JP2013073885A - Light-storage lighting apparatus - Google Patents

Light-storage lighting apparatus Download PDF

Info

Publication number
JP2013073885A
JP2013073885A JP2011214129A JP2011214129A JP2013073885A JP 2013073885 A JP2013073885 A JP 2013073885A JP 2011214129 A JP2011214129 A JP 2011214129A JP 2011214129 A JP2011214129 A JP 2011214129A JP 2013073885 A JP2013073885 A JP 2013073885A
Authority
JP
Japan
Prior art keywords
light
phosphorescent
plate
emitted
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011214129A
Other languages
Japanese (ja)
Inventor
Osamu Tsutsui
修 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011214129A priority Critical patent/JP2013073885A/en
Publication of JP2013073885A publication Critical patent/JP2013073885A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-storage lighting apparatus storing energy of daytime sunlight and exerting an illumination function of a luminance of 1,000 mcd/m(1 cd/m) or more after elapse of 5 hours after sunset.SOLUTION: An ultrafine foam reflecting sheet 3 is arranged at a bottom part of box-shaped transparent case 1, a light-storage plate 2 is arranged at an upper part of the transparent case 1, and a space S is provided between the ultrafine foam reflecting sheet 3 and the light-storage plate 2. Further, a rear face of the light-storage plate 2 is embossed in a micro rugged shape.

Description

本発明は、昼間は太陽光等からの光エネルギーを大量に蓄える事が出来、夜間に蓄えた光エネルギーを効率良く外部に取り出す事で優れた残光性能を発揮する蓄光照明装置に関する。 The present invention relates to a phosphorescent lighting device that can store a large amount of light energy from sunlight or the like during the daytime and exhibits excellent afterglow performance by efficiently taking out the light energy stored at night.

東日本大震災のような大地震発生の際に、道路の寸断等により陸の孤島と化すことが予想され、そういった場合、ヘリコプターでの空路からの救援物資の搬送や救助が不可欠となる。
そこで各市町村では上空からのヘリコプターでの援助や救助の受け入れを容易なものとするため、学校や市庁舎等の公共施設の屋上にヘリサインを描くことがおこなわれている。ヘリサインとしては例えば松山市では道後小学校の屋上にペンキで「道後小」という文字を描いている。
この場合、昼間であればヘリサインを確認出来るが、夜間に於いて電気が途絶えた場合には場所の確認が出来ず、夜間に緊急に病人や怪我人を救助する必要が発生しても救助のため着陸出来ないことになる。
この様な場合に効果を発揮するのが蓄光部材であるが、昼間に太陽光のエネルギーを蓄えても蓄えられる光エネルギーの絶対量が少なく、且つ蓄えた光エネルギーのごく一部しか光として取り出せないため、上空から場所の認識が可能になる程の明るさがないのが現状である。
In the event of a major earthquake such as the Great East Japan Earthquake, it is expected that it will become a solitary island on the land due to road breaks, etc. In such cases, it is indispensable to transport and rescue relief supplies from the air route by helicopter.
Therefore, in each municipality, helicopters are drawn on the roofs of public facilities such as schools and city halls in order to make it easier for helicopters to receive assistance and rescue. As a helicopter, for example, in Matsuyama City, the letter “Dōgo Elementary” is drawn with paint on the roof of Dogo Elementary School.
In this case, the helicopter can be confirmed during the daytime, but if electricity is interrupted at night, the location cannot be confirmed. Therefore, you will not be able to land.
The phosphorescent member is effective in such cases, but even if sunlight energy is stored in the daytime, the absolute amount of stored light energy is small, and only a small part of the stored light energy can be extracted as light. Therefore, the current situation is that the brightness is not so high that the location can be recognized from the sky.

特許文献1、特許文献2、特許文献3では各々の蓄光材の構造が示されているが、共通して言えるのは蓄光層の裏面に直接反射層を設け表面及び裏面の両方から光を取り出さず、片面(表面)からのみ光を取り出している点である。   In Patent Document 1, Patent Document 2, and Patent Document 3, the structure of each phosphorescent material is shown, but what can be said in common is that a reflective layer is provided directly on the back surface of the phosphorescent layer and light is extracted from both the front surface and the back surface. In other words, light is extracted only from one side (surface).

特開2011−17210号公報JP 2011-17210 A 特開2009−157201号公報JP 2009-157201 A 特開2009−163022号公報JP 2009-163022 A

特許文献1、特許文献2、特許文献3の持つ課題を述べるに当たって、蓄光材の蓄光〜発光のメカニズムと、発光した光が外部に放出されるメカニズムについて説明する。 In describing the problems of Patent Document 1, Patent Document 2, and Patent Document 3, a mechanism of light storage to light emission of the light storage material and a mechanism of emitting the emitted light to the outside will be described.

まず蓄光〜発光のメカニズムであるが、蓄光材料としてはEu+2を発光中心とするアルカリ土類−アルミン酸塩蓄光材料が一般的に使用されており、具体例として結晶母体としてSrAlを、賦活剤としてEuOを、賦活助剤としてDyを例にとって蓄光〜発光のメカニズムを説明する。 First, regarding the mechanism of phosphorescence to luminescence, an alkaline earth-aluminate phosphorescent material having a light emission center of Eu +2 is generally used as the phosphorescent material. As a specific example, SrAl 2 O 4 is used as a crystal matrix. The mechanism of phosphorescence to light emission will be described taking EuO as an activator and Dy 2 O 3 as an activator as an example.

蓄光のメカニズムは、図1で示す様にSrAlの結晶母体に固溶されたEu2+が光(紫外線)エネルギーを吸収し、4f準位にある電子が5d準位に励起され、励起により生じた正孔が、価電子帯を移動して賦活助剤として導入したDy3+に捕獲され蓄光される事になる。発光のメカニズムは、図2で示す様にDy3+でトラップされた正孔が熱エネルギーにより解放され、価電子帯を移動し5d準位に励起された電子と再結合し発光する事になる。 As shown in FIG. 1, Eu 2+ dissolved in the SrAl 2 O 4 crystal matrix absorbs light (ultraviolet) energy, and electrons in the 4f level are excited to the 5d level. The holes generated by the above are captured and stored in Dy 3+ introduced as an activation aid by moving through the valence band. As shown in FIG. 2, the light emission mechanism is such that holes trapped by Dy 3+ are released by thermal energy, recombine with electrons excited in the 5d level by moving through the valence band, and emit light.

次に発光した光が外部に放出されるメカニズムについて説明する。図3で示す様に発光した光の半分は表面方向に向かって放射され、残りの半分は裏面の反射層方向に向かって放射される。図4で示す様に、表面方向に向かった光は表面部に到着するまでに蓄光層中に存在する吸収体(例えばSrAl結晶母体内に侵入したカーボン)により光を吸収されながら表面部に到着する。
ここで表面部に到着した光の一部しか外部に放出されず、大部分の光は反射され逆に裏面方向に進んで行く。ここで光の一部しか外部に放出されない理由は、蓄光層の屈折率を例えば1.5とすると、外部の空気層(屈折率1.0)との間で全反射する臨界角度が存在し、その臨界角度である41.8度以上の入射角度で表面にぶつかった光は全て全反射される為である。
Next, a mechanism for emitting emitted light to the outside will be described. As shown in FIG. 3, half of the emitted light is emitted toward the front surface, and the other half is emitted toward the reflective layer on the back surface. As shown in FIG. 4, the light directed toward the surface is absorbed by the absorber (for example, carbon that has entered the SrAl 2 O 4 crystal matrix) existing in the phosphorescent layer before reaching the surface portion. Arrive at the department.
Here, only a part of the light arriving at the front surface is emitted to the outside, and most of the light is reflected and travels in the reverse direction. The reason why only a part of the light is emitted to the outside is that if the refractive index of the phosphorescent layer is 1.5, for example, there is a critical angle for total reflection with the external air layer (refractive index 1.0). This is because all light hitting the surface at an incident angle of 41.8 degrees or more is totally reflected.

裏面方向に進んで行く時も途中で蓄光層内部に存在する吸収体により光を吸収されながら裏面部に到着する事になる。裏面部に到着した光は反射層で一部のエネルギーを吸収されつつ反射され、又表面方向に進む事になる。この様に表面部及び裏面部での反射を繰り返しながら最後にはエネルギーを吸収され尽くして光はなくなる事になる。蓄光層内部に吸収体が無く且つ反射層での吸収も無いという理想的な材料が出来れば良いが、現実には蓄えられた光エネルギーの大部分が吸収されて熱エネルギーに変わり、残った一部の光が外部に放出される事になるため、光の取り出し効率は非常に小さな値となる。 Even when proceeding in the direction of the back surface, the light reaches the back surface part while being absorbed by the absorber existing inside the phosphorescent layer. The light arriving at the back surface is reflected while absorbing a part of energy by the reflection layer, and proceeds in the direction of the surface. In this way, while repeating the reflection on the front surface portion and the back surface portion, the energy is finally absorbed and the light disappears. An ideal material that does not have an absorber inside the phosphorescent layer and does not absorb in the reflective layer should be made, but in reality, most of the stored light energy is absorbed and converted into heat energy, and the remaining one Since part of the light is emitted to the outside, the light extraction efficiency is a very small value.

図5で示す様に、裏面の反射層方向に向かった光も同様に蓄えられた光エネルギーの大部分が吸収されて熱エネルギーに変わり、残った一部の光が外部に放出される事になるため、光の取り出し効率は非常に小さな値となる。以上の様なメカニズムで光が外部に放出されるため、裏面に反射層を持たず表面及び裏面の両方から光を放出する構造にすると光の取り出し効率は大幅に向上する事になる。   As shown in FIG. 5, the light directed toward the reflective layer on the back surface is also absorbed by the majority of the stored light energy and converted into thermal energy, and the remaining part of the light is emitted to the outside. Therefore, the light extraction efficiency is a very small value. Since the light is emitted to the outside by the mechanism as described above, the light extraction efficiency is greatly improved if a structure in which light is emitted from both the front surface and the back surface without having a reflective layer on the back surface.

具体的に裏面部に反射層を設けた場合と設けない場合の光取り出し効率の違いを机上計算してみる。図6(a)、(b)は反射層を設けた場合の光取り出しの値と、光が減衰していく値を記載した図で、図6(a)、(b)の光取り出しの値を合計した値が光取り出し効率となり、計算結果では(6.8%+3.3%+1.6%+0・8%+・・・)+(4.9%+2.4%+1.2%+0.6%+・・・)=13.2%+9.5%=22.7%の光を表面から取り出す事になる。 Specifically, the difference in light extraction efficiency between when the reflective layer is provided on the back surface and when it is not provided will be calculated on the desk. FIGS. 6A and 6B are diagrams illustrating light extraction values when the reflective layer is provided and values at which light attenuates. Values of light extraction in FIGS. 6A and 6B are shown. Is the light extraction efficiency. In the calculation result, (6.8% + 3.3% + 1.6% + 0.8% +...) + (4.9% + 2.4% + 1.2% + 0) .6% + ...) = 13.2% + 9.5% = 22.7% of light is extracted from the surface.

具体的な計算例を説明すると、図6(a)は光の50%が表面方向に進んだ場合の光取り出しの値と、光が減衰していく値を記載した表で、計算条件は表面から裏面までの距離を進むと光エネルギーの20%が吸収され、反射層では光エネルギーの10%が吸収され、表面に達した光エネルギーの15%が外部に取り出せるとした場合の計算値で、この時の光取り出し効率は6.8%+3.3%+1.6%+0・8%+・・・=(50%×0.9×0.15)÷(1−(1−0.15)×0.8×0.9×0.8)=13.2%となる。   Explaining a specific calculation example, FIG. 6 (a) is a table that describes the light extraction value when 50% of the light travels in the surface direction and the light attenuation value. When calculating the distance from the back to the back surface, 20% of the light energy is absorbed, 10% of the light energy is absorbed in the reflective layer, and 15% of the light energy reaching the surface can be extracted outside. The light extraction efficiency at this time is 6.8% + 3.3% + 1.6% + 0.8% +... = (50% × 0.9 × 0.15) ÷ (1- (1-0.15 ) × 0.8 × 0.9 × 0.8) = 13.2%.

図6(b)は光の50%が裏面方向に進んだ場合の光取り出しの値と、光が減衰していく値を記載した図で、計算条件は表面から裏面までの距離を進むと光エネルギーの20%が吸収され、反射層では光エネルギーの10%が吸収され、表面に達した光エネルギーの15%が外部に取り出せるとした場合の計算値で、この時の光取り出し効率は4.9%+2.4%+1.2%+0.6%+・・・=(50%×0.9×0.9×0.8×0.15)÷(1−(1−0.15)×0.8×0.9×0.8)=9.5%となる。 FIG. 6B shows the light extraction value when 50% of the light travels in the direction of the back surface, and the value at which the light attenuates. The calculation condition is light when the distance from the front surface to the back surface proceeds. 20% of the energy is absorbed, 10% of the light energy is absorbed in the reflection layer, and 15% of the light energy reaching the surface can be extracted to the outside. The light extraction efficiency at this time is 4. 9% + 2.4% + 1.2% + 0.6% + ... = (50% × 0.9 × 0.9 × 0.8 × 0.15) ÷ (1- (1-0.15) × 0.8 × 0.9 × 0.8) = 9.5%.

図6(c)、(d)は反射層を設けない場合の光取り出しの値と、光が減衰していく値を記載した図で、図6(c)と(d)4の光取り出しの値を合計した値が光取り出し効率となり、(6.8%+4.6%+3.1%+2.1%+1.4%+1.0%+0.7%+・・・)+(6.8%+4.6%+3.1%+2.1%+1.4%+1.0%+0.7%+・・・)=21.1%+21.1%=42.2%の光を取り出す事になる。 6 (c) and 6 (d) are diagrams illustrating the light extraction value when the reflection layer is not provided and the value at which the light attenuates. FIGS. 6 (c) and 6 (d) 4 illustrate the light extraction value. The sum of the values is the light extraction efficiency, which is (6.8% + 4.6% + 3.1% + 2.1% + 1.4% + 1.0% + 0.7% +...) + (6.8 % + 4.6% + 3.1% + 2.1% + 1.4% + 1.0% + 0.7% + ...) = 21.1% + 21.1% = 42.2% Become.

具体的な計算例を説明すると、図6(c)は光の50%が表面方向に進んだ場合の光取り出しの値と、光が減衰していく値を記載した図で、計算条件は表面から裏面までの距離を進むと光エネルギーの20%が吸収され、表面及び裏面に達した光エネルギーの15%が外部に取り出せるとした場合の計算値で、この時の光取り出し効率は6.8%+4.6%+3.1%+2.1%+1.4%+1.0%+0.7%+・・・=(50%×0.9×0.15)÷(1−(1−0.15)×0.8)=21.1%となる。   Explaining a specific calculation example, FIG. 6C is a diagram describing a light extraction value when 50% of the light travels in the surface direction and a value at which the light is attenuated. When the distance from the back surface to the back surface is advanced, 20% of the light energy is absorbed and 15% of the light energy reaching the front and back surfaces can be extracted to the outside. The light extraction efficiency at this time is 6.8. % + 4.6% + 3.1% + 2.1% + 1.4% + 1.0% + 0.7% +... = (50% × 0.9 × 0.15) ÷ (1- (1-0 .15) × 0.8) = 21.1%.

図6(d)は光の50%が裏面方向に進んだ場合の光取り出しの値と、光が減衰していく値を記載した図で、計算条件は表面から裏面までの距離を進むと光エネルギーの20%が吸収され、表面及び裏面に達した光エネルギーの15%が外部に取り出せるとした場合の計算値で、この時の光取り出し効率は6.8%+4.6%+3.1%+2.1%+1.4%+1.0%+0.7%+・・・=(50%×0.9×0.15)÷(1−(1−0.15)×0.8)=21.1%となる。 FIG. 6 (d) shows the light extraction value when 50% of the light travels in the direction of the back surface and the value at which the light attenuates. The calculation condition is light when the distance from the front surface to the back surface proceeds. Calculated when 20% of the energy is absorbed and 15% of the light energy reaching the front and back surfaces can be extracted to the outside. The light extraction efficiency at this time is 6.8% + 4.6% + 3.1% + 2.1% + 1.4% + 1.0% + 0.7% + ... = (50% × 0.9 × 0.15) ÷ (1− (1−0.15) × 0.8) = 21.1%.

上記の計算結果より、反射層を設けない場合は設けた場合の約1.9倍の光取り出し効率になり、光の取り出し効率が大幅に向上する事になる。
以上の理由により、特許文献1、特許文献2、特許文献3の課題は蓄えた光の取り出し効率が低いという事になる。
From the above calculation results, when the reflective layer is not provided, the light extraction efficiency is about 1.9 times that when the reflective layer is provided, and the light extraction efficiency is greatly improved.
For the above reasons, the problem of Patent Document 1, Patent Document 2, and Patent Document 3 is that the efficiency of extracting stored light is low.

本発明は、昼間の太陽光のエネルギーを蓄え、日没になって5時間経過後の輝度が1000mcd/m(1cd/m)以上の照明機能を発揮することを目的にする。 An object of the present invention is to store daytime sunlight energy and to exhibit an illumination function with a luminance of 1000 mcd / m 2 (1 cd / m 2 ) or more after 5 hours from sunset.

上記課題を解決するため、本発明の基本構造は、透明ケースの前面側に筒状部を一体的に形成し、この筒状部の先端開口部に蓄光プレートを設け、前記筒状部で囲まれた透明ケースの底面に反射プレートを設け、前記蓄光プレートと前記反射プレートとの間に蓄光プレート裏面部から発する可視光線を外部に放出するための空間スペースを設けると共に、前記蓄光プレートの裏面部に光を散乱させるための微小凹凸を設けた構造とした。
この様な構造をとる事により 前記蓄光プレートの表面だけでなく裏面からも光を放出出来る事になる。但し、裏面から放出した光が反射プレートにぶつかり 再び蓄光プレートに戻るという新たな課題が発生する。
In order to solve the above-mentioned problems, the basic structure of the present invention is such that a cylindrical portion is integrally formed on the front side of the transparent case, a phosphorescent plate is provided at the tip opening of the cylindrical portion, and is surrounded by the cylindrical portion. A reflective plate is provided on the bottom surface of the transparent case, and a space is provided between the phosphorescent plate and the reflector plate for emitting visible light emitted from the rear surface portion of the phosphorescent plate to the outside, and the rear surface portion of the phosphorescent plate. The structure is provided with minute irregularities for scattering light.
By adopting such a structure, light can be emitted not only from the front surface but also from the back surface of the phosphorescent plate. However, there is a new problem that light emitted from the back surface hits the reflection plate and returns to the phosphorescent plate again.

新たな課題を解決するため、本発明では更に前記蓄光プレートの裏面部に光を散乱させるための微小凹凸を設ける構造とした。
この様な構造をとると、蓄光プレート裏面部から放射された光が散乱放射され 反射プレートにぶつからずに直接外部に放出される光が多くなる。更に蓄光プレート裏面部から放射された光がより大量に外部に放出される様に前記反射板として光を散乱させるため拡散反射率が90%以上の反射プレートを用いた。この様な構造をとる事により、更に反射プレートにぶつかった光も大きく散乱され、大部分の光は蓄光プレートにぶつからずに直接外部に放出される光が多くなる。
In order to solve a new problem, the present invention has a structure in which minute unevenness for scattering light is further provided on the back surface of the phosphorescent plate.
With such a structure, the light emitted from the back side of the phosphorescent plate is scattered and emitted, and more light is emitted directly to the outside without hitting the reflecting plate. Further, a reflection plate having a diffuse reflectance of 90% or more was used as the reflection plate so that a larger amount of light emitted from the rear surface of the phosphorescent plate was emitted to the outside. By adopting such a structure, the light hitting the reflection plate is also greatly scattered, and most of the light is directly emitted to the outside without hitting the phosphorescent plate.

例えば、蓄光プレート裏面部から放射された光が反射プレートにぶつからずに直接外部に放出される光の比率が60%以上になる様に空間スペース部及び微小凹凸の設計を行い、更に反射プレートにぶつかった光が蓄光プレートにぶつからずに直接外部に放出される光の比率が70%以上になる様に空間スペース部及び反射プレートの設計をすると、蓄光プレートの裏面部から放射された光の内、88%が外部に取り出せる事になる。この時の計算式は100%−(100%−60%)×(100%−70%)=88%という形で表わされる。   For example, the space space and the minute irregularities are designed so that the ratio of the light emitted from the back side of the phosphorescent plate directly to the outside without colliding with the reflection plate is 60% or more. If the space space part and the reflection plate are designed so that the ratio of the light that is struck directly to the outside without colliding with the phosphorescent plate is 70% or more, the light emitted from the back side of the phosphorescent plate 88% can be taken out. The calculation formula at this time is expressed as 100% − (100% −60%) × (100% −70%) = 88%.

前記拡散反射率が90%以上の反射プレート材料として、古川電工製の超微細発泡反射シートを使用すると、全反射率が99%と高い反射率を有すると共に、反射光の内96%が拡散反射する事になる。   When an ultrafine foamed reflective sheet manufactured by Furukawa Electric is used as the reflective plate material having a diffuse reflectance of 90% or more, the total reflectance is as high as 99%, and 96% of the reflected light is diffusely reflected. Will do.

本発明は、昼間の太陽光のエネルギーを蓄え、日没になって5時間経過後の輝度が1000mcd/m(1cd/m)以上の照明機能を発揮することを目的にしており、この目的を達成するためには蓄えられた光エネルギーの取り出し効率を高めるだけでなく、大量の光エネルギーを蓄えなければいけないという課題が残る。 An object of the present invention is to store sunlight energy in the daytime, and to exhibit a lighting function with a luminance of 1000 mcd / m 2 (1 cd / m 2 ) or more after 5 hours from sunset. In order to achieve the purpose, there is a problem that not only the efficiency of extracting the stored light energy is increased, but also a large amount of light energy must be stored.

前記課題を解決するための対策の一つ目として本発明に係る蓄光照明装置は、前記蓄光プレートとしてホットプレス等で理論密度の98%以上になるまで緻密化した透光性を有する焼結体を使用することとした。ホットプレス等で緻密化すると焼結体内部に存在する微細な気孔が少なくなり、これにより蓄光プレート内部での光散乱が非常に弱くなり最終的に透光性が向上することになる。このような透光性を有する焼結体を使用すれば、蓄光プレートの厚みを厚くする事が出来、結果的に大量の光エネルギーを蓄える事が可能となる。   As a first measure for solving the above problems, the phosphorescent lighting device according to the present invention is a sintered body having a light-transmitting property that is densified to 98% or more of the theoretical density by hot pressing or the like as the phosphorescent plate. It was decided to use. When densified by hot pressing or the like, the fine pores existing in the sintered body are reduced, and thereby light scattering inside the phosphorescent plate becomes very weak, and the translucency is finally improved. If a sintered body having such translucency is used, the thickness of the phosphorescent plate can be increased, and as a result, a large amount of light energy can be stored.

透光性の無い蓄光プレートの厚みを厚くした場合は、蓄光プレート内部に存在する微細な気孔等による光散乱の影響で太陽光は蓄光プレートの底部まで到達出来ず光エネルギーを少ししか蓄えることが出来ないだけでなく、表面から裏面への反射の繰り返し時の移動距離が長くなり、より多くの光エネルギーが吸収されるという結果になる。   When the thickness of the non-translucent phosphorescent plate is increased, sunlight cannot reach the bottom of the phosphorescent plate due to the effect of light scattering due to minute pores etc. existing inside the phosphorescent plate, and can store a little light energy. Not only is this not possible, but the distance traveled when the reflection from the front surface to the back surface is repeated becomes longer, resulting in more light energy being absorbed.

具体例として結晶母体をSrAlとし発光中心であるEu+2をSrの0.5%程度結晶母体に固溶させて作製した透光性を有する焼結体の厚みを2mmにすると、約80cd/m2の輝度の光を20時間放出出来る程度の膨大な光エネルギーを蓄える事が可能となり、最終的に日没になって5時間経過後の輝度が1000mcd/m(1cd/m)以上の照明機能を発揮することが可能となる。 As a specific example, when the thickness of a light-transmitting sintered body made of SrAl 2 O 4 and Eu +2 that is an emission center is dissolved in about 0.5% of Sr in the crystal base is 2 mm, It is possible to store a huge amount of light energy that can emit light with a luminance of about 80 cd / m 2 for 20 hours, and the luminance after 5 hours after sunset finally becomes 1000 mcd / m 2 (1 cd / m 2 ) The above lighting function can be exhibited.

前記課題を解決するための対策の二つ目として本発明に係る蓄光照明装置は、前記蓄光プレートとして球状で且つ内部が空洞化され、空洞化された外側部分が緻密化した透光性に優れた蓄光粉末材料を含有する透明樹脂プレートを使用することとした。内部が空洞化され空洞化された外側部分が緻密化した蓄光粉末材料では、蓄光粉末材料内部に存在する気孔の数が少なくなり、これにより蓄光粉末材料内部での光散乱が弱くなり最終的に透光性が向上することになる。特に、粒径が50μm以上好ましくは100μm以上の大きな球状粉末を使用すると効果的である。このような透光性を有する蓄光プレートを使用すれば、蓄光プレートの厚みを厚くする事が出来、結果的に大量の光エネルギーを蓄える事が可能となる。   As a second measure for solving the above-mentioned problem, the phosphorescent illumination device according to the present invention has a spherical shape as the phosphorescent plate and is hollowed inside, and has excellent translucency in which the hollowed outer portion is densified. A transparent resin plate containing the phosphorescent powder material was used. In the phosphorescent powder material where the inside is hollowed out and the outside part that is hollowed out is densified, the number of pores existing inside the phosphorescent powder material is reduced, so that light scattering inside the phosphorescent powder material is weakened, and finally Translucency will be improved. In particular, it is effective to use a large spherical powder having a particle size of 50 μm or more, preferably 100 μm or more. If such a translucent phosphorescent plate is used, the thickness of the phosphorescent plate can be increased, and as a result, a large amount of light energy can be stored.

具体例として結晶母体をSrAlとし、発光中心であるEu+2をSrの0.5%程度結晶母体に固溶させて作製した 球状で且つ内部が空洞化され、空洞化された外側部分が緻密化した透光性に優れた蓄光粉末材料を含有する透明樹脂プレートの厚みを8mmにすると、約80cd/m2の輝度の光を20時間放出出来る程度の膨大な光エネルギーを蓄える事が可能となり、最終的に日没になって5時間経過後の輝度が1000mcd/m(1cd/m)以上の照明機能を発揮することが可能となる。 As a specific example, SrAl 2 O 4 is used as the crystal matrix, and Eu +2 that is the emission center is dissolved in about 0.5% of Sr in the crystal matrix. The outer part is spherical and hollow. If the thickness of the transparent resin plate containing a phosphorescent powder material with high density and excellent translucency is 8 mm, it is possible to store a huge amount of light energy that can emit light with a brightness of about 80 cd / m2 for 20 hours. Thus, it becomes possible to exhibit an illumination function with a luminance of 1000 mcd / m 2 (1 cd / m 2 ) or more after 5 hours have elapsed since sunset.

この場合、透明樹脂としてアクリル樹脂を使用すると屈折率が1.5程度になり、蓄光粉末材料の屈折率が約1.7程度のため屈折率の相対比率が1.7÷1.5=1.13程度と小さくなり、蓄光粉末材料とアクリル樹脂との界面での光散乱が非常に弱くなる。このような透光性に優れた蓄光粉末材料をアクリル樹脂等の透明樹脂の中に分散させることにより前記課題を解決できることになる。 In this case, when an acrylic resin is used as the transparent resin, the refractive index is about 1.5, and the refractive index of the phosphorescent powder material is about 1.7, so the relative ratio of the refractive index is 1.7 ÷ 1.5 = 1. .13, and light scattering at the interface between the phosphorescent powder material and the acrylic resin becomes very weak. The above problem can be solved by dispersing such a phosphorescent powder material having excellent translucency in a transparent resin such as an acrylic resin.

前記球状で且つ内部が空洞化され空洞化された外側部分が緻密化した透光性に優れた蓄光粉末材料は、超高温のプラズマ雰囲気中に蓄光粉末材料を投入し急冷させる事により得られる。超高温のプラズマ雰囲気中に蓄光粉末材料を投入すると投入された材料が溶融し、急冷する際に球状になると共に内部が空洞化し、更に空洞化された外側部分が緻密化し、結果的に透光性に優れた蓄光粉末材料が得られることになる。
即ち50μmから100μm程度の蓄光粉末材料を超高温のプラズマ雰囲気中に投入すると、蓄光粉末材料内部に存在する大量の微細気孔が溶融〜急冷される事により内部空洞として一つの場所に集まり、空洞の外側には微細気孔の非常に少ない緻密化された50μmから100μm程度の球状粉末になる。
The light-storing powder material having excellent translucency, which is spherical and has a hollow outer part and a dense outer part, is obtained by putting the light-storing powder material into an ultra-high temperature plasma atmosphere and rapidly cooling it. When the phosphorescent powder material is put in an ultra-high temperature plasma atmosphere, the charged material melts and becomes a spherical shape when rapidly cooled, and the inside becomes hollow, and the hollowed outer portion becomes dense, resulting in light transmission. A phosphorescent powder material having excellent properties can be obtained.
That is, when a phosphorescent powder material of about 50 μm to 100 μm is put into an ultra-high temperature plasma atmosphere, a large number of micropores existing inside the phosphorescent powder material are melted and rapidly cooled to gather in one place as an internal cavity. On the outside, a fine spherical powder having a fine pore size of about 50 μm to 100 μm is obtained.

本発明により、昼間は太陽光等からの光エネルギーを大量に蓄える事が出来 夜間に蓄えた光エネルギーを効率良く外部に取り出す事で優れた残光性能を発揮する蓄光照明装置が得られる。 According to the present invention, a large amount of light energy from sunlight or the like can be stored in the daytime, and a phosphorescent lighting device that exhibits excellent afterglow performance can be obtained by efficiently taking out the light energy stored at night.

結晶母体としてSrAl4、賦活剤としてEuOを、賦活助剤とし てDyを例にとった蓄光〜発光のメカニズム(1)を示す図A diagram showing the mechanism (1) of phosphorescence to light emission taking SrAl 2 O 4 as a crystal matrix, EuO as an activator, and Dy 2 O 3 as an activator. 結晶母体としてSrAl4、賦活剤としてEuOを、賦活助剤としてDyを例にとった蓄光〜発光のメカニズム(2)を示す図SrAl 2 O 4 as a host crystal, shows a EuO as an activator, the mechanism of the phosphorescent-emitting took Dy 2 O 3 as an example as an activator aid (2) 蓄光層内で発光した光が外部に放出されるメカニズム(1)を示す図The figure which shows the mechanism (1) by which the light emitted in the luminous layer is emitted to the outside 蓄光層内で発光した光が外部に放出されるメカニズム(2)を示す図The figure which shows the mechanism (2) by which the light emitted in the phosphorescent layer is emitted to the outside 蓄光層内で発光した光が外部に放出されるメカニズム(3)を示す図The figure which shows the mechanism (3) by which the light emitted in the luminous layer is emitted to the outside (a)〜(d)は光取り出し効率を示す図(A)-(d) is a figure which shows light extraction efficiency 本発明に係る蓄光照明装置の断面図Sectional drawing of the phosphorescent illumination apparatus which concerns on this invention 蓄光材粒子の拡大断面図Enlarged sectional view of phosphorescent material particles

以下に本発明の好適な実施例を添付図面に基づいて説明する。図7は本発明に係る蓄光照明装置の断面図で、この図7を使用して蓄光照明装置の構造及び光を外部に取り出すメカニズムを説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 7 is a cross-sectional view of the phosphorescent illumination device according to the present invention. With reference to FIG. 7, the structure of the phosphorescent illumination device and the mechanism for extracting light to the outside will be described.

図7に示す様に、透明ケース1から前方(図7において左側)に筒状部1aを形成している。この筒状部1aは円筒状、各筒状など任意である。また筒状部1aで囲まれる底部に超微細発泡反射シート3が配置され、前記筒状部1aの前端の開口部に蓄光プレート2が配置され、この超微細発泡反射シート3と蓄光プレート2との間に空間スペースSを設けている。尚、蓄光プレート2の裏面(空間スペースS側)は微小凹凸形状にエンボス加工されている。   As shown in FIG. 7, a cylindrical portion 1 a is formed in front of the transparent case 1 (left side in FIG. 7). The cylindrical portion 1a is arbitrary such as a cylindrical shape or each cylindrical shape. An ultrafine foamed reflection sheet 3 is disposed at the bottom surrounded by the tubular part 1a, and a phosphorescent plate 2 is disposed at the opening at the front end of the tubular part 1a. A space S is provided between them. In addition, the back surface (space space S side) of the phosphorescent plate 2 is embossed into a minute uneven shape.

また、蓄光プレート2は蓄光粉末材料と透明樹脂からなり、この蓄光粉末材料の粒子は図8に示す様に、内部が空洞化され、空洞化された外側部分が緻密化した球状をしている。このような構造の蓄光粉末材料を製造するには、例えば、焼結によって得られた蓄光材または前駆体を粉末状とし、得られた粉末状の蓄光材または前躯体を蓄光材の融点以上に加熱溶融し、次いで急冷する方法が考えられる。因みに、前記加熱温度は1700℃以上とし、900℃までの冷却速度を400℃/秒以上とすることが好ましく、前記加熱溶融から急冷までの工程はプラズマ領域を通過することで連続的に行うことが可能である。   The phosphorescent plate 2 is made of a phosphorescent powder material and a transparent resin, and the particles of the phosphorescent powder material have a spherical shape in which the inside is hollowed and the hollowed outer portion is densified as shown in FIG. . In order to manufacture the phosphorescent powder material having such a structure, for example, the phosphorescent material or precursor obtained by sintering is powdered, and the obtained phosphorescent material or precursor is obtained to have a melting point higher than that of the phosphorescent material. A method of melting by heating and then rapidly cooling can be considered. Incidentally, the heating temperature is preferably 1700 ° C. or higher, and the cooling rate to 900 ° C. is preferably 400 ° C./second or higher, and the steps from the heating and melting to the rapid cooling are continuously performed by passing through the plasma region. Is possible.

図7に示す様に、太陽光の光エネルギーが蓄光プレート2の内部に蓄光される事になる。蓄光された光エネルギーが発光すると、発光した光の一部は蓄光プレート2の表面部から外部に放出される。発光した光の一部は蓄光プレート2の裏面部から空間スペースSに放射される。   As shown in FIG. 7, the light energy of sunlight is stored inside the phosphorescent plate 2. When the stored light energy is emitted, a part of the emitted light is emitted to the outside from the surface portion of the light storage plate 2. Part of the emitted light is radiated from the back surface of the phosphorescent plate 2 to the space S.

この時、蓄光プレート2の裏面は微小凹凸形状にエンボス加工されているため放射光の散乱が発生し、空間スペースSに放射された光の60%程度が透明ケース1の側面部を通して外部に放出される。残りの40%の光が超微細発泡反射シート3に届き 反射され再度空間スペースSに放射される訳であるが、この部材は拡散反射率が96%と大きいため、空間スペースSに放射された光の70%程度が透明ケース1の側面部を通して外部に放出される事になる。この様なメカニズムで蓄光プレート2の裏面部から放射された光の88%を外部に取り出す事が出来る。尚 蓄光プレート2の表面部も微小凹凸形状にエンボス加工すると光取り出し性能が更に良くなる。   At this time, since the back surface of the phosphorescent plate 2 is embossed into a minute uneven shape, scattering of the emitted light occurs, and about 60% of the light emitted to the space S is emitted to the outside through the side surface of the transparent case 1. Is done. The remaining 40% of light reaches the ultrafine foamed reflective sheet 3 and is reflected and radiated again into the space S. However, since this member has a large diffuse reflectance of 96%, it was emitted into the space S. About 70% of the light is emitted to the outside through the side surface of the transparent case 1. With this mechanism, 88% of the light emitted from the back surface of the phosphorescent plate 2 can be taken out. The light extraction performance is further improved by embossing the surface portion of the phosphorescent plate 2 into a micro uneven shape.

この時、太陽光の光エネルギーを大量に蓄えるため蓄光プレート2の厚みを厚くすると、蓄光プレート2の内部に存在する微細な気孔等による光散乱の影響で 太陽光は蓄光プレート2の底部まで到達出来ず、結果的に光エネルギーを少ししか蓄えることが出来ない事になる。このため本発明に係る蓄光照明装置では、球状で且つ内部が空洞化され、空洞化された外側部分が緻密化した透光性に優れた蓄光粉末材料を含有する透明樹脂プレートとして厚みが8mmの蓄光プレート2を使用することとした。厚みが8mmと非常に厚くても散乱が少なく透光性を有するため約80cd/m2の輝度の光を20時間放出出来る程度の膨大な光エネルギーを蓄える事が可能となり、本発明の目的である日没になって5時間経過後の輝度が1000mcd/m(1cd/m)以上の照明機能を発揮することが可能となる。 At this time, if the thickness of the phosphorescent plate 2 is increased in order to store a large amount of light energy of sunlight, the sunlight reaches the bottom of the phosphorescent plate 2 due to light scattering due to fine pores etc. existing inside the phosphorescent plate 2 As a result, only a little light energy can be stored. For this reason, in the phosphorescent illumination device according to the present invention, the transparent resin plate having a spherical shape, the inside being hollowed out, and the hollowed out outer portion being densified and containing a phosphorescent powder material having excellent translucency is 8 mm in thickness. The phosphorescent plate 2 was used. Even if the thickness is as very large as 8 mm, it is possible to store a huge amount of light energy that can emit light having a luminance of about 80 cd / m @ 2 for 20 hours because it has little scattering and translucency, which is an object of the present invention. It becomes possible to exhibit an illumination function with a luminance of 1000 mcd / m 2 (1 cd / m 2 ) or more after 5 hours from sunset.

1…透明ケース、2…蓄光プレート、3…反射シート、S…空間スペース


1 ... transparent case, 2 ... phosphorescent plate, 3 ... reflective sheet, S ... space


Claims (4)

透明ケースの前面側に筒状部を一体的に形成し、この筒状部の先端開口部に蓄光プレートを設け、前記筒状部で囲まれた透明ケースの底面に反射プレートを設け、前記蓄光プレートと前記反射プレートとの間に蓄光プレート裏面部から発する可視光線を外部に放出するための空間スペースを設けると共に、前記蓄光プレートの裏面部に光を散乱させるための微小凹凸を設けたことを特徴とする蓄光照明装置。 A cylindrical portion is integrally formed on the front side of the transparent case, a phosphorescent plate is provided at a front end opening of the cylindrical portion, a reflecting plate is provided on a bottom surface of the transparent case surrounded by the cylindrical portion, and the phosphorescent A space for emitting visible light emitted from the back surface of the phosphorescent plate to the outside is provided between the plate and the reflection plate, and a minute unevenness for scattering light is provided on the back surface of the phosphorescent plate. A phosphorescent illuminating device. 請求項1に記載の蓄光照明装置において、前記反射板として光を散乱させるため拡散反射率が90%以上の反射プレートを用いたことを特徴とする蓄光照明装置。 The phosphorescent illuminating device according to claim 1, wherein a reflecting plate having a diffuse reflectance of 90% or more is used as the reflecting plate to scatter light. 請求項1または請求項2に記載の蓄光照明装置において、前記蓄光プレートとして、理論密度の98%以上になるまで緻密化した透光性を有する焼結体を使用することを特徴とする蓄光照明装置。 The phosphorescent illumination device according to claim 1 or 2, wherein the phosphorescent plate is a sintered body having a light-transmitting property that is densified to 98% or more of a theoretical density. apparatus. 請求項1または請求項2に記載の蓄光照明装置において、前記蓄光プレートとして、球状で且つ内部が空洞化され空洞化された外側部分が緻密化した蓄光粉末材料を含有する透明樹脂プレートを使用することを特徴とする蓄光照明装置。







3. The phosphorescent illumination device according to claim 1 or 2, wherein the phosphorescent plate is a transparent resin plate that contains a phosphorescent powder material that is spherical and has a hollow inside and a hollow outside. A phosphorescent illumination device characterized by that.







JP2011214129A 2011-09-29 2011-09-29 Light-storage lighting apparatus Withdrawn JP2013073885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011214129A JP2013073885A (en) 2011-09-29 2011-09-29 Light-storage lighting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011214129A JP2013073885A (en) 2011-09-29 2011-09-29 Light-storage lighting apparatus

Publications (1)

Publication Number Publication Date
JP2013073885A true JP2013073885A (en) 2013-04-22

Family

ID=48478210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011214129A Withdrawn JP2013073885A (en) 2011-09-29 2011-09-29 Light-storage lighting apparatus

Country Status (1)

Country Link
JP (1) JP2013073885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108916664A (en) * 2018-06-13 2018-11-30 西安理工大学 Ellipsoid sunlight stores up illuminating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108916664A (en) * 2018-06-13 2018-11-30 西安理工大学 Ellipsoid sunlight stores up illuminating apparatus
CN108916664B (en) * 2018-06-13 2020-04-21 西安理工大学 Ellipsoidal sunlight storage lighting device

Similar Documents

Publication Publication Date Title
JP6430719B2 (en) Vehicle lighting
EP2147349B1 (en) Led-array system
TW201013118A (en) Light emitting panel
JP6443877B2 (en) Phosphorescent display board and manufacturing method thereof
CN102798085A (en) Light source device and lighting device
JP6162537B2 (en) LIGHT SOURCE DEVICE, LIGHTING DEVICE, AND VEHICLE LIGHT
CN103503179A (en) Phosphor-enhanced lighting device, retrofit light bulb and light tube with reduced color appearance
JP5401719B2 (en) Light emitting display body for signboard, light emitting display body system for signboard having emergency light function, and lighting method thereof
JP2013073885A (en) Light-storage lighting apparatus
JP2013073178A (en) Phosphorescent lighting device
CN102478179A (en) Light emitting diode (LED) ring-shaped light source
JP2013073881A (en) Light-storage lighting apparatus
TW200727506A (en) Light-emitting device with omni-bearing reflector
US8421334B2 (en) Surface light-emitting device
JP6414384B2 (en) Interior building material sheet and daylighting system
CN209262771U (en) A kind of OLED lamp piece and lamps and lanterns
CN205155594U (en) LED panel light based on CD structure
CN101493210A (en) Light source structure based on LED
CN104100898A (en) Vehicle lamp system
KR20180068012A (en) Phosphor plate and method of manufacturing thereof
CN101515612B (en) Holder structure of LED for improving lighting efficiency
CN202327695U (en) Novel light-emitting diode (LED) candle lamp
JP2010151876A (en) Light emitting display body for sign, light emitting display body system for sign having emergency light function, and illumination method of the same
JP5442533B2 (en) Luminous body
JP2008282788A (en) Phosphorescent luminous material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202