬する高窒素鋼の製造方法において、前記循環脱ガス処理に先立って前記精錬容器中に最大粒径1mm以下の窒化珪素鉄を投入することを特徴とする高窒素鋼の製造方法。 In a method for producing high nitrogen steel in which molten steel refined in a refining vessel is further refined by circulating degassing treatment, iron iron nitride having a maximum particle size of 1 mm or less is introduced into the refining vessel prior to the circulating degassing treatment. A method for producing high nitrogen steel characterized by the following.
JP2011219129A 2011-10-03 2011-10-03 Method for producing high-nitrogen steel Pending JP2013079413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219129A JP2013079413A (en) 2011-10-03 2011-10-03 Method for producing high-nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219129A JP2013079413A (en) 2011-10-03 2011-10-03 Method for producing high-nitrogen steel

Publications (1)

Publication Number Publication Date
JP2013079413A true JP2013079413A (en) 2013-05-02

Family

ID=48526016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219129A Pending JP2013079413A (en) 2011-10-03 2011-10-03 Method for producing high-nitrogen steel

Country Status (1)

Country Link
JP (1) JP2013079413A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146712A (en) * 1976-05-31 1977-12-06 Ibiden Co Ltd Nitrogen additive for steel manufacture
JPH0770691A (en) * 1993-08-31 1995-03-14 Daido Steel Co Ltd Production of high nitrogen steel
JP2001152234A (en) * 1999-11-19 2001-06-05 Kobe Steel Ltd Carbon adding method to molten steel in ladle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146712A (en) * 1976-05-31 1977-12-06 Ibiden Co Ltd Nitrogen additive for steel manufacture
JPH0770691A (en) * 1993-08-31 1995-03-14 Daido Steel Co Ltd Production of high nitrogen steel
JP2001152234A (en) * 1999-11-19 2001-06-05 Kobe Steel Ltd Carbon adding method to molten steel in ladle

Similar Documents

Publication Publication Date Title
JP5092245B2 (en) Denitrification method for molten steel
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP2018066030A (en) Manufacturing method of high cleanliness steel
JP6040957B2 (en) Method of melting high S low N alloy steel
CN103468866A (en) Refining technology for molten medium-high carbon steel
JP6428307B2 (en) Manufacturing method of high clean steel
JP2015042777A (en) Method for smelting high nitrogen steel
JP2016204693A (en) Production method of high cleanliness steel
CN104975138A (en) Method of preparing ultralow-sulfur molten iron through injection of molten iron pre-treatment composite desulfurizer
JP2013079413A (en) Method for producing high-nitrogen steel
KR101366977B1 (en) Method for manufacturing ultra low carbon steel by ingot techniques using vacuum-degassing system
JP2018066031A (en) Manufacturing method of high cleanliness steel
JP2020180341A (en) Melting method of ultra-low nitrogen steel
KR101796088B1 (en) Refining method of alloy steel
KR101707307B1 (en) Method of manufacturing steel prventing clogging of subemrged entry nozzle
JP2019526708A (en) Alloy steel manufacturing method
CN102634717B (en) Manufacturing method for steel ingot of axle steel
JP2017128751A (en) Manufacturing method of high cleanliness steel
JP4839658B2 (en) Refining method of bearing steel
CN105886802A (en) Method for smelting copper
KR101321086B1 (en) Method for refining molten iron
JP6337681B2 (en) Vacuum refining method for molten steel
KR20130032698A (en) Method for refining molten steel
KR101400053B1 (en) Refining method of molten steel
JP2008260997A (en) Desulfurization method of molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160107