JP2013072885A - Resin composition for formation of light diffusion film and method for manufacturing the same, light diffusion film, light diffusing and reflecting member, light diffusing and transmitting member and optical element - Google Patents

Resin composition for formation of light diffusion film and method for manufacturing the same, light diffusion film, light diffusing and reflecting member, light diffusing and transmitting member and optical element Download PDF

Info

Publication number
JP2013072885A
JP2013072885A JP2011209428A JP2011209428A JP2013072885A JP 2013072885 A JP2013072885 A JP 2013072885A JP 2011209428 A JP2011209428 A JP 2011209428A JP 2011209428 A JP2011209428 A JP 2011209428A JP 2013072885 A JP2013072885 A JP 2013072885A
Authority
JP
Japan
Prior art keywords
light
film
light diffusing
aggregated particle
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011209428A
Other languages
Japanese (ja)
Other versions
JP6014979B2 (en
Inventor
Tomomi Ito
智海 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2011209428A priority Critical patent/JP6014979B2/en
Publication of JP2013072885A publication Critical patent/JP2013072885A/en
Application granted granted Critical
Publication of JP6014979B2 publication Critical patent/JP6014979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for formation of a light diffusion film capable of forming a light diffusion film which can impart high light diffusion even to light having high directivity such as LED.SOLUTION: A resin composition for formation of a light diffusion film of the present invention has an average long diameter of 1 μm or more and 5 μm or less and an average short diameter of 0.5 μm or more and 3 μm or less, and comprises aggregated particle pieces having at least one acute end and a resin, wherein the aggregated particle pieces are contained in the amount of 15 mass% or more and 45 mass% or less based on the total mass of the aggregated particle pieces and the resin.

Description

本発明は、光拡散膜形成用樹脂組成物とその製造方法、光拡散膜、光拡散反射部材、光拡散透過部材、光学素子に関する。特に詳しくは、LED光を用いた光学部品に光拡散性を付与する際に用いて好適な光拡散膜形成用樹脂組成物及びその製造方法と、光拡散膜形成用樹脂組成物を用いて形成される光拡散膜に関するものである。   The present invention relates to a resin composition for forming a light diffusion film and a method for producing the same, a light diffusion film, a light diffusion reflection member, a light diffusion transmission member, and an optical element. In particular, a light diffusing film forming resin composition suitable for use in imparting light diffusibility to an optical component using LED light, a manufacturing method thereof, and a light diffusing film forming resin composition are used. The present invention relates to a light diffusion film.

従来、ガラス製品に光拡散性を付与した構造としては、ガラス表面にサンドブラスト加工を施したり、ガラス表面をフッ酸処理したりすることで、その表面に凹凸を設けることで光拡散性を持たせた構造が知られている。
しかしこのような構造は、薄いガラスでは割れが生じる虞があり、表面を均一に処理することが難しい等の問題点があった。
Conventionally, as a structure that imparts light diffusibility to glass products, sand blasting is performed on the glass surface or hydrofluoric acid treatment is performed on the glass surface to provide light diffusibility by providing irregularities on the surface. The structure is known.
However, such a structure has a problem that a thin glass may be cracked and it is difficult to uniformly treat the surface.

そこで、基板上に有機系の透明樹脂と、この透明樹脂と屈折率の異なる微粒子とを含む光散乱膜用組成物をダイコート法により塗布した光散乱膜(特許文献1)が提案されている。   In view of this, a light scattering film (Patent Document 1) is proposed in which a composition for a light scattering film containing an organic transparent resin and fine particles having a refractive index different from that of the transparent resin is applied on a substrate by a die coating method.

特開2007−187824号公報JP 2007-187824 A

ところで、特許文献1の有機系の透明樹脂と微粒子とを含む光散乱膜用組成物を塗布した光散乱膜では、樹脂と微粒子との屈折率が違うことによる界面効果を利用しているだけであるので、LEDのような指向性の高い光を光拡散させるには不十分であるという問題点があった。   By the way, in the light-scattering film which applied the composition for light-scattering films containing the organic type transparent resin and microparticles | fine-particles of patent document 1, only the interface effect by the refractive index of resin and microparticles differing is utilized. Therefore, there is a problem that it is insufficient to diffuse light having high directivity such as an LED.

本発明は、上記事情に鑑みてなされたものであって、LEDのような指向性の高い光に対しても、高い光拡散性を付与することが可能な光拡散膜を形成することができる光拡散膜形成用樹脂組成物及びその製造方法、並びに光拡散膜を提供することを目的とする。   This invention is made | formed in view of the said situation, Comprising: The light-diffusion film | membrane which can provide high light diffusibility also to light with high directivity like LED can be formed. It aims at providing the resin composition for light-diffusion film formation, its manufacturing method, and a light-diffusion film.

本発明者等は、上記課題を解決するために鋭意検討を行った結果、長径と短径を所望の大きさにし、かつ鋭角な端部を一箇所以上有する形状の凝集粒子片と、樹脂とを混合することで、高い光拡散性を有する樹脂組成物が得られることを見出した。   As a result of earnest studies to solve the above problems, the present inventors have made the aggregated particle pieces in a shape having a major axis and a minor axis of a desired size and having one or more acute end portions, and a resin. It was found that a resin composition having high light diffusibility can be obtained by mixing.

すなわち、本発明の光拡散膜形成用樹脂組成物は、平均長径が1μm以上かつ5μm以下、平均短径が0.5μm以上かつ3μm以下であって、少なくとも1個の鋭角な端部を有する凝集粒子片と、樹脂とを含有してなり、前記凝集粒子片が、前記凝集粒子片と前記樹脂の合計質量に対して、15質量%以上かつ45質量%以下含有されていることを特徴とする。   That is, the resin composition for forming a light diffusion film of the present invention has an average major axis of 1 μm or more and 5 μm or less, an average minor axis of 0.5 μm or more and 3 μm or less, and an aggregate having at least one sharp edge. A particle piece and a resin are contained, and the aggregated particle piece is contained in an amount of 15% by mass or more and 45% by mass or less with respect to a total mass of the aggregated particle piece and the resin. .

前記凝集粒子片は、凝集粒子体を破砕又は粉砕することによって得られた破砕片又は粉砕片からなることが好ましい。   The aggregated particle pieces are preferably made of crushed pieces or crushed pieces obtained by crushing or pulverizing the aggregated particle bodies.

本発明の光拡散膜形成用樹脂組成物の製造方法は、凝集粒子体を、平均長径が1μm以上かつ5μm以下、平均短径が0.5μm以上かつ3μm以下の凝集粒子片になるよう破砕又は粉砕しながら溶媒に分散させる分散工程と、前記分散工程で得られた分散液と樹脂とを混合させる工程を有することを特徴とする。   The method for producing a resin composition for forming a light diffusing film of the present invention comprises crushing or aggregating aggregated particles into aggregated particle pieces having an average major axis of 1 μm to 5 μm and an average minor axis of 0.5 μm to 3 μm. It has a dispersion | distribution process disperse | distributed to a solvent, grind | pulverizing, and a process which mixes the dispersion liquid obtained by the said dispersion | distribution process, and resin.

本発明の光拡散膜は、本発明の光拡散膜形成用樹脂組成物により形成されてなることを特徴とする。   The light diffusion film of the present invention is formed by the resin composition for forming a light diffusion film of the present invention.

本発明の光拡散反射部材は、本発明の光拡散膜を、可視光反射率が95%以上の基材の表面に形成してなることを特徴とする。   The light diffusing and reflecting member of the present invention is characterized in that the light diffusing film of the present invention is formed on the surface of a substrate having a visible light reflectance of 95% or more.

本発明の光拡散透過部材は、本発明の光拡散膜を、可視光透過率が90%以上の基材の表面に形成してなることを特徴とする。   The light diffusing and transmitting member of the present invention is characterized in that the light diffusing film of the present invention is formed on the surface of a substrate having a visible light transmittance of 90% or more.

本発明の光学部材は、上記の光拡散膜、光拡散反射部材、及び光拡散透過部材のうちの少なくとも1種を備えたことを特徴とする。   The optical member of the present invention is characterized by comprising at least one of the light diffusion film, the light diffusion reflection member, and the light diffusion transmission member.

本発明の光拡散膜形成用樹脂組成物によれば、平均長径が1μm以上かつ5μm以下、かつ平均短径が0.5μm以上かつ3μm以下であって、少なくとも1個の鋭角な端部を有する凝集粒子片と、樹脂成分とを含有したので、光拡散性に優れた光拡散膜形成用樹脂組成物を得ることができる。   According to the resin composition for forming a light diffusing film of the present invention, the average major axis is 1 μm or more and 5 μm or less, the average minor axis is 0.5 μm or more and 3 μm or less, and has at least one sharp end. Since the aggregated particle pieces and the resin component are contained, a resin composition for forming a light diffusing film having excellent light diffusibility can be obtained.

本発明の光拡散膜形成用樹脂組成物の製造方法によれば、凝集粒子体を破砕又は粉砕することにより、凝集粒子片が鋭角な端部を多く有することができるので、光拡散性に優れた光拡散膜形成用樹脂組成物を製造することができる。   According to the method for producing a resin composition for forming a light diffusing film of the present invention, the aggregated particle pieces can have many sharp edges by crushing or pulverizing the aggregated particle bodies, and thus excellent in light diffusibility. In addition, a resin composition for forming a light diffusing film can be produced.

本発明の光拡散膜によれば、本発明の光拡散膜形成用樹脂組成物を形成してなるので、優れた光拡散性を得ることができる。   According to the light diffusion film of the present invention, since the resin composition for forming a light diffusion film of the present invention is formed, excellent light diffusibility can be obtained.

本発明の光拡散反射部材によれば、本発明の光拡散膜形成用樹脂組成物からなる光拡散膜が可視光反射率が95%以上の基材の表面に形成されていることで、優れた光拡散性と光反射性を得ることができる。   According to the light diffusing and reflecting member of the present invention, the light diffusing film made of the resin composition for forming a light diffusing film of the present invention is formed on the surface of a base material having a visible light reflectance of 95% or more. The light diffusibility and light reflectivity can be obtained.

本発明の光拡散透過部材によれば、本発明の光拡散膜形成用樹脂組成物からなる光拡散膜が可視光透過率が90%以上の基材の表面に形成されていることで、優れた光拡散性と光透過性を得ることができる。   According to the light diffusing and transmitting member of the present invention, the light diffusing film made of the resin composition for forming a light diffusing film of the present invention is formed on the surface of a base material having a visible light transmittance of 90% or more. The light diffusibility and light transmittance can be obtained.

本発明の光学部材によれば、光拡散性、光拡散反射性、光拡散透過性の少なくとも一つについて優れた特性を得ることができる。   According to the optical member of the present invention, excellent characteristics can be obtained with respect to at least one of light diffusibility, light diffusivity, and light diffusivity.

実施形態に係る凝集粒子体及び凝集粒子片の一例を示す模式図である。It is a schematic diagram which shows an example of the aggregated particle body and aggregated particle piece which concern on embodiment. 実施形態に係る凝集粒子体及び凝集粒子片の他の一例を示す模式図である。It is a schematic diagram which shows another example of the aggregated particle body and aggregated particle piece which concern on embodiment. 実施形態に係る凝集粒子片の他の一例を示す模式図である。It is a schematic diagram which shows another example of the aggregated particle piece which concerns on embodiment. 実施形態に係る凝集粒子片の他の一例を示す模式図である。It is a schematic diagram which shows another example of the aggregated particle piece which concerns on embodiment.

本発明の光拡散膜形成用樹脂組成物及びその製造方法並びに光拡散膜を実施するための形態について説明する。
なお、この形態は発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り本発明を限定するものではない。
The form for implementing the resin composition for light-diffusion film formation of this invention, its manufacturing method, and a light-diffusion film is demonstrated.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

[光拡散膜形成用樹脂組成物]
本実施形態の光拡散膜形成用樹脂組成物は、平均長径が1μm以上かつ5μm以下、かつ平均短径が0.5μm以上かつ3μm以下であって、少なくとも1個の鋭角な端部を有する凝集粒子片と、樹脂とを含有してなり、前記凝集粒子片が、前記凝集粒子片と前記樹脂の合計質量に対して、15質量%以上かつ45質量%以下含有されている。
平均長径は2μm以上かつ5μm以下、平均短径は0.5μm以上かつ2μm以下が好ましく、平均アスペクト比(長径/短径)は1.5以上が好ましい。
[Resin composition for forming light diffusing film]
The resin composition for forming a light diffusion film of this embodiment has an average major axis of 1 μm or more and 5 μm or less, an average minor axis of 0.5 μm or more and 3 μm or less, and an agglomeration having at least one sharp edge. Particle pieces and a resin are contained, and the aggregated particle pieces are contained in an amount of 15% by mass to 45% by mass with respect to the total mass of the aggregated particle pieces and the resin.
The average major axis is preferably 2 μm or more and 5 μm or less, the average minor axis is preferably 0.5 μm or more and 2 μm or less, and the average aspect ratio (major axis / minor axis) is preferably 1.5 or more.

「凝集粒子片」
本明細書中における「凝集」とは、一次粒子が集合することにより表面に凹凸を有する凝集粒子片を形成することを意味する。表面に形成される凹凸は、構成粒子(一次粒子又は一次粒子の凝集物)同士の間隙により形成される凹凸を少なくとも含み、構成粒子(一次粒子又は一次粒子の凝集物)の形状により付与される凹凸を含んでいてもよい。
"Agglomerated particle fragments"
The term “aggregation” in the present specification means that aggregated particle pieces having irregularities on the surface are formed by aggregation of primary particles. Concavities and convexities formed on the surface include at least concavities and convexities formed by gaps between constituent particles (primary particles or aggregates of primary particles), and are given by the shape of constituent particles (primary particles or aggregates of primary particles). It may contain irregularities.

凝集粒子片を構成する構成粒子は、無機酸化物粒子であれば特に限定されず、例えば、シリカ、チタニア、ジルコニア、酸化亜鉛、アルミナ等の粒子を用いることができる。
構成粒子の材質は、形成する光拡散膜の用途に応じて決定してもよい。例えば、樹脂との屈折率差が小さい一次粒子を用いることで、光拡散膜の光透過性を高めることができるため、光拡散透過膜を形成するための樹脂組成物として好適なものとなる。
一方、樹脂との屈折率差が大きい構成粒子を用いることで、光拡散膜の光反射性を高めることができるので、光拡散反射膜を形成するための樹脂組成物として好適なものとなる。
The constituent particles constituting the aggregated particle pieces are not particularly limited as long as they are inorganic oxide particles. For example, particles such as silica, titania, zirconia, zinc oxide, and alumina can be used.
The material of the constituent particles may be determined according to the use of the light diffusion film to be formed. For example, by using primary particles having a small refractive index difference from the resin, the light transmittance of the light diffusing film can be increased, and therefore, the resin composition is suitable as a resin composition for forming the light diffusing and transmitting film.
On the other hand, by using constituent particles having a large refractive index difference from the resin, the light reflectivity of the light diffusing film can be increased, so that it is suitable as a resin composition for forming the light diffusing and reflecting film.

凝集粒子片は少なくとも1個の鋭角な端部を有する。ここでいう鋭角な端部とは、先端の頂角が鋭角である角錐状又は円錐状の突起部が形成された凝集粒子片の端部である。光拡散性を高めるためには凝集粒子片は鋭角な端部を複数有することが好ましく、多数の鋭角な端部を有することがより好ましい。   The agglomerated particle pieces have at least one sharp edge. The acute-angled end referred to here is the end of the aggregated particle piece on which a pyramidal or conical protrusion having an acute apex angle is formed. In order to improve light diffusibility, the aggregated particle pieces preferably have a plurality of sharp end portions, and more preferably have a large number of sharp end portions.

また、このような鋭角な端部は、凝集粒子体を破砕又は粉砕することによって得られる破砕片又は粉砕片が、凝集粒子片の形状も多岐にわたるため好ましい。
ここで凝集粒子体とは、複数の構成粒子(一次粒子又は一次粒子の凝集物)が凝集した平均長径が1μm以上の集合体であれば特に限定されない。凝集粒子体としては、平均長径が1μm以上かつ5μm以下の球状の凝集粒子体を用いることが好ましく、これにより凝集粒子片の長径及び短径を所望の大きさに調整し易くなる。
Further, such a sharp end is preferable because a crushed piece or a crushed piece obtained by crushing or pulverizing the aggregated particle body has a wide variety of shapes.
The aggregated particle body is not particularly limited as long as the average major axis is an aggregate of 1 μm or more in which a plurality of constituent particles (primary particles or aggregates of primary particles) are aggregated. As the agglomerated particles, it is preferable to use spherical agglomerated particles having an average major axis of 1 μm or more and 5 μm or less. This makes it easy to adjust the major and minor diameters of the agglomerated particle pieces to a desired size.

凝集粒子片の長径と短径は一定の範囲内であり、かつ鋭角な端部を有する。凝集粒子片そのものの形状は不定形で、多種の形状が混在していることが好ましい。このような形状とすることにより、LED光のような指向性が高い光を光拡散することができる。この作用効果は、凝集粒子片(一次粒子又は一次粒子の凝集物)の大きさが光を光拡散させるのに十分な大きさであり、上記粒子の凝集により形成された凝集粒子片表面の凹凸と、凝集粒子片が有する鋭角な端部により光の光拡散効果がより高められることによって得られると推定される。
なお、平均長径が1μm未満、又は平均短径が0.5μm未満の小さな凝集片であっても、光拡散膜の光拡散性を低下させない程度であれば、混入されていてもよい。
The major and minor diameters of the agglomerated particle pieces are within a certain range and have sharp edges. The shape of the aggregated particle piece itself is indefinite, and it is preferable that various shapes are mixed. By setting it as such a shape, light with high directivity like LED light can be light-diffused. The effect is that the size of the aggregated particle pieces (primary particles or aggregates of primary particles) is large enough to cause light to diffuse, and the surface of the aggregated particle pieces formed by the aggregation of the particles is uneven. And it is presumed that the light diffusion effect of light is further enhanced by the sharp edges of the aggregated particle pieces.
In addition, even if it is a small aggregate piece with an average major axis of less than 1 μm or an average minor axis of less than 0.5 μm, it may be mixed as long as the light diffusibility of the light diffusion film is not lowered.

凝集粒子片の形態としては、図1〜図4に示すものを挙げることができる。
図1(b)、図2(b)、図3及び図4は、本実施形態の凝集粒子片の複数の例を示す図である。図1(a)及び図2(a)には、図1(b)、図2(b)に示す凝集粒子片の出発原料である凝集粒子体がそれぞれ示されている。また図1〜図4には、1つの凝集粒子片における長径L、短径Sの測定例を示している。
Examples of the aggregated particle pieces include those shown in FIGS.
FIG. 1B, FIG. 2B, FIG. 3 and FIG. 4 are diagrams showing a plurality of examples of aggregated particle pieces of the present embodiment. FIGS. 1 (a) and 2 (a) show aggregated particle bodies as starting materials for the aggregated particle pieces shown in FIGS. 1 (b) and 2 (b), respectively. 1 to 4 show measurement examples of the major axis L and minor axis S of one aggregated particle piece.

図1(b)に示す凝集粒子片11〜16は、平均粒経が1nm〜50nm程度の一次粒子2が凝集したものであり、一次粒子2同士の間隙が凝集粒子片の表面に微細な凹凸を形成している。凝集粒子片11〜16はそれぞれ少なくとも1個の鋭角な端部を有している。凝集粒子片11〜16の平均長径は1μm以上かつ5μm以下であり、平均短径は0.5μm以上かつ3μm以下である。   Aggregated particle pieces 11 to 16 shown in FIG. 1B are obtained by agglomerating primary particles 2 having an average particle size of about 1 nm to 50 nm, and the gaps between the primary particles 2 are fine irregularities on the surface of the aggregated particle pieces. Is forming. Aggregated particle pieces 11 to 16 each have at least one sharp end. The average major axis of the aggregated particle pieces 11 to 16 is 1 μm to 5 μm, and the average minor axis is 0.5 μm to 3 μm.

図1(b)に示した凝集粒子片11〜16は、図1(a)に示す凝集粒子体1を破砕又は粉砕することで作製することができる。凝集粒子体1は、平均粒子径1nm〜50nmの一次粒子2が、内部に空洞部3を有する球状に凝集したものである。凝集粒子体1の平均粒子径は1μm以上かつ5μm以下であることが好ましく、より好ましくは2μm以上かつ3μm以下である。空洞部3は複数形成されていてもよく、空洞部3の一部が凝集粒子体1の外部に連通していてもよい。   Aggregated particle pieces 11 to 16 shown in FIG. 1B can be produced by crushing or pulverizing the aggregated particle body 1 shown in FIG. Aggregated particle body 1 is formed by agglomerating primary particles 2 having an average particle diameter of 1 nm to 50 nm in a spherical shape having a cavity 3 therein. The average particle diameter of the aggregated particle body 1 is preferably 1 μm or more and 5 μm or less, more preferably 2 μm or more and 3 μm or less. A plurality of cavities 3 may be formed, and a part of the cavities 3 may communicate with the outside of the aggregated particle body 1.

図2(b)に示す凝集粒子片31〜38は、一次粒経が1nm〜50nm程度の粒子が凝集して一次粒子同士の間隙が微細な凹凸を形成し、かつ少なくとも1個の鋭角な端部を有する、平均長径が1μm以上かつ5μm以下、平均短径が0.5μm以上かつ3μm以下の凝集粒子片である。   Aggregated particle pieces 31 to 38 shown in FIG. 2 (b) are formed by agglomerating particles having a primary particle diameter of about 1 nm to 50 nm to form fine irregularities between the primary particles, and at least one sharp edge. The aggregated particle pieces have an average major axis of 1 μm to 5 μm and an average minor axis of 0.5 μm to 3 μm.

図2(b)に示した凝集粒子片31〜38は、図2(a)に示す凝集粒子体21を粉砕又は破砕することにより作製することができる。凝集粒子体21は、平均粒子径1nm〜50nmの一次粒子2が、中実の球状に凝集したものである。凝集粒子体21の平均粒子径は1μm以上かつ5μm以下であることが好ましく、より好ましくは2μm以上かつ3μm以下である。   Aggregated particle pieces 31 to 38 shown in FIG. 2B can be produced by pulverizing or crushing the aggregated particle body 21 shown in FIG. Aggregated particle body 21 is formed by agglomerating primary particles 2 having an average particle diameter of 1 nm to 50 nm in a solid spherical shape. The average particle diameter of the aggregated particle body 21 is preferably 1 μm or more and 5 μm or less, and more preferably 2 μm or more and 3 μm or less.

図3に示す凝集粒子片42は、板状粒子41が幾重にも任意に積層して凝集粒子片を形成したものである。凝集粒子片42も平均長径が1μm以上かつ5μm以下、平均短径が0.5μm以上かつ3μm以下である形状に形成される。凝集粒子片42において、板状粒子41同士の間隙が凹凸を形成し、板状粒子41の角部が鋭角な端部を形成する。   Aggregated particle pieces 42 shown in FIG. 3 are obtained by arbitrarily laminating plate-like particles 41 to form an aggregated particle piece. Aggregated particle pieces 42 are also formed in a shape having an average major axis of 1 μm to 5 μm and an average minor axis of 0.5 μm to 3 μm. In the aggregated particle pieces 42, the gaps between the plate-like particles 41 form irregularities, and the corners of the plate-like particles 41 form sharp edges.

板状粒子41の大きさは、凝集粒子片42において平均長径、平均短径の規定寸法を満たせれば特に限定されないが、主面部分の一辺の平均長さが0.5μm〜3μm、平均厚さが0.1μm〜2μmである板状粒子を用いることが好ましい。   The size of the plate-like particles 41 is not particularly limited as long as the aggregated particle pieces 42 satisfy the specified dimensions of the average major axis and the average minor axis, but the average length of one side of the main surface portion is 0.5 μm to 3 μm, the average thickness It is preferable to use plate-like particles having a thickness of 0.1 μm to 2 μm.

図4に示す凝集粒子片45は、複数の板状粒子43の積層体である積層粒子44が凝集して形成されたものである。積層粒子44において、板状粒子43は全体として直方体状となるように秩序よく積層されている。凝集粒子片45も平均長径が1μm以上かつ5μm以下、平均短径が0.5μm以上かつ3μm以下である形状に形成される。凝集粒子片42において、積層粒子44同士の間隙が凹凸を形成し、積層粒子44の角部が鋭角な端部を形成する。   Aggregated particle pieces 45 shown in FIG. 4 are formed by agglomerating laminated particles 44, which are a laminate of a plurality of plate-like particles 43. In the laminated particles 44, the plate-like particles 43 are laminated in an orderly manner so as to form a rectangular parallelepiped shape as a whole. Aggregated particle pieces 45 are also formed in a shape having an average major axis of 1 μm to 5 μm and an average minor axis of 0.5 μm to 3 μm. In the agglomerated particle pieces 42, the gaps between the laminated particles 44 form irregularities, and the corners of the laminated particles 44 form sharp edges.

積層粒子44の大きさは、凝集粒子片45において平均長径、平均短径の規定寸法を満たせれば特に限定されないが、主面部分の一辺の平均長さが0.5μm〜3μm、平均厚さが0.1μm〜2μmである板状粒子43が2〜10枚程度積層されたものを用いることが好ましい。   The size of the laminated particles 44 is not particularly limited as long as the aggregated particle pieces 45 satisfy the specified dimensions of the average major axis and the average minor axis, but the average length of one side of the main surface portion is 0.5 μm to 3 μm, and the average thickness. It is preferable to use a laminate in which about 2 to 10 plate-like particles 43 having a particle size of 0.1 to 2 μm are laminated.

凝集粒子片としては、図1(a)に示した球状の凝集粒子体1、又は図2(a)に示した凝集粒子体21を、破砕又は粉砕することによって得られる凝集粒子片11〜16、31〜38が好ましい。破砕又は粉砕により形成された凝集粒子片では不定形で鋭利な角部が得られやすく、これにより優れた光拡散性を得やすくなる。また凝集粒子体1、21のうちでも、中空の凝集粒子体1の方が不定形の凝集粒子片を得やすい。   As the aggregated particle pieces, aggregated particle pieces 11 to 16 obtained by crushing or pulverizing the spherical aggregated particle body 1 shown in FIG. 1A or the aggregated particle body 21 shown in FIG. 31-38 are preferred. Aggregated particle pieces formed by crushing or pulverization are easy to obtain irregular and sharp corners, which makes it easy to obtain excellent light diffusibility. Of the aggregated particle bodies 1 and 21, the hollow aggregated particle body 1 is easier to obtain an irregularly shaped aggregated particle piece.

図1から図4に示した凝集粒子片11〜16、31〜38、42、45のいずれにおいても、それらの平均長径は1μm以上かつ5μm以下、平均短径は0.5μm以上かつ3μm以下である。凝集粒子片の平均長径及び平均短径を上記範囲とすることにより、光拡散性が高く、塗布ムラのない塗膜を形成することができる。
ここで平均長径とは、個々の凝集粒子片の最も長い部分の長さ(長径L)の平均値を意味し、平均短径とは、個々の凝集粒子片の最も短い部分の長さ(短径S)の平均値を意味する。
In any of the aggregated particle pieces 11 to 16, 31 to 38, 42 and 45 shown in FIGS. 1 to 4, the average major axis is 1 μm or more and 5 μm or less, and the average minor axis is 0.5 μm or more and 3 μm or less. is there. By setting the average major axis and the average minor axis of the aggregated particle pieces in the above range, a coating film having high light diffusibility and no coating unevenness can be formed.
Here, the average major axis means the average value of the length of the longest part of each aggregated particle piece (major axis L), and the average minor axis means the length of the shortest part of each aggregated particle piece (short axis). It means the average value of the diameter S).

「樹脂」
樹脂は、熱可塑性、熱硬化性、可視光線や紫外線や赤外線等による光(電磁波)硬化性、電子線照射による電子線硬化性等の硬化性樹脂、あるいはケイ素含有無機有機ハイブリッド構造体が好適に用いられる。また光拡散膜における光損失を抑えるために、可視光に対して透明な樹脂を用いることが好ましい。
"resin"
The resin is preferably a curable resin such as thermoplasticity, thermosetting, light (electromagnetic wave) curable by visible light, ultraviolet light or infrared light, electron beam curable by electron beam irradiation, or a silicon-containing inorganic-organic hybrid structure. Used. In order to suppress light loss in the light diffusion film, it is preferable to use a resin that is transparent to visible light.

これらの樹脂としては、エポキシ樹脂、アクリル樹脂、フッ素樹脂、フェノール樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、アクリル・ポリシロキサンハイブリッド樹脂、エポキシ・ポリシロキサンハイブリッド樹脂、ウレタン・ポリシロキサンハイブリッド樹脂等が挙げられる。これらの樹脂の中でも、光透過性及び光拡散性に優れ、耐熱性及び機械的特性に優れている点で、エポキシ樹脂又はアクリル樹脂が好ましい。   Examples of these resins include epoxy resins, acrylic resins, fluorine resins, phenol resins, polyester resins, polyvinyl chloride resins, acrylic / polysiloxane hybrid resins, epoxy / polysiloxane hybrid resins, urethane / polysiloxane hybrid resins, and the like. . Among these resins, an epoxy resin or an acrylic resin is preferable because it is excellent in light transmittance and light diffusibility, and excellent in heat resistance and mechanical properties.

本実施形態の光拡散膜形成用樹脂組成物は、上記凝集粒子片を液状の樹脂モノマー又は液状の樹脂オリゴマーに分散させたものや、これらの分散液に上記樹脂を1種以上混合させて用いても良い。   The resin composition for forming a light diffusion film of the present embodiment is obtained by dispersing the aggregated particle pieces in a liquid resin monomer or a liquid resin oligomer, or by mixing one or more of the resins in these dispersions. May be.

液状の樹脂モノマーとしては、アクリル酸メチル、メタクリル酸メチル等のアクリル系又はメタクリル系のモノマー、エポキシ系モノマー等が好適に用いられる。
また、液状の樹脂オリゴマーとしては、ウレタンアクリレート系オリゴマー、エポキシアクリレート系オリゴマー、アクリレート系オリゴマー等が好適に用いられる。以下、「樹脂」の語を用いる場合には、モノマー、オリゴマーも含むものとする。
As the liquid resin monomer, acrylic or methacrylic monomers such as methyl acrylate and methyl methacrylate, epoxy monomers and the like are preferably used.
Moreover, as a liquid resin oligomer, a urethane acrylate oligomer, an epoxy acrylate oligomer, an acrylate oligomer, or the like is preferably used. Hereinafter, the term “resin” includes monomers and oligomers.

樹脂と凝集粒子片の混合比率は、樹脂と凝集粒子片の合計質量に対して、凝集粒子片が15質量%以上かつ45質量%以下である。樹脂と凝集粒子片の混合比率を上記範囲とすることにより、この樹脂組成物を塗布して得られる膜の機械的強度等の機械特性と、光拡散性、透過率、反射率等の光学特性の双方において良好な特性が得られる。   The mixing ratio of the resin and the aggregated particle pieces is 15% by mass to 45% by mass with respect to the total mass of the resin and the aggregated particle pieces. By setting the mixing ratio of the resin and the aggregated particle pieces in the above range, the mechanical properties such as the mechanical strength of the film obtained by applying the resin composition, and the optical properties such as light diffusivity, transmittance, and reflectance. Good characteristics can be obtained in both cases.

本実施形態の光拡散膜形成用樹脂組成物は、必要に応じて適宜溶媒を混合させてもよい。溶媒としては、水や有機溶媒の少なくとも1種が好適に用いられる。
上記有機溶媒としては、例えば、メタノール、エタノール、2−プロパノール、ブタノール、オクタノール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトン等のエステル類、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類が好適に用いられる。これらの有機溶媒は、1種のみ単独で用いてもよく、2種以上を混合して用いてもよい。
The light diffusing film forming resin composition of the present embodiment may be mixed with a solvent as needed. As the solvent, at least one of water and an organic solvent is preferably used.
Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol, butanol, octanol, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, γ-butyrolactone, and the like. Esters, diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, acetone, methyl ethyl ketone , Methyl isobutyl ketone, acetylacetone, cyclohexanone, etc. S, benzene, toluene, xylene, ethylbenzene, etc., dimethylformamide, N, N- dimethylacetamide, amides such as N- methyl pyrrolidone is preferably used. These organic solvents may be used alone or in combination of two or more.

溶媒中に凝集粒子片を分散させる場合には、凝集粒子片の含有率は、溶媒と凝集粒子片の全質量に対して1質量%以上かつ70質量%以下が好ましく、より好ましくは1質量%以上かつ50質量%以下、さらに好ましくは5質量%以上かつ30質量%以下である。   When the aggregated particle pieces are dispersed in the solvent, the content of the aggregated particle pieces is preferably 1% by mass or more and 70% by mass or less, more preferably 1% by mass with respect to the total mass of the solvent and the aggregated particle pieces. It is more than 50 mass%, More preferably, it is 5 mass% or more and 30 mass% or less.

ここで、凝集粒子片の含有率が上記範囲であれば、凝集粒子片が溶媒に対して良好な分散状態となる。しかし、含有率が1質量%未満であると、樹脂と混合した時に、溶媒量が多すぎて、塗布膜を得るハンドリング性が悪くなる。また、70質量%を超えると、塗料としての均一性が低下する場合があるので好ましくない。   Here, if the content rate of an aggregated particle piece is the said range, an aggregated particle piece will be in a favorable dispersion state with respect to a solvent. However, when the content is less than 1% by mass, the amount of the solvent is excessive when mixed with the resin, and the handling property for obtaining a coating film is deteriorated. Moreover, when it exceeds 70 mass%, since the uniformity as a coating material may fall, it is unpreferable.

なお、本実施形態の組成物には、特性を失わない範囲において、分散剤、消泡剤、レベリング剤、滑剤、酸化防止剤、光安定剤、重合禁止剤等の一般的に用いられる添加剤を適宜添加しても良い。   In the composition of the present embodiment, generally used additives such as a dispersant, an antifoaming agent, a leveling agent, a lubricant, an antioxidant, a light stabilizer, a polymerization inhibitor, etc., as long as the characteristics are not lost. May be added as appropriate.

[光拡散膜形成用樹脂組成物の製造方法]
本実施形態の光拡散膜形成用樹脂組成物の製造方法は、凝集粒子体を、平均長径が1μm以上かつ5μm以下、平均短径が0.5μm以上かつ3μm以下の凝集粒子片になるよう破砕又は粉砕しながら溶媒に分散させる分散工程と、上記分散工程で得られた分散液と樹脂とを混合させる工程を有する製造方法である。
[Method for producing resin composition for forming light diffusion film]
The method for producing a resin composition for forming a light diffusing film according to this embodiment is such that the aggregated particles are crushed into aggregated particle pieces having an average major axis of 1 μm to 5 μm and an average minor axis of 0.5 μm to 3 μm. Or it is a manufacturing method which has a dispersion | distribution process disperse | distributed to a solvent, grind | pulverizing, and the process of mixing the dispersion liquid obtained by the said dispersion | distribution process, and resin.

「分散工程」
分散工程では、凝集粒子体を平均長径が1μm以上かつ5μm以下、平均短径が0.5μm以上かつ3μm以下の凝集粒子片になるよう破砕又は粉砕しながら溶媒、樹脂モノマー、又は樹脂オリゴマーに分散させて分散液を得る工程である。これら凝集粒子体、溶媒、樹脂モノマー、樹脂オリゴマーは、先に記載のものである。
"Dispersion process"
In the dispersion step, the agglomerated particles are dispersed in a solvent, a resin monomer, or a resin oligomer while being crushed or pulverized into aggregated particle pieces having an average major axis of 1 μm to 5 μm and an average minor axis of 0.5 μm to 3 μm. This is a step of obtaining a dispersion. These agglomerated particles, solvent, resin monomer, and resin oligomer are those described above.

凝集粒子体を破砕又は粉砕することで所望の形状(平均長径が1μm以上かつ5μm以下、かつ平均短径が0.5μm以上かつ3μm以下であり、かつ鋭角な端部を有する形状)の凝集粒子片を形成しつつ、形成された凝集粒子片を溶媒等に均一に分散させるには、分散装置を用いる方法が挙げられる。このような分散装置としては、ビーズミル、ボールミル、ジェットミル等が挙げられ、これらの中でもビーズミルが好ましい。
なお、凝集粒子体をあらかじめ破砕機等で破砕したものを用いて、溶媒等に分散させてもよい。
Agglomerated particles having a desired shape (a shape having an average major axis of 1 μm to 5 μm, an average minor axis of 0.5 μm to 3 μm, and having sharp edges) by crushing or pulverizing the aggregated particles In order to uniformly disperse the formed agglomerated particle pieces in a solvent or the like while forming the pieces, a method using a dispersing device can be mentioned. Examples of such a dispersing device include a bead mill, a ball mill, and a jet mill. Among these, a bead mill is preferable.
In addition, you may disperse | distribute an agglomerated particle body to a solvent etc. using what was previously crushed with the crusher etc. FIG.

「混合工程」
混合工程では、分散工程で得られた分散液と樹脂とを混合する工程をいう。
混合方法は分散液と樹脂が均一に混合されれば特に限定されず、公知の混合方法を用いることができる。
以上により、本実施形態の光拡散膜形成用樹脂組成物を得ることができる。
"Mixing process"
The mixing step refers to a step of mixing the dispersion obtained in the dispersing step and the resin.
The mixing method is not particularly limited as long as the dispersion and the resin are uniformly mixed, and a known mixing method can be used.
As described above, the resin composition for forming a light diffusion film of the present embodiment can be obtained.

[光拡散膜]
本実施形態の光拡散膜は、本実施形態の光拡散膜形成用組成物により形成されてなることを特徴とする。
光拡散膜の膜厚は特に限定されず、用途に応じて適宜調整すればよい。LED光のように指向性の高い光を光拡散させる光拡散膜である場合には、1μm以上かつ30μm以下が好ましい。膜厚が1μm未満の場合には、膜の光拡散性能が劣るため好ましくない。一方で、膜厚が30μmを超えると、表面にヒビ、又は割れが発生する場合があるため好ましくない。
[Light diffusion film]
The light diffusing film of this embodiment is formed by the light diffusing film forming composition of this embodiment.
The film thickness of the light diffusion film is not particularly limited, and may be adjusted as appropriate according to the application. In the case of a light diffusion film that diffuses highly directional light such as LED light, it is preferably 1 μm or more and 30 μm or less. A film thickness of less than 1 μm is not preferable because the light diffusion performance of the film is poor. On the other hand, if the film thickness exceeds 30 μm, cracks or cracks may occur on the surface, which is not preferable.

本実施形態の光拡散膜の製造方法は、上記光拡散膜形成用樹脂組成物を膜状に成形する工程と、その形成膜を硬化させる工程とを含む。
光拡散膜形成用樹脂組成物を膜状に成形する方法は特に限定されず、基材に上記樹脂組成物を塗布して塗膜を形成する方法や、任意形状の成形用型に流しいれる方法を用いることができる。
The method for producing a light diffusing film of the present embodiment includes a step of forming the light diffusing film forming resin composition into a film shape and a step of curing the formed film.
The method for forming the light diffusing film-forming resin composition into a film is not particularly limited, and a method of forming a coating film by applying the resin composition to a substrate, or a method of flowing into a molding die of any shape Can be used.

光拡散膜形成用樹脂組成物を塗布される基材は特に限定されず、ガラス基材やプラスチック基材を用いることができる。
また、塗布方法も特に限定されず、例えば、スピンコート法、ディップコート法、グラビアコート法、スプレー法、ローラー法、バーコート法、はけ塗り法等が挙げられる。
The base material to which the resin composition for forming a light diffusion film is applied is not particularly limited, and a glass base material or a plastic base material can be used.
Also, the application method is not particularly limited, and examples thereof include a spin coating method, a dip coating method, a gravure coating method, a spray method, a roller method, a bar coating method, and a brush coating method.

塗膜を硬化させる工程における硬化方法としては、使用する樹脂に応じて熱硬化方法や光硬化方法を用いればよい。光硬化に用いるエネルギー線は塗膜が硬化すれば特に限定されず、例えば、紫外線、遠赤外線、近紫外線、赤外線、X線、γ線、電子線、プロトン線、中性子線等のエネルギー線を用いることができる。これらのエネルギー線の中でも、硬化速度が速く、装置の入手が容易である紫外線照射による硬化が好ましい。   As a curing method in the step of curing the coating film, a heat curing method or a photocuring method may be used according to the resin to be used. The energy rays used for photocuring are not particularly limited as long as the coating is cured, and for example, energy rays such as ultraviolet rays, far infrared rays, near ultraviolet rays, infrared rays, X rays, γ rays, electron beams, proton rays, neutron rays are used. be able to. Among these energy rays, curing by ultraviolet irradiation, which has a high curing rate and is easily available, is preferable.

[光拡散反射部材]
本実施形態の光拡散反射部材は、先の実施形態の光拡散膜形成用組成物からなる光拡散膜を、可視光線の反射率が95%以上である基材の少なくとも一方の面に形成してなるものである。
ここで、可視光線の反射率が95%以上とは、MgOの標準白色板を基準として、380nm〜800nmにおける反射率の平均値が95%以上であることを意味する。
[Light diffuse reflection member]
In the light diffusing and reflecting member of this embodiment, a light diffusing film made of the composition for forming a light diffusing film of the previous embodiment is formed on at least one surface of a substrate having a visible light reflectance of 95% or more. It will be.
Here, the reflectance of visible light of 95% or more means that the average reflectance of 380 nm to 800 nm is 95% or more with reference to a MgO standard white plate.

光拡散膜の膜厚は適宜調整すればよいが、LED光のように指向性の高い光を光拡散反射させる場合には、1μm以上かつ30μm以下、好ましくは5μm以上かつ20μm以下である。膜厚が1μm未満の場合には、光拡散膜において所望の光拡散反射性能が得られない場合があるため好ましくない。一方で、膜厚が30μmを超えると、光拡散膜の表面にヒビ、又は割れが発生するため好ましくない。   The film thickness of the light diffusion film may be adjusted as appropriate, but when light having high directivity such as LED light is diffused and reflected, it is 1 μm or more and 30 μm or less, preferably 5 μm or more and 20 μm or less. A film thickness of less than 1 μm is not preferable because a desired light diffusion reflection performance may not be obtained in the light diffusion film. On the other hand, if the film thickness exceeds 30 μm, cracks or cracks occur on the surface of the light diffusion film, which is not preferable.

「基材」
光拡散反射部材に用いられる基材は、可視光線の反射率が95%以上であれば特に限定されない。
例えば、銀蒸着PETフィルム等の金属反射層を形成したフィルムや、白色PETフィルム、白色ポリプロピレンフィルム、白色ポリカーボネートフィルム等の白色フィルムや、アルミニウム、鏡面仕上げやアルマイト処理を施したアルミニウム、白色に塗装されたアルミニウム等のアルミニウム基材や発泡白色ポリエステルフィルムが挙げられる。またこれらの基材は、金属等の支持体に貼り合せたものでもよい。
"Base material"
The base material used for the light diffusion reflection member is not particularly limited as long as the visible light reflectance is 95% or more.
For example, a film with a metal reflective layer such as a silver-deposited PET film, a white film such as a white PET film, a white polypropylene film, a white polycarbonate film, aluminum, aluminum with a mirror finish or anodized, and white paint Examples thereof include an aluminum substrate such as aluminum and a foamed white polyester film. These substrates may be bonded to a support such as metal.

白色フィルムとしては、東レ(株)製の、ルミラー60L、ルミラー60V、ルミラー60SL、ルミラー60SV、三井化学(株)製のPPリフレクタ−、古河電工(株)製のエムシーペット等の市販品も用いることができる。   As the white film, commercially available products such as Lumirror 60L, Lumirror 60V, Lumirror 60SL, Lumirror 60SV, PP reflector manufactured by Mitsui Chemical Co., Ltd., and Mpetpet manufactured by Furukawa Electric Co., Ltd. are also used as the white film. be able to.

本実施形態の光拡散反射部材は、可視光反射率が95%以上である上記の基材を用い、先に記載の光拡散膜の製造方法と同様の塗布方法及び硬化方法を実施することで製造することができる。   The light diffusing and reflecting member of the present embodiment uses the above-mentioned base material having a visible light reflectance of 95% or more, and the same coating method and curing method as those for the light diffusing film described above are performed. Can be manufactured.

[光拡散透過部材]
本実施形態の光拡散透過部材は、先の実施形態の光拡散膜形成用組成物からなる光拡散膜を、可視光線の透過率が90%以上である基材の少なくとも一方の面に形成してなるものである。
ここで、可視光線の透過率が90%以上とは、空気を基準として380nm〜800nmの波長域における平均透過率が90%以上であることを意味する。
[Light diffusion and transmission member]
In the light diffusing and transmitting member of this embodiment, a light diffusing film made of the light diffusing film forming composition of the previous embodiment is formed on at least one surface of a base material having a visible light transmittance of 90% or more. It will be.
Here, the transmittance of visible light of 90% or more means that the average transmittance in a wavelength region of 380 nm to 800 nm with reference to air is 90% or more.

「基材」
光拡散透過部材に用いられる基材は、可視光線の透過率が90%以上であれば特に限定されない。例えば、ガラス基材やプラスチック基材を用いることができる。
"Base material"
The base material used for the light diffusing and transmitting member is not particularly limited as long as the visible light transmittance is 90% or more. For example, a glass substrate or a plastic substrate can be used.

本実施形態の光拡散透過部材は、可視光透過率が90%以上である基材を用い、先に記載の光拡散膜の製造方法と同様の塗布方法及び硬化方法を実施することで製造することができる。   The light diffusing and transmitting member of the present embodiment is manufactured by using a base material having a visible light transmittance of 90% or more and performing the same coating method and curing method as the method for manufacturing a light diffusing film described above. be able to.

「光学素子」
本実施形態の光学部材は、先の実施形態の光拡散膜、光拡散反射部材、光拡散透過部材のうちの少なくとも1種を備えたものである。
光学素子としては、光を光拡散させる用途で用いられる光学素子であれば限定されない。例えば光拡散反射部材を備えた光学素子としては、照明器具や液晶ディスプレイ用バックライトユニットにおいて照明光路制御に使用される光拡散板等が挙げられる。
"Optical element"
The optical member of this embodiment includes at least one of the light diffusion film, the light diffusion reflection member, and the light diffusion transmission member of the previous embodiment.
The optical element is not limited as long as it is an optical element used for light diffusion. For example, as an optical element provided with a light diffusive reflecting member, a light diffusing plate used for illumination light path control in a lighting fixture or a backlight unit for a liquid crystal display can be cited.

光拡散膜を光学素子に形成する方法は特に限定されず、例えば先に記載した光拡散膜の形成方法や公知の方法を用いて光学部材に実装させればよい。
また先の実施形態の光拡散反射部材、光拡散透過部材を光学素子に装着する方法も特に限定されず、公知の方法で光学素子に実装させればよい。
The method for forming the light diffusing film on the optical element is not particularly limited. For example, the light diffusing film may be mounted on the optical member by using the light diffusing film forming method described above or a known method.
The method for mounting the light diffusing and reflecting member and the light diffusing and transmitting member of the previous embodiment on the optical element is not particularly limited, and may be mounted on the optical element by a known method.

以上説明したとおり、本実施形態の光拡散膜形成用樹脂組成物によれば、平均長径が1μm以上かつ5μm以下、かつ平均短径が0.5μm以上かつ3μm以下であって、少なくとも1個の鋭角な端部を有する凝集粒子片と、樹脂成分とを含有したことで、光拡散性に優れた光拡散膜を形成することができる。   As described above, according to the resin composition for forming a light diffusion film of the present embodiment, the average major axis is 1 μm to 5 μm, the average minor axis is 0.5 μm to 3 μm, and at least one By containing the aggregated particle pieces having sharp edges and the resin component, it is possible to form a light diffusion film having excellent light diffusibility.

上記凝集粒子片として、凝集粒子体を破砕又は粉砕することによって得られた破砕片又は粉砕片を用いた場合には、凝集粒子片の形状が鋭角な端部を多数形成し、かつ凝集粒子片の形状が多岐にわたるので、より光拡散性に優れた光拡散膜を形成可能な樹脂組成物とすることができる。   In the case where a crushed piece or a crushed piece obtained by crushing or pulverizing an aggregated particle body is used as the aggregated particle piece, the aggregated particle piece forms a large number of sharp end portions, and the aggregated particle piece Since there are a wide variety of shapes, a resin composition capable of forming a light diffusing film with more excellent light diffusibility can be obtained.

また本実施形態の光拡散膜形成用樹脂組成物の製造方法によれば、凝集粒子体を破砕又は粉砕することにより凝集粒子片を形成するので、鋭角な端部を多く有する凝集粒子片を含む樹脂組成物とすることができ、光拡散性に優れた光拡散膜を形成可能な樹脂組成物を製造することができる。   Further, according to the method for producing a resin composition for forming a light diffusion film of the present embodiment, the aggregated particle pieces are formed by crushing or pulverizing the aggregated particle bodies. Therefore, the aggregated particle pieces having many sharp edges are included. A resin composition can be produced, and a resin composition capable of forming a light diffusion film excellent in light diffusibility can be produced.

また本実施形態の光拡散膜によれば、本実施形態の光拡散膜形成用樹脂組成物を用いて形成されていることで、優れた光拡散性を得ることができる。また膜表面の面内均一性に優れており、膜や基材に割れが生じる虞も無い。そして、本実施形態の光拡散膜は曲部にも形成することができる。   Moreover, according to the light diffusing film of the present embodiment, excellent light diffusibility can be obtained by using the light diffusing film forming resin composition of the present embodiment. Moreover, it is excellent in in-plane uniformity of the film surface, and there is no risk of cracking in the film or the substrate. And the light-diffusion film | membrane of this embodiment can also be formed in a curved part.

本実施形態の光拡散反射部材は、本実施形態の光拡散膜形成用樹脂組成物からなる光拡散膜が、反射率95%以上の基材の表面に形成されているので、優れた光拡散性と光反射性を得ることができる。また、波長380nm〜800nmの可視光領域で、波長依存性なく略一律に光を反射することができる。また、膜や基材に割れが生じる虞も無く、膜表面の面内均一性にも優れている。   The light diffusing and reflecting member of the present embodiment is excellent in light diffusion because the light diffusing film made of the resin composition for forming a light diffusing film of the present embodiment is formed on the surface of a substrate having a reflectance of 95% or more. And light reflectivity can be obtained. Further, light can be reflected almost uniformly in the visible light region with a wavelength of 380 nm to 800 nm without wavelength dependency. In addition, there is no risk of cracking in the film or the substrate, and the in-plane uniformity of the film surface is excellent.

本実施形態の光拡散透過部材は、本実施形態の光拡散膜形成用樹脂組成物からなる光拡散膜が、可視光透過率90%以上の基材の表面に形成されているので、優れた光拡散性と光透過性を得ることができる。また、波長380nm〜800nmの可視光領域で、波長依存性なく略一律に光を透過することができる。また、膜や基材に割れが生じる虞も無く、膜表面の面内均一性に優れている。   The light diffusing and transmitting member of this embodiment is excellent because the light diffusing film made of the resin composition for forming a light diffusing film of this embodiment is formed on the surface of a base material having a visible light transmittance of 90% or more. Light diffusibility and light transmittance can be obtained. In addition, light can be transmitted substantially uniformly in the visible light region with a wavelength of 380 nm to 800 nm without wavelength dependency. In addition, there is no risk of cracking in the film or substrate, and the in-plane uniformity of the film surface is excellent.

本実施形態の光学素子によれば、本実施形態の光拡散膜、光拡散反射部材、光拡散透過部材の少なくとも一種を備えてなるので、光拡散性、光拡散反射性、光拡散透過性の少なくとも一つの性能に優れた光学素子を得ることができる。   According to the optical element of the present embodiment, since it comprises at least one of the light diffusing film, the light diffusing reflection member, and the light diffusing and transmitting member of the present embodiment, the light diffusing property, the light diffusing and reflecting property, and the light diffusing and transmitting property are provided. An optical element excellent in at least one performance can be obtained.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.

「光拡散膜形成用樹脂組成物及び光拡散反射膜」
[実施例1]
平均長径が2.3μmの中空の球状シリカ凝集体A(鈴木油脂工業株式会社 ゴッドボール B−6C 凝集粒子の一次粒子径 20nm〜30nm)(凝集粒子体)を、分散剤、ビーズを含む純水中にビーズミルを用いて粉砕・分散させ、その後ビーズを分離し、凝集粒子片を20質量%、分散剤を2質量%含有する分散液を作製した。
"Resin composition for forming light diffusion film and light diffusion reflection film"
[Example 1]
Hollow spherical silica aggregate A having an average major axis of 2.3 μm (Suzuki Yushi Kogyo Co., Ltd., God Ball B-6C, primary particle diameter of aggregated particles 20 nm to 30 nm) (aggregated particle aggregate), pure water containing a dispersant and beads The mixture was pulverized and dispersed using a bead mill, and then the beads were separated to prepare a dispersion containing 20% by mass of aggregated particle pieces and 2% by mass of a dispersant.

分散液中の凝集粒子片を走査型電子顕微鏡S−4000(日立ハイテク社製)を用いて100個観察したところ、平均長径は2μm、平均短径は1μmであった。   When 100 aggregated particle pieces in the dispersion were observed using a scanning electron microscope S-4000 (manufactured by Hitachi High-Tech), the average major axis was 2 μm and the average minor axis was 1 μm.

次いで、この分散液にアクリル樹脂を、アクリル樹脂と凝集粒子片の合計質量に対して、凝集粒子片が20質量%となるように添加して均一に混合し、実施例1の光拡散膜形成用樹脂組成物を作製した。   Next, an acrylic resin is added to this dispersion so that the aggregated particle pieces are 20% by mass with respect to the total mass of the acrylic resin and the aggregated particle pieces, and mixed uniformly to form the light diffusion film of Example 1. A resin composition was prepared.

次いで、この光拡散膜形成用樹脂組成物を、バーコート法により、白色反射フィルム(東レ社製、ルミラーE60L)上に膜厚が1.5μmとなるように塗布し、得られた塗膜を、大気中、90℃にて5分エアブローしながら乾燥し、実施例1の光拡散反射膜(光拡散反射部材)を得た。   Next, this light diffusion film forming resin composition was applied on a white reflective film (Lumirror E60L, manufactured by Toray Industries, Inc.) by a bar coating method so that the film thickness was 1.5 μm, and the obtained coating film was applied. Then, the film was dried in air at 90 ° C. for 5 minutes while air blowing to obtain a light diffusion reflection film (light diffusion reflection member) of Example 1.

[実施例2]
実施例1において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を30質量%となるようにした他は同様にして、実施例2の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Example 2]
In the same manner as in Example 1, except that the content of the aggregated particle pieces in the resin composition for forming a light diffusing film was 30% by mass, the resin composition for forming a light diffusing film and the light of Example 2 were used. A diffuse reflection film was obtained.

[実施例3]
実施例1において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を40質量%となるようにした他は同様にして、実施例3の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Example 3]
In the same manner as in Example 1, except that the content of the aggregated particle pieces in the resin composition for forming a light diffusion film was 40% by mass, the resin composition for forming a light diffusion film and the light of Example 3 were used. A diffuse reflection film was obtained.

[実施例4]
実施例1において、球状シリカ凝集体Aの替わりに、平均長径が3μmの中実の球状シリカ凝集体B(東ソー・シリカ株式会社製、ニップジェル SS−170X 凝集粒子の一次粒子径 1nm〜10nm)(凝集粒子体)に変更した他は同様にして、実施例4の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
分散液中の凝集粒子片を実施例1と同様に観察したところ、平均長径は2μm、平均短径は1μmであった。
[Example 4]
In Example 1, instead of the spherical silica aggregate A, a solid spherical silica aggregate B having an average major axis of 3 μm (manufactured by Tosoh Silica Co., Ltd., nip gel SS-170X primary particle diameter of 1 nm to 10 nm) ( The resin composition for forming a light diffusing film and the light diffusing reflective film of Example 4 were obtained in the same manner except that the agglomerated particles were changed.
When the aggregated particle pieces in the dispersion were observed in the same manner as in Example 1, the average major axis was 2 μm and the average minor axis was 1 μm.

[実施例5]
実施例4において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を30質量%となるようにした他は同様にして、実施例5の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Example 5]
In Example 4, the resin composition for forming a light diffusing film and light of Example 5 were used in the same manner except that the content of the aggregated particle pieces in the light diffusing film forming resin composition was 30% by mass. A diffuse reflection film was obtained.

[実施例6]
実施例4において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を40質量%となるようにした他は同様にして、実施例6の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Example 6]
In Example 4, the resin composition for forming a light diffusing film and light of Example 6 were used in the same manner except that the content of the aggregated particle pieces in the resin composition for forming a light diffusing film was 40% by mass. A diffuse reflection film was obtained.

[実施例7]
実施例1において、球状シリカ凝集体Aの替わりに、平均長径が5μmの板状シリカ凝集体C(AGCエスアイテック株式会社製、サンラブリー)を用いた他は同様にして、実施例7の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
分散液中の凝集粒子片を実施例1と同様に観察したところ、平均長径は5μm、平均短径は3μmであった。
[Example 7]
The light of Example 7 was obtained in the same manner as in Example 1 except that instead of the spherical silica aggregate A, a plate-like silica aggregate C having an average major axis of 5 μm (Sun Lovely manufactured by AGC S-Tech Co., Ltd.) was used. A resin composition for forming a diffusion film and a light diffusion reflection film were obtained.
When the aggregated particle pieces in the dispersion were observed in the same manner as in Example 1, the average major axis was 5 μm and the average minor axis was 3 μm.

[実施例8]
実施例7において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を30質量%となるようにした他は同様にして、実施例8の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Example 8]
The resin composition for forming a light diffusing film and the light of Example 8 were prepared in the same manner as in Example 7, except that the content of the aggregated particle pieces in the light diffusing film forming resin composition was 30% by mass. A diffuse reflection film was obtained.

[実施例9]
実施例7において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を40質量%となるようにした他は同様にして、実施例9の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Example 9]
The resin composition for forming a light diffusing film and the light of Example 9 were prepared in the same manner as in Example 7, except that the content of the aggregated particle pieces in the resin composition for forming a light diffusing film was 40% by mass. A diffuse reflection film was obtained.

[実施例10]
実施例1において、アクリル樹脂の替わりに、ポリエステル樹脂を用いた他は同様にして、実施例10の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Example 10]
In Example 1, a resin composition for forming a light diffusion film and a light diffusion reflection film of Example 10 were obtained in the same manner except that a polyester resin was used instead of the acrylic resin.

[実施例11]
実施例1において、アクリル樹脂の替わりに、フッ素樹脂を用いた他は同様にして、実施例10の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Example 11]
In Example 1, a resin composition for forming a light diffusion film and a light diffusion reflection film of Example 10 were obtained in the same manner except that a fluororesin was used instead of the acrylic resin.

[比較例1]
実施例1において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を10質量%となるようにした他は同様にして、比較例1の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Comparative Example 1]
In Example 1, the resin composition for forming a light diffusing film and the light of Comparative Example 1 were similarly used except that the content of the aggregated particle pieces in the resin composition for forming a light diffusing film was 10% by mass. A diffuse reflection film was obtained.

[比較例2]
実施例1において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を50質量%となるようにした他は同様にして、比較例2の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Comparative Example 2]
In the same manner as in Example 1, except that the content of the aggregated particle pieces in the resin composition for forming a light diffusion film was 50% by mass, the resin composition for forming a light diffusion film and the light of Comparative Example 2 were used. A diffuse reflection film was obtained.

[比較例3]
実施例4において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を10質量%となるようにした他は同様にして、比較例3の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Comparative Example 3]
In Example 4, the resin composition for forming a light diffusion film and the light of Comparative Example 3 were similarly used except that the content of the aggregated particle pieces in the resin composition for forming a light diffusion film was 10% by mass. A diffuse reflection film was obtained.

[比較例4]
実施例4において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を50質量%となるようにした他は同様にして、比較例4の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Comparative Example 4]
In Example 4, the resin composition for forming a light diffusing film and the light of Comparative Example 4 were similarly used except that the content of the aggregated particle pieces in the resin composition for forming a light diffusing film was 50% by mass. A diffuse reflection film was obtained.

[比較例5]
実施例7において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を10質量%となるようにした他は同様にして、比較例5の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Comparative Example 5]
In Example 7, the resin composition for forming a light diffusion film and the light of Comparative Example 5 were similarly used except that the content of the aggregated particle pieces in the resin composition for forming a light diffusion film was 10% by mass. A diffuse reflection film was obtained.

[比較例6]
実施例7において、光拡散膜形成用樹脂組成物中の凝集粒子片の含有率を50質量%となるようにした他は同様にして、比較例6の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
[Comparative Example 6]
The resin composition for forming a light diffusing film and the light of Comparative Example 6 were prepared in the same manner as in Example 7 except that the content of the aggregated particle pieces in the resin composition for forming a light diffusing film was 50% by mass. A diffuse reflection film was obtained.

[比較例7]
実施例1において、球状シリカ凝集体Aの替わりに、平均長径が9μmの中空の球状シリカ凝集体D(鈴木油脂工業株式会社 ゴッドボール B−25C 凝集粒子の一次粒子径 20nm〜30nm)(凝集粒子体)を用いた他は同様にして、比較例7の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
分散液中の凝集粒子片を実施例1と同様に観察したところ、平均長径は7μm、平均短径は4μmであった。
[Comparative Example 7]
In Example 1, instead of the spherical silica aggregate A, a hollow spherical silica aggregate D having an average major axis of 9 μm (Suzuki Yushi Kogyo Co., Ltd. God Ball B-25C Aggregated particle primary particle diameter 20 nm to 30 nm) (aggregated particle) The resin composition for forming a light diffusing film and the light diffusing and reflecting film of Comparative Example 7 were obtained in the same manner except that the body) was used.
When the aggregated particle pieces in the dispersion were observed in the same manner as in Example 1, the average major axis was 7 μm and the average minor axis was 4 μm.

[比較例8]
実施例1において、球状シリカ凝集体Aの替わりに、凝集粒子体ではない平均長径が0.1μmの中空の球状シリカE(日鉄鉱業社製 シリナックスSP−PN(b))を用いた他は同様にして、比較例8の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
分散液中の粒子を実施例1と同様に観察したところ、平均長径は0.1μm、平均短径は0.1μmであった。
[Comparative Example 8]
In Example 1, in place of the spherical silica aggregate A, a hollow spherical silica E (Silinax SP-PN (b) manufactured by Nittetsu Mining Co., Ltd.) having an average major axis of 0.1 μm that is not an aggregated particle was used. In the same manner, a resin composition for forming a light diffusion film and a light diffusion reflection film of Comparative Example 8 were obtained.
When particles in the dispersion were observed in the same manner as in Example 1, the average major axis was 0.1 μm and the average minor axis was 0.1 μm.

[比較例9]
実施例1において、球状シリカ凝集体Aの替わりに、平均長径が4μmであって、凝集粒子体ではない不定形の溶融シリカの粉砕品F(鈴木油脂工業株式会社 ゴッドボール G−6C)を用いた他は同様にして、比較例9の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
分散液中の粒子を実施例1と同様に観察したところ、平均長径は4μm、平均短径は4μmであった。
[Comparative Example 9]
In Example 1, instead of the spherical silica aggregate A, an amorphous fused silica pulverized product F (Suzuki Yushi Kogyo Godball G-6C) having an average major axis of 4 μm and not an aggregated particle is used. The resin composition for forming a light diffusion film and the light diffusion reflection film of Comparative Example 9 were obtained in the same manner.
When the particles in the dispersion were observed in the same manner as in Example 1, the average major axis was 4 μm and the average minor axis was 4 μm.

[比較例10]
実施例1において、球状シリカ凝集体Aの替わりに、凝集粒子体ではない平均長径が3μmの球状のアルミナG(住友化学社製 アドバンストアルミナAA−3)を用いた他は同様にして、比較例10の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
分散液中の粒子を実施例1と同様に観察したところ、平均長径は3μm、平均短径は3μmであった。
[Comparative Example 10]
In Example 1, in place of the spherical silica aggregate A, a comparative example is used except that spherical alumina G having an average major axis of 3 μm (advanced alumina AA-3 manufactured by Sumitomo Chemical Co., Ltd.), which is not an aggregated particle, is used. Ten resin compositions for forming a light diffusion film and a light diffusion reflection film were obtained.
When particles in the dispersion were observed in the same manner as in Example 1, the average major axis was 3 μm and the average minor axis was 3 μm.

[比較例11]
実施例1において、球状シリカ凝集体Aの替わりに、凝集粒子体ではない平均長径が0.1μmの球状のチタニアH(石原産業社製 A−100)を用いた他は同様にして、比較例11の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
分散液中の粒子を実施例1と同様に観察したところ、平均長径は0.1μm、平均短径は0.1μmであった。
[Comparative Example 11]
In Example 1, instead of the spherical silica aggregate A, a comparative example is used except that spherical titania H (A-100 manufactured by Ishihara Sangyo Co., Ltd.) having an average major axis of 0.1 μm, which is not an aggregated particle, is used. 11 resin compositions for forming a light diffusion film and a light diffusion reflection film were obtained.
When particles in the dispersion were observed in the same manner as in Example 1, the average major axis was 0.1 μm and the average minor axis was 0.1 μm.

[比較例12]
実施例1において、平均長径が2μmの中空の球状シリカ凝集体Aの替わりに、凝集粒子体でない平均長径が1μmの中実の球状シリカI(東ソーシリカ社製 SS−50F)を用いた他は同様にして、比較例12の光拡散膜形成用樹脂組成物及び光拡散反射膜を得た。
分散液中の粒子を実施例1と同様に観察したところ、平均長径は1μm、平均短径は1μmであった。
[Comparative Example 12]
In Example 1, instead of the hollow spherical silica aggregate A having an average major axis of 2 μm, solid spherical silica I (SS-50F manufactured by Tosoh Silica Corp.) having an average major axis of 1 μm which is not an aggregated particle was used. Similarly, the resin composition for forming a light diffusion film and the light diffusion reflection film of Comparative Example 12 were obtained.
When the particles in the dispersion were observed in the same manner as in Example 1, the average major axis was 1 μm and the average minor axis was 1 μm.

実施例1〜11及び比較例1〜12各々で得られた光拡散反射膜の積分反射率、反射率の波長ばらつき、LED光の光拡散性、塗布ムラの各特性について、下記の方法により評価した。評価結果を表1に示す。   Each characteristic of the integrated reflectance of the light diffusive reflection film obtained in each of Examples 1 to 11 and Comparative Examples 1 to 12, the wavelength variation of the reflectance, the light diffusibility of the LED light, and the coating unevenness is evaluated by the following methods. did. The evaluation results are shown in Table 1.

(1)550nmにおける積分反射率
光拡散反射膜の積分反射率(R(%))を380nm〜800nmの波長範囲で、分光度計V−570(日本分光株式会社製)を用いて、白色反射フィルム(東レ社製、ルミラーE60L)の反射率を基準として測定した。
波長が550nmの時の積分反射率(%)の値に従って、下記基準に基づき反射特性の評価を行った。なお反射率(%)は、いずれも、光拡散反射膜の形成に基材として用いたフィルムを介在させた状態で測定した値である。
◎:反射率が98%以上
○:反射率が95%以上かつ98%未満
△:反射率が90%以上かつ95%未満
×:反射率が90%未満
(1) Integral reflectance at 550 nm White reflectance is measured using a spectrophotometer V-570 (manufactured by JASCO Corporation) with an integral reflectance (R (%)) of the light diffusive reflective film in a wavelength range of 380 nm to 800 nm. It measured on the basis of the reflectance of a film (Lumirror E60L by Toray Industries, Inc.).
The reflection characteristics were evaluated based on the following criteria according to the value of the integrated reflectance (%) when the wavelength was 550 nm. In addition, all reflectivity (%) is the value measured in the state which interposed the film used as a base material in formation of a light-diffusion reflection film.
◎: Reflectance is 98% or more ○: Reflectance is 95% or more and less than 98% △: Reflectance is 90% or more and less than 95% ×: Reflectance is less than 90%

(2)反射光の波長ばらつき
(1)で測定した380nm〜800nmの波長範囲で、積分反射率の最大値と最小値の差を算出した。そして、得られた反射率(%)の差に従って、下記基準に基づき反射光の波長ばらつき特性の評価を行った。
◎:差が3%未満
○:差が3%以上かつ6%未満
△:差が6%以上かつ9%未満
×:差が9%以上
(2) Wavelength variation of reflected light The difference between the maximum value and the minimum value of the integrated reflectance was calculated in the wavelength range of 380 nm to 800 nm measured in (1). And according to the difference of the obtained reflectance (%), the wavelength variation characteristic of reflected light was evaluated based on the following reference | standard.
◎: Difference is less than 3% ○: Difference is 3% or more and less than 6% △: Difference is 6% or more and less than 9% ×: Difference is 9% or more

(3)LED光の光拡散性
LED素子を6個有するLED白色電球(シャープ社製 DL−L601N)の光拡散カバーを外した状態でLED素子を発光させ、光拡散反射膜に対して白色光を直接照射した。この場合にLED光源の素子の形状がそのまま映りこむかどうかにより、下記基準に基づきLED光の光拡散性の特性評価を行った。
◎:LED光源が光拡散して、素子の形状が映りこまない
×:LED光源が光拡散せず、素子の形状がそのまま映りこむ
(3) Light diffusibility of LED light The LED element emits light with the light diffusing cover of the LED white light bulb (DL-L601N manufactured by Sharp Corporation) having six LED elements removed, and white light is emitted to the light diffusion reflection film. Was directly irradiated. In this case, depending on whether the shape of the element of the LED light source is reflected as it is, the light diffusibility characteristics of the LED light were evaluated based on the following criteria.
◎: LED light source diffuses and element shape does not appear ×: LED light source does not diffuse light and element shape reflects as it is

(4)塗布ムラ
光拡散反射膜を目視で観察し、下記基準に基づき塗布ムラの特性評価を行った。
◎:塗布ムラがまったく観察されない。
×:塗布ムラが観察される。
(4) Coating unevenness The light diffusive reflection film was visually observed, and the characteristics of coating unevenness were evaluated based on the following criteria.
A: No coating unevenness is observed at all.
X: Coating unevenness is observed.

Figure 2013072885
Figure 2013072885

「光拡散透過膜」
[実施例12]
実施例1において、白色反射フィルム(東レ社製、ルミラーE60L)の替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例12の光拡散透過膜(光拡散透過部材)を得た。
"Light diffusing and permeable membrane"
[Example 12]
In Example 1, the light diffusion transmission of Example 12 was similarly performed except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film (manufactured by Toray Industries Inc., Lumirror E60L). A film (light diffusing and transmitting member) was obtained.

[実施例13]
実施例2において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例13の光拡散透過膜を得た。
[Example 13]
In Example 2, a light diffusing / transmitting film of Example 13 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[実施例14]
実施例3において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例14の光拡散透過膜を得た。
[Example 14]
In Example 3, a light diffusing and permeable film of Example 14 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[実施例15]
実施例4において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例15の光拡散透過膜を得た。
[Example 15]
In Example 4, a light diffusing / transmitting film of Example 15 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[実施例16]
実施例5において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例15の光拡散透過膜を得た。
[Example 16]
In Example 5, a light diffusing / transmitting film of Example 15 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[実施例17]
実施例6において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例17の光拡散透過膜を得た。
[Example 17]
In Example 6, a light diffusing / transmitting film of Example 17 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[実施例18]
実施例7において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例18の光拡散透過膜を得た。
[Example 18]
In Example 7, a light diffusing and transmitting film of Example 18 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[実施例19]
実施例8において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例19の光拡散透過膜を得た。
[Example 19]
In Example 8, a light diffusing / transmitting film of Example 19 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[実施例20]
実施例9において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例20の光拡散透過膜を得た。
[Example 20]
In Example 9, a light diffusing and transmitting film of Example 20 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[実施例21]
実施例10において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例21の光拡散透過膜を得た。
[Example 21]
In Example 10, a light diffusing / transmitting film of Example 21 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[実施例22]
実施例11において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、実施例22の光拡散透過膜を得た。
[Example 22]
In Example 11, a light diffusing / transmitting film of Example 22 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例13]
比較例1において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例13の光拡散透過膜を得た。
[Comparative Example 13]
In Comparative Example 1, a light diffusing / transmitting film of Comparative Example 13 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例14]
比較例2において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例14の光拡散透過膜を得た。
[Comparative Example 14]
In Comparative Example 2, a light diffusing and transmitting film of Comparative Example 14 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例15]
比較例3において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例15の光拡散透過膜を得た。
[Comparative Example 15]
In Comparative Example 3, a light diffusing / transmitting film of Comparative Example 15 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例16]
比較例4において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例16の光拡散透過膜を得た。
[Comparative Example 16]
In Comparative Example 4, a light diffusing and transmitting film of Comparative Example 16 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例17]
比較例5において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例17の光拡散透過膜を得た。
[Comparative Example 17]
In Comparative Example 5, a light diffusing / transmitting film of Comparative Example 17 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例18]
比較例6において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例18の光拡散透過膜を得た。
[Comparative Example 18]
In Comparative Example 6, a light diffusing / transmitting film of Comparative Example 18 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例19]
比較例7において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例19の光拡散透過膜を得た。
[Comparative Example 19]
In Comparative Example 7, a light diffusing / transmitting film of Comparative Example 19 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例20]
比較例8において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例20の光拡散透過膜を得た。
[Comparative Example 20]
In Comparative Example 8, a light diffusing / transmitting film of Comparative Example 20 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例21]
比較例9において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例21の光拡散透過膜を得た。
[Comparative Example 21]
In Comparative Example 9, a light diffusing / transmitting film of Comparative Example 21 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例22]
比較例10において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例22の光拡散透過膜を得た。
[Comparative Example 22]
In Comparative Example 10, a light diffusing / transmitting film of Comparative Example 22 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例23]
比較例11において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例23の光拡散透過膜を得た。
[Comparative Example 23]
In Comparative Example 11, a light diffusing and transmitting film of Comparative Example 23 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

[比較例24]
比較例12において、白色反射フィルムの替わりに、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)を用いた他は同様にして、比較例24の光拡散透過膜を得た。
[Comparative Example 24]
In Comparative Example 12, a light diffusing / transmitting film of Comparative Example 24 was obtained in the same manner except that a glass substrate (20 mm × 50 mm × 2 mmt) made of borosilicate glass was used instead of the white reflective film.

実施例12〜22及び比較例13〜24各々で得られた光拡散透過膜のヘーズ値、全光線透過率、透過率の波長ばらつき、成膜性の各特性について、下記の方法により評価した。評価結果を表2に示す。   Each characteristic of the haze value, total light transmittance, wavelength variation of transmittance, and film formability of the light diffusing and transmitting films obtained in Examples 12 to 22 and Comparative Examples 13 to 24 was evaluated by the following methods. The evaluation results are shown in Table 2.

(5)ヘーズ値及び全光線透過率
光拡散透過膜のヘーズ値及び全光線透過率をヘーズメータ NDH−2000(日本電色工業社製)を用いて測定した。
ヘーズ値については、下記基準に基づき評価を行った。
◎:ヘーズ値が60%以上
○:ヘーズ値が40%以上かつ60%未満
△:ヘーズ値が20%以上かつ40%未満
×:ヘーズ値が20%未満
(5) Haze value and total light transmittance The haze value and total light transmittance of the light diffusion transmission film were measured using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
The haze value was evaluated based on the following criteria.
◎: Haze value is 60% or more ○: Haze value is 40% or more and less than 60% △: Haze value is 20% or more and less than 40% ×: Haze value is less than 20%

全光線透過率(%)については、下記基準に基づき評価を行った。
◎:全光線透過率が90%以上
○:全光線透過率が85%以上かつ89%未満
△:全光線透過率が80%以上かつ85%未満
×:ヘーズ値が80%未満
The total light transmittance (%) was evaluated based on the following criteria.
◎: Total light transmittance is 90% or more ○: Total light transmittance is 85% or more and less than 89% Δ: Total light transmittance is 80% or more and less than 85% ×: Haze value is less than 80%

(6)透過光の波長ばらつき
積分透過率(T(%))を380nm〜800nmの波長範囲で、分光度計V−570(日本分光株式会社製)を用いて、ホウケイ酸ガラスからなるガラス基板(20mm×50mm×2mmt)の透過率を基準として測定した。
得られた積分透過率の最大値と最小値の差を算出し、その差に従って、下記基準に基づき透過光の波長ばらつき特性の評価を行った。
◎:差が6%未満
○:差が6%以上かつ10%未満
△:差が10%以上かつ20%未満
×:差が20%以上
(6) Wavelength variation of transmitted light Glass substrate made of borosilicate glass using a spectrophotometer V-570 (manufactured by JASCO Corporation) with an integrated transmittance (T (%)) in the wavelength range of 380 nm to 800 nm. It measured on the basis of the transmittance | permeability (20 mm x 50 mm x 2 mmt).
The difference between the maximum value and the minimum value of the obtained integral transmittance was calculated, and the wavelength variation characteristics of the transmitted light were evaluated based on the following criteria according to the difference.
◎: Difference is less than 6% ○: Difference is 6% or more and less than 10% △: Difference is 10% or more and less than 20% ×: Difference is 20% or more

(7)塗布ムラ
塗布ムラについては、上記(4)の評価方法、評価基準と全く同様に行った。
(7) Coating unevenness The coating unevenness was performed in exactly the same manner as the evaluation method (4) and evaluation criteria.

Figure 2013072885
Figure 2013072885

1,21 凝集粒子体
2 一次粒子
3 空洞部
11〜16,31〜38,42,45 凝集粒子片
41,43 板状粒子
44 積層粒子
1,21 Aggregated particle body 2 Primary particle 3 Cavity 11-16, 31-38, 42, 45 Aggregated particle piece 41, 43 Plate-like particle 44 Laminated particle

Claims (7)

平均長径が1μm以上かつ5μm以下、かつ平均短径が0.5μm以上かつ3μm以下であって、少なくとも1個の鋭角な端部を有する凝集粒子片と、樹脂とを含有してなり、前記凝集粒子片が、前記凝集粒子片と前記樹脂の合計質量に対して、15質量%以上かつ45質量%以下含有されていることを特徴とする、光拡散膜形成用樹脂組成物。   The average major axis is 1 μm or more and 5 μm or less, the average minor axis is 0.5 μm or more and 3 μm or less, and contains aggregated particle pieces having at least one acute end, and the resin, A resin composition for forming a light diffusing film, wherein the particle pieces are contained in an amount of 15% by mass to 45% by mass with respect to the total mass of the aggregated particle pieces and the resin. 前記凝集粒子片が、平均長径が1μm以上かつ5μm以下の凝集粒子体を破砕又は粉砕することによって得られた破砕片又は粉砕片からなることを特徴とする、請求項1記載の光拡散膜形成用樹脂組成物。   2. The light diffusion film formation according to claim 1, wherein the aggregated particle pieces are formed of crushed pieces or crushed pieces obtained by crushing or pulverizing aggregated particle bodies having an average major axis of 1 μm or more and 5 μm or less. Resin composition. 凝集粒子体を、平均長径が1μm以上かつ5μm以下、平均短径が0.5μm以上かつ3μm以下の凝集粒子片になるよう破砕又は粉砕しながら溶媒、液状樹脂モノマー又は液状樹脂オリゴマーに分散させる分散工程と、前記分散工程で得られた分散液と樹脂とを混合させる工程を有することを特徴とする、請求項1又は2記載の光拡散膜形成用樹脂組成物の製造方法。   Dispersion in which agglomerated particles are dispersed in a solvent, a liquid resin monomer, or a liquid resin oligomer while being crushed or pulverized into aggregated particle pieces having an average major axis of 1 μm to 5 μm and an average minor axis of 0.5 μm to 3 μm The method for producing a resin composition for forming a light diffusing film according to claim 1, comprising a step of mixing a resin obtained by the step and the dispersion obtained in the dispersion step. 請求項1又は2記載の光拡散膜形成用樹脂組成物により形成されてなることを特徴とする、光拡散膜。   A light diffusing film, which is formed from the resin composition for forming a light diffusing film according to claim 1. 請求項4記載の光拡散膜を、可視光反射率が95%以上の基材の表面に形成してなることを特徴とする、光拡散反射部材。   5. A light diffusing and reflecting member, wherein the light diffusing film according to claim 4 is formed on the surface of a substrate having a visible light reflectance of 95% or more. 請求項4記載の光拡散膜を、可視光透過率が90%以上の基材の表面に形成してなることを特徴とする、光拡散透過部材。   A light diffusing and transmitting member, wherein the light diffusing film according to claim 4 is formed on the surface of a substrate having a visible light transmittance of 90% or more. 請求項4記載の光拡散膜、請求項5記載の光拡散反射部材、及び請求項6記載の光拡散透過部材のうちの少なくとも1種を備えたことを特徴とする光学素子。   An optical element comprising at least one of the light diffusion film according to claim 4, the light diffusion reflection member according to claim 5, and the light diffusion transmission member according to claim 6.
JP2011209428A 2011-09-26 2011-09-26 Light diffusing film forming resin composition and manufacturing method thereof, light diffusing film, light diffusing reflection member, light diffusing and transmitting member, optical element Active JP6014979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011209428A JP6014979B2 (en) 2011-09-26 2011-09-26 Light diffusing film forming resin composition and manufacturing method thereof, light diffusing film, light diffusing reflection member, light diffusing and transmitting member, optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011209428A JP6014979B2 (en) 2011-09-26 2011-09-26 Light diffusing film forming resin composition and manufacturing method thereof, light diffusing film, light diffusing reflection member, light diffusing and transmitting member, optical element

Publications (2)

Publication Number Publication Date
JP2013072885A true JP2013072885A (en) 2013-04-22
JP6014979B2 JP6014979B2 (en) 2016-10-26

Family

ID=48477468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011209428A Active JP6014979B2 (en) 2011-09-26 2011-09-26 Light diffusing film forming resin composition and manufacturing method thereof, light diffusing film, light diffusing reflection member, light diffusing and transmitting member, optical element

Country Status (1)

Country Link
JP (1) JP6014979B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125276A (en) * 2013-12-26 2015-07-06 帝人デュポンフィルム株式会社 White reflection film
JP2016027429A (en) * 2013-08-07 2016-02-18 帝人デュポンフィルム株式会社 White reflection film manufacturing method
JP2018002826A (en) * 2016-06-30 2018-01-11 Jsr株式会社 Composition for forming cured film and production method of the composition, cured film, light-diffusing laminate, and display device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258011A (en) * 2001-02-28 2002-09-11 Asahi Glass Co Ltd Light diffusion sheet and method of producing the same
JP2005037591A (en) * 2003-07-18 2005-02-10 Idemitsu Petrochem Co Ltd Light reflecting sheet and its molding
JP2008239734A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Synthetic resin particle, and optical material, coating material, cosmetic, and synthetic resin sheet using the synthetic resin particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258011A (en) * 2001-02-28 2002-09-11 Asahi Glass Co Ltd Light diffusion sheet and method of producing the same
JP2005037591A (en) * 2003-07-18 2005-02-10 Idemitsu Petrochem Co Ltd Light reflecting sheet and its molding
JP2008239734A (en) * 2007-03-27 2008-10-09 Sekisui Plastics Co Ltd Synthetic resin particle, and optical material, coating material, cosmetic, and synthetic resin sheet using the synthetic resin particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027429A (en) * 2013-08-07 2016-02-18 帝人デュポンフィルム株式会社 White reflection film manufacturing method
JP2017090929A (en) * 2013-08-07 2017-05-25 帝人フィルムソリューション株式会社 White reflection film and manufacturing method of the same
KR101810750B1 (en) * 2013-08-07 2017-12-19 데이진 필름 솔루션스 가부시키가이샤 White reflective film
JP2015125276A (en) * 2013-12-26 2015-07-06 帝人デュポンフィルム株式会社 White reflection film
JP2018002826A (en) * 2016-06-30 2018-01-11 Jsr株式会社 Composition for forming cured film and production method of the composition, cured film, light-diffusing laminate, and display device and method for manufacturing the same

Also Published As

Publication number Publication date
JP6014979B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6133522B1 (en) Transparent screen and video projection system having the same
JP6480081B2 (en) Visibility improving film, laminate including the same, and image display device including the same
JP4155337B1 (en) Anti-glare film, method for producing the same, and display device
US7854522B2 (en) Antiglare film and manufacturing method thereof
KR102246690B1 (en) Photocurable resin composition, cured coating film formed from the composition, anti-glare film formed from the composition, method of producing cured coating film, and method of producing anti-glare film
KR101280187B1 (en) Lens sheet, surface light source, and liquid crystal display device
US20140002901A1 (en) Method for producing anti-glare film, anti-glare film, polarizing plate, and image display
WO2017010217A1 (en) Dispersion liquid for forming transparent light-dispersing layer of transparent screen, transparent screen, and producing method for transparent screen
US11668977B2 (en) Liquid crystal display having a frontside light control film
WO2012036273A1 (en) Methods for manufacturing light-diffusing element and polarizing plate with light-diffusing element, and light-diffusing element and polarizing plate with light-diffusing element obtained by same methods
JP2006078710A (en) Antiglare film
TW201812342A (en) Image display, anti-glare film, and method for producing anti-glare film
JP6014979B2 (en) Light diffusing film forming resin composition and manufacturing method thereof, light diffusing film, light diffusing reflection member, light diffusing and transmitting member, optical element
JPWO2020204148A1 (en) Light diffusing film, manufacturing method of light diffusing film, optical member, display panel for image display device and image display device
TWI788393B (en) Light extraction member
JP2014041249A (en) Optical film
CN100353187C (en) Antiglare film
JP6313919B2 (en) Transparent light scatterer, reflective transparent screen including the same, and video projection system including the same
JP2010078888A (en) Optical film
KR102120989B1 (en) Resin composition for anti-glare and anti-glare film using the same
JP6301576B2 (en) Light diffusion transmission sheet
JP6475849B2 (en) Light diffusing and transmitting sheet and method for producing composite particles
JP2018045137A (en) Laminate that can project video and video projection system including the same
JP2020079914A (en) Anti-glare film, method for manufacturing anti-glare film, optical member and image display device
JP5251192B2 (en) Optical film, polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6014979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150