JP2013077472A - Light guide body, lighting device equipped with the same, and display device - Google Patents

Light guide body, lighting device equipped with the same, and display device Download PDF

Info

Publication number
JP2013077472A
JP2013077472A JP2011217201A JP2011217201A JP2013077472A JP 2013077472 A JP2013077472 A JP 2013077472A JP 2011217201 A JP2011217201 A JP 2011217201A JP 2011217201 A JP2011217201 A JP 2011217201A JP 2013077472 A JP2013077472 A JP 2013077472A
Authority
JP
Japan
Prior art keywords
light guide
light
deflection element
unit shape
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011217201A
Other languages
Japanese (ja)
Inventor
Kunihiro Kuramochi
邦裕 倉持
Takayuki Fujiwara
隆之 藤原
Satoru Hayasaka
哲 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011217201A priority Critical patent/JP2013077472A/en
Publication of JP2013077472A publication Critical patent/JP2013077472A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light guide body with improved concealment properties of its optical deflection elements and capable of alleviating luminance unevenness.SOLUTION: On a first main face of the light guide body, unit shapes of a plurality of optical deflection elements for deflecting light inside the light guide body toward a second main face are formed, and micro unevenness parts finer than a size of the unit shape of the optical deflection element are provided on the surface of each unit shape of the optical deflection element, whereby, concealment properties are improved to have the optical deflection elements hardly recognized, and that, scattering properties are improved to lessen deviation of luminance distribution derived from faint height errors of the unit shape and alleviate luminance unevenness.

Description

本発明は、主に照明光路制御に使用される導光体、及び照明装置並びに表示装置に関するものである。   The present invention relates to a light guide used mainly for illumination light path control, an illumination device, and a display device.

最近の大型液晶テレビやフラットディスプレイパネル等においては主に、直下型方式の照明装置と、エッジライト方式の照明装置とが採用されている。直下型方式の照明装置では、光源として複数の冷陰極管やLED(LightEmitting Diode)が、パネルの背面に規則的に配置される。液晶パネル等の画像表示素子と光源との間には、光散乱性の強い拡散板が用いられ、光源としての冷陰極管やLEDが視認されないようにしている。   In recent large-sized liquid crystal televisions, flat display panels and the like, a direct type illumination device and an edge light illumination device are mainly used. In the direct type illumination device, a plurality of cold cathode tubes and LEDs (Light Emitting Diodes) are regularly arranged as light sources on the back surface of the panel. A light diffusing plate is used between the image display element such as a liquid crystal panel and the light source so that a cold cathode tube or LED as a light source is not visually recognized.

一方、エッジライト方式の照明装置は、複数の冷陰極管やLEDが、導光板と呼ばれる透光性の板の端面に配置される。一般的に、導光板の射出面(画像表示素子と対向する面)の逆側の面(光偏向面)には、該導光板の端面から入射する入射光を効率良く射出面へと導く光偏向要素が形成される。現在、光偏向面に形成される光偏向要素としては白色のインキがドット状に印刷されたものが一般的(例えば特許文献1)である。しかし、白色ドットに入射した光はほぼ無指向に拡散反射されるため、導光板の射出面側への光取出し効率は低い。白色インキによる光吸収も無視することはできない。   On the other hand, in an edge light type lighting device, a plurality of cold-cathode tubes and LEDs are arranged on an end face of a translucent plate called a light guide plate. In general, light that efficiently enters incident light that is incident from an end surface of the light guide plate onto a surface (light deflection surface) opposite to the light emission surface (surface that faces the image display element) of the light guide plate. A deflection element is formed. At present, the light deflection element formed on the light deflection surface is generally one in which white ink is printed in the form of dots (for example, Patent Document 1). However, since the light incident on the white dots is diffusely reflected almost omnidirectionally, the light extraction efficiency to the exit surface side of the light guide plate is low. Light absorption by white ink cannot be ignored.

そこで最近では、マイクロレンズによる光偏向要素の単位形状32をインクジェット法によって導光板の光偏向面へと形成する方法や、レーザーアブレーション法によって光偏向要素の単位形状32を形成する方法や、導光板の面にV字型やU字型の形状やその他様々な形状の溝から成る光偏向要素の単位形状32を一体形成して導光板の光偏向面へ形成する方法(特許文献2)などが提案されている。これらの方法では、白色インキの印刷とは違い、導光板の光偏向面における光偏向要素の単位形状32の部分で、導光板の樹脂と空気との屈折率差による反射、屈折、透過を利用しているため、光吸収はほとんど生じない。そのため、白色インキに比べて光取出し効率の高い導光板を得ることができる。   Therefore, recently, a method of forming the unit shape 32 of the light deflection element by the microlens on the light deflection surface of the light guide plate by the ink jet method, a method of forming the unit shape 32 of the light deflection element by the laser ablation method, A method of forming a unit shape 32 of a light deflection element composed of a V-shaped or U-shaped groove on the surface of the light and various other shapes and forming it on the light deflection surface of the light guide plate (Patent Document 2), etc. Proposed. These methods use reflection, refraction, and transmission due to the difference in refractive index between the resin of the light guide plate and air at the portion of the light deflection element unit shape 32 on the light deflection surface of the light guide plate, unlike printing with white ink. Therefore, light absorption hardly occurs. Therefore, a light guide plate having a higher light extraction efficiency than that of white ink can be obtained.

特開平1−241590号公報JP-A-1-241590 特開2000−89033号公報JP 2000-89033 A

しかしながら、マイクロレンズやV字型やU字型等の、光偏向要素の単位形状32を導光板の光偏向面へ形成する方法では、白色インキと違い、入射した光は有指向に反射されるため、局所的な明暗差が生じる。つまり、隠蔽性が悪くなり光偏向要素が視認され易くなる。何故ならば、光偏向要素の単位形状32は、図7に示すように、入射した光は有指向に反射する為、集光する部分つまり明るい部分と暗い部分が強調されてしまう。そこで、隠蔽性を向上させる為には、図8に示すように光偏向要素の単位形状32を小さく(細かく)して局所的な明暗差を生じる単位を小さくすることで光偏向要素を視認され難くする方法が考えられる。   However, in the method of forming the unit shape 32 of the light deflection element on the light deflection surface of the light guide plate, such as a microlens, a V-shape or a U-shape, the incident light is reflected directionally unlike white ink. Therefore, a local light / dark difference occurs. That is, the concealability is deteriorated and the light deflection element is easily visually recognized. This is because, in the unit shape 32 of the light deflection element, as shown in FIG. 7, the incident light is reflected in a directional direction, so that the condensing part, that is, the bright part and the dark part are emphasized. Therefore, in order to improve the concealment property, as shown in FIG. 8, the unit shape 32 of the light deflection element is made small (fine) to make the unit that causes local contrast difference small, so that the light deflection element is visually recognized. Possible ways to make it difficult.

しかし、上述した方法を実現させる為には、光偏向要素の形成工程における光偏向要素の単位形状32そのものの形成ズレを軽減させなければならない。例えば、高さ50μm
と5μmの両光偏向要素の単位形状32における設計(狙い値)と実測の高低誤差が1μmあったとする。前者である高さ50μmの光偏向要素の単位形状32では2%のズレ量に対して、後者である高さ5μmの光偏向要素の単位形状32では20%もズレる問題があった。つまり、光偏向要素の単位形状32を小さく(細かく)すると、マクロ的な微細なズレの影響が増大し輝度ムラが大きくなるので、所望の光学特性が得られない問題があった。
However, in order to realize the above-described method, it is necessary to reduce the formation deviation of the unit shape 32 of the light deflection element in the step of forming the light deflection element. For example, height 50μm
It is assumed that there is a design error (target value) in the unit shape 32 of the light deflection elements of 5 μm and 5 μm and an actually measured height error of 1 μm. There is a problem that the unit shape 32 of the optical deflection element having a height of 50 μm, which is the former, has a deviation of 2%, while the unit shape 32 of the optical deflection element having the height of 5 μm, is displaced by 20%. That is, when the unit shape 32 of the light deflection element is made small (fine), the influence of macroscopic fine deviation increases and luminance unevenness becomes large, so that there is a problem that desired optical characteristics cannot be obtained.

本発明は、上述のような従来の問題を解決するためになされたもので、光偏向要素の隠蔽性を向上し、且つ、光偏向要素の単位形状32の微小な高低誤差から生じる輝度ムラを低減することを目的とする。   The present invention has been made in order to solve the above-described conventional problems, and improves the concealment of the light deflection element, and eliminates the luminance unevenness caused by the minute height error of the unit shape 32 of the light deflection element. The purpose is to reduce.

上記の課題を解決するための手段として、本発明は、透光性の導光体であって、前記導光体は、第1主面と、前記第1主面と対向する第2主面と、前記第1主面と前記第2主面とを接続する4つの側端面を有し、前記4つの側端面の少なくとも1つの側端面に臨む複数の光源が、該側端面の延在方向に並べて配置され、前記第1主面には、前記導光体内の光を前記第2主面側へと偏向する複数の光偏向要素の単位形状が形成され、前記光偏向要素の単位形状の表面上に前記光偏向要素の単位形状の寸法よりも細かい微細凹凸部を有することを特徴とする導光体である。   As means for solving the above-mentioned problems, the present invention is a light-transmitting light guide, and the light guide has a first main surface and a second main surface facing the first main surface. And a plurality of light sources facing at least one side end surface of the four side end surfaces are connected in the extending direction of the side end surface. The unit shape of a plurality of light deflection elements for deflecting light in the light guide toward the second main surface side is formed on the first main surface, and the unit shape of the light deflection element is A light guide having a fine uneven portion finer than a unit shape of the light deflection element on a surface.

また、本発明は、上記の導光体であって、前記第1主面の前記光偏向要素の単位形状は凸状円形状構造体であることを特徴とする導光体である。   Moreover, this invention is said light guide, Comprising: The unit shape of the said optical deflection | deviation element of a said 1st main surface is a convex circular structure, It is a light guide characterized by the above-mentioned.

また、本発明は、上記の導光体であって、前記第1主面の前記光偏向要素の単位形状は凹状円形状構造体であることを特徴とする導光体である。   Moreover, this invention is said light guide, Comprising: The unit shape of the said optical deflection | deviation element of a said 1st main surface is a concave circular structure, It is a light guide characterized by the above-mentioned.

また、本発明は、上記の導光体であって、前記微細凹凸部の微細凹凸幅が、0.2μm以上5μm以下であることを特徴する導光体である。   Moreover, this invention is said light guide, Comprising: The fine uneven | corrugated width | variety of the said fine uneven | corrugated | grooved part is 0.2 micrometer or more and 5 micrometers or less, It is a light guide characterized by the above-mentioned.

また、本発明は、上記の導光体であって、前記微細凹凸部の深さが2μm以下であることを特徴とする導光体である。   Moreover, this invention is said light guide, Comprising: The depth of the said fine uneven | corrugated | grooved part is 2 micrometers or less, It is a light guide characterized by the above-mentioned.

また、本発明は、上記の導光体であって、前記導光体の第2主面の光学要素にはシリンドリカル形状構造体を一次元方向に連続的に配置した導光体である。   Moreover, this invention is said light guide, Comprising: It is a light guide which arrange | positioned the cylindrical-shaped structure continuously in the one-dimensional direction in the optical element of the 2nd main surface of the said light guide.

また、本発明は、上記の導光体を搭載した照明装置である。   Moreover, this invention is an illuminating device carrying said light guide.

また、本発明は、上記の照明装置を備えた表示装置である。   Moreover, this invention is a display apparatus provided with said illuminating device.

本発明に記載の発明によれば、光偏向要素の単位形状の表面上に微細凹凸部を設けることにより、隠蔽性を向上させることができ、光偏向要素が視認され難くなり、且つ、散乱性が向上する効果がある。そのため、光偏向要素の単位形状を小さくする必要がなく、光偏向要素の単位形状を小さくした場合に生じる微小な高低誤差に起因する輝度ムラの増加を防ぐことができる効果がある。   According to the invention described in the present invention, by providing fine uneven portions on the surface of the unit shape of the light deflection element, the concealability can be improved, the light deflection element becomes difficult to be visually recognized, and the scattering property is increased. Has the effect of improving. Therefore, there is no need to reduce the unit shape of the light deflection element, and there is an effect that it is possible to prevent an increase in luminance unevenness due to a minute height error that occurs when the unit shape of the light deflection element is reduced.

本発明のエッジライト方式の照明装置の説明図である。It is explanatory drawing of the illuminating device of the edge light system of this invention. 本発明の導光体7の一部を示す説明図である。It is explanatory drawing which shows a part of light guide 7 of this invention. 凸状円形状構造体を示す光偏向要素の単位形状32の断面図である。It is sectional drawing of the unit shape 32 of the optical deflection | deviation element which shows a convex-shaped circular structure. 凹状円形状構造体を示す光偏向要素の単位形状32の断面図である。It is sectional drawing of the unit shape 32 of the optical deflection | deviation element which shows a concave circular structure. 本発明の導光体7の第1主面7aの正面図である。It is a front view of the 1st main surface 7a of the light guide 7 of this invention. 微細凹凸部を有する光偏向要素の単位形状33の断面図である。It is sectional drawing of the unit shape 33 of the optical deflection | deviation element which has a fine uneven | corrugated | grooved part. 光源6からの入射光路と射出光路を簡易的に示した説明図である。It is explanatory drawing which showed simply the incident optical path from the light source 6, and an emitted optical path. 光源6からの入射光路と射出光路を簡易的に示した説明図である。It is explanatory drawing which showed simply the incident optical path from the light source 6, and an emitted optical path. 金型30の斜視図である。2 is a perspective view of a mold 30. FIG. 微細凹凸部を有する光偏向要素の単位形状33の断面図である。It is sectional drawing of the unit shape 33 of the optical deflection | deviation element which has a fine uneven | corrugated | grooved part. 微細凹凸部を有する光偏向要素の単位形状33の形状接線を直線化した断面図である。It is sectional drawing which linearized the shape tangent of the unit shape 33 of the light deflection | deviation element which has a fine uneven | corrugated | grooved part. 導光体7のシートに金型30を転写して押出形成する方法の説明図である。It is explanatory drawing of the method of transcribe | transferring and forming the metal mold | die 30 to the sheet | seat of the light guide 7. FIG. 円周方向への光偏向要素18の形成方法を示した説明である。It is the description which showed the formation method of the optical deflection | deviation element 18 to the circumferential direction. 軸方向への光偏向要素18の形成方法を示した説明である。It is the description which showed the formation method of the optical deflection | deviation element 18 to an axial direction.

以下、導光体と導光板は同じものを指す。
図1を使用して本発明の導光体を説明する。本発明の表示装置1は、照明装置3、液晶パネル2からなる。図1においてFの方向にいる観察者に向けて表示装置1が画像を表示して、観察者に観察させる。
Hereinafter, the light guide and the light guide plate refer to the same thing.
The light guide of the present invention will be described with reference to FIG. The display device 1 of the present invention includes a lighting device 3 and a liquid crystal panel 2. In FIG. 1, the display device 1 displays an image toward an observer who is in the direction F, and causes the observer to observe.

照明装置3は、光源6から射出した光を入射し、液晶パネル2に向かう射出光Kに偏向する役割を担う。導光体7は照明装置3の、筐体5に収められている。また、導光体7と筐体5の間には反射シートが設けられている。光源からの光は、導光体の側端面7Lに入射する。光は第1主面7aの光偏向要素18で偏向され、第2主面7bより射出される。第2主面7bが光学要素19を有するときは光学要素19より射出される。光はそのあと拡散シート8、プリズムシート20、偏光分離シート28を透過し照明装置からの射出光Kとして、Fの方向にいる観察者に向けて射出される。   The illuminating device 3 plays a role of entering the light emitted from the light source 6 and deflecting it to the emitted light K toward the liquid crystal panel 2. The light guide 7 is housed in the housing 5 of the lighting device 3. A reflective sheet is provided between the light guide 7 and the housing 5. The light from the light source is incident on the side end face 7L of the light guide. The light is deflected by the light deflection element 18 on the first main surface 7a and is emitted from the second main surface 7b. When the second main surface 7 b has the optical element 19, the light is emitted from the optical element 19. The light then passes through the diffusion sheet 8, the prism sheet 20, and the polarization separation sheet 28, and is emitted toward the observer in the direction F as emission light K from the illumination device.

図2は本発明の導光体7の一部を示す説明図である。光が入射する側端面7L、第1主面7a、第2主面7bを有している。第1主面7aには複数のドット状の光偏向要素の単位形状32から成る光偏向要素18が形成され、第2主面7bには光学要素19を有している。なお、光の入射のない側端面は7Sとする。光偏向要素18は第1主面aの鏡面に配置されたドットである。光学要素19は隙間なく並べられたレンズである。   FIG. 2 is an explanatory view showing a part of the light guide 7 of the present invention. It has a side end surface 7L on which light is incident, a first main surface 7a, and a second main surface 7b. The first main surface 7a is formed with a light deflection element 18 composed of a plurality of dot-shaped light deflection element unit shapes 32, and the second main surface 7b has an optical element 19. The side end surface where no light is incident is 7S. The light deflection elements 18 are dots arranged on the mirror surface of the first main surface a. The optical element 19 is a lens arranged without gaps.

導光体7はアクリル、ポリカーボネート、ポリスチレン、AS樹脂、MS樹脂などの透明樹脂でできている。導光体7は射出成形や押し出し成形、キャストで四角い樹脂の板状に成形される。   The light guide 7 is made of a transparent resin such as acrylic, polycarbonate, polystyrene, AS resin, or MS resin. The light guide 7 is formed into a square resin plate by injection molding, extrusion molding, or casting.

(光偏向要素18)
光偏向要素18は第1主面7aの表面に形成した複数の立体的なドット状の形状の光偏向要素の単位形状32で形成し、凸状や凹状の様々なドット状の形状に形成することができる。すなわち、光偏向要素の単位形状32のドットの形状は、半球状ドット、角錐状ドット、立方体などの形状に形成することもできるる。傷つきにくさの観点から、凹形状が好ましく、第1主面7aからの高低差が5μm以上70μm以下の凹形状ドットであることが、さらに好ましい。5μm未満では傷つき防止には浅すぎ、70μmより深い場合は異物が入ってしまった場合に取り除くのが非常に困難になる。なお、光偏向要素18は光源からの距離によって光偏向要素の単位形状32のドットのサイズ、形状、配置間隔いずれかが異なる。
(Light deflection element 18)
The light deflection element 18 is formed by a unit shape 32 of a plurality of three-dimensional dot-shaped light deflection elements formed on the surface of the first main surface 7a, and is formed in various dot shapes such as a convex shape and a concave shape. be able to. In other words, the dot shape of the unit shape 32 of the light deflection element can be formed in the shape of a hemispherical dot, a pyramidal dot, a cube, or the like. From the viewpoint of being hard to be damaged, a concave shape is preferable, and it is more preferable that the dot is a concave dot having a height difference from the first main surface 7a of 5 μm or more and 70 μm or less. If it is less than 5 μm, it is too shallow to prevent scratches, and if it is deeper than 70 μm, it is very difficult to remove if foreign matter has entered. The light deflection element 18 differs in the size, shape, and arrangement interval of the dots of the unit shape 32 of the light deflection element depending on the distance from the light source.

(光学要素19)
第2主面7bに形成する光学要素19は、様々な素材、形状がある。例えば、光学要素
19は第2主面7bに、UV硬化性樹脂で形成されたレンズで形成できる。
(Optical element 19)
The optical element 19 formed on the second main surface 7b has various materials and shapes. For example, the optical element 19 can be formed of a lens formed of a UV curable resin on the second main surface 7b.

また、光学要素19は機械加工で作成された第2主面7bの凹形状のレンズで形成することもできる。   The optical element 19 can also be formed by a concave lens having a second main surface 7b formed by machining.

また、光学要素19は、型によって第2主面7bに作成した凹もしくは凸形状のレンズで形成することができる。レンズは導光体7を形成する際に型に入れて作成されても良いし、形成後に熱した型で作成されても良い。レンズの形状としては当該分野でよく知られたプリズムレンズ、レンチキュラーレンズ、台形レンズなどに形成することができる。レンチキュラーレンズを形成する場合は、図2のように、シリンドリカル形状構造体を一次元方向に連続的に配置した光学要素19を形成する。   The optical element 19 can be formed of a concave or convex lens created on the second main surface 7b by a mold. The lens may be formed in a mold when the light guide 7 is formed, or may be formed in a heated mold after formation. The lens can be formed into a prism lens, a lenticular lens, a trapezoid lens, or the like well known in the art. In the case of forming a lenticular lens, as shown in FIG. 2, an optical element 19 in which cylindrical structures are continuously arranged in a one-dimensional direction is formed.

あるいは、光学要素19は、導光体7の機能を考えた場合、必須ではない。その場合、第2主面7bはただの平面となり、光学要素19は省くことができる。   Alternatively, the optical element 19 is not essential when considering the function of the light guide 7. In that case, the second main surface 7b is merely a flat surface, and the optical element 19 can be omitted.

光学要素19は光偏向要素の単位形状32とは異なり、隙間なくならべるため、光学要素19があれば第2主面7bにおいて保護フィルムを剥がす際に問題は生じない。すなわち、保護フィルムの剥がしやすさの観点からは、光学要素19があったほうがより好ましい。   Unlike the unit shape 32 of the light deflection element, the optical element 19 is formed without gaps. Therefore, if the optical element 19 is present, no problem occurs when the protective film is peeled off from the second main surface 7b. That is, from the viewpoint of easy removal of the protective film, it is more preferable to have the optical element 19.

(光偏向要素18の単位形状の微細凹凸部)
次に、本発明である導光体7の光偏向要素18の単位形状32について説明する。光偏向要素18の単位形状32は、導光体7の第1主面7aに、図3に示すような所望の凸状円形状のドット状の構造体、又は図4に示すような所望の凹状円形状のドット状の構造体を形成する。その光偏向要素の単位形状32を二次元方向に連続的に配置することで、端面から入射する入射光を効率良く射出面へと導く光偏向要素18が形成される。
(Fine irregularities in the unit shape of the light deflection element 18)
Next, the unit shape 32 of the light deflection element 18 of the light guide 7 according to the present invention will be described. The unit shape 32 of the light deflection element 18 is formed on the first main surface 7a of the light guide 7 on the desired convex circular dot-shaped structure as shown in FIG. 3 or the desired shape as shown in FIG. A concave circular dot-shaped structure is formed. By arranging the unit shapes 32 of the light deflecting elements continuously in a two-dimensional direction, the light deflecting elements 18 that efficiently guide incident light incident from the end face to the exit surface are formed.

光偏向要素の単位形状32は、所望の円形状構造体等のドット状の構造体であるが、その表面上には図6に示すように、光偏向要素の単位形状32の寸法よりも細かい微細凹凸部を設けることで、微細凹凸部を有する光偏向要素の単位形状33を形成する。そうすることにより、光偏向要素18の隠蔽性が向上し、且つ、輝度ムラを低減する事が出来る効果がある。従来の光偏向要素の単位形状32では、図7に示すように入射した光を有指向に反射させる為、集光する部分、つまり明るい部分と暗い部分が強調されてしまう問題があった。これに対して、本実施形態の微細凹凸部を有する光偏向要素の単位形状33では、その光偏向要素の単位形状の表面に、光偏向要素の単位形状の寸法よりも細かい微細凹凸部を設けることで、輝度ムラを低減できる効果がある。   The unit shape 32 of the light deflection element is a dot-like structure such as a desired circular structure, but the surface thereof is finer than the size of the unit shape 32 of the light deflection element as shown in FIG. By providing the fine uneven portion, the unit shape 33 of the light deflection element having the fine uneven portion is formed. By doing so, there is an effect that the concealability of the light deflection element 18 is improved and luminance unevenness can be reduced. In the conventional unit shape 32 of the light deflection element, as shown in FIG. 7, incident light is reflected in a directional direction, so that there is a problem that a condensing part, that is, a bright part and a dark part are emphasized. On the other hand, in the unit shape 33 of the light deflection element having the fine uneven portion of the present embodiment, the fine uneven portion finer than the unit shape size of the light deflection element is provided on the surface of the unit shape of the light deflection element. Thus, there is an effect that luminance unevenness can be reduced.

(微細凹凸幅32)
微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34は0.2μm以上5μm以下にすることが望ましい。その理由は、微細凹凸幅34が0.2μm以下では形成が困難であるためと、測定が困難であるためである。また、微細凹凸幅34が5μm以上あると、設計した所望の光学特性が得られない問題が生じ、また、輝度低下も招いてしまうし、更には、課題である隠蔽性が低下し、光偏向要素18が視認出来てしまう問題を生じるからである。
(Fine unevenness width 32)
It is desirable that the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness be 0.2 μm or more and 5 μm or less. The reason is that formation is difficult when the fine unevenness width 34 is 0.2 μm or less, and measurement is difficult. Further, if the fine unevenness width 34 is 5 μm or more, there arises a problem that the desired optical characteristics designed cannot be obtained, and also the luminance is lowered, and further, the concealing property, which is a problem, is lowered, and the light deflection is reduced. This is because the problem that the element 18 can be visually recognized occurs.

(微細凹凸部の深さ35)
微細凹凸部を有する光偏向要素の単位形状33の微細凹凸部の深さ35を、図11のように、微細凹凸部の最も高い凸部の高さと最も低い凸部の高さの差で定義する。この微細凹凸部の深さ35は2μm以下であることが望ましい。その理由は、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸部の深さ35が2μm以上あると、設計した所望の
光学特性が得られない事と、輝度低下を招いてしまう事になり、課題である輝度ムラとして視認出来てしまう問題を生じるからである。
(Fine unevenness depth 35)
The depth 35 of the fine uneven portion of the unit shape 33 of the light deflection element having the fine uneven portion is defined by the difference between the height of the highest convex portion and the height of the lowest convex portion of the fine uneven portion as shown in FIG. To do. The depth 35 of the fine irregularities is desirably 2 μm or less. The reason is that if the depth 35 of the fine uneven portion of the unit shape 33 of the light deflection element having the fine uneven portion is 2 μm or more, the designed desired optical characteristics cannot be obtained, and the brightness is lowered. This is because there arises a problem that it can be visually recognized as a luminance unevenness which is a problem.

(導光体7の製造方法)
以下では、導光体7を金型30を用いて製造する製造方法を説明する。
(金型30)
先ず、その、導光体7の母体となる金型30の製造方法について説明する。図9に示すように、金型30として、略円筒形状の金型30を用いる。その金型30の表面には、以下のようにして、光偏向要素18の型を形成する土台にするための光学的構造体形成部31を形成する。
(Manufacturing method of the light guide 7)
Below, the manufacturing method which manufactures the light guide 7 using the metal mold | die 30 is demonstrated.
(Mold 30)
First, the manufacturing method of the metal mold | die 30 used as the base material of the light guide 7 is demonstrated. As shown in FIG. 9, a substantially cylindrical mold 30 is used as the mold 30. On the surface of the mold 30, an optical structure forming part 31 for forming a base for forming the mold of the light deflection element 18 is formed as follows.

次に、この金型30の表面に、光偏向要素18用の型を加工する方法を説明する。
(金型の円周方向への加工)
先ず、以下のようにして、金型30の表面に、円周方向へ型を加工する。この場合は、図13に示すように、所望の形状を有する切削工具40を金型加工機(レンズ形状形成機)に押し当て、切削工具40を前後方向に振幅させつつ金型30を回転させながら軸方向へ移動しながら金型30の表面に光偏向要素の単位形状32用の型を加工する。この加工の際に、切削工具40を前後方向に振幅させつつ金型30の表面を加工することで、金型30に形成する光偏向要素の単位形状32用の型には、図6に示すように、光偏向要素の単位形状32の幅よりも細かい微細な凹凸が形成され、結局、微細凹凸部を有する光偏向要素の単位形状33用の型が形成される。
Next, a method for processing a mold for the light deflection element 18 on the surface of the mold 30 will be described.
(Processing of the mold in the circumferential direction)
First, a die is processed in the circumferential direction on the surface of the die 30 as follows. In this case, as shown in FIG. 13, a cutting tool 40 having a desired shape is pressed against a mold processing machine (lens shape forming machine), and the mold 30 is rotated while the cutting tool 40 is oscillated in the front-rear direction. The mold for the unit shape 32 of the light deflection element is processed on the surface of the mold 30 while moving in the axial direction. In this processing, the surface of the mold 30 is processed while the cutting tool 40 is oscillated in the front-rear direction, whereby the mold for the unit shape 32 of the light deflection element formed on the mold 30 is shown in FIG. Thus, fine irregularities finer than the width of the unit shape 32 of the light deflection element are formed, and finally, a mold for the unit shape 33 of the light deflection element having the fine irregularities is formed.

(金型の軸方向への加工)
次に、金型30の表面に軸方向へ型を加工する。この場合は、図14に示すように、所望の形状を有する切削工具40を金型加工機(レンズ形状形成機)に取り付け、切削工具40を前後方向に振幅させつつ金型30は無回転のまま軸方向へ移動しながら金型30の表面に微細凹凸部を有する光偏向要素の単位形状33用の型を加工する。
(Processing in the axial direction of the mold)
Next, the mold is processed in the axial direction on the surface of the mold 30. In this case, as shown in FIG. 14, a cutting tool 40 having a desired shape is attached to a mold processing machine (lens shape forming machine), and the mold 30 is not rotated while the cutting tool 40 is oscillated in the front-rear direction. The mold for the unit shape 33 of the light deflection element having the fine irregularities on the surface of the mold 30 is processed while moving in the axial direction.

その金型30の表面形状を図12のように導光体7のシートに転写することで、導光体7の第1主面7aに図5の様な微細凹凸部を有する光偏向要素の単位形状33を形成することができる。   The surface shape of the mold 30 is transferred to the sheet of the light guide 7 as shown in FIG. 12, so that the light deflection element having the fine irregularities as shown in FIG. A unit shape 33 can be formed.

次に、図11を参照して、こうして製造した微細凹凸部を有する光偏向要素の単位形状33について説明する。図11は、図10のような湾曲した光偏向要素の単位形状32の形状接線36を、直線化して示した図である。形状接線36は微細凸部及び凹部の高さを平均化した、平均の高さ(深さ)の線をあらわす。図11に記載した凹凸線は、当初の光偏向要素の単位形状32の形状接線36上に設けた微細凹凸、つまり光偏向要素の単位形状33の形状接線をあらわす。   Next, with reference to FIG. 11, the unit shape 33 of the light deflection element having the fine irregularities thus manufactured will be described. FIG. 11 is a diagram in which the shape tangent line 36 of the unit shape 32 of the curved light deflection element as shown in FIG. 10 is linearized. The shape tangent line 36 represents a line having an average height (depth) obtained by averaging the heights of the fine convex portions and the concave portions. The concavo-convex line shown in FIG. 11 represents the fine concavo-convex provided on the initial shape tangent 36 of the unit shape 32 of the light deflection element, that is, the shape tangent of the unit shape 33 of the light deflection element.

(微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34)
微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34は、一般的にピッチと呼ばれる部位を指し、図10又は11に示す。
(微細凹凸部を有する光偏向要素の単位形状33の微細凹凸部の深さ35)
微細凹凸部を有する光偏向要素の単位形状33の微細凹凸部の深さ35は、図11のように、微細凹凸部の最も高い凸部の高さと最も低い凸部の高さの差で定義する。
(Fine uneven width 34 of the unit shape 33 of the light deflection element having fine uneven portions)
The fine uneven width 34 of the unit shape 33 of the light deflection element having the fine uneven portions indicates a portion generally called a pitch, and is shown in FIG.
(Depth 35 of the fine uneven part of the unit shape 33 of the light deflection element having the fine uneven part)
The depth 35 of the fine uneven portion of the unit shape 33 of the light deflection element having the fine uneven portion is defined by the difference between the height of the highest convex portion and the height of the lowest convex portion of the fine uneven portion as shown in FIG. To do.

(導光体の成型材料)
次に、導光体7の成型材料を説明する。導光体7を金型30で成型して形成する際の導光体7の成型材料としては、光源部から射出される光の波長に対して光透過性を有するものを使用する。例えば、光学用部材に使用可能なプラスチック材料を使用することができ
る。この材料の例としては、ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、MS(アクリルとスチレンの共重合体)樹脂、ポリメチルペンテン樹脂、シクロオレフィンポリマー等の熱可塑性樹脂、あるいはポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート等のオリゴマー又はアクリレート系等からなる放射線硬化性樹脂などの透明樹脂が挙げられる。
(Molding material for light guide)
Next, the molding material of the light guide 7 will be described. As the molding material of the light guide 7 when the light guide 7 is formed by molding with the mold 30, a material having light transmittance with respect to the wavelength of light emitted from the light source unit is used. For example, a plastic material that can be used for the optical member can be used. Examples of this material include polyester resins, acrylic resins, polycarbonate resins, polystyrene resins, MS (acrylic and styrene copolymer) resins, polymethylpentene resins, thermoplastic resins such as cycloolefin polymers, or polyester acrylates and urethanes. Examples thereof include transparent resins such as radiation curable resins made of oligomers such as acrylates and epoxy acrylates, or acrylates.

また、導光体7は、単層構造でも複層構造でもよく、透明層を含んでいてもよい。そして、導光体7は、上述のような材料を金型に流し込み凝固させることで成型して製造する。   The light guide 7 may have a single-layer structure or a multi-layer structure, and may include a transparent layer. And the light guide 7 is shape | molded and manufactured by pouring the above materials into a metal mold | die and solidifying it.

(導光体をUV硬化させて成型する材料)
また、導光体7はUV硬化法で成型して製造してもよい。導光体7をUV硬化法で成型する場合、シート状の基材である基部上にUV硬化性の樹脂を塗布し、所望の形状の金型30を押し当て、その後にUV照射して基部と光学突部及び光学要素からなる導光体7を得る。シート状の基材としては、当該分野でよく知られたPET(ポリエチレンテレフタレート)、ポリカーボネート、アクリル、ポリプロピレンのフィルムなどが使用できる。
(Material to be molded by UV curing the light guide)
Further, the light guide 7 may be manufactured by being molded by a UV curing method. When the light guide 7 is molded by the UV curing method, a UV curable resin is applied onto the base portion which is a sheet-like base material, a mold 30 having a desired shape is pressed, and then UV irradiation is performed to form the base portion. And a light guide 7 composed of optical protrusions and optical elements. As the sheet-like substrate, PET (polyethylene terephthalate), polycarbonate, acrylic, polypropylene films and the like well known in the art can be used.

なお、導光体7についての代表的な作製例を説明してきたが、本実施形態の光学特性を達成することができれば上記以外の材料や構造、プロセスなどを使用して作製することも可能である。   In addition, although the typical preparation example about the light guide 7 was demonstrated, if the optical characteristic of this embodiment can be achieved, it can also be produced using materials, structures, processes other than the above. is there.

導光体7を作製するための母体となる金型30の製造方法において、金型30への光偏向要素18用の型を切削法にて形成した金型30の製造方法について説明する。   In the manufacturing method of the mold 30 which is a base for producing the light guide 7, a manufacturing method of the mold 30 in which the mold for the light deflection element 18 to the mold 30 is formed by a cutting method will be described.

(金型30の円周方向への光偏向要素18用の型の加工)
先ず、図13に示すように、金型30の円周方向への光偏向要素18用の型を形成した。そのために、図13に示すように、所望の形状を有する切削工具40を金型加工機(レンズ形状形成機)に取り付け、切削工具40を前後方向に振幅させつつ金型30を回転させながら軸方向へ移動しながら金型30の表面に光偏向要素18用の型を加工した。
(Processing the mold for the optical deflection element 18 in the circumferential direction of the mold 30)
First, as shown in FIG. 13, a mold for the light deflection element 18 in the circumferential direction of the mold 30 was formed. For this purpose, as shown in FIG. 13, a cutting tool 40 having a desired shape is attached to a mold processing machine (lens shape forming machine), and the shaft 30 is rotated while the mold 30 is rotated while the cutting tool 40 is oscillated in the front-rear direction. A mold for the light deflection element 18 was processed on the surface of the mold 30 while moving in the direction.

(金型30の軸方向への光偏向要素18用の型の加工)
次に、図14に示すように、金型30の軸方向への光偏向要素18用の型を形成した。そのために、図14に示すように、所望の形状を有する切削工具40を金型加工機(レンズ形状形成機)に取り付け、切削工具40を前後方向に振幅させつつ金型30は無回転のまま軸方向へ移動しながら金型30の表面に光偏向要素18用の型を加工した。
(Processing of the mold for the light deflection element 18 in the axial direction of the mold 30)
Next, as shown in FIG. 14, a mold for the optical deflection element 18 in the axial direction of the mold 30 was formed. For this purpose, as shown in FIG. 14, a cutting tool 40 having a desired shape is attached to a mold processing machine (lens shape forming machine), and the mold 30 is not rotated while the cutting tool 40 is oscillated in the front-rear direction. A mold for the light deflection element 18 was processed on the surface of the mold 30 while moving in the axial direction.

こうして、金型30の円周方向、および軸方向へ加工して金型30の表面に光偏向要素18用の型を形成する。その金型30の表面形状を図12のように導光体7のシートに転写することで、導光体7の第1主面7aに図5の様な微細凹凸部を有する光偏向要素の単位形状33を形成することができる。   In this way, the mold for the light deflection element 18 is formed on the surface of the mold 30 by processing in the circumferential direction and the axial direction of the mold 30. The surface shape of the mold 30 is transferred to the sheet of the light guide 7 as shown in FIG. 12, so that the light deflection element having the fine irregularities as shown in FIG. A unit shape 33 can be formed.

(実施例1)
設定値として、光偏向要素の単位形状32の幅を50μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を0.2μm、微細凹凸部の深さ35を0.5μm以下とした金型30を作製した。
Example 1
As setting values, the width of the unit shape 32 of the light deflection element is 50 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness is 0.2 μm, and the depth 35 of the fine unevenness is 0.5 μm or less. A mold 30 was prepared.

(実施例2)
次に光偏向要素の単位形状32の幅を50μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を2.5μm、微細凹凸部の深さ35を0.5μm以下とした
金型30を作製した。
(Example 2)
Next, the width of the unit shape 32 of the light deflection element is 50 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness is 2.5 μm, and the depth 35 of the fine unevenness is 0.5 μm or less. A mold 30 was produced.

(実施例3)
次に光偏向要素の単位形状32の幅を50μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を2.5μm、微細凹凸部の深さ35を1.0μm以下とした金型30を作製した。
(Example 3)
Next, the width of the unit shape 32 of the light deflection element is 50 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness is 2.5 μm, and the depth 35 of the fine unevenness is 1.0 μm or less. A mold 30 was produced.

(実施例4)
次に光偏向要素の単位形状32の幅を50μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を3.0μm、微細凹凸部の深さ35を1.5μm以下とした金型30を作製した。
Example 4
Next, the width of the unit shape 32 of the light deflection element is 50 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness is 3.0 μm, and the depth 35 of the fine unevenness is 1.5 μm or less. A mold 30 was produced.

(実施例5)
次に光偏向要素の単位形状32の幅を50μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を3.0μm、微細凹凸部の深さ35を2.0μm以下とした金型30を作製した。
(Example 5)
Next, the width of the unit shape 32 of the light deflection element is 50 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness portion is 3.0 μm, and the depth 35 of the fine unevenness portion is 2.0 μm or less. A mold 30 was produced.

(実施例6)
次に光偏向要素の単位形状32の幅を100μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を3.0μm、微細凹凸部の深さ35を1.5μm以下とした金型30を作製した。
(Example 6)
Next, the width of the unit shape 32 of the light deflection element is 100 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness is 3.0 μm, and the depth 35 of the fine unevenness is 1.5 μm or less. A mold 30 was produced.

(実施例7)
次に光偏向要素の単位形状32の幅を100μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を5.0μm、微細凹凸部の深さ35を2.0μm以下とした金型30を作製した。
(Example 7)
Next, the width of the unit shape 32 of the light deflection element is set to 100 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness portion is set to 5.0 μm, and the depth 35 of the fine unevenness portion is set to 2.0 μm or less. A mold 30 was produced.

(実施例8)
次に光偏向要素の単位形状32の幅を200μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を5.0μm、微細凹凸部の深さ35を2.0μm以下とした金型30を作製した。
(Example 8)
Next, the width of the unit shape 32 of the light deflection element is 200 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness portion is 5.0 μm, and the depth 35 of the fine unevenness portion is 2.0 μm or less. A mold 30 was produced.

(実施例9)
次に光偏向要素の単位形状32の幅を200μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を0.2μm、微細凹凸部の深さ35を0.5μm以下とした金型30を作製した。
Example 9
Next, the width of the unit shape 32 of the light deflection element is 200 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness portion is 0.2 μm, and the depth 35 of the fine unevenness portion is 0.5 μm or less. A mold 30 was produced.

(比較例1)
次に比較例として光偏向要素の単位形状32の幅を50μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を6.0μm、微細凹凸部の深さ35を2.0μm以下とした金型30を作製した。
(Comparative Example 1)
Next, as a comparative example, the width of the unit shape 32 of the light deflection element is 50 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness is 6.0 μm, and the depth 35 of the fine unevenness is 2.0 μm. The following mold 30 was produced.

(比較例2)
次に比較例として光偏向要素の単位形状32の幅を50μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を2.5μm、微細凹凸部の深さ35を3.0μm以下とした金型30を作製した。
(Comparative Example 2)
Next, as a comparative example, the width of the unit shape 32 of the light deflection element is 50 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness is 2.5 μm, and the depth 35 of the fine unevenness is 3.0 μm. The following mold 30 was produced.

(比較例3)
次に比較例として光偏向要素の単位形状32の幅を50μm、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34を6.0μm、微細凹凸部の深さ35を5.0μ
m以下とした金型30を作製した。
(Comparative Example 3)
Next, as a comparative example, the width of the unit shape 32 of the light deflection element is 50 μm, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness is 6.0 μm, and the depth 35 of the fine unevenness is 5.0 μm.
A mold 30 having a size of m or less was produced.

次に、導光体7の作製方法について説明する。
今回の実験では押出法により導光体7のシートを作製した。図12に押出機37の概略図を示す。作製した金型30を押出機37に設置し、一対の形成ロール38の近接した隙間から導光体シートを押し出すための形成ロール38の一方に金型30を設置した。熱可塑性ポリカーボネート樹脂を溶融し、押出機37によって押し出し成型した。そして、押し出し成型された熱可塑性ポリカーボネートの導光体7のシートが冷却されて硬化する前に形成ロール39によって成型した。これにより、所望の形状を有する導光体7を得た。導光体7の厚みはすべて320μmとした。
Next, a method for producing the light guide 7 will be described.
In this experiment, a sheet of the light guide 7 was produced by an extrusion method. FIG. 12 shows a schematic view of the extruder 37. The produced mold 30 was installed in an extruder 37, and the mold 30 was installed on one of the forming rolls 38 for extruding the light guide sheet from a gap close to the pair of forming rolls 38. A thermoplastic polycarbonate resin was melted and extruded by an extruder 37. The extruded thermoplastic polycarbonate light guide 7 sheet was molded by the forming roll 39 before being cooled and cured. Thereby, the light guide 7 having a desired shape was obtained. The thickness of the light guide 7 was all 320 μm.

導光体7はすべて熱可塑性ポリカーボネート樹脂による押出方式により作製している。本発明で使用した熱可塑性ポリカーボネート樹脂の弾性率Eは2400MPa、比重は1.2g/cm3である。この導光体7は金型30からの転写率が非常に良好であり、賦形率は99%以上である。   All the light guides 7 are produced by an extrusion method using a thermoplastic polycarbonate resin. The thermoplastic polycarbonate resin used in the present invention has an elastic modulus E of 2400 MPa and a specific gravity of 1.2 g / cm 3. This light guide 7 has a very good transfer rate from the mold 30 and a shaping rate of 99% or more.

続いて、得られた導光体7の各評価方法について説明する。
(隠蔽性評価)
得られた微細凹凸部を有する光偏向要素の単位形状33からなる導光体7をLEDエッジライト方式の液晶テレビに搭載し隠蔽性評価を行った。隠蔽性の評価方法は、光偏向要素18が外観目視検査にて視認出来なければ(○)、視認出来たならば(×)とした。評価結果を表1に示す。尚、目視評価は個人差が生じるため、有識者3名で実施し、その中で1名でも(×)評価があれば(×)と評価した。即ち(○)評価は全一致となる。
Then, each evaluation method of the obtained light guide 7 is demonstrated.
(Concealment evaluation)
The obtained light guide body 7 composed of the unit shape 33 of the light deflection element having fine uneven portions was mounted on an LED edge light type liquid crystal television and evaluated for concealment. The method for evaluating the concealment was set to (◯) when the light deflection element 18 was not visually recognized by visual inspection, and (X) when it was visually recognized. The evaluation results are shown in Table 1. In addition, since visual difference produced an individual difference, it was implemented by three experts, and even if one person had (x) evaluation, it evaluated as (x). That is, (◯) evaluation is completely coincident.

(輝度ムラ評価)
得られた微細凹凸部を有する光偏向要素の単位形状33からなる導光体7をLEDエッジライト方式のソニー製40インチ液晶テレビに搭載し、輝度測定機により評価した。輝度測定箇所は縦均等3行・横均等3列の交点である9箇所とし、従来の導光体よりもバラツキが低減ならば(○)、バラツキが増高又は同値ならば(×)とした。
(Luminance unevenness evaluation)
The obtained light guide body 7 composed of the unit shape 33 of the light deflection element having fine uneven portions was mounted on an LED edge light type Sony 40-inch liquid crystal television and evaluated by a luminance measuring machine. The luminance measurement points are 9 points that are intersections of 3 vertical rows and 3 horizontal columns. If the variation is less than the conventional light guide (○), if the variation is higher or the same value (×). .

表1は、隠蔽性評価、輝度ムラ評価、結果一覧表である。 Table 1 is a concealment evaluation, luminance unevenness evaluation, and result list.

従って、表1に示す評価結果である(○)の条件が本発明の有効値である事から、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34は0.2μm以上5μm以下にすることが望ましい。また、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸部の深さ35は2μm以下であることが望ましい。   Therefore, since the condition (◯), which is the evaluation result shown in Table 1, is the effective value of the present invention, the fine unevenness width 34 of the unit shape 33 of the light deflection element having the fine unevenness is 0.2 μm or more and 5 μm or less. It is desirable to make it. The depth 35 of the fine uneven portion of the unit shape 33 of the light deflection element having the fine uneven portion is desirably 2 μm or less.

尚、実施例では、微細凹凸部を有する光偏向要素の単位形状33の微細凹凸幅34又は微細凹凸部の深さ35を一定間隔で形成しているが、本発明は一定間隔で配置する必要はない。具体的には不等配置やランダム等が挙げられる。   In the embodiment, the fine unevenness width 34 or the fine unevenness depth 35 of the unit shape 33 of the light deflection element having the fine uneven portions is formed at regular intervals, but the present invention needs to be arranged at regular intervals. There is no. Specific examples include unequal arrangement and randomness.

1・・・表示装置
2・・・液晶パネル
3・・・照明装置
5・・・筐体(反射シート)
6・・・光源
7・・・導光体
7a・・・第1主面
7b・・・第2主面
7L・・・側端面(光入射面)
7S・・・側端面
8・・・拡散シート
9、10・・・偏光板
11・・・液晶パネル
18・・・光偏向要素
19・・・光学要素
20・・・プリズムシート
23・・・基材
23a・・・光射出面
23b・・・光入射面
24・・・プリズムレンズ
28・・・偏光分離シート
30・・・金型
31・・・光学的構造体形成部
32・・・光偏向要素の単位形状
33・・・微細凹凸部を有する光偏向要素の単位形状
34・・・微細凹凸幅
35・・・微細凹凸部の深さ
36・・・形状接線
37・・・押出機
38・・・形成ロールA
39・・・形成ロールB
40・・・切削工具
K・・・照明装置からの射出光
F・・・観察者の方向
DESCRIPTION OF SYMBOLS 1 ... Display apparatus 2 ... Liquid crystal panel 3 ... Illumination device 5 ... Case (reflective sheet)
6 ... light source 7 ... light guide 7a ... first main surface 7b ... second main surface 7L ... side end surface (light incident surface)
7S ... side end face 8 ... diffusion sheet 9, 10 ... polarizing plate 11 ... liquid crystal panel 18 ... light deflection element 19 ... optical element 20 ... prism sheet 23 ... base Material 23a ... Light exit surface 23b ... Light incident surface 24 ... Prism lens 28 ... Polarization separation sheet 30 ... Mold 31 ... Optical structure forming part 32 ... Light deflection Element unit shape 33 ... Unit unit shape 34 of light deflection element having fine irregularities ... Fine irregularity width 35 ... Depth of minute irregularities 36 ... Shape tangent 37 ... Extruder 38 ..Forming roll A
39 ... Forming roll B
40: Cutting tool K: Light emitted from the illumination device F: Direction of the observer

Claims (8)

透光性の導光体であって、
前記導光体は、第1主面と、前記第1主面と対向する第2主面と、
前記第1主面と前記第2主面とを接続する4つの側端面を有し、
前記4つの側端面の少なくとも1つの側端面に臨む複数の光源が、
該側端面の延在方向に並べて配置され、
前記第1主面には、前記導光体内の光を前記第2主面側へと偏向する複数の光偏向要素の単位形状が形成され、
前記光偏向要素の単位形状の表面上に前記光偏向要素の単位形状の寸法よりも細かい微細凹凸部を有することを特徴とする導光体。
A translucent light guide,
The light guide has a first main surface, a second main surface facing the first main surface,
Having four side end surfaces connecting the first main surface and the second main surface;
A plurality of light sources facing at least one side end surface of the four side end surfaces,
Arranged side by side in the extending direction of the side end face,
The first main surface is formed with a unit shape of a plurality of light deflecting elements for deflecting light in the light guide body toward the second main surface side,
A light guide having a fine concavo-convex portion finer than a unit shape dimension of the light deflection element on a surface of the unit shape of the light deflection element.
請求項1に記載の導光体であって、
前記第1主面の前記光偏向要素の単位形状は凸状円形状構造体であることを特徴とする導光体。
The light guide according to claim 1,
The light guide body, wherein the unit shape of the light deflection element on the first main surface is a convex circular structure.
請求項1に記載の導光体であって、
前記第1主面の前記光偏向要素の単位形状は凹状円形状構造体であることを特徴とする導光体。
The light guide according to claim 1,
A light guide body, wherein a unit shape of the light deflection element on the first main surface is a concave circular structure.
請求項1乃至3の何れか一項に記載の導光体であって、
前記微細凹凸部の微細凹凸幅が、0.2μm以上5μm以下であることを特徴する導光体。
The light guide according to any one of claims 1 to 3,
The light guide, wherein the fine unevenness width of the fine unevenness part is 0.2 μm or more and 5 μm or less.
請求項1乃至3の何れか一項に記載の導光体であって、
前記微細凹凸部の深さが2μm以下であることを特徴とする導光体。
The light guide according to any one of claims 1 to 3,
A light guide having a depth of the fine unevenness of 2 μm or less.
請求項1乃至5の何れか一項に記載の導光体であって、
前記導光体の第2主面の光学要素にはシリンドリカル形状構造体を一次元方向に連続的に配置した導光体。
The light guide according to any one of claims 1 to 5,
A light guide in which a cylindrical structure is continuously arranged in a one-dimensional direction on the optical element of the second main surface of the light guide.
請求項1乃至6の何れか一項に記載の導光体を搭載した照明装置。   The illuminating device which mounts the light guide as described in any one of Claims 1 thru | or 6. 請求項7に記載の照明装置を備えた表示装置。 A display device comprising the illumination device according to claim 7.
JP2011217201A 2011-09-30 2011-09-30 Light guide body, lighting device equipped with the same, and display device Withdrawn JP2013077472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217201A JP2013077472A (en) 2011-09-30 2011-09-30 Light guide body, lighting device equipped with the same, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217201A JP2013077472A (en) 2011-09-30 2011-09-30 Light guide body, lighting device equipped with the same, and display device

Publications (1)

Publication Number Publication Date
JP2013077472A true JP2013077472A (en) 2013-04-25

Family

ID=48480793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217201A Withdrawn JP2013077472A (en) 2011-09-30 2011-09-30 Light guide body, lighting device equipped with the same, and display device

Country Status (1)

Country Link
JP (1) JP2013077472A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748071A (en) * 2013-12-31 2015-07-01 奇美实业股份有限公司 Light guide plate for illumination and illumination lamp
JP2015130321A (en) * 2013-05-08 2015-07-16 奇美實業股▲分▼有限公司 Light guide plate for illumination, and luminaire with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130321A (en) * 2013-05-08 2015-07-16 奇美實業股▲分▼有限公司 Light guide plate for illumination, and luminaire with the same
CN104748071A (en) * 2013-12-31 2015-07-01 奇美实业股份有限公司 Light guide plate for illumination and illumination lamp

Similar Documents

Publication Publication Date Title
US8616755B2 (en) Light guide plate for surface light source device and backlight unit using the same
CN109143428B (en) Diffusion sheet, backlight, liquid crystal display device, and method of manufacturing diffusion sheet
US20140211506A1 (en) Illumination device and display device
JP2014186913A (en) Lighting unit and display device
JP5614128B2 (en) Optical sheet, backlight unit and display device
JP2013011667A (en) Optical sheet, surface light source device and image display device
JP5834524B2 (en) Optical member, surface light source device, and image display device
JP2015099737A (en) Light guide plate, manufacturing method of light guide plate, mold, backlight unit and display device
JP2013077473A (en) Light guide plate, method for manufacturing the same, die, backlight unit for display, and display
JP2013077472A (en) Light guide body, lighting device equipped with the same, and display device
JP5741121B2 (en) A mold for manufacturing an optical lens sheet for controlling an illumination optical path, the sheet manufactured using the mold, a method of manufacturing the sheet using the mold, a liquid crystal display device, and a display
JP5310268B2 (en) Optical sheet, backlight unit and display device
JP2015069793A (en) Light guide plate, and image display device using the same
KR20130118160A (en) Serration light guide plate for liquid crystal display device and back light unit using the same
JP5200077B2 (en) Optical sheet, surface light source device, and transmissive image display device
JP5757378B2 (en) Optical sheet, optical member, surface light source device, transmissive display device, and light emitting device
JP2015060683A (en) Light guide body, luminaire including the same, display device
JP2013201069A (en) Light guide plate, lighting device having light guide plate, and display device
JP5944278B2 (en) Light guide plate
JP2014038780A (en) Transparent material, and lighting apparatus and display apparatus including the same
KR101171828B1 (en) Light Guiding Plate for Surface Light Source Device and Back Light Unit using the Same
JP2012190582A (en) Lighting unit, lighting device, and display device
JP2012242636A (en) Light diffusion sheet, surface light source device, and image display device
KR101205928B1 (en) Light Guiding Plate for Surface Light Source Device and Back Light Unit using the Same
JP2014229553A (en) Light guide plate and lighting device using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202