JP2013074706A - Control device for vehicle - Google Patents

Control device for vehicle Download PDF

Info

Publication number
JP2013074706A
JP2013074706A JP2011211651A JP2011211651A JP2013074706A JP 2013074706 A JP2013074706 A JP 2013074706A JP 2011211651 A JP2011211651 A JP 2011211651A JP 2011211651 A JP2011211651 A JP 2011211651A JP 2013074706 A JP2013074706 A JP 2013074706A
Authority
JP
Japan
Prior art keywords
vehicle
battery
parking
remaining capacity
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011211651A
Other languages
Japanese (ja)
Other versions
JP5740269B2 (en
Inventor
Shuichi Fujimoto
修一 藤本
Takeshi Chibahara
剛 千葉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011211651A priority Critical patent/JP5740269B2/en
Publication of JP2013074706A publication Critical patent/JP2013074706A/en
Application granted granted Critical
Publication of JP5740269B2 publication Critical patent/JP5740269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion

Abstract

PROBLEM TO BE SOLVED: To maintain and improve the durability by suppressing deterioration of a battery while ensuring as large a use area as much as possible of the capacity of the battery mounted on a vehicle.SOLUTION: A control device for a vehicle has an upper limit value of the remaining battery capacity at traveling (H1) that is set when the vehicle is traveling and an upper limit value of the remaining battery capacity at parking (H2) that is lower than the upper limit value of the remaining battery capacity at traveling (H1) and is set when the vehicle is parking, as upper limit values of the remaining battery capacity. According to the traveling state of the vehicle, the control device for a vehicle switches between the upper limit value of the remaining battery capacity at traveling (H1) and the upper limit value of the remaining battery capacity at parking (H2). When parking, the upper limit value of the battery capacity is controlled so that it may be within a range that can suppress the progress of deterioration, and when traveling, the battery capacity can be used in a wide range to secure enough traveling performance of the vehicle. Thereby, the battery capacity can be efficiently used and the deterioration of the battery can be suppressed when the vehicle is left unused for a long time period.

Description

本発明は、バッテリと、該バッテリとの電力の授受が可能な駆動用のモータなどを有するハイブリッド自動車や電気自動車などの車両において、バッテリの充放電による残容量を制御するための制御手段を備えた車両用制御装置に関する。   The present invention includes a control means for controlling a remaining capacity due to charging / discharging of a battery in a vehicle such as a hybrid vehicle or an electric vehicle having a battery and a driving motor capable of transferring power to and from the battery. The present invention relates to a vehicle control device.

バッテリ(蓄電池)と、該バッテリと電力の授受が可能な駆動用のモータなどを有するハイブリッド自動車や電気自動車などの車両がある。このような車両に搭載するバッテリは、高い残容量(充電量)の状態で放置すると容量劣化が生じる。また、温度が高い環境に曝されるほど容量劣化が著しくなる傾向がある。   There are vehicles such as a hybrid vehicle and an electric vehicle having a battery (storage battery) and a driving motor capable of transferring power to and from the battery. When such a battery mounted on a vehicle is left in a state of a high remaining capacity (charged amount), capacity deterioration occurs. Further, the capacity deterioration tends to become more remarkable as the temperature is increased.

例えば、リチウムイオンからなるバッテリを例に挙げると、充電量が30%以下で、保存温度が15℃以下であれば、1年間の放置(保存)でも数%程度の容量劣化で済む一方、満充電状態で保存温度が45℃であると、短期間の放置であっても60%程度の容量劣化が生じる場合がある。このように、特に、リチウムイオンバッテリの場合、高い残容量(充電量)の状態で放置すると容量劣化が顕著となる。そのため、ハイブリット車両や電気自動車などの車両に搭載されているバッテリは、一例として、新品時は、その残容量の上限値を70%程度に設定し、下限値を20%程度に設定し、それら上限値と下限値の間の容量範囲で使用することによって、寿命を長く保つようにしている。   For example, in the case of a battery made of lithium ion, if the charge amount is 30% or less and the storage temperature is 15 ° C. or less, the capacity deterioration of about several percent is sufficient even if left for 1 year (storage). When the storage temperature is 45 ° C. in a charged state, capacity degradation of about 60% may occur even if left for a short time. In this way, particularly in the case of a lithium ion battery, the capacity deterioration becomes significant when left in a state of a high remaining capacity (charged amount). For this reason, as an example, batteries installed in vehicles such as hybrid vehicles and electric vehicles have a remaining capacity set to an upper limit of about 70% and a lower limit set to about 20%. By using in a capacity range between the upper limit value and the lower limit value, the life is kept long.

バッテリの残容量を制御するための制御装置として、従来、特許文献1乃至3に記載された制御装置がある。特許文献1に記載の制御装置は、車両の駐車予測に基づいてバッテリ残容量の上限値を低下させる制御を行うものである。また、特許文献2に記載の制御装置は、予測手段が車両の長期間停車を予測したときには、外部電源によるバッテリの充電を所定期間禁止する制御を行うものである。また、特許文献3に記載の制御装置は、車両が長時間放置されることが推定される場合には、バッテリに接続されている補機をバッテリから切り離すことで、暗電流を抑制するようになっている。   Conventionally, there are control devices described in Patent Documents 1 to 3 as control devices for controlling the remaining capacity of the battery. The control device described in Patent Literature 1 performs control to lower the upper limit value of the remaining battery capacity based on the parking prediction of the vehicle. Further, the control device described in Patent Document 2 performs control for prohibiting charging of a battery by an external power source for a predetermined period when the prediction unit predicts a long-term stop of the vehicle. In addition, when it is estimated that the vehicle is left for a long time, the control device described in Patent Literature 3 suppresses dark current by disconnecting the auxiliary machine connected to the battery from the battery. It has become.

しかしながら、従来は、車両に搭載されるバッテリの残容量の制御として、車両の走行時と駐車時とで同一条件(同量)の残容量の目標値を設定して、当該目標値に基づく制御を行っていた。すなわち、車両の長期駐車時などバッテリが長期間放置される状況でのバッテリ劣化を抑制するために、車両の走行時においてもバッテリの使用領域の上限値を全容量の70%程度とし、それ以上の容量範囲では使用しないようにしていた。   However, conventionally, as a control of the remaining capacity of the battery mounted on the vehicle, a target value of the remaining capacity under the same condition (the same amount) is set when the vehicle is running and when the vehicle is parked, and control based on the target value is performed. Had gone. In other words, in order to suppress battery deterioration when the battery is left for a long period of time, such as when the vehicle is parked for a long time, the upper limit value of the battery usage area is set to about 70% of the total capacity even when the vehicle is running. I was trying not to use in the capacity range.

しかしながら、そのような使用では、バッテリの使用可能な全容量に対して50%程度かそれ以下の容量しか使用できない。そのため、実際の使用容量よりも大幅に大きな容量のバッテリを搭載しなければならず、バッテリのコスト高や重量増の原因となっていた。   However, in such use, only about 50% or less of the total usable capacity of the battery can be used. For this reason, a battery having a capacity that is significantly larger than the actual usage capacity has to be mounted, resulting in an increase in the cost and weight of the battery.

特開2009−1049号公報JP 2009-1049 A 特開2009−5450号公報JP 2009-5450 A 特開2010−183758号公報JP 2010-183758 A

本発明は上述の点に鑑みてなされたものであり、その目的は、車両に搭載されたバッテリの容量の使用領域を可能な限り大きな範囲で確保しながらも、バッテリの劣化を抑制して耐久性の維持・向上を図ることができる車両用制御装置を提供することにある。   The present invention has been made in view of the above-mentioned points, and its object is to suppress the deterioration of the battery and ensure durability while ensuring the use range of the capacity of the battery mounted on the vehicle as large as possible. An object of the present invention is to provide a vehicle control device capable of maintaining and improving the performance.

上記課題を解決するため、本発明にかかる車両用制御装置は、バッテリ(15)と、バッテリ(15)と電力の授受が可能なモータ(12)とを有する車両(1)において、バッテリ(15)の充放電を制御するための制御手段(16)を備えた車両用制御装置であって、制御手段(16)は、バッテリ(15)の残容量の目標上限値として、車両走行時に設定するための走行時残容量上限値(H1)と、該走行時残容量上限値よりも低い残容量であって車両駐車時に設定するための駐車時残容量上限値(H2)とを設定可能であり、車両走行時と車両駐車時とで、走行時残容量上限値(H1)と駐車時残容量上限値(H2)とを切り替えて設定することを特徴とする。   In order to solve the above-described problem, a vehicle control device according to the present invention includes a battery (15) in a vehicle (1) having a battery (15) and a motor (12) capable of transmitting and receiving electric power. ), The control means (16) for controlling charging / discharging of the battery (15) is set as the target upper limit value of the remaining capacity of the battery (15) when the vehicle travels. It is possible to set a remaining capacity upper limit value (H1) for traveling and a remaining capacity lower than the upper limit remaining capacity for traveling (H2) for setting when parking the vehicle. The vehicle remaining capacity upper limit value (H1) and the parking remaining capacity upper limit value (H2) are switched and set between when the vehicle is traveling and when the vehicle is parked.

既述のように、従来、車両用のバッテリは、車両の長期駐車などに伴う放置時の容量劣化を抑制するために、充電可能な全容量に対して20〜70%程度の範囲しか使用できなかった。そのため、バッテリの全容量の半分程度しか使えなかった。これに対して、本発明にかかる車両用制御装置では、上記のように、車両走行時のバッテリの最大使用領域である走行時残容量上限値と、駐車時の最大領域である駐車時残容量上限値とを設定し、車両走行時と車両駐車時とでこれらを切り替える制御を行うようにした。これにより、車両駐車時は、劣化の進行を抑制できる範囲となるようにバッテリ容量の上限値をコントロールしつつ、車両走行時は、車両の走行性能を十分に確保できるようにバッテリ容量を大きな範囲で利用可能となる。したがって、バッテリの容量の有効活用と車両長期放置時のバッテリの劣化抑制との両立を図ることができる。また、車両に搭載するバッテリの容量(寸法及び重量)を小さく抑えることができるので、車両のコストダウン及び軽量化を図ることができる。   As described above, conventionally, a battery for a vehicle can be used only in a range of about 20 to 70% with respect to the total chargeable capacity in order to suppress capacity deterioration at the time of leaving due to long-term parking of the vehicle. There wasn't. Therefore, only about half of the total capacity of the battery could be used. On the other hand, in the vehicle control device according to the present invention, as described above, the upper limit value of the remaining battery capacity during travel, which is the maximum use area of the battery during travel of the vehicle, and the remaining capacity during parking, which is the maximum area during parking. An upper limit value is set, and control is performed to switch between when the vehicle is running and when the vehicle is parked. As a result, when the vehicle is parked, the upper limit value of the battery capacity is controlled so as to be within a range in which the progress of deterioration can be suppressed, and when the vehicle is traveling, the battery capacity is set in a large range so that sufficient traveling performance of the vehicle can be secured. It becomes available at. Therefore, it is possible to achieve both the effective utilization of the battery capacity and the suppression of the deterioration of the battery when the vehicle is left for a long time. In addition, since the capacity (size and weight) of the battery mounted on the vehicle can be kept small, the cost and weight of the vehicle can be reduced.

また、上記の車両用制御装置では、車両(1)に搭載された車載補機(17)と、車載補機(17)を駆動するための低圧バッテリ(18)と、を備え、制御手段(16)は、車両駐車時にバッテリ(15)の残容量が駐車時残容量上限値(H2)を超えている場合、バッテリ(15)から低圧バッテリ(18)へ電力を供給するか、又は車載補機(17)の稼動によりバッテリ(15)の電力を消費させる制御を行うことで、バッテリ(15)の残容量が駐車時残容量上限値(H2)以下となるようにするとよい。   The vehicle control apparatus includes an on-vehicle auxiliary device (17) mounted on the vehicle (1) and a low-voltage battery (18) for driving the on-vehicle auxiliary device (17). 16) When the remaining capacity of the battery (15) exceeds the parking remaining capacity upper limit (H2) when the vehicle is parked, power is supplied from the battery (15) to the low voltage battery (18) It is preferable that the remaining capacity of the battery (15) be equal to or less than the parking remaining capacity upper limit (H2) by performing control to consume the power of the battery (15) by operating the machine (17).

あるいは、上記の車両用制御装置では、バッテリ(15)と車両(1)の外部に設けた機器、設備、外部電源の少なくともいずれかとの間で電力の授受を行わせるためのプラグイン装置(20)をさらに備え、制御手段(16)は、車両駐車時にバッテリ(15)の残容量が駐車時残容量上限値(H2)を超えている場合、プラグイン装置(20)を介してバッテリ(15)から車両の外部に設けた機器、設備、外部電源の少なくともいずれかへ電力を供給する制御を行うことで、バッテリ(15)の残容量が駐車時残容量上限値(H2)以下となるようにしてもよい。これらによれば、バッテリの電力を有効活用しながら、車両駐車時のバッテリの残容量を駐車時残容量上限値以下とすることができる。   Alternatively, in the vehicle control device described above, a plug-in device (20 for causing power to be exchanged between the battery (15) and at least one of equipment, equipment, and external power source provided outside the vehicle (1). ), And when the remaining capacity of the battery (15) exceeds the parking remaining capacity upper limit (H2) when the vehicle is parked, the control means (16) passes the battery (15) via the plug-in device (20). ) To supply power to at least one of equipment, equipment, and external power supply provided outside the vehicle, so that the remaining capacity of the battery (15) becomes equal to or less than the remaining capacity upper limit (H2) during parking. It may be. According to these, the remaining capacity of the battery when the vehicle is parked can be made equal to or less than the upper limit value of the remaining capacity during parking while effectively using the power of the battery.

また、上記の車両用制御装置では、制御手段(16)は、車両(1)の駐車時間の経過に伴って駐車時残容量上限値(H2)が次第に減少するように設定することが望ましい。これによれば、車両の駐車時間が長期間になるほど駐車時残容量上限値を下げることで、長期放置時のバッテリの残容量を低く抑えるようにする。これにより、バッテリの劣化をより効果的に抑制することができる。   In the vehicle control device, it is desirable that the control means (16) is set so that the parking remaining capacity upper limit (H2) gradually decreases as the parking time of the vehicle (1) elapses. According to this, the remaining capacity at the time of parking is lowered as the parking time of the vehicle becomes longer, so that the remaining capacity of the battery when left for a long time is kept low. Thereby, deterioration of a battery can be suppressed more effectively.

この場合、車両(1)の駐車開始後の経過時間が1日以内と判断する場合、翌日に車両が使用される可能性を考慮して、駐車時残容量上限値(H2)をバッテリ(15)の満充電量の70%に設定するとよい。また、車両(1)の駐車開始後の経過時間が2日以上3日未満と判断する場合は、車両が週末に駐車された場合とみなすことで、駐車時残容量上限値(H2)をバッテリ(15)の満充電量の50〜60%に設定するとよい。また、車両(1)の駐車開始後の経過時間が3日以上の長期間と判断する場合は、週末駐車を超える長期的な駐車とみなして、駐車時残容量上限値(H2)をバッテリの満充電量の50%以下に設定するとよい。これらによれば、車両の駐車期間に応じてバッテリの残容量をさらに詳細に設定することで、バッテリの劣化をより効果的に抑制することができる。   In this case, when it is determined that the elapsed time after parking of the vehicle (1) is within one day, the remaining capacity upper limit value (H2) during parking is set to the battery (15) in consideration of the possibility that the vehicle will be used the next day. ) To 70% of the full charge amount. When it is determined that the elapsed time after the start of parking of the vehicle (1) is 2 days or more and less than 3 days, it is assumed that the vehicle is parked on the weekend, and the remaining capacity upper limit value (H2) at the time of parking is determined by It is good to set to 50 to 60% of the full charge amount of (15). In addition, when it is determined that the elapsed time after parking of the vehicle (1) is longer than 3 days, it is regarded as long-term parking exceeding weekend parking, and the parking remaining capacity upper limit (H2) is set to the battery It is better to set it to 50% or less of the full charge. According to these, it is possible to more effectively suppress the deterioration of the battery by setting the remaining capacity of the battery in more detail according to the parking period of the vehicle.

またこの場合、ユーザーが車両(1)を長期間に渡って駐車する旨の意思入力を行うための長期駐車意思入力手段(21)を備え、制御手段(16)は、長期駐車意思入力手段(21)で長期間に渡って駐車する旨の意思入力がされた場合、車両(1)の駐車開始後の経過時間が3日以上の長期間に渡ると判断するようにしてよい。これによれば、ユーザーの意思で車両が長期間駐車されることが明確である場合は、バッテリ残容量を通常の残容量よりもさらに低い残容量となるように設定することで、バッテリの劣化をより効果的に抑制することができる。なお、上記の長期駐車意思入力手段としては、車両の運転席の操作パネルに設置した長期駐車スイッチ(ボタン)などとすることができる。   Further, in this case, a long-term parking intention input means (21) is provided for the user to input an intention to park the vehicle (1) for a long period, and the control means (16) includes a long-term parking intention input means ( When an intention to park for a long time is input in 21), it may be determined that the elapsed time after the start of parking of the vehicle (1) is for a long time of 3 days or more. According to this, when it is clear that the vehicle will be parked for a long period of time at the user's will, the remaining battery capacity is set to a lower remaining capacity than the normal remaining capacity. Can be more effectively suppressed. The long-term parking intention input means may be a long-term parking switch (button) installed on the operation panel of the driver's seat of the vehicle.

また、上記の車両用制御装置では、外気温又はバッテリ(15)の温度を検出するための温度検出手段(27,28)を備え、制御手段(16)は、温度検出手段(27,28)による温度の検出値が所定値よりも高い場合、検出値が所定値よりも低い場合と比較して、駐車時残容量上限値(H2)を低い値に設定するとよい。バッテリは、その雰囲気温度が高くなればなる程、劣化が進行し易くなるため、上記のように外気温又はバッテリの温度が高い場合に駐車時残容量上限値を下げるようにすることで、バッテリの劣化を効果的に抑制することができる。   Further, the vehicle control device includes temperature detection means (27, 28) for detecting the outside air temperature or the temperature of the battery (15), and the control means (16) is the temperature detection means (27, 28). When the detected temperature value is higher than the predetermined value, the parking remaining capacity upper limit (H2) may be set to a lower value than when the detected value is lower than the predetermined value. As the ambient temperature rises, the battery is more likely to deteriorate. Therefore, when the outside air temperature or the battery temperature is high as described above, the battery remaining capacity upper limit value is lowered. Can be effectively suppressed.

また、上記の車両用制御装置では、バッテリ(15)は、リチウムイオン二次電池であってよい。リチウムイオン電池は、電析が発生し易いため、残容量が多い状態で放置すると劣化が顕著となる。そのため、本発明にかかる制御を行うことで残容量の安全率を高く取れば、バッテリの劣化を効果的に抑制することができる。   Moreover, in said vehicle control apparatus, a battery (15) may be a lithium ion secondary battery. Lithium-ion batteries are prone to electrodeposition, so that deterioration becomes significant when left in a state with a large remaining capacity. Therefore, if the safety rate of the remaining capacity is increased by performing the control according to the present invention, the deterioration of the battery can be effectively suppressed.

また、上記の車両用制御装置では、車両(1)に搭載されたナビゲーションシステム(40)を備え、ナビゲーションシステム(40)で車両(1)の駐車保管場所の位置が設定されている場合、制御手段(16)は、車両(1)の走行中にバッテリ(15)の残容量が駐車時残容量上限値(H2)を上回っているとき、車両(1)の位置が駐車保管場所の位置に近づくにつれてバッテリ(15)の残容量を駐車時残容量上限値(H2)に向けて低下させる制御を行うとよい。   The vehicle control device includes a navigation system (40) mounted on the vehicle (1), and the control is performed when the position of the parking storage location of the vehicle (1) is set by the navigation system (40). The means (16) is configured such that when the remaining capacity of the battery (15) exceeds the parking remaining capacity upper limit (H2) while the vehicle (1) is traveling, the position of the vehicle (1) is set to the parking storage position. Control that lowers the remaining capacity of the battery (15) toward the parking remaining capacity upper limit (H2) as approaching may be performed.

これによれば、車両の位置が自宅などの駐車保管場所に近づくにつれて、バッテリの残容量を駐車時残容量上限値に向けて低下させる制御を行うことで、バッテリの電力を有効利用しながら、駐車時のバッテリ残容量が駐車時残容量上限値を超えないようにすることができる。したがって、バッテリの電力を無駄に消費することなくその劣化を抑制することが可能となる。
なお、ここでの括弧内の符号は、後述する実施形態における対応する構成要素の符号を本発明の一例として示したものである。
According to this, while performing the control to reduce the remaining capacity of the battery toward the parking remaining capacity upper limit as the position of the vehicle approaches a parking storage place such as home, while effectively using the battery power, It is possible to prevent the remaining battery capacity during parking from exceeding the remaining capacity upper limit during parking. Therefore, it is possible to suppress the deterioration without wasting power of the battery.
In addition, the code | symbol in parenthesis here shows the code | symbol of the corresponding component in embodiment mentioned later as an example of this invention.

本発明にかかる車両用制御装置によれば、車両に搭載されたバッテリの容量の使用領域をより大きな範囲で設定しながらも、バッテリの劣化を抑制してその耐久性の維持・向上を図ることができる。   According to the vehicle control device of the present invention, while setting the use area of the capacity of the battery mounted on the vehicle in a larger range, the deterioration of the battery is suppressed and the durability is maintained and improved. Can do.

本発明の一実施形態にかかる車両用制御装置を備えたハイブリッド車両の全体構成例を示す概略図(ブロック図)である。1 is a schematic diagram (block diagram) showing an example of the overall configuration of a hybrid vehicle including a vehicle control device according to an embodiment of the present invention. バッテリの全容量(満充電容量)に対する使用範囲の容量設定を示す図で、(a)は、車両走行時における使用範囲の容量設定、(b)は、車両停車時における使用範囲の容量設定を示すグラフである。It is a figure which shows the capacity setting of the use range with respect to the full capacity (full charge capacity) of a battery, (a) is the capacity setting of the use range at the time of vehicle travel, (b) is the capacity setting of the use range at the time of a vehicle stop. It is a graph to show. 車両の放置期間判定によるバッテリ残容量の制御フローを示す図である。It is a figure which shows the control flow of the battery remaining capacity by the leaving period determination of a vehicle. 車両位置の判定によるバッテリ残容量の制御フローを示す図である。It is a figure which shows the control flow of the battery remaining capacity by determination of a vehicle position. ユーザーの長期駐車意思に基づくバッテリ残容量の制御フローである。It is a control flow of the battery remaining capacity based on a user's long-term parking intention. ユーザーの長期駐車意思に基づくバッテリ残容量の制御における、長期駐車スイッチのオンオフ状態及びアクセルペダル開度や車両速度などの変化を示すタイミングチャートである。It is a timing chart which shows the change of the ON / OFF state of a long-term parking switch, an accelerator pedal opening degree, a vehicle speed, etc. in control of the battery remaining capacity based on a user's long-term parking intention.

以下、添付図面を参照して本発明の実施形態を詳細に説明する。図1は、本発明にかかる車両用制御装置を備えたハイブリッド車両の全体構成を示す概略図である。同図に示すハイブリッド車両1は、内燃機関(以下、エンジンという)11と、発電電動機(以下、モータという)12と、トランスミッション13とを直列に連結したパラレル型のハイブリッド車両であり、エンジン11およびモータ12の駆動力は、トランスミッション13及びディファレンシャル(図示略)を介して左右の駆動輪に配分されて伝達される。また、ハイブリッド車両1の減速時に駆動輪側からモータ12側に駆動力が伝達されると、モータ12は発電機として機能して回生制動力を発生し、車両1の運動エネルギーを電気エネルギーとして回収する。さらに、ハイブリッド車両1の運転状態に応じて、モータ12はエンジン11の出力により発電機として駆動され、発電エネルギーを発生するようになっている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing an overall configuration of a hybrid vehicle including a vehicle control device according to the present invention. A hybrid vehicle 1 shown in FIG. 1 is a parallel hybrid vehicle in which an internal combustion engine (hereinafter referred to as an engine) 11, a generator motor (hereinafter referred to as a motor) 12, and a transmission 13 are connected in series. The driving force of the motor 12 is distributed and transmitted to the left and right drive wheels via a transmission 13 and a differential (not shown). Further, when the driving force is transmitted from the driving wheel side to the motor 12 side when the hybrid vehicle 1 is decelerated, the motor 12 functions as a generator to generate a regenerative braking force and recover the kinetic energy of the vehicle 1 as electric energy. To do. Furthermore, the motor 12 is driven as a generator by the output of the engine 11 in accordance with the operating state of the hybrid vehicle 1 to generate power generation energy.

モータ12は、例えば3相(U相、V相、W相)のDCブラシレスモータ等とされ、該モータ12の駆動および発電を制御するパワードライブユニット(PDU)14に接続されている。PDU14は、例えばトランジスタのスイッチング素子を複数用いてブリッジ接続してなるブリッジ回路を具備するパルス幅変調(PWM)によるPWMインバータを備えて構成されている。   The motor 12 is, for example, a three-phase (U phase, V phase, W phase) DC brushless motor or the like, and is connected to a power drive unit (PDU) 14 that controls driving and power generation of the motor 12. The PDU 14 includes a PWM inverter by pulse width modulation (PWM) having a bridge circuit formed by bridge connection using a plurality of transistor switching elements, for example.

PDU14には、モータ12と電力の授受を行う高圧バッテリ(以下、単に「バッテリ」と記す。)15が接続されている。バッテリ15は、リチウムイオンからなる二次電池である。モータ12とバッテリ15の間で授受される電力には、例えば、モータ12の駆動またはアシスト動作時にモータ12に供給される供給電力や、回生作動または昇圧駆動によるモータ12の発電時にモータ12から出力される出力電力がある。そして、PDU14は、モータ/バッテリECU(以下、「制御部」と記す。)16からの制御指令を受けてモータ12の駆動および発電を制御する。例えば、モータ12の駆動時には、制御部16から出力されるトルク指令に基づき、バッテリ15から出力される直流電力を3相交流電力に変換してモータ12へ供給する。一方、モータ12の発電時には、モータ12から出力される3相交流電力を直流電力に変換して、バッテリ15を充電する。   Connected to the PDU 14 is a high-voltage battery (hereinafter simply referred to as “battery”) 15 that exchanges power with the motor 12. The battery 15 is a secondary battery made of lithium ions. Examples of the electric power exchanged between the motor 12 and the battery 15 include an electric power supplied to the motor 12 when the motor 12 is driven or assisted, and an output from the motor 12 when the motor 12 is generated by regenerative operation or boost driving. There is output power. The PDU 14 receives a control command from a motor / battery ECU (hereinafter referred to as “control unit”) 16 and controls driving of the motor 12 and power generation. For example, when the motor 12 is driven, the DC power output from the battery 15 is converted into three-phase AC power and supplied to the motor 12 based on the torque command output from the control unit 16. On the other hand, when the motor 12 generates power, the three-phase AC power output from the motor 12 is converted into DC power and the battery 15 is charged.

また、車両には、車載補機17を駆動するための12Vバッテリ(低圧バッテリ)18が搭載されている。12Vバッテリ18は、DC−DCコンバータ19を介して、PDU14およびバッテリ15に対して並列に接続されている。制御部16により電力変換動作が制御されるDC−DCコンバータ19は、例えば双方向のDC−DCコンバータであって、バッテリ15の端子間接続、あるいはモータ12の回生作動または昇圧駆動した際のPDU14の端子間電圧を、所定の電圧値まで降圧して12Vバッテリ18を充電する一方、バッテリ15の残容量(SOC:State Of Charge)が低下している場合には、12Vバッテリ18の端子間電圧を昇圧してバッテリ15を充電することも可能である。   Further, a 12V battery (low voltage battery) 18 for driving the in-vehicle auxiliary machine 17 is mounted on the vehicle. The 12V battery 18 is connected in parallel to the PDU 14 and the battery 15 via the DC-DC converter 19. The DC-DC converter 19 whose power conversion operation is controlled by the control unit 16 is, for example, a bidirectional DC-DC converter, and is connected between terminals of the battery 15, or the PDU 14 when the motor 12 is regenerated or boosted. When the remaining voltage (SOC: State Of Charge) of the battery 15 is reduced while the voltage between the terminals of the battery 15 is reduced to a predetermined voltage value and the 12V battery 18 is charged, the voltage between the terminals of the 12V battery 18 is reduced. It is also possible to charge the battery 15 by boosting.

制御部16は、エンジン11およびモータ12の運転状態に応じたハイブリッド車両1の状態や、PDU14およびDC−DCコンバータ19の各電力変換動作や、車載補機17の作動状態等を制御するほか、バッテリ15の残容量(充電状態)の制御を行う。すなわち、制御部16は、例えば、電流積算法等によりバッテリ15の残容量(SOC)を検知して、当該検知に基づいて残容量(SOC)の制御を行う。制御部16には、パワープラント(例えば、エンジン11およびモータ12)の状態を検出する各種センサやスイッチの出力信号が入力されるようになっている。ここでの各種センサには、車両1の速度(車速)を検知するために従動輪の回転速度(車輪速)NWを検出する車輪速センサ22、運転者によるアクセル操作量にかかるアクセル開度APを検出するアクセル開度センサ23、バッテリ15の充電電流および放電電流(バッテリ電流IB)を検出する電流センサ25、バッテリ15の端子間電圧(バッテリ電圧VB)を検出する電圧センサ26、バッテリ15の温度(バッテリ温度TB)を検出するバッテリ温度センサ27、外気温を検出する外気温センサ28などがある。   The control unit 16 controls the state of the hybrid vehicle 1 according to the operating state of the engine 11 and the motor 12, the power conversion operations of the PDU 14 and the DC-DC converter 19, the operating state of the in-vehicle auxiliary machine 17, and the like. The remaining capacity (charged state) of the battery 15 is controlled. That is, the control unit 16 detects the remaining capacity (SOC) of the battery 15 by, for example, a current integration method and controls the remaining capacity (SOC) based on the detection. The control unit 16 is supplied with output signals from various sensors and switches that detect the state of the power plant (for example, the engine 11 and the motor 12). The various sensors here include a wheel speed sensor 22 that detects the rotational speed (wheel speed) NW of the driven wheel to detect the speed (vehicle speed) of the vehicle 1, and an accelerator opening AP that depends on the accelerator operation amount by the driver. Accelerator opening sensor 23 for detecting battery, current sensor 25 for detecting charging current and discharging current (battery current IB) of battery 15, voltage sensor 26 for detecting voltage between terminals of battery 15 (battery voltage VB), There are a battery temperature sensor 27 that detects temperature (battery temperature TB), an outside air temperature sensor 28 that detects outside air temperature, and the like.

また、車両1には、エンジン11及びトランスミッション13及びモータ12の制御を行うためのFI/TM/MG・ECU24が搭載されている。FI/TM/MG・ECU・ECU24には、パワープラント(例えば、エンジン11およびモータ12)の状態を検出する各種センサやスイッチの出力信号が入力されるようになっている。ここでの各種センサやスイッチには、図示は省略するが、エンジン11の回転数を検出するための回転数センサや、モータ12のロータの磁極位置(位相角)を検出する回転角センサ(図示略)などが含まれる。また、FI/TM/MG・ECU・ECU24は、制御部16と信号線で接続されており、互いの間で信号の授受を行うことが可能である。ここでは、FI/TM/MG・ECU24の機能の詳細な説明は省略する。   The vehicle 1 is equipped with an FI / TM / MG • ECU 24 for controlling the engine 11, the transmission 13, and the motor 12. The FI / TM / MG / ECU / ECU 24 is supplied with output signals of various sensors and switches for detecting the state of the power plant (for example, the engine 11 and the motor 12). Although not shown in the drawings for various sensors and switches here, a rotational speed sensor for detecting the rotational speed of the engine 11 and a rotational angle sensor for detecting the magnetic pole position (phase angle) of the rotor of the motor 12 (illustrated). Abbreviation) and the like. The FI / TM / MG • ECU • ECU 24 is connected to the control unit 16 through a signal line, and can exchange signals with each other. Here, detailed description of the functions of the FI / TM / MG • ECU 24 is omitted.

また、車両1の運転席の操作パネルには、車両1のユーザー(運転者)が車両を長期駐車する場合に、その旨の入力操作を行うための長期駐車スイッチ(ボタン)21が設けられている。長期駐車スイッチ21のオンオフ操作による信号は、制御部16に入力されるようになっている。   The operation panel of the driver's seat of the vehicle 1 is provided with a long-term parking switch (button) 21 for performing an input operation when the user (driver) of the vehicle 1 parks the vehicle for a long time. Yes. A signal generated by the on / off operation of the long-term parking switch 21 is input to the control unit 16.

また、車両1には、バッテリ15に繋がれたプラグイン装置20が搭載されている。プラグイン装置20は、停車時に接続端子20bを介して外部電源、外部機器又は設備(いずれも図示せず)の少なくともいずれかに接続可能となっている。また、プラグイン装置20は、車両の外部からの電源供給でバッテリ15を充電するためのバッテリチャージャ20bを内蔵している。ここで、上記の外部電源は、商用電源など車外の電源設備、あるいは車外に設置した他のバッテリとすることができる。また、外部機器又は設備は、電源から電力供給を受けて稼働する電気機器又は設備である。車両1では、後述するバッテリ15の残容量制御を行う際、プラグイン装置20を介してバッテリ15から車両1の外部に設けた外部電源、外部機器又は設備へ電力を供給する制御を行うことができる。   Further, the vehicle 1 is equipped with a plug-in device 20 connected to a battery 15. The plug-in device 20 can be connected to at least one of an external power source, an external device, and equipment (none of which is shown) via the connection terminal 20b when the vehicle is stopped. The plug-in device 20 includes a battery charger 20b for charging the battery 15 with power supplied from the outside of the vehicle. Here, the external power source may be a power source facility outside the vehicle such as a commercial power source or another battery installed outside the vehicle. The external device or facility is an electrical device or facility that operates by receiving power supply from a power source. In the vehicle 1, when performing the remaining capacity control of the battery 15 to be described later, it is possible to perform control for supplying power from the battery 15 to an external power source, an external device, or equipment provided outside the vehicle 1 via the plug-in device 20. it can.

また、車両1には、ナビゲーションシステム40が搭載されている。ナビゲーションシステム40は、システムを制御するための主制御部41と、ナビゲーション用の地図情報を格納した地図情報データベース43と、地図情報や自車位置などの情報を表示するための表示部45と、乗員がナビゲーションシステム40の操作を行うための操作部47とを備えている。また、このナビゲーションシステム40には、ナビゲーション用のGPS装置33が備えられている。GPS装置33は、ナビゲーションシステム40で用いるための経度・緯度情報を受信する。このGPS装置33で受信した車両位置の経度・緯度情報は、ナビゲーションシステム40の主制御部41に出力されるようになっている。なお、車両1に搭載するナビゲーションシステム40は、車両1の専用品あるいは汎用品(社外製のナビゲーションシステムを含む)のいずれであってもよい。   The vehicle 1 is equipped with a navigation system 40. The navigation system 40 includes a main control unit 41 for controlling the system, a map information database 43 storing map information for navigation, a display unit 45 for displaying information such as map information and own vehicle position, An operation unit 47 for the passenger to operate the navigation system 40 is provided. The navigation system 40 is provided with a GPS device 33 for navigation. The GPS device 33 receives longitude / latitude information for use in the navigation system 40. The longitude / latitude information of the vehicle position received by the GPS device 33 is output to the main control unit 41 of the navigation system 40. The navigation system 40 mounted on the vehicle 1 may be either a dedicated product for the vehicle 1 or a general-purpose product (including a navigation system manufactured outside the company).

次に、上記構成のハイブリッド車両1において、制御部16で行うバッテリ15の残容量の制御について説明する。図2は、バッテリ15の全容量(満充電容量)に対する使用範囲の容量を示す図で、(a)は、車両走行時のバッテリ15の使用範囲を示す図、(b)は、車両停車時のバッテリ15の使用範囲を示す図である。同図に示すように、本実施形態のハイブリッド車両1では、バッテリ15の残容量(SOC)の上限値(目標値)として、車両走行時に設定する走行時残容量上限値H1と、車両駐車時に設定する駐車時残容量上限値H2とを有している。駐車時残容量上限値H2は、走行時残容量上限値H1よりも低い値である。図2のグラフに示す例では、走行時残容量上限値H1が満充電量の85%であるのに対して、駐車時残容量上限値H2は70%に設定されている。そして、制御部16は、車両が走行状態であるか駐車状態であるかに応じて、バッテリ15の残容量の目標上限値として、走行時残容量上限値H1と駐車時残容量上限値H2とを切り替えて設定するようになっている。なお、走行時残容量下限値L1と駐車時残容量下限値L2は、同じ値に設定されており、図2の例ではいずれも満充電量の20%である。したがって、車両走行時のバッテリ容量の使用範囲W1は満充電量の20%〜85%の範囲であり、車両駐車時のバッテリ容量の使用範囲W2は満充電量の20%〜70%の範囲である。すなわち、車両走行時のバッテリ容量の使用範囲W1は車両駐車時のバッテリ容量の使用範囲W2よりも大きな範囲となっている。   Next, control of the remaining capacity of the battery 15 performed by the control unit 16 in the hybrid vehicle 1 having the above configuration will be described. FIG. 2 is a diagram showing the capacity of the usage range with respect to the full capacity (full charge capacity) of the battery 15, (a) is a diagram showing the usage range of the battery 15 during vehicle travel, and (b) is when the vehicle is stopped. It is a figure which shows the use range of the battery 15. As shown in the figure, in the hybrid vehicle 1 of the present embodiment, as the upper limit value (target value) of the remaining capacity (SOC) of the battery 15, the remaining capacity upper limit value H1 during travel and the remaining capacity during travel are set to H1. It has a parking remaining capacity upper limit H2 to be set. The parking remaining capacity upper limit H2 is a value lower than the traveling remaining capacity upper limit H1. In the example shown in the graph of FIG. 2, the remaining capacity upper limit value H1 during travel is 85% of the full charge amount, whereas the remaining capacity upper limit value H2 during parking is set to 70%. Then, the control unit 16 sets the remaining capacity upper limit value H1 during traveling and the remaining capacity upper limit value H2 during parking as target upper limit values of the remaining capacity of the battery 15 depending on whether the vehicle is in a traveling state or in a parking state. Is set to switch. In addition, the remaining capacity lower limit value L1 during traveling and the remaining capacity lower limit value L2 during parking are set to the same value, and in the example of FIG. 2, both are 20% of the full charge amount. Therefore, the battery capacity usage range W1 when the vehicle is running is in the range of 20% to 85% of the full charge amount, and the battery capacity usage range W2 when the vehicle is parked is in the range of 20% to 70% of the full charge amount. is there. That is, the battery capacity usage range W1 when the vehicle is running is larger than the battery capacity usage range W2 when the vehicle is parked.

このように、車両走行時のバッテリ15の最大使用領域である走行時残容量上限値H1と、駐車時の最大領域である駐車時残容量上限値H2とを設定し、車両走行時と車両駐車時とでこれらを切り替える制御を行うことにより、車両駐車時は、劣化の進行を抑制できる範囲となるようにバッテリ15の容量上限値をコントロールしつつ、車両走行時は、車両の走行性能を十分に確保できるようにバッテリ15の容量を大きな範囲で利用可能となる。これにより、車両長期放置時のバッテリ15の劣化抑制とバッテリ15の容量の有効活用との両立を図ることができる。また、車両に搭載するバッテリ15の容量(寸法及び重量)を小さく抑えることができるので、車両のコストダウン及び軽量化を図ることができる。   Thus, the remaining capacity upper limit value H1 during travel, which is the maximum use area of the battery 15 during travel of the vehicle, and the remaining capacity upper limit value H2 during parking, which is the maximum area during parking, are set. By performing the control to switch between them depending on the time, when the vehicle is parked, the upper limit value of the capacity of the battery 15 is controlled so that the progress of deterioration can be suppressed, and the vehicle traveling performance is sufficiently improved when the vehicle is traveling. Therefore, the capacity of the battery 15 can be used in a large range. Thereby, coexistence with the deterioration suppression of the battery 15 at the time of vehicle long-term leaving and effective utilization of the capacity | capacitance of the battery 15 can be aimed at. Moreover, since the capacity | capacitance (a dimension and weight) of the battery 15 mounted in a vehicle can be restrained small, the cost reduction and weight reduction of a vehicle can be achieved.

また、本実施形態の制御では、車両駐車時の放置期間やユーザーによる長期放置の意思表示などに応じて、駐車時残容量上限値H2をさらに低い値に設定する制御を行うようにしている。この点については、下記で詳細に説明する。   Further, in the control of the present embodiment, control is performed to set the parking remaining capacity upper limit value H2 to a lower value in accordance with a leaving period when the vehicle is parked or a user's intention to leave for a long time. This point will be described in detail below.

以下、バッテリ15の残容量の制御について詳細に説明する。図3は、車両駐車時の放置期間判定によるバッテリ15の残容量の制御フローを示す図である。同図の制御フローは、車両1が走行を終えて駐車状態になったときに実施されるものであり、当該制御フローの開始時点では、バッテリ15の残容量上限値の設定は、図2(a)に示す走行時残容量上限値H1になっている。同図の制御フローでは、まず、車両放置判定(第1の車両放置期間判定)を行う(ステップST1−1)。この車両放置判定では、駐車開始後の経過時間tが予め設定した第1の設定時間t1以上であるか否かを判断する。ここでの第1の設定時間t1は、一例として1日(24時間)に設定できる。駐車開始後の経過時間tが第1の設定時間t1未満の間(NO)は、バッテリ15の残容量上限値の設定を変更せずに待機する。その一方で、駐車開始後の経過時間tが第1の設定時間t1以上になったら(YES)、続けて、第2の車両放置期間判定(ステップST1−2)に進む。第2の車両放置期間判定では、駐車開始後の経過時間tが予め設定した第2の設定時間t2以上であるか否かを判断する。ここでの第2の設定時間t2は、一例として3日(72時間)に設定できる。駐車開始後の経過時間tが第2の設定時間t2以上であれば(YES)、車両放置期間として3日以上の長期間(放置期間1)を設定する(ST1−3)。そして、設定した車両放置期間に基づいて、車両放置中のバッテリ残容量の目標値(目標SOC)を決定する。具体的には、下記式(1)に基づいて目標SOCを決定する。
(車両放置中の目標SOC)=(目標SOC補正係数)×(放置期間1の設定目標SOC)
・・・(式1)
Hereinafter, the control of the remaining capacity of the battery 15 will be described in detail. FIG. 3 is a diagram showing a control flow of the remaining capacity of the battery 15 based on the leaving period determination when the vehicle is parked. The control flow in the figure is executed when the vehicle 1 finishes traveling and enters the parking state. At the start of the control flow, the setting of the remaining capacity upper limit value of the battery 15 is as shown in FIG. The remaining running capacity upper limit value H1 shown in a) is set. In the control flow shown in the figure, first, a vehicle leaving determination (first vehicle leaving period determination) is performed (step ST1-1). In this vehicle leaving determination, it is determined whether or not the elapsed time t after the start of parking is equal to or longer than a preset first set time t1. Here, the first set time t1 can be set to one day (24 hours) as an example. While the elapsed time t after the start of parking is less than the first set time t1 (NO), the process waits without changing the setting of the remaining capacity upper limit value of the battery 15. On the other hand, if the elapsed time t after the start of parking becomes equal to or longer than the first set time t1 (YES), the process proceeds to the second vehicle leaving period determination (step ST1-2). In the second vehicle leaving period determination, it is determined whether or not the elapsed time t after the start of parking is equal to or longer than a preset second set time t2. Here, the second set time t2 can be set to 3 days (72 hours) as an example. If the elapsed time t after the start of parking is equal to or longer than the second set time t2 (YES), a long period of 3 days or more (leaving period 1) is set as the vehicle leaving period (ST1-3). Then, based on the set vehicle leaving period, a target value (target SOC) of the remaining battery capacity while the vehicle is left is determined. Specifically, the target SOC is determined based on the following formula (1).
(Target SOC while the vehicle is left) = (Target SOC correction coefficient) × (Set target SOC for the leaving period 1)
... (Formula 1)

一方、先の第2の車両放置期間判定(ステップST1−2)で駐車開始後の経過時間tが第2の設定時間t2未満であれば(NO)、続けて、第3の車両放置期間判定(ステップST1−5)に進む。第3の車両放置期間判定では、駐車開始後の経過時間tが予め設定した第3の設定時間t3以上であるか否かを判断する。ここでの第3の設定時間t3は、一例として2日(48時間)に設定できる。駐車開始後の経過時間tが第3の設定時間t3以上であれば(YES)、車両放置期間として2日以上3日未満の中期間(放置期間2)を設定する(ステップST1−6)。そして、設定した車両放置期間に基づいて、車両放置中のバッテリ残容量の目標値(目標SOC)を決定する。具体的には、下記の(式2)に基づいて目標SOCを決定する。
(車両放置中の目標SOC)=(目標SOC補正係数)×(放置期間2の設定目標SOC)・・・(式2)
On the other hand, if the elapsed time t after the start of parking is less than the second set time t2 in the previous second vehicle leaving period determination (step ST1-2) (NO), then the third vehicle leaving period determination is continued. Proceed to (Step ST1-5). In the third vehicle leaving period determination, it is determined whether the elapsed time t after the start of parking is equal to or longer than a preset third set time t3. The third set time t3 here can be set to 2 days (48 hours) as an example. If the elapsed time t after the start of parking is equal to or longer than the third set time t3 (YES), a medium period (left period 2) of 2 days or more and less than 3 days is set as the vehicle leaving period (step ST1-6). Then, based on the set vehicle leaving period, a target value (target SOC) of the remaining battery capacity while the vehicle is left is determined. Specifically, the target SOC is determined based on (Equation 2) below.
(Target SOC while the vehicle is left) = (Target SOC correction coefficient) × (Set target SOC of the leaving period 2) (Expression 2)

一方、先の第3の車両放置期間判定(ステップST1−5)で駐車開始後の経過時間tが第3の設定時間t3未満であれば(NO)、車両放置期間として1日以上2日未満の短期間(放置期間3)を設定する(ステップST1−8)。そして、設定した車両放置期間に基づいて、車両放置中のバッテリ残容量の目標値(目標SOC)を決定する。具体的には、下記の(式3)に基づいて目標SOCを決定する。
(車両放置中の目標SOC)=(目標SOC補正係数)×(放置期間3の設定目標SOC)・・・(式3)
On the other hand, if the elapsed time t after the start of parking is less than the third set time t3 (NO) in the third vehicle leaving period determination (step ST1-5), the vehicle leaving period is 1 day or more and less than 2 days Is set (step ST1-8). Then, based on the set vehicle leaving period, a target value (target SOC) of the remaining battery capacity while the vehicle is left is determined. Specifically, the target SOC is determined based on (Equation 3) below.
(Target SOC while the vehicle is left) = (Target SOC correction coefficient) × (Set target SOC of the leaving period 3) (Equation 3)

以上により、車両放置期間に応じたバッテリ残容量の目標値が設定される。具体的には、車両の放置期間が長期間になればなるほど、バッテリ残容量の目標上限値が低い値に設定される。すなわち、車両の駐車時間の経過に伴い駐車時残容量上限値H2が次第に減少するように設定している。このように、車両の駐車時間が長期間となるほど、駐車時残容量上限値H2を下げることで、長期放置時のバッテリ15の残容量を低く抑えることができる。したがって、バッテリ15の劣化を抑制することができる。   Thus, the target value of the remaining battery capacity corresponding to the vehicle leaving period is set. Specifically, the target upper limit value of the remaining battery capacity is set to a lower value as the vehicle leaving period becomes longer. That is, the parking remaining capacity upper limit value H2 is set to gradually decrease as the vehicle parking time elapses. Thus, the remaining capacity of the battery 15 when left for a long time can be kept low by lowering the parking remaining capacity upper limit H2 as the parking time of the vehicle becomes longer. Therefore, deterioration of the battery 15 can be suppressed.

具体的には、車両の駐車開始後の経過時間が1日以内と判断する場合(ステップST1−1でNO)は、翌日に車両が使用される可能性を考慮して、駐車時残容量上限値H2をバッテリ15の満充電量の70%に設定することができる。また、車両の駐車開始後の経過時間が2日以上3日未満と判断する場合(ステップST1−6)は、車両が週末に駐車された場合であるとみなして、駐車時残容量上限値H2をバッテリ15の満充電量の50〜60%に設定することができる。また、車両の駐車開始後の経過時間が3日以上の長期間と判断する場合(ステップST1−3)は、週末駐車を超える長期的な駐車とみなして、駐車時残容量上限値H2をバッテリの満充電の50%以下に設定することができる。これらによって、車両の駐車期間が長期に渡る場合、当該駐車期間に応じてバッテリ15の残容量を低くすることで、バッテリの劣化を抑制することができる。   Specifically, when it is determined that the elapsed time after the start of parking of the vehicle is within one day (NO in step ST1-1), considering the possibility that the vehicle will be used the next day, the remaining capacity upper limit at parking The value H2 can be set to 70% of the full charge amount of the battery 15. Further, when it is determined that the elapsed time after the parking of the vehicle is 2 days or more and less than 3 days (step ST1-6), it is considered that the vehicle is parked on the weekend, and the remaining capacity upper limit H2 during parking is determined. Can be set to 50 to 60% of the full charge amount of the battery 15. Further, when it is determined that the elapsed time after parking of the vehicle is a long period of 3 days or more (step ST1-3), it is regarded as long-term parking exceeding weekend parking, and the remaining capacity upper limit value H2 during parking is set as the battery. Can be set to 50% or less of the full charge. By these, when the parking period of a vehicle extends over a long period, deterioration of a battery can be suppressed by making low the remaining capacity of the battery 15 according to the said parking period.

図3のフローでは、続けて、外気温又はバッテリ温度判定(ステップST1−10)を行う。外気温又はバッテリ温度判定では、外気温センサ28で検出した外気温又はバッテリ温度センサ27で検出したバッテリ温度の検出値が所定値より高いか否かを判断する。その結果、外気温又はバッテリ温度の検出値が当該所定値より高い場合(YES)には、先のステップST1−4,ST1−7,ST1−9のいずれかで設定した車両放置中のバッテリ残容量の目標値(H2)を、さらにそれよりも低い値に設定する。これによれば、バッテリ15は、その雰囲気温度が高くなればなるほど劣化が進行し易くなるところ、上記のように外気温又はバッテリ温度が高い場合に駐車時残容量上限値H2を下げるようにすることで、バッテリ15の劣化を効果的に抑制することができる。上記の所定値は、例えば、夏季の平均温度が当該所定値よりも高くなり、かつ、冬季の平均温度が当該所定値よりも低くなるように設定するとよい。これによれば、夏季と冬季で駐車時残容量上限値H2を切り替えて設定することが可能となる。   In the flow of FIG. 3, the outside air temperature or battery temperature determination (step ST1-10) is subsequently performed. In the outside air temperature or battery temperature determination, it is determined whether or not the detected value of the outside air temperature detected by the outside air temperature sensor 28 or the battery temperature detected by the battery temperature sensor 27 is higher than a predetermined value. As a result, when the detected value of the outside air temperature or the battery temperature is higher than the predetermined value (YES), the remaining battery while the vehicle is left set in any of the previous steps ST1-4, ST1-7, ST1-9. The target value (H2) of the capacity is set to a value lower than that. According to this, as the ambient temperature becomes higher, the battery 15 is more likely to deteriorate. However, when the outside air temperature or the battery temperature is high as described above, the parking remaining capacity upper limit value H2 is lowered. Thereby, deterioration of the battery 15 can be suppressed effectively. The predetermined value may be set, for example, such that the summer average temperature is higher than the predetermined value and the winter average temperature is lower than the predetermined value. According to this, it becomes possible to switch and set the parking remaining capacity upper limit H2 in summer and winter.

続けて、バッテリ放電制御判定(ステップST1−11)を行う。バッテリ放電制御判定では、車両の駐車開始時(駐車後のイグニッションキーOFF時)に、現在のバッテリ残容量が車両放置中の目標残容量である駐車時残容量上限値H2よりも高いか否かを判断する。その結果、現在のバッテリ残容量が駐車時残容量上限値H2以下である場合(NO)には、バッテリ放電制御を行わずそのまま処理を終了する。一方、現在のバッテリ残容量が駐車時残容量上限値H2よりも高い場合(YES)には、バッテリ放電制御を行う(ステップST1−13)。バッテリ放電制御の具体的な内容としては、バッテリ(高圧バッテリ)15から12Vバッテリ(低圧バッテリ)18に電力を供給することで12Vバッテリ18の充電を行うこと、車載補機17に含まれる電動エアコンを稼働すること、及びプラグイン装置20を介してバッテリ15から車両1の外部に設けた外部電源、外部機器又は設備へ電力を供給(売電)する制御を行うことなどがある。なお、上記の電動エアコンは、車室内の空調用のエアコンであっても良いし、バッテリ15の冷却用のエアコンであってもよい。   Subsequently, battery discharge control determination (step ST1-11) is performed. In the battery discharge control determination, at the start of parking of the vehicle (when the ignition key is turned off after parking), whether or not the current remaining battery capacity is higher than the remaining parking capacity upper limit H2 that is the target remaining capacity while the vehicle is left. Judging. As a result, when the current battery remaining capacity is equal to or less than the parking remaining capacity upper limit H2 (NO), the battery discharge control is not performed and the process is terminated as it is. On the other hand, when the current battery remaining capacity is higher than the parking remaining capacity upper limit H2 (YES), battery discharge control is performed (step ST1-13). Specific contents of the battery discharge control include charging the 12V battery 18 by supplying power from the battery (high voltage battery) 15 to the 12V battery (low voltage battery) 18, and the electric air conditioner included in the in-vehicle auxiliary machine 17. And controlling to supply power (sell power) from the battery 15 to an external power source, an external device or equipment provided outside the vehicle 1 through the plug-in device 20. The electric air conditioner described above may be an air conditioner for air conditioning in the passenger compartment, or an air conditioner for cooling the battery 15.

これらにより、バッテリ15の電力を消費してその残容量を低下させることができる。バッテリ放電制御を行ったら、バッテリ放電制御終了判定(ステップST1−14)を行う。バッテリ放電制御終了判定では、バッテリ残容量が駐車時残容量上限値H2以下になっているか否かを判断する。その結果、バッテリ残容量が駐車時残容量上限値H2以下になっていない場合(NO)は、ステップST1−13に戻り、引き続きバッテリ放電制御を行う。一方、バッテリ残容量が駐車時残容量上限値H2以下になっている場合(YES)は、バッテリ放電制御を終了する。   Thus, the power of the battery 15 can be consumed and the remaining capacity can be reduced. If battery discharge control is performed, battery discharge control end determination (step ST1-14) is performed. In the battery discharge control end determination, it is determined whether or not the remaining battery capacity is equal to or less than the parking remaining capacity upper limit H2. As a result, when the remaining battery capacity is not less than or equal to the remaining parking capacity upper limit H2 (NO), the process returns to step ST1-13 and the battery discharge control is continued. On the other hand, when the remaining battery capacity is equal to or lower than the remaining parking capacity upper limit H2 (YES), the battery discharge control is terminated.

このように、駐車開始時にバッテリ残容量が駐車時残容量上限値H2を超えている場合、バッテリ15の電力を12Vバッテリ18に供給するか、車載補機17を稼動させるか、プラグイン装置20を介してバッテリ15から車両の外部に設けた外部電源、外部機器又は設備へ電力を供給することで、バッテリ残電量を低下させるようにしている。これにより、バッテリ15の電力を有効活用しながら、車両駐車時のバッテリ15の残容量を駐車時残容量上限値H2以下とすることができる。   As described above, when the remaining battery capacity at the start of parking exceeds the remaining parking capacity upper limit H2, the power of the battery 15 is supplied to the 12V battery 18, the in-vehicle auxiliary machine 17 is operated, or the plug-in device 20 By supplying power from the battery 15 to an external power source, external device, or facility provided outside the vehicle via the battery 15, the remaining battery power is reduced. Thereby, the remaining capacity of the battery 15 when the vehicle is parked can be made equal to or lower than the remaining capacity upper limit H2 during parking while effectively using the power of the battery 15.

図4は、車両位置の判定によるバッテリ残容量の制御フローを示す図である。同図の制御フローは、車両走行中に実施されるものであり、当該制御フローの開始時点では、バッテリの残容量の目標上限値は、図2(a)に示す走行時残容量上限値H1に設定されている。なお、以下の説明では、車両の駐車場所として、車両所有者(ユーザー)の自宅を例に挙げて説明するが、車両の駐車場所は、自宅に限らず他の場所であってもよい。図4の制御フローでは、ステップST2−1及びST2−2で、車両の駐車場所である自宅位置から車両の現在位置までの距離判定を行う。すなわち、ステップST2−1で、自宅位置から車両の現在位置までの距離が自宅間距離大の設定値(設定値大)S1以上であるか否かを判断する。その結果、自宅位置から車両の現在位置までの距離が設定値大S1以上で無ければ(NO)、続けて、ステップST2−2で、自宅位置から車両の現在位置までの距離が自宅間距離中の設定値(設定値中)S2以上であるか否かを判断する。そして、ステップST2−1で、自宅位置から車両の現在位置までの距離が設定値大S1以上(YES)であれば、バッテリの残容量の目標値=自宅間距離大の場合における目標値となるようにバッテリの残容量の目標値を変更する(ステップST2−3)。また、ステップST2−2で、自宅位置から車両の現在位置までの距離が自宅間距離中の設定値(設定値中)S2以上(YES)であれば、バッテリの残容量の目標値=自宅間距離中の場合における目標値となるようにバッテリの残容量の目標値を変更する(ステップST2−4)。また、ステップST2−2で、自宅位置から車両の現在位置までの距離が設定値中S2未満(NO)であれば、バッテリの残容量の目標値=自宅間距離小の場合における目標値となるようにバッテリの残容量の目標値を変更する(ステップST2−5)。そして、設定した残容量の目標値に従ってバッテリ残容量の制御を実施する(ステップST2−6)。   FIG. 4 is a diagram showing a control flow of the remaining battery capacity based on the determination of the vehicle position. The control flow shown in the figure is executed while the vehicle is running. At the start of the control flow, the target upper limit value of the remaining battery capacity is the remaining battery capacity upper limit value H1 shown in FIG. Is set to In the following description, the vehicle owner (user) 's home will be described as an example of the vehicle parking location, but the vehicle parking location is not limited to the home but may be another location. In the control flow of FIG. 4, in steps ST2-1 and ST2-2, the distance from the home position, which is a parking place of the vehicle, to the current position of the vehicle is determined. That is, in step ST2-1, it is determined whether or not the distance from the home position to the current position of the vehicle is equal to or greater than the set value (large set value) S1 of the distance between homes. As a result, if the distance from the home position to the current position of the vehicle is not greater than the set value S1 (NO), then in step ST2-2, the distance from the home position to the current position of the vehicle is within the distance between homes. It is determined whether or not the set value (medium set value) is equal to or greater than S2. In step ST2-1, if the distance from the home position to the current position of the vehicle is greater than or equal to the set value S1 (YES), the target value of the remaining battery capacity is the target value when the distance between homes is large. Thus, the target value of the remaining capacity of the battery is changed (step ST2-3). In step ST2-2, if the distance from the home position to the current position of the vehicle is equal to or greater than the set value (in the set value) S2 in the distance between homes (YES), the target value of the remaining battery capacity = between the homes The target value of the remaining battery capacity is changed so as to be the target value in the case of the distance (step ST2-4). In step ST2-2, if the distance from the home position to the current position of the vehicle is less than the set value S2 (NO), the target value of the remaining battery capacity = the target value when the distance between homes is small. Thus, the target value of the remaining capacity of the battery is changed (step ST2-5). Then, the remaining battery capacity is controlled in accordance with the set remaining capacity target value (step ST2-6).

このように、ナビゲーションシステム40で自宅位置(駐車位置)が設定されている場合、車両1の走行中にバッテリ15の残容量が駐車時残容量上限値H2を上回っているときは、車両1の位置が自宅位置に近づくにつれて、バッテリ15の残容量を駐車時残容量上限値H2に向けて低下させる制御を行う。これにより、バッテリ15の電力を無駄に消費することなく、駐車時のバッテリ残容量が駐車時残容量上限値H2を超えないようにして、バッテリ15の劣化を抑制することができる。   As described above, when the home position (parking position) is set in the navigation system 40, when the remaining capacity of the battery 15 exceeds the parking remaining capacity upper limit H2 while the vehicle 1 is traveling, As the position approaches the home position, control is performed to decrease the remaining capacity of the battery 15 toward the parking remaining capacity upper limit H2. Thus, the battery 15 can be prevented from degrading without wastefully consuming the power of the battery 15 so that the remaining battery capacity during parking does not exceed the remaining parking capacity upper limit H2.

図5は、ユーザーの長期駐車意思に基づくバッテリ残容量の制御フローである。図5の制御フローは、車両1が走行を終えて駐車状態になったとき(駐車後のイグニッションキーOFF時)に実施されるものであり、当該制御フローの開始時点では、バッテリ15の残容量上限値の設定は、図2(b)に示す駐車時残容量上限値H2になっている。同図のフローでは、まず、ユーザーによる車両長期放置意思の判定(ステップST3−1)を行う。このユーザーによる車両長期放置意思の判定では、長期駐車スイッチ21がオンされた場合に長期放置意思有りと判断し、それ以外の場合(NO)には長期放置意思無しと判断する。そして、長期放置意思有りと判断した場合(YES)には、続けて、車両が停止状態(車両速度=0km/h)であり、かつ、アクセルペダル開度が0%であること条件として(ステップST3−2)、バッテリ残容量の目標値の変更を行う(ステップST3−3)。バッテリ残容量の目標値の変更では、バッテリ残容量の目標値=車両長期放置時の目標値とする。ここでの車両長期放置時の目標値は、図2(b)に示す駐車時残容量上限値H2をさらに低下させた値であって、一例として、バッテリ15の満充電量の60%に設定することができる。そして、設定した目標値に従ってバッテリ15の残容量の制御を実施する(ステップST3−4)。   FIG. 5 is a control flow of the remaining battery capacity based on the user's intention to park for a long time. The control flow of FIG. 5 is performed when the vehicle 1 finishes traveling and enters the parking state (when the ignition key is turned off after parking). At the start of the control flow, the remaining capacity of the battery 15 The setting of the upper limit value is the parking remaining capacity upper limit value H2 shown in FIG. In the flow of FIG. 3, first, the user's determination of the intention to leave the vehicle for a long time is performed (step ST3-1). In the determination of the vehicle long-term leaving intention by the user, it is determined that there is a long-term leaving intention when the long-term parking switch 21 is turned on, and otherwise it is determined that there is no long-term leaving intention. If it is determined that there is an intention to leave for a long time (YES), the vehicle is in a stopped state (vehicle speed = 0 km / h) and the accelerator pedal opening is 0% (step) ST3-2), the target value of the remaining battery capacity is changed (step ST3-3). In the change of the target value of the remaining battery capacity, the target value of the remaining battery capacity = the target value when the vehicle is left for a long time. The target value when the vehicle is left for a long time is a value obtained by further lowering the parking remaining capacity upper limit value H2 shown in FIG. 2B, and is set to 60% of the full charge amount of the battery 15 as an example. can do. Then, the remaining capacity of the battery 15 is controlled according to the set target value (step ST3-4).

図6は、ユーザーの長期駐車意思に基づくバッテリ残容量の制御における、長期駐車スイッチ21のオン/オフ、アクセルペダル開度、及び車両速度などの変化を示すタイミングチャートである。ユーザーの長期駐車意思に基づくバッテリ残容量の制御を同図のタイミングチャートに沿って説明すると、アクセルペダルがオンで、かつ車両速度が正の値である車両走行状態から、時刻Taにおいてアクセルペダルがオフとなり、その後、次第に車両速度が低下して、時刻Tbで車両速度が0(km/h)の停車状態となる。その後、時刻Tcにおいて、ユーザーにより長期駐車スイッチ21がオンされる。それによって、車両長期放置時バッテリ残量制御がオンになり、バッテリ残容量の上限値(目標値)が通常制御時の残容量上限値からそれよりも低い値である車両長期放置時の残容量上限値に切り替わる。その後、車両の放置中にユーザーによって長期駐車スイッチ21がオフされると(時刻Td)、それによって車両長期放置時バッテリ残量制御がオフになり、バッテリ残容量の上限値(目標値)が車両長期放置時の残容量上限値から通常制御時の残容量上限値に戻る。その後、時刻Teでアクセルペダルがオンされて、車両が走行を開始する。   FIG. 6 is a timing chart showing changes in the long-term parking switch 21 on / off, the accelerator pedal opening, the vehicle speed, and the like in the control of the remaining battery capacity based on the user's intention to park long-term. The control of the remaining battery capacity based on the user's intention to park for a long time will be described with reference to the timing chart of the figure. From the vehicle running state in which the accelerator pedal is on and the vehicle speed is a positive value, the accelerator pedal is After that, the vehicle speed gradually decreases and the vehicle speed is stopped at time Tb at 0 (km / h). Thereafter, the long-term parking switch 21 is turned on by the user at time Tc. As a result, the battery remaining amount control when the vehicle is left unattended is turned on, and the upper limit value (target value) of the remaining battery capacity is lower than the upper limit value of the remaining capacity at normal control. Switch to the upper limit. Thereafter, when the long-term parking switch 21 is turned off by the user while the vehicle is left (time Td), the battery remaining amount control when the vehicle is left unattended is turned off, and the upper limit value (target value) of the remaining battery capacity is set to the vehicle. The remaining capacity upper limit value when left for a long time returns to the remaining capacity upper limit value during normal control. Thereafter, the accelerator pedal is turned on at time Te, and the vehicle starts to travel.

このように、本実施形態では、ユーザーが車両を長期間に渡って駐車(放置)する旨の意思入力を行うための長期駐車意思入力手段として長期駐車スイッチ21を備えており、車両駐車時に長期駐車スイッチ21がオンされた場合、車両の駐車開始後の経過時間がその後長期間に渡ると判断することで、駐車時残容量上限値H2を通常の残容量よりもさらに低い残容量に設定するようにしている。これにより、ユーザーの意思によって車両が長期間放置されることが明らかな場合には、バッテリ15の劣化をより効果的に防止することができる。   Thus, in the present embodiment, the long-term parking switch 21 is provided as a long-term parking intention input means for the user to input a intention to park (leave) the vehicle for a long period of time. When the parking switch 21 is turned on, it is determined that the elapsed time after the start of parking of the vehicle will be extended for a long time thereafter, and the parking remaining capacity upper limit H2 is set to a remaining capacity that is lower than the normal remaining capacity. I am doing so. Thereby, when it is clear that the vehicle is left for a long period of time according to the user's intention, the deterioration of the battery 15 can be more effectively prevented.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、上記実施形態では、バッテリ15がリチウムイオン二次電池からなる場合を示したが、本発明のバッテリは、リチウムイオン二次電池には限らず、Ni−MHなどからなる他の二次電池であってもよい。また、上記実施形態に示したバッテリ容量や駐車期間などの具体的な数値はいずれも一例であり、各値は上記実施形態に示す以外の値とすることも可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. For example, although the case where the battery 15 is formed of a lithium ion secondary battery has been described in the above embodiment, the battery of the present invention is not limited to the lithium ion secondary battery, and other secondary batteries formed of Ni-MH or the like. It may be. Further, the specific numerical values such as the battery capacity and the parking period shown in the above embodiment are only examples, and each value may be a value other than that shown in the above embodiment.

1 ハイブリッド車両
11 エンジン
12 モータ
13 トランスミッション
15 高圧バッテリ(バッテリ)
16 制御部(制御手段)
17 車載補機
18 12Vバッテリ
19 DC−DCコンバータ
20 プラグイン装置
20b 接続端子
20b バッテリチャージャ
21 長期駐車スイッチ(長期駐車意思入力手段)
22 車輪速センサ
23 アクセル開度センサ
25 電流センサ
26 電圧センサ
27 バッテリ温度センサ
28 外気温センサ
33 GPS装置
40 ナビゲーションシステム
41 主制御部
43 地図情報データベース
45 表示部
47 操作部
H1 走行時残容量上限値
H2 駐車時残容量上限値
L1 走行時残容量下限値
L2 駐車時残容量下限値
W1 (車両走行時の)バッテリの使用範囲
W2 (車両駐車時の)バッテリの使用範囲
DESCRIPTION OF SYMBOLS 1 Hybrid vehicle 11 Engine 12 Motor 13 Transmission 15 High voltage battery (battery)
16 Control unit (control means)
17 on-vehicle auxiliary machine 18 12V battery 19 DC-DC converter 20 plug-in device 20b connection terminal 20b battery charger 21 long-term parking switch (long-term parking intention input means)
22 Wheel speed sensor 23 Accelerator opening sensor 25 Current sensor 26 Voltage sensor 27 Battery temperature sensor 28 Outside air temperature sensor 33 GPS device 40 Navigation system 41 Main control unit 43 Map information database 45 Display unit 47 Operation unit H1 Upper limit of remaining capacity during travel
H2 Parking remaining capacity upper limit L1 Traveling remaining capacity lower limit L2 Parking remaining capacity lower limit W1 Battery usage range W2 (during vehicle travel) W2 Battery usage range (during vehicle parking)

Claims (11)

バッテリと、前記バッテリと電力の授受が可能なモータとを有する車両において、前記バッテリの充放電を制御するための制御手段を備えた車両用制御装置であって、
前記制御手段は、前記バッテリの残容量の目標上限値として、車両走行時に設定するための走行時残容量上限値と、該走行時残容量上限値よりも低い残容量であって車両駐車時に設定するための駐車時残容量上限値とを設定可能であり、
車両走行時と車両駐車時とで、前記走行時残容量上限値と前記駐車時残容量上限値とを切り替えて設定する
ことを特徴とする車両用制御装置。
In a vehicle having a battery and a motor capable of transferring power to and from the battery, the vehicle control device includes control means for controlling charging and discharging of the battery,
The control means sets the target remaining value of the remaining battery capacity when the vehicle is parked as a target remaining capacity upper limit value during travel of the vehicle and a remaining capacity lower than the remaining capacity upper limit value during travel. It is possible to set the parking remaining capacity upper limit value to
A vehicle control device that switches between the remaining capacity upper limit value during travel and the remaining capacity upper limit value during parking when the vehicle is traveling and when the vehicle is parked.
前記車両に搭載された車載補機と、前記車載補機を駆動するための低圧バッテリと、を備え、
前記制御手段は、
車両駐車時に前記バッテリの残容量が前記駐車時残容量上限値を超えている場合、
前記バッテリから前記低圧バッテリへ電力を供給するか、又は前記車載補機の稼動により前記バッテリの電力を消費させる制御を行うことで、前記バッテリの残容量が前記駐車時残容量上限値以下となるようにする
ことを特徴とする請求項1に記載の車両用制御装置。
An in-vehicle auxiliary device mounted on the vehicle, and a low-voltage battery for driving the in-vehicle auxiliary device,
The control means includes
When the remaining capacity of the battery exceeds the parking remaining capacity upper limit when the vehicle is parked,
By supplying power from the battery to the low-voltage battery or by controlling the battery power to be consumed by operating the in-vehicle auxiliary machine, the remaining capacity of the battery becomes equal to or less than the remaining capacity upper limit value during parking. The vehicle control device according to claim 1, wherein:
前記バッテリと前記車両の外部に設けた機器、設備、外部電源の少なくともいずれかとの間で電力の授受を行わせるためのプラグイン装置をさらに備え、
前記制御手段は、
車両駐車時に前記バッテリの残容量が前記駐車時残容量上限値を超えている場合、前記プラグイン装置を介して前記バッテリから前記車両の外部に設けた機器、設備、外部電源の少なくともいずれかへ電力を供給する制御を行うことで、前記バッテリの残容量が前記駐車時残容量上限値以下となるようにする
ことを特徴とする請求項1に記載の車両用制御装置。
A plug-in device for allowing power to be exchanged between the battery and at least one of equipment, equipment, and external power supply provided outside the vehicle;
The control means includes
When the remaining capacity of the battery exceeds the parking remaining capacity upper limit when the vehicle is parked, the battery is connected to at least one of equipment, equipment, and external power source provided outside the vehicle via the plug-in device. 2. The vehicle control device according to claim 1, wherein the remaining capacity of the battery is equal to or less than the upper limit value of the remaining capacity during parking by performing power supply control.
前記制御手段は、
前記車両の駐車時間の経過に伴って前記駐車時残容量上限値が次第に減少するように設定する
ことを特徴とする請求項1乃至3のいずれか1項に記載の車両用制御装置。
The control means includes
4. The vehicle control device according to claim 1, wherein the parking remaining capacity upper limit value is set to gradually decrease as the vehicle parking time elapses. 5.
前記制御手段は、
前記車両の駐車開始後の経過時間が1日以内と判断する場合、前記駐車時残容量上限値を前記バッテリの満充電量の70%に設定する
ことを特徴とする請求項4に記載の車両用制御装置。
The control means includes
5. The vehicle according to claim 4, wherein when it is determined that the elapsed time after parking of the vehicle is within one day, the parking remaining capacity upper limit value is set to 70% of a full charge amount of the battery. Control device.
前記制御手段は、
前記車両の駐車開始後の経過時間が2日以上3日未満と判断する場合、前記駐車時残容量上限値を前記バッテリの満充電量の50〜60%に設定する
ことを特徴とする請求項4又は5に記載の車両用制御装置。
The control means includes
The parking remaining capacity upper limit value is set to 50 to 60% of the full charge amount of the battery when it is determined that the elapsed time after the start of parking of the vehicle is 2 days or more and less than 3 days. The vehicle control device according to 4 or 5.
前記制御手段は、
前記車両の駐車開始後の経過時間が3日以上と判断する場合、前記駐車時残容量上限値を前記バッテリの満充電量の50%以下に設定する
ことを特徴とする請求項4乃至6のいずれか1項に記載の車両用制御装置。
The control means includes
The parking remaining capacity upper limit value is set to 50% or less of the full charge amount of the battery when it is determined that the elapsed time after parking of the vehicle is 3 days or more. The vehicle control device according to claim 1.
ユーザーが前記車両を長期間に渡って駐車する旨の意思入力を行うための長期駐車意思入力手段を備え、
前記制御手段は、
前記長期駐車意思入力手段で長期間に渡って駐車する旨の意思入力がされた場合、前記車両の駐車開始後の経過時間が3日以上に渡ると判断する
ことを特徴とする請求項7に記載の車両用制御装置。
Long-term parking intention input means for the user to input intention to park the vehicle for a long period of time;
The control means includes
8. The method according to claim 7, wherein if an intention to park for a long period of time is input by the long-term parking intention input means, an elapsed time after the start of parking of the vehicle exceeds three days. The vehicle control device described.
外気温又は前記バッテリの温度を検出するための温度検出手段を備え、
前記制御手段は、
前記温度検出手段による温度の検出値が所定値よりも高い場合、前記検出値が前記所定値よりも低い場合と比較して、前記駐車時残容量上限値を低い値に設定する
ことを特徴とする請求項1乃至8のいずれか1項に記載の車両用制御装置。
Temperature detecting means for detecting the outside air temperature or the temperature of the battery,
The control means includes
When the detected temperature value by the temperature detecting means is higher than a predetermined value, the parking remaining capacity upper limit value is set to a lower value than when the detected value is lower than the predetermined value. The vehicle control device according to any one of claims 1 to 8.
前記バッテリは、リチウムイオン二次電池である
ことを特徴とする請求項1乃至9のいずれか1項に記載の車両用制御装置。
The vehicle control device according to claim 1, wherein the battery is a lithium ion secondary battery.
前記車両に搭載されたナビゲーションシステムを備え、
前記ナビゲーションシステムで前記車両の駐車保管場所の位置が設定されている場合、
前記制御手段は、前記車両の走行中に前記バッテリの残容量が前記駐車時残容量上限値を上回っているとき、前記車両の位置が前記駐車保管場所の位置に近づくにつれて前記バッテリの残容量を前記駐車時残容量上限値に向けて低下させる制御を行う
ことを特徴とする請求項1乃至10のいずれか1項に記載の車両用制御装置。
A navigation system mounted on the vehicle,
When the position of the parking storage location of the vehicle is set in the navigation system,
When the remaining capacity of the battery exceeds the parking remaining capacity upper limit value while the vehicle is running, the control means reduces the remaining capacity of the battery as the position of the vehicle approaches the position of the parking storage location. The control device for a vehicle according to any one of claims 1 to 10, wherein control is performed to reduce the parking remaining capacity toward an upper limit value.
JP2011211651A 2011-09-27 2011-09-27 Vehicle control device Active JP5740269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211651A JP5740269B2 (en) 2011-09-27 2011-09-27 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211651A JP5740269B2 (en) 2011-09-27 2011-09-27 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2013074706A true JP2013074706A (en) 2013-04-22
JP5740269B2 JP5740269B2 (en) 2015-06-24

Family

ID=48478773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211651A Active JP5740269B2 (en) 2011-09-27 2011-09-27 Vehicle control device

Country Status (1)

Country Link
JP (1) JP5740269B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027164A (en) * 2013-07-25 2015-02-05 株式会社デンソー Charge/discharge management system
KR20150024725A (en) * 2013-08-27 2015-03-09 삼성에스디아이 주식회사 Battery pack and control method thereof
CN105473368A (en) * 2013-08-21 2016-04-06 捷豹路虎有限公司 System for providing a scale for a state of charge indicator and hybrid vehicle with such a system
CN105730236A (en) * 2014-12-25 2016-07-06 三菱自动车工业株式会社 Charge Amount Display Apparatus Of Electric Vehicle
DE102016103807A1 (en) 2015-03-09 2016-09-15 Toyota Jidosha Kabushiki Kaisha Controller for a secondary battery
JP2017005985A (en) * 2015-06-15 2017-01-05 株式会社Gsユアサ Secondary battery monitoring device, battery pack, secondary battery protection system, and vehicle
JP2018023243A (en) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 Electric vehicle
CN107891828A (en) * 2016-10-03 2018-04-10 株式会社杰士汤浅国际 Vehicle electrical storage device and vehicle
JP2018088757A (en) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 vehicle
GB2564195A (en) * 2017-04-19 2019-01-09 Ford Global Tech Llc Control module activation of vehicles in a key-off state
US10217297B2 (en) 2017-04-19 2019-02-26 Ford Global Technologies, Llc Control module activation to monitor vehicles in a key-off state
EP3495216A1 (en) * 2017-12-05 2019-06-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and controller for hybrid vehicle
EP3495217A1 (en) * 2017-12-05 2019-06-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and controller for hybrid vehicle
US10378919B2 (en) 2017-04-19 2019-08-13 Ford Global Technologies, Llc Control module activation of vehicles in a key-off state to determine driving routes
JP2019182276A (en) * 2018-04-12 2019-10-24 本田技研工業株式会社 Control device of vehicular drive device
JP2019208338A (en) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 Electric vehicle
EP4016790A1 (en) 2020-12-21 2022-06-22 Yazaki Corporation Battery control apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287092A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Charger and rechargeable electric apparatus set equipped with the same
JP2009005450A (en) * 2007-06-20 2009-01-08 Mazda Motor Corp Controller for battery of vehicle
JP2010148283A (en) * 2008-12-19 2010-07-01 Mazda Motor Corp Device for controlling storage battery of electric vehicle
JP2010183758A (en) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd Vehicle controller
JP2011055575A (en) * 2009-08-31 2011-03-17 Nissan Motor Co Ltd Electric vehicle
JP2011091899A (en) * 2009-10-20 2011-05-06 Honda Motor Co Ltd Electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287092A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Charger and rechargeable electric apparatus set equipped with the same
JP2009005450A (en) * 2007-06-20 2009-01-08 Mazda Motor Corp Controller for battery of vehicle
JP2010148283A (en) * 2008-12-19 2010-07-01 Mazda Motor Corp Device for controlling storage battery of electric vehicle
JP2010183758A (en) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd Vehicle controller
JP2011055575A (en) * 2009-08-31 2011-03-17 Nissan Motor Co Ltd Electric vehicle
JP2011091899A (en) * 2009-10-20 2011-05-06 Honda Motor Co Ltd Electric vehicle

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027164A (en) * 2013-07-25 2015-02-05 株式会社デンソー Charge/discharge management system
US10040367B2 (en) 2013-08-21 2018-08-07 Jaguar Land Rover Limited State of charge indication
CN105473368A (en) * 2013-08-21 2016-04-06 捷豹路虎有限公司 System for providing a scale for a state of charge indicator and hybrid vehicle with such a system
EP3036125A2 (en) * 2013-08-21 2016-06-29 Jaguar Land Rover Limited State of charge indication
EP3036125B1 (en) * 2013-08-21 2021-10-06 Jaguar Land Rover Limited System for providing a scale for a state of charge indicator and hybrid vehicle with such a system
JP2016536200A (en) * 2013-08-21 2016-11-24 ジャガー ランド ローバー リミテッドJaguar Land Rover Limited Charging status display
KR20150024725A (en) * 2013-08-27 2015-03-09 삼성에스디아이 주식회사 Battery pack and control method thereof
KR102062706B1 (en) 2013-08-27 2020-02-20 삼성에스디아이 주식회사 Battery pack and control method thereof
CN105730236A (en) * 2014-12-25 2016-07-06 三菱自动车工业株式会社 Charge Amount Display Apparatus Of Electric Vehicle
US9815383B2 (en) 2015-03-09 2017-11-14 Toyota Jidosha Kabushiki Kaisha Controller for secondary battery
DE102016103807A1 (en) 2015-03-09 2016-09-15 Toyota Jidosha Kabushiki Kaisha Controller for a secondary battery
DE102016103807B4 (en) * 2015-03-09 2020-09-17 Toyota Jidosha Kabushiki Kaisha A controller for a secondary battery that sets a lower limit SOC setting value that is lower than the preset lower limit SOC setting value and is higher than the SOC 0%
JP2017005985A (en) * 2015-06-15 2017-01-05 株式会社Gsユアサ Secondary battery monitoring device, battery pack, secondary battery protection system, and vehicle
JP2018023243A (en) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 Electric vehicle
CN107891828B (en) * 2016-10-03 2022-09-09 株式会社杰士汤浅国际 Vehicle power storage device and vehicle
CN107891828A (en) * 2016-10-03 2018-04-10 株式会社杰士汤浅国际 Vehicle electrical storage device and vehicle
JP2018088757A (en) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 vehicle
GB2564195A (en) * 2017-04-19 2019-01-09 Ford Global Tech Llc Control module activation of vehicles in a key-off state
US10217297B2 (en) 2017-04-19 2019-02-26 Ford Global Technologies, Llc Control module activation to monitor vehicles in a key-off state
US10363796B2 (en) 2017-04-19 2019-07-30 Ford Global Technologies, Llc Control module activation of vehicles in a key-off state
US10378919B2 (en) 2017-04-19 2019-08-13 Ford Global Technologies, Llc Control module activation of vehicles in a key-off state to determine driving routes
GB2564195B (en) * 2017-04-19 2022-02-23 Ford Global Tech Llc Control module activation of vehicles in a key-off state
EP3495217A1 (en) * 2017-12-05 2019-06-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and controller for hybrid vehicle
US10532728B2 (en) 2017-12-05 2020-01-14 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and controller for hybrid vehicle
US10661778B2 (en) 2017-12-05 2020-05-26 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and controller for hybrid vehicle having a power storage capacity decreasing control
EP3495216A1 (en) * 2017-12-05 2019-06-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and controller for hybrid vehicle
CN110386124A (en) * 2018-04-12 2019-10-29 本田技研工业株式会社 The control device of vehicle driving apparatus
JP2019182276A (en) * 2018-04-12 2019-10-24 本田技研工業株式会社 Control device of vehicular drive device
CN110549903A (en) * 2018-05-30 2019-12-10 丰田自动车株式会社 electric vehicle
JP2019208338A (en) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 Electric vehicle
JP7187822B2 (en) 2018-05-30 2022-12-13 トヨタ自動車株式会社 electric vehicle
US11535119B2 (en) 2018-05-30 2022-12-27 Toyota Jidosha Kabushiki Kaisha Control of the state of charge of an electrically powered vehicle when traveling on a hill
CN110549903B (en) * 2018-05-30 2023-03-07 丰田自动车株式会社 Electric vehicle
EP4016790A1 (en) 2020-12-21 2022-06-22 Yazaki Corporation Battery control apparatus
JP7344192B2 (en) 2020-12-21 2023-09-13 矢崎総業株式会社 battery control device

Also Published As

Publication number Publication date
JP5740269B2 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5740269B2 (en) Vehicle control device
US8639413B2 (en) Vehicle power supply system and method for controlling the same
US8626367B2 (en) Method for operating a hybrid vehicle
CN103221246B (en) Vehicle charging device
US8538616B2 (en) Power supply system for electrically powered vehicle, electrically powered vehicle, and method for controlling the same
JP6246729B2 (en) Vehicle that stops idling
US10000129B2 (en) Electric vehicle charging via grid and engine
EP2403103B1 (en) Control apparatus and method for vehicle
US8583308B2 (en) Control device for vehicle
KR101449266B1 (en) Control method of Low DC/DC Converter for electric vehicle, and Low DC/DC Converter control system using the same
WO2011019133A3 (en) Battery-charging system for an electric vehicle
JP2010058640A (en) Controller for vehicle
US20110068740A1 (en) Power supply system for vehicle, electric vehicle having the same, and method of controlling power supply system for vehicle
JP2008109755A (en) Power supply device and vehicle equipped with same
JP7178892B2 (en) vehicle battery charging controller
JP2012080689A (en) Power supply unit for electric vehicle
JP2012244875A (en) Vehicular power supply system and vehicle with the same
JP2011250494A (en) Vehicle power supply system
US11535119B2 (en) Control of the state of charge of an electrically powered vehicle when traveling on a hill
JP5510259B2 (en) Vehicle power control device
JP2015180140A (en) Power supply system for vehicle
WO2016053786A1 (en) Multi-mode hybrid control for range-extended plug-in vehicles
JP2010119176A (en) On-vehicle power supply apparatus
JP2018023243A (en) Electric vehicle
JP2013082367A (en) Electric vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5740269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150