JP2013071651A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2013071651A
JP2013071651A JP2011213012A JP2011213012A JP2013071651A JP 2013071651 A JP2013071651 A JP 2013071651A JP 2011213012 A JP2011213012 A JP 2011213012A JP 2011213012 A JP2011213012 A JP 2011213012A JP 2013071651 A JP2013071651 A JP 2013071651A
Authority
JP
Japan
Prior art keywords
tire
region
pneumatic tire
convex portion
pneumatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011213012A
Other languages
Japanese (ja)
Other versions
JP5834708B2 (en
Inventor
Takashi Fujii
宇 藤井
Masatoshi Kuwajima
雅俊 桑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2011213012A priority Critical patent/JP5834708B2/en
Publication of JP2013071651A publication Critical patent/JP2013071651A/en
Application granted granted Critical
Publication of JP5834708B2 publication Critical patent/JP5834708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of improving an airflow around the tire.SOLUTION: At least one tire side portion has a large number of protrusions 9 and a large number of recesses 10, the protrusions 9 are formed as protrusive streaks assuming longitudinal shapes in the radial direction of the tire and arranged at intervals in the circumferential direction of the tire, and the recesses 10 are formed in regions among the protrusions 9, respectively. Since an airflow passing through the tire side S is turned into a turbulent flow by the protrusions 9, the air is restrained from spreading by getting away from the tire side S. Thus, the air resistance of the tire is reduced for improvement in fuel economy. Additionally, since the rubber volume of the tire side S is reduced by the recesses 10, the generation of heat can be suppressed. Furthermore, since the recesses 10 make the air turbulent, the air is further restrained from spreading by getting away from the tire side portion S. Thereby, since the heat exhaustibility of the tire side S is improved, the generation of the heat from the tire and a rise in temperature can be suppressed for an increase in the durability of the tire.

Description

本発明は、空気入りタイヤに関し、さらに詳しくは、タイヤ周りの空気流を改善する空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that improves airflow around the tire.

従来、特許文献1では、タイヤ周りの空気抵抗を効果的に低減してタイヤを装着した車両の燃費向上を図るため、タイヤ外側面の所定領域にタイヤ周方向およびタイヤ径方向に亘って多数の凹部と多数の凸部(突部)とを混在するように設けることを特徴とする空気入りタイヤが開示されている。   Conventionally, in Patent Document 1, in order to effectively reduce the air resistance around the tire and improve the fuel efficiency of a vehicle equipped with the tire, a large number of tire circumferential directions and tire radial directions are provided in a predetermined region of the tire outer surface. There is disclosed a pneumatic tire characterized in that a concave portion and a large number of convex portions (projections) are provided in a mixed manner.

また、従来、特許文献2では、発熱による耐久性の低下を防ぐため、タイヤ外側面(サイド部の外面)に攪拌部として多数の凹部(ディンプル)および凸部(ピンプル)を備える空気入りタイヤが開示されている。   Conventionally, in Patent Document 2, there is a pneumatic tire provided with a large number of concave portions (dimples) and convex portions (pimples) as a stirring portion on the outer surface of the tire (the outer surface of the side portion) in order to prevent a decrease in durability due to heat generation. It is disclosed.

特開2010−260376号公報JP 2010-260376 A 特開2010−30547号公報JP 2010-30547 A

上述した特許文献1および特許文献2に記載の空気入りタイヤは、凹部によって車両走行時のタイヤの周囲に乱流(空気の攪拌)を生じさせ、凸部によって乱流発生効果(攪拌効果)の向上を図る作用が示されている。すなわち、凹部は、乱流や空気の攪拌を生じさせるものとされ、凸部は、乱流や空気の攪拌を助長させるものとされている。   The pneumatic tires described in Patent Document 1 and Patent Document 2 described above cause turbulent flow (air agitation) around the tire when the vehicle travels by the recess, and the turbulent flow generation effect (stirring effect) is generated by the convex portion. The effect of improving is shown. In other words, the concave portion causes turbulent flow and air agitation, and the convex portion facilitates turbulent flow and air agitation.

ところで、発明者等の研究によれば、凸部や凹部は、これらの機能を効率よく得られるように配置することで、さらなる効果が得られることが発見された。   By the way, according to the research by the inventors, it has been found that further effects can be obtained by arranging the convex portions and the concave portions so as to obtain these functions efficiently.

この発明は、上記に鑑みてなされたものであって、タイヤ周りの空気流をさらに改善することのできる空気入りタイヤを提供することを目的とする。   This invention is made in view of the above, Comprising: It aims at providing the pneumatic tire which can further improve the airflow around a tire.

上述した課題を解決し、目的を達成するために、本発明の空気入りタイヤは、少なくとも一方のタイヤサイド部に、多数の凸部および多数の凹部を有する空気入りタイヤにおいて、前記凸部は、タイヤ径方向に沿って長手状の突条として形成され、かつタイヤ周方向で間隔を空けて配置されており、前記凹部は、各前記凸部の間の領域に設けられていることを特徴とする。   In order to solve the above-described problems and achieve the object, the pneumatic tire of the present invention is a pneumatic tire having a large number of convex portions and a large number of concave portions on at least one tire side portion, wherein the convex portions are: It is formed as a long ridge along the tire radial direction and is arranged at intervals in the tire circumferential direction, and the concave portion is provided in a region between the convex portions. To do.

この空気入りタイヤによれば、空気の流れは、タイヤサイド部の表面において、凸部を乗り越えるようにして通過する。凸部は、この空気の流れを乱流化させる。このため、凸部を有する部分に乱流境界層が発生し、通過する空気がタイヤサイド部から離れて広がることが抑えられるので、タイヤの空気抵抗が低減され、燃費を向上することができる。しかも、この空気入りタイヤによれば、各凸部の間の領域に凹部が設けられているため、当該凹部がタイヤサイド部のゴムボリュームを低減するとともに空気を乱流化させる。このため、ゴムボリュームの低減化によって熱の発生が抑制される。さらに、凹部による空気の乱流化によって、凸部の間を通過する空気がタイヤサイド部から離れて広がることがより抑えられることで、空気の流れによって放熱性が向上するため、タイヤ発熱や温度上昇が抑えられ、タイヤの耐久性を向上することができ、かつ凸部の間を通過する空気のタイヤサイド部の外側への広がりをより抑えることで、タイヤの空気抵抗がより低減され、燃費を向上することができる。このように、この空気入りタイヤによれば、タイヤサイド部に設けられた突条の凸部と、凸部の間の領域に設けられた凹部とで、それぞれタイヤ周りの空気流をさらに改善することができる。   According to this pneumatic tire, the air flow passes over the convex portion on the surface of the tire side portion. The convex portion makes the air flow turbulent. For this reason, since a turbulent boundary layer is generated in the portion having the convex portion and the passing air is prevented from spreading away from the tire side portion, the air resistance of the tire is reduced, and the fuel efficiency can be improved. Moreover, according to this pneumatic tire, since the recess is provided in the region between the protrusions, the recess reduces the rubber volume of the tire side portion and turbulent air. For this reason, heat generation is suppressed by reducing the rubber volume. Furthermore, the air turbulence by the recesses further suppresses the air passing between the protrusions from spreading away from the tire side part, and the heat dissipation is improved by the air flow, so the tire heat generation and temperature The rise is suppressed, the durability of the tire can be improved, and by suppressing the spread of the air passing between the convex parts to the outside of the tire side part, the air resistance of the tire is further reduced, and the fuel efficiency Can be improved. Thus, according to this pneumatic tire, the airflow around the tire is further improved by the protrusions of the ridges provided on the tire side part and the recesses provided in the region between the protrusions. be able to.

また、本発明の空気入りタイヤは、タイヤ周方向で隣接する各前記凸部の間の領域を、タイヤ周方向で3つの領域に分割して各前記凸部寄りの各領域D1と、前記各領域D1の間の領域D2とし、前記各領域D1と前記領域D2とに配置される前記凹部の割合を異ならせることを特徴とする。   In the pneumatic tire of the present invention, the region between the convex portions adjacent in the tire circumferential direction is divided into three regions in the tire circumferential direction, and the regions D1 near the convex portions, The region D2 is defined as a region D2 between the regions D1, and the ratios of the concave portions arranged in the regions D1 and the regions D2 are different.

この空気入りタイヤによれば、各領域D1と領域D2とに配置される凹部の割合を異ならせることで、タイヤ周りの空気流をさらに改善することができる。例えば、各領域D1での凹部の配置割合を、領域D2での凹部の配置割合よりも比較的大きくすれば、凸部付近で空気が滞留して溜まりやすい領域での放熱性がより向上する傾向となる。一方、例えば、領域D2での凹部の配置割合を、各領域D1での凹部の配置割合よりも比較的大きくすれば、凸部の間を通過する空気が、領域D2においてタイヤサイド部から離れて広がることがより抑えられ、タイヤの空気抵抗がより低減される傾向となる。このように、各領域D1と領域D2とに配置される凹部の割合を異ならせることで、放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果をより顕著に得ることができる。   According to this pneumatic tire, the air flow around the tire can be further improved by changing the ratio of the concave portions arranged in each of the regions D1 and D2. For example, if the arrangement ratio of the recesses in each area D1 is relatively larger than the arrangement ratio of the depressions in the area D2, the heat dissipation in the area where the air tends to stay and collect in the vicinity of the projection tends to be improved. It becomes. On the other hand, for example, if the arrangement ratio of the concave portions in the region D2 is made relatively larger than the arrangement ratio of the concave portions in each region D1, the air passing between the convex portions is separated from the tire side portion in the region D2. Spreading is further suppressed, and the air resistance of the tire tends to be further reduced. Thus, the effect of improving heat dissipation or reducing the air resistance of the tire can be obtained more remarkably by making the ratio of the concave portions arranged in each region D1 and region D2 different.

また、本発明の空気入りタイヤは、前記各領域D1に配置される前記凹部の割合を等しくし、かつ前記各領域D1に配置される前記凹部の割合を前記領域D2よりも大きくすることを特徴とする。   The pneumatic tire of the present invention is characterized in that the ratio of the recesses arranged in each region D1 is made equal and the ratio of the recesses arranged in each region D1 is made larger than that of the region D2. And

この空気入りタイヤによれば、凸部付近で空気が滞留して溜まりやすい各領域D1での放熱性がより向上する傾向となるため、放熱性を向上させる効果をより顕著に得ることができる。各領域D1に配置される凹部の割合を等しくすることは、車両装着時でのタイヤ回転方向が指定されていない空気入りタイヤにおいて、タイヤ回転方向がどちらであっても、放熱性を向上させる効果を同等に得ることが可能となるうえで好ましい。   According to this pneumatic tire, since the heat dissipation in each region D1 where air tends to stay and accumulate near the convex portion tends to be further improved, the effect of improving the heat dissipation can be obtained more remarkably. Equalizing the ratio of the recesses disposed in each region D1 is an effect of improving heat dissipation in a pneumatic tire in which the tire rotation direction at the time of vehicle mounting is not specified regardless of the tire rotation direction. Is preferable because it can be obtained equally.

また、本発明の空気入りタイヤは、各前記凸部に近づくに従って前記凹部の配置間隔を小さくすることを特徴とする。   Moreover, the pneumatic tire according to the present invention is characterized in that the interval between the concave portions is reduced as approaching each convex portion.

この空気入りタイヤによれば、凸部に近づくほど凹部の配置間隔が小さくなることで、空気が滞留して溜まりやすい凸部付近での放熱性がさらに向上する傾向となるため、放熱性を向上させる効果をより顕著に得ることができる。   According to this pneumatic tire, the closer to the convex portion, the smaller the interval between the concave portions, so that the heat dissipation near the convex portion where air tends to stay and collect tends to be further improved. Effect can be obtained more remarkably.

また、本発明の空気入りタイヤは、前記各領域D1に配置される前記凹部の割合を等しくし、かつ前記領域D2に配置される前記凹部の割合を前記各領域D1よりも大きくすることを特徴とする。   Further, the pneumatic tire of the present invention is characterized in that the ratio of the recesses arranged in each of the regions D1 is made equal and the ratio of the recesses arranged in the region D2 is made larger than each of the regions D1. And

この空気入りタイヤによれば、凸部の間を通過する空気が、領域D2においてタイヤサイド部から離れて広がることがより抑えられ、タイヤの空気抵抗がより低減される傾向となるため、タイヤの空気抵抗を低減する効果をより顕著に得ることができる。各領域D1に配置される凹部の割合を等しくすることは、車両装着時でのタイヤ回転方向が指定されていない空気入りタイヤにおいて、タイヤ回転方向がどちらであっても、放熱性を向上させる効果を同等に得ることが可能となるうえで好ましい。   According to this pneumatic tire, the air passing between the convex portions is further suppressed from spreading away from the tire side portion in the region D2, and the air resistance of the tire tends to be further reduced. The effect of reducing the air resistance can be obtained more remarkably. Equalizing the ratio of the recesses disposed in each region D1 is an effect of improving heat dissipation in a pneumatic tire in which the tire rotation direction at the time of vehicle mounting is not specified regardless of the tire rotation direction. Is preferable because it can be obtained equally.

また、本発明の空気入りタイヤは、各前記凸部から遠ざかるに従って前記凹部の配置間隔を小さくすることを特徴とする。   The pneumatic tire of the present invention is characterized in that the interval between the concave portions is reduced as the distance from the convex portions increases.

この空気入りタイヤによれば、凸部から遠ざかるほど凹部の配置間隔が小さくなることで、空気の流れがタイヤサイド部から離れて広がることがさらに抑えられ、タイヤの空気抵抗がさらに低減される傾向となるため、タイヤの空気抵抗を低減する効果をより顕著に得ることができる。   According to this pneumatic tire, the distance between the concave portions decreases as the distance from the convex portion decreases, so that the air flow is further suppressed from spreading away from the tire side portion, and the air resistance of the tire tends to be further reduced. Therefore, the effect of reducing the air resistance of the tire can be obtained more significantly.

また、本発明の空気入りタイヤは、車両装着時でのタイヤ回転方向が指定されており、タイヤ回転方向前側の前記凸部寄りの前記領域D1に配置される前記凹部の割合をA、前記領域D2に配置される前記凹部の割合をB、タイヤ回転方向後側の前記凸部寄りの前記領域D1に配置される前記凹部の割合をCとした場合、A>B>Cの関係とすることを特徴とする。   In the pneumatic tire of the present invention, the tire rotation direction at the time of vehicle mounting is specified, and the ratio of the recesses arranged in the region D1 near the projections on the front side in the tire rotation direction is A, the region When the ratio of the recesses disposed in D2 is B and the ratio of the recesses disposed in the region D1 near the protrusions on the rear side in the tire rotation direction is C, the relation of A> B> C is established. It is characterized by.

この空気入りタイヤによれば、タイヤの回転時の空気の流れは、タイヤ回転方向前側からタイヤ回転方向後側に流れる。この場合、タイヤ回転方向前側の凸部寄りの領域D1では、凸部のタイヤ回転方向後側に位置するため、凸部を乗り越えた直後の空気の流れが滞留して溜まりやすく、空力的に凹部の効果が比較的小さい。そこで、このタイヤ回転方向前側の凸部寄りの領域D1での凹部の配置割合Aを他(B,C)よりも増加させることで、タイヤ回転方向前側の凸部寄りの領域D1においてタイヤサイド部の表面に空気の流れを引き込んで、凹部による放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果を得やすい傾向とする。また、タイヤ回転方向後側になるに従って凹部の配置割合B,Cを減少させることで、タイヤ回転方向後側の凸部に近づくに従って空気の流れがタイヤサイド部から剥離しやすくなり、タイヤ回転方向後側の凸部を空気の流れが乗り越えやすくなるため、タイヤの空気抵抗を低減するとともに、排熱しやすくして放熱性を向上させることができる。   According to this pneumatic tire, the air flow during rotation of the tire flows from the front side in the tire rotation direction to the rear side in the tire rotation direction. In this case, in the region D1 closer to the convex portion on the front side in the tire rotation direction, the air flow immediately after overcoming the convex portion tends to stay and accumulate, and the concave portion is aerodynamically depressed because the convex portion is located on the rear side in the tire rotational direction. The effect of is relatively small. Therefore, by increasing the arrangement ratio A of the recesses in the region D1 closer to the convex portion on the front side in the tire rotation direction than the other (B, C), the tire side portion in the region D1 closer to the convex portion on the front side in the tire rotational direction. The air flow is drawn into the surface of the tire and the effect of improving the heat dissipation by the recess or the effect of reducing the air resistance of the tire is likely to be obtained. Further, by reducing the arrangement ratios B and C of the recesses toward the rear side in the tire rotation direction, the air flow becomes easier to separate from the tire side portion as the convex portion on the rear side in the tire rotation direction is approached. Since it becomes easy for the air flow to get over the rear convex portion, the air resistance of the tire can be reduced and the heat can be easily exhausted to improve the heat dissipation.

また、本発明の空気入りタイヤは、タイヤ回転方向前側の前記凸部寄りの前記領域D1に配置される前記凹部の間隔を前記凸部の長手方向で一定にすることを特徴とする。   The pneumatic tire of the present invention is characterized in that the interval between the concave portions arranged in the region D1 near the convex portion on the front side in the tire rotation direction is made constant in the longitudinal direction of the convex portion.

車両装着時でのタイヤ回転方向が指定された場合、上述したように、タイヤ回転方向前側の凸部寄りの領域D1では、凸部のタイヤ回転方向後側に位置するため、凸部を乗り越えた直後の空気の流れが滞留して溜まりやすく、空力的に凹部の効果が比較的小さい。そこで、タイヤ回転方向前側の凸部寄りの領域D1に配置される凹部の間隔を凸部の長手方向で一定にすることで、タイヤ回転方向前側の凸部寄りの領域D1において、凸部の長手方向に沿ってタイヤサイド部の表面に空気の流れを引き込んで、凹部による放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果をより得やすい傾向とすることができる。   When the tire rotation direction when the vehicle is mounted is specified, as described above, the region D1 near the convex portion on the front side of the tire rotational direction is located on the rear side of the convex portion in the tire rotational direction. Immediately after the flow of air stays and collects easily, the effect of the recess is relatively small aerodynamically. Therefore, by making the interval between the concave portions arranged in the region D1 near the convex portion on the front side in the tire rotation direction constant in the longitudinal direction of the convex portion, the length of the convex portion in the region D1 near the convex portion on the front side in the tire rotational direction. The air flow is drawn into the surface of the tire side portion along the direction, and the effect of improving the heat dissipation by the recess or the effect of reducing the air resistance of the tire can be more easily obtained.

また、本発明の空気入りタイヤは、タイヤ回転方向後側に近づくに従い、前記領域D2の前記凹部の配置間隔を大きくすることを特徴とする。   Moreover, the pneumatic tire of the present invention is characterized in that the interval between the concave portions in the region D2 is increased as it approaches the rear side in the tire rotation direction.

この空気入りタイヤによれば、タイヤ回転方向後側の凸部に近づくに従って空気の流れがタイヤサイド部から剥離しやすくなり、タイヤ回転方向後側の凸部を空気の流れが乗り越えやすくなるため、タイヤの空気抵抗を低減するとともに、排熱しやすくして放熱性を向上させる効果をより得やすい傾向とすることができる。   According to this pneumatic tire, the air flow tends to peel from the tire side portion as it approaches the convex portion on the rear side in the tire rotation direction, and the air flow easily gets over the convex portion on the rear side in the tire rotation direction. While reducing the air resistance of a tire, it can be set as the tendency which is easy to obtain the effect of making it easy to exhaust heat and improving heat dissipation.

また、本発明の空気入りタイヤは、タイヤ回転方向後側の前記凸部寄りの前記領域D1に前記凹部を配置しないことを特徴とする。   The pneumatic tire according to the present invention is characterized in that the concave portion is not disposed in the region D1 near the convex portion on the rear side in the tire rotation direction.

この空気入りタイヤによれば、タイヤ回転方向後側の凸部寄りの領域D1に凹部を配置しないこと、すなわち配置割合Cを0とすることで、タイヤ回転方向後側の凸部に近づくに従って空気の流れがタイヤサイド部から剥離しやすくなり、タイヤ回転方向後側の凸部を空気の流れが乗り越えやすくなるため、タイヤの空気抵抗を低減するとともに、排熱しやすくして放熱性を向上させる効果をより得やすい傾向とすることができる。   According to this pneumatic tire, the concave portion is not arranged in the region D1 near the convex portion on the rear side in the tire rotation direction, that is, the arrangement ratio C is set to 0, so that the air approaches the convex portion on the rear side in the tire rotational direction. The air flow is easy to peel off from the tire side part, and the air flow is easy to get over the convex part on the rear side in the tire rotation direction, so that the air resistance of the tire is reduced and the heat dissipation is improved by improving the heat dissipation Can be more easily obtained.

また、本発明の空気入りタイヤは、タイヤ回転方向前側の前記凸部寄りの前記領域D1に配置される前記凹部の開口割合Aが、前記各領域D1および前記領域D2全ての前記凹部に対して20[%]以上50[%]以下であり、前記領域D2に配置される前記凹部の開口割合Bが、前記各領域D1および前記領域D2全ての前記凹部に対して5[%]以上30[%]以下であることを特徴とする。   Further, in the pneumatic tire according to the present invention, the opening ratio A of the recesses arranged in the region D1 near the projections on the front side in the tire rotation direction is such that the recesses in all the regions D1 and the regions D2 are all. 20 [%] or more and 50 [%] or less, and the opening ratio B of the recesses arranged in the region D2 is 5 [%] or more and 30 [30] with respect to all the recesses in each of the regions D1 and the regions D2. %] Or less.

この空気入りタイヤによれば、タイヤ回転方向前側の凸部寄りの領域D1に配置される凹部の開口割合Aが、各領域D1および領域D2全て凹部に対して20[%]以上50[%]以下であることが、タイヤ回転方向前側の凸部寄りの領域D1において、タイヤサイド部の表面に空気の流れを引き込んで、凹部による放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果を得やすい傾向とするうえで好ましい。また、領域D2に配置される凹部の開口割合Bが、各領域D1および領域D2全ての凹部に対して5[%]以上30[%]以下であることが、タイヤ回転方向後側の凸部に近づくに従って空気の流れがタイヤサイド部から剥離しやすくなり、タイヤ回転方向後側の凸部を空気の流れが乗り越えやすくなるため、タイヤの空気抵抗を低減するとともに、排熱しやすくして放熱性を向上させる効果を得るうえで好ましい。   According to this pneumatic tire, the opening ratio A of the concave portions disposed in the region D1 near the convex portion on the front side in the tire rotation direction is 20% or more and 50 [%] in all the regions D1 and D2 with respect to the concave portions. The following is an effect of drawing air flow into the surface of the tire side portion in the region D1 near the convex portion on the front side of the tire rotation direction to improve the heat dissipation by the concave portion, or reducing the air resistance of the tire. It is preferable when making it easy to obtain. Moreover, it is convex part of the tire rotation direction back side that the opening ratio B of the recessed part arrange | positioned at the area | region D2 is 5 [%] or more and 30 [%] or less with respect to all the recessed parts of each area | region D1 and area | region D2. As the airflow gets closer to the tire, the air flow is easier to peel off from the tire side, and the air flow easily gets over the convex part on the rear side of the tire rotation direction, reducing the air resistance of the tire and making it easier to exhaust heat and heat dissipation It is preferable for obtaining the effect of improving the.

また、本発明の空気入りタイヤは、前記凹部は、タイヤ径方向内側に向かって容積を大きく形成されていることを特徴とする。   Moreover, the pneumatic tire of the present invention is characterized in that the concave portion is formed with a larger volume toward the inner side in the tire radial direction.

タイヤサイド部は、タイヤ径方向内側に近づくに連れて回転速度が相対的に遅くなるため、その部分により近い側の凹部の容積を大きくすることで、タイヤ径方向内側において回転速度が遅くても、凸部の間を通過する空気のタイヤサイド部の外側への広がりをより抑えることで、タイヤ発熱や温度上昇が抑えられる傾向となり、かつタイヤの空気抵抗がより低減される傾向となる。また、車両装着時でのタイヤ回転方向が指定される空気入りタイヤにおいては、タイヤ径方向内側において回転速度が遅くても、タイヤ回転方向前側の凸部寄りの領域D1において、タイヤサイド部の表面に空気の流れを引き込んで、凹部による放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果が得やすい傾向となる。   Since the rotational speed of the tire side portion becomes relatively slow as it approaches the inner side in the tire radial direction, increasing the volume of the concave portion closer to the portion makes it possible to reduce the rotational speed on the inner side in the tire radial direction. Further, by suppressing the spread of the air passing between the convex portions to the outside of the tire side portion, the tire heat generation and the temperature rise tend to be suppressed, and the air resistance of the tire tends to be further reduced. Further, in a pneumatic tire in which the tire rotation direction at the time of vehicle mounting is specified, the surface of the tire side portion in the region D1 near the convex portion on the front side in the tire rotation direction even if the rotation speed is slow on the inner side in the tire radial direction. It tends to be easy to obtain an effect of improving the heat dissipation by the recess or reducing the air resistance of the tire by drawing the air flow.

また、本発明の空気入りタイヤは、前記凸部の長手方向寸法が5[mm]以上であることを特徴とする。   Moreover, the pneumatic tire of the present invention is characterized in that a longitudinal dimension of the convex portion is 5 [mm] or more.

凸部の長手方向寸法が5[mm]未満であると、当該凸部による空気を乱流化させる作用が得難くなる。このため、凸部の長手方向寸法を5[mm]以上とすることが、空気を乱流化させ、タイヤの空気抵抗を低減する効果を顕著に得ることができる。   When the longitudinal dimension of the projection is less than 5 [mm], it is difficult to obtain an effect of turbulent air flow by the projection. For this reason, when the longitudinal dimension of the convex portion is 5 [mm] or more, the effect of causing turbulent air flow and reducing the air resistance of the tire can be significantly obtained.

また、本発明の空気入りタイヤは、前記凸部の突出高さが0.5[mm]以上10.0[mm]以下であることを特徴とする。   In the pneumatic tire of the present invention, the protruding height of the convex portion is 0.5 [mm] or more and 10.0 [mm] or less.

凸部の高さが0.5[mm]未満の場合、凸部が空気に接触する範囲が小さいことから、空気の流れが乱流化し難く、タイヤの空気抵抗の低減効果が小さくなる。また、凸部の高さが10.0[mm]を超える場合、凸部が空気に接触する範囲が大きいことから、凸部の後方での空気の流れが膨らむ傾向となり、タイヤの空気抵抗の低減効果が小さくなる。この空気入りタイヤによれば、凸部が空気に適宜接触することで、空気の流れが乱流化し、凸部の後方での空気の膨らみが減少するため、タイヤの空気抵抗を低減する効果を顕著に得ることができる。   When the height of the convex portion is less than 0.5 [mm], since the range in which the convex portion contacts the air is small, the air flow is hardly turbulent, and the effect of reducing the tire air resistance is small. In addition, when the height of the convex portion exceeds 10.0 [mm], the range in which the convex portion comes into contact with air is large, so that the air flow behind the convex portion tends to swell, and the air resistance of the tire Reduction effect is reduced. According to this pneumatic tire, since the convex portion appropriately contacts the air, the air flow becomes turbulent, and the swelling of the air behind the convex portion is reduced. Remarkably can be obtained.

また、本発明の空気入りタイヤは、前記凸部の断面形状が、頂点を有して底面側に漸次広がることを特徴とする。   The pneumatic tire according to the present invention is characterized in that the cross-sectional shape of the convex portion has a vertex and gradually spreads toward the bottom surface side.

この空気入りタイヤによれば、凸部の長手方向に直交する断面形状が三角形状に近似することとなり、これにより、凸部の体積が矩形断面などと比較して少なくなることから、凸部のゴムボリュームが低減化されてタイヤ重量の増加を抑えるため、燃費をより向上することができる。   According to this pneumatic tire, since the cross-sectional shape orthogonal to the longitudinal direction of the convex portion approximates a triangular shape, the volume of the convex portion is reduced compared to a rectangular cross section, etc. Since the rubber volume is reduced and the increase in tire weight is suppressed, fuel efficiency can be further improved.

また、本発明の空気入りタイヤは、前記凸部の断面形状が、少なくとも1つの円弧を有することを特徴とする。   The pneumatic tire of the present invention is characterized in that the cross-sectional shape of the convex portion has at least one arc.

この空気入りタイヤによれば、例えば、凸部の断面形状が円弧で膨らむように形成されていたり、凸部の断面形状が円弧で凹むように形成されていたりすることで、凸部の体積が矩形断面などと比較して少なくなることから、凸部のゴムボリュームが低減化されてタイヤ重量の増加を抑えるため、燃費をより向上することができる。   According to this pneumatic tire, for example, the convex section is formed so that the cross-sectional shape swells in an arc, or the convex section has a cross-sectional shape that is concave in an arc, so that the volume of the convex section is increased. Since it is smaller than a rectangular cross section, the rubber volume of the convex portion is reduced and the increase in tire weight is suppressed, so that fuel efficiency can be further improved.

また、本発明の空気入りタイヤは、前記凹部の深さが0.5[mm]以上5.0[mm]以下であることを特徴とする。   In the pneumatic tire according to the present invention, the depth of the recess is 0.5 [mm] or more and 5.0 [mm] or less.

凹部の深さが0.5[mm]未満の場合、凹部の内面が空気に接触する範囲が小さいことから、空気の流れが乱流化し難くなる。また、凹部の深さが5.0[mm]を超える場合、凹部の内面が空気に接触する範囲が大きすぎて、空気抵抗が増加する傾向となるうえ、凹部を有する領域の元々のゴムボリュームが増大するため、タイヤ重量の増大を招く。この空気入りタイヤによれば、凹部の内面が空気に適宜接触することで、空気の流れが適宜乱流化するため、タイヤの空気抵抗を低減する効果や、放熱性を向上させる効果を顕著に得ることができる。   When the depth of the recess is less than 0.5 [mm], the range in which the inner surface of the recess contacts the air is small, and the air flow is difficult to be turbulent. Further, when the depth of the recess exceeds 5.0 [mm], the range in which the inner surface of the recess contacts the air is too large, and the air resistance tends to increase, and the original rubber volume in the region having the recess Increases the tire weight. According to this pneumatic tire, the air flow is appropriately turbulent when the inner surface of the concave portion comes into contact with air as appropriate, so that the effect of reducing the air resistance of the tire and the effect of improving heat dissipation are remarkable. Can be obtained.

本発明に係る空気入りタイヤは、タイヤ周りの空気流をさらに改善することができる。   The pneumatic tire according to the present invention can further improve the air flow around the tire.

図1は、本発明の実施の形態に係る空気入りタイヤの子午断面図である。FIG. 1 is a meridional sectional view of a pneumatic tire according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た外観図である。FIG. 2 is an external view of the pneumatic tire according to the embodiment of the present invention viewed from the tire width direction. 図3は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 3 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図4は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 4 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図5は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 5 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図6は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 6 is a partial external view of the pneumatic tire according to the embodiment of the present invention viewed from the tire width direction. 図7は、本発明の実施の形態に係る空気入りタイヤのタイヤサイド部の一部をタイヤ周方向で切断した断面図である。FIG. 7 is a cross-sectional view of a part of the tire side portion of the pneumatic tire according to the embodiment of the present invention cut in the tire circumferential direction. 図8は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 8 is a partial external view of the pneumatic tire according to the embodiment of the present invention viewed from the tire width direction. 図9は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 9 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図10は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 10 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図11は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 11 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図12は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 12 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図13は、本発明の実施の形態に係る空気入りタイヤのタイヤサイド部の一部をタイヤ周方向で切断した断面図である。FIG. 13 is a cross-sectional view of a part of the tire side portion of the pneumatic tire according to the embodiment of the present invention cut in the tire circumferential direction. 図14は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 14 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図15は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 15 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図16は、本発明の実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。FIG. 16 is a partial external view of the pneumatic tire according to the embodiment of the present invention as viewed from the tire width direction. 図17は、凸部の断面図である。FIG. 17 is a cross-sectional view of a convex portion. 図18は、凸部の断面図である。FIG. 18 is a cross-sectional view of a convex portion. 図19は、本発明の実施例に係る空気入りタイヤの性能試験の結果を示す図表である。FIG. 19 is a chart showing the results of the performance test of the pneumatic tire according to the example of the present invention. 図20は、本発明の実施例に係る空気入りタイヤの性能試験の結果を示す図表である。FIG. 20 is a chart showing the results of the performance test of the pneumatic tire according to the example of the present invention.

以下に、本発明の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。   Embodiments of the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. The constituent elements of this embodiment include those that can be easily replaced by those skilled in the art or those that are substantially the same. In addition, a plurality of modifications described in this embodiment can be arbitrarily combined within a range obvious to those skilled in the art.

図1は、本実施の形態に係る空気入りタイヤの子午断面図である。以下の説明において、タイヤ径方向とは、空気入りタイヤ1の回転軸(図示せず)と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向において回転軸から離れる側をいう。また、タイヤ周方向とは、前記回転軸を中心軸とする周り方向をいう。また、タイヤ幅方向とは、前記回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面(タイヤ赤道線)CLに向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。タイヤ赤道面CLとは、空気入りタイヤ1の回転軸に直交するとともに、空気入りタイヤ1のタイヤ幅の中心を通る平面である。タイヤ幅は、タイヤ幅方向の外側に位置する部分同士のタイヤ幅方向における幅、つまりタイヤ幅方向においてタイヤ赤道面CLから最も離れている部分間の距離である。タイヤ赤道線とは、タイヤ赤道面CL上にあって空気入りタイヤ1のタイヤ周方向に沿う線をいう。本実施の形態では、タイヤ赤道線にタイヤ赤道面と同じ符号「CL」を付す。   FIG. 1 is a meridional sectional view of a pneumatic tire according to the present embodiment. In the following description, the tire radial direction refers to a direction orthogonal to the rotation axis (not shown) of the pneumatic tire 1, and the tire radial direction inner side refers to the side toward the rotation axis in the tire radial direction, the tire radial direction outer side. Means the side away from the rotation axis in the tire radial direction. Further, the tire circumferential direction refers to a direction around the rotation axis as a central axis. Further, the tire width direction means a direction parallel to the rotation axis, the inner side in the tire width direction means the side toward the tire equator plane (tire equator line) CL in the tire width direction, and the outer side in the tire width direction means the tire width direction. Is the side away from the tire equatorial plane CL. The tire equatorial plane CL is a plane that is orthogonal to the rotation axis of the pneumatic tire 1 and passes through the center of the tire width of the pneumatic tire 1. The tire width is the width in the tire width direction between the portions located outside in the tire width direction, that is, the distance between the portions farthest from the tire equatorial plane CL in the tire width direction. The tire equator line is a line along the tire circumferential direction of the pneumatic tire 1 on the tire equator plane CL. In the present embodiment, the same sign “CL” as that of the tire equator plane is attached to the tire equator line.

本実施の形態の空気入りタイヤ1は、図1に示すようにトレッド部2と、その両側のショルダー部3と、各ショルダー部3から順次連続するサイドウォール部4およびビード部5とを有している。また、この空気入りタイヤ1は、カーカス層6と、ベルト層7と、ベルト補強層8とを備えている。   As shown in FIG. 1, the pneumatic tire 1 according to the present embodiment includes a tread portion 2, shoulder portions 3 on both sides thereof, and a sidewall portion 4 and a bead portion 5 that are sequentially continuous from the shoulder portions 3. ing. The pneumatic tire 1 includes a carcass layer 6, a belt layer 7, and a belt reinforcing layer 8.

トレッド部2は、ゴム材(トレッドゴム)からなり、空気入りタイヤ1のタイヤ径方向の最も外側で露出し、その表面が空気入りタイヤ1の輪郭となる。トレッド部2の外周表面、つまり、走行時に路面と接触する踏面には、トレッド面21が形成されている。トレッド面21は、タイヤ周方向に沿って延び、タイヤ赤道線CLと平行なストレート主溝である複数(本実施の形態では4本)の主溝22が設けられている。そして、トレッド面21は、これら複数の主溝22によりタイヤ周方向に沿って延び、タイヤ赤道線CLと平行なリブ状の陸部23が複数形成されている。また、図には明示しないが、トレッド面21は、各陸部23において、主溝22に交差するラグ溝が設けられている。陸部23は、ラグ溝によってタイヤ周方向で複数に分割されている。また、ラグ溝は、トレッド部2のタイヤ幅方向最外側でタイヤ幅方向外側に開口して形成されている。なお、ラグ溝は、主溝22に連通している形態、または主溝22に連通していない形態の何れであってもよい。   The tread portion 2 is made of a rubber material (tread rubber), is exposed at the outermost side in the tire radial direction of the pneumatic tire 1, and the surface thereof is the contour of the pneumatic tire 1. A tread surface 21 is formed on the outer peripheral surface of the tread portion 2, that is, on the tread surface that contacts the road surface during traveling. The tread surface 21 is provided with a plurality of (four in this embodiment) main grooves 22 that are straight main grooves extending along the tire circumferential direction and parallel to the tire equator line CL. The tread surface 21 extends along the tire circumferential direction by the plurality of main grooves 22, and a plurality of rib-like land portions 23 parallel to the tire equator line CL are formed. Although not shown in the figure, the tread surface 21 is provided with a lug groove that intersects the main groove 22 in each land portion 23. The land portion 23 is divided into a plurality of portions in the tire circumferential direction by lug grooves. Further, the lug groove is formed to open to the outer side in the tire width direction on the outermost side in the tire width direction of the tread portion 2. Note that the lug groove may have either a form communicating with the main groove 22 or a form not communicating with the main groove 22.

ショルダー部3は、トレッド部2のタイヤ幅方向両外側の部位である。また、サイドウォール部4は、空気入りタイヤ1におけるタイヤ幅方向の最も外側に露出したものである。また、ビード部5は、ビードコア51とビードフィラー52とを有する。ビードコア51は、スチールワイヤであるビードワイヤをリング状に巻くことにより形成されている。ビードフィラー52は、カーカス層6のタイヤ幅方向端部がビードコア51の位置で折り返されることにより形成された空間に配置されるゴム材である。   The shoulder portion 3 is a portion on both outer sides in the tire width direction of the tread portion 2. Further, the sidewall portion 4 is exposed at the outermost side in the tire width direction of the pneumatic tire 1. The bead unit 5 includes a bead core 51 and a bead filler 52. The bead core 51 is formed by winding a bead wire, which is a steel wire, in a ring shape. The bead filler 52 is a rubber material disposed in a space formed by folding the end portion in the tire width direction of the carcass layer 6 at the position of the bead core 51.

カーカス層6は、各タイヤ幅方向端部が、一対のビードコア51でタイヤ幅方向内側からタイヤ幅方向外側に折り返され、かつタイヤ周方向にトロイド状に掛け回されてタイヤの骨格を構成するものである。このカーカス層6は、タイヤ周方向に対する角度がタイヤ子午線方向に沿いつつタイヤ周方向にある角度を持って複数並設されたカーカスコード(図示せず)が、コートゴムで被覆されたものである。カーカスコードは、有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。このカーカス層6は、少なくとも1層で設けられている。   The carcass layer 6 is configured such that each tire width direction end portion is folded back from the tire width direction inner side to the tire width direction outer side by a pair of bead cores 51 and is wound around in a toroidal shape in the tire circumferential direction. It is. The carcass layer 6 is formed by coating a plurality of carcass cords (not shown) arranged in parallel at an angle in the tire circumferential direction with an angle with respect to the tire circumferential direction being along the tire meridian direction. The carcass cord is made of organic fibers (polyester, rayon, nylon, etc.). The carcass layer 6 is provided as at least one layer.

ベルト層7は、少なくとも2層のベルト71,72を積層した多層構造をなし、トレッド部2においてカーカス層6の外周であるタイヤ径方向外側に配置され、カーカス層6をタイヤ周方向に覆うものである。ベルト71,72は、タイヤ周方向に対して所定の角度(例えば、20度〜30度)で複数並設されたコード(図示せず)が、コートゴムで被覆されたものである。コードは、スチールまたは有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。また、重なり合うベルト71,72は、互いのコードが交差するように配置されている。   The belt layer 7 has a multilayer structure in which at least two belts 71 and 72 are laminated, and is disposed on the outer side in the tire radial direction which is the outer periphery of the carcass layer 6 in the tread portion 2 and covers the carcass layer 6 in the tire circumferential direction. It is. The belts 71 and 72 are made by coating a plurality of cords (not shown) arranged in parallel at a predetermined angle (for example, 20 degrees to 30 degrees) with a coat rubber with respect to the tire circumferential direction. The cord is made of steel or organic fiber (polyester, rayon, nylon, etc.). Further, the overlapping belts 71 and 72 are arranged so that the cords intersect each other.

ベルト補強層8は、ベルト層7の外周であるタイヤ径方向外側に配置されてベルト層7をタイヤ周方向に覆うものである。ベルト補強層8は、タイヤ周方向に略平行(±5度)でタイヤ幅方向に複数並設されたコード(図示せず)がコートゴムで被覆されたものである。コードは、スチールまたは有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。図1で示すベルト補強層8は、ベルト層7のタイヤ幅方向端部を覆うように配置されている。ベルト補強層8の構成は、上記に限らず、図には明示しないが、ベルト層7全体を覆うように配置された構成、または、例えば2層の補強層を有し、タイヤ径方向内側の補強層がベルト層7よりもタイヤ幅方向で大きく形成されてベルト層7全体を覆うように配置され、タイヤ径方向外側の補強層がベルト層7のタイヤ幅方向端部のみを覆うように配置されている構成、あるいは、例えば2層の補強層を有し、各補強層がベルト層7のタイヤ幅方向端部のみを覆うように配置されている構成であってもよい。すなわち、ベルト補強層8は、ベルト層7の少なくともタイヤ幅方向端部に重なるものである。また、ベルト補強層8は、帯状(例えば幅10[mm])のストリップ材をタイヤ周方向に巻き付けて設けられている。   The belt reinforcing layer 8 is disposed on the outer side in the tire radial direction which is the outer periphery of the belt layer 7 and covers the belt layer 7 in the tire circumferential direction. The belt reinforcing layer 8 is formed by coating a plurality of cords (not shown) arranged substantially parallel (± 5 degrees) in the tire circumferential direction and in the tire width direction with a coat rubber. The cord is made of steel or organic fiber (polyester, rayon, nylon, etc.). The belt reinforcing layer 8 shown in FIG. 1 is disposed so as to cover the end of the belt layer 7 in the tire width direction. The configuration of the belt reinforcing layer 8 is not limited to the above, and is not clearly shown in the figure. However, the belt reinforcing layer 8 is configured to cover the entire belt layer 7 or has two reinforcing layers, for example, on the inner side in the tire radial direction. The reinforcing layer is formed so as to be larger in the tire width direction than the belt layer 7 and is disposed so as to cover the entire belt layer 7, and the reinforcing layer on the outer side in the tire radial direction is disposed so as to cover only the end portion in the tire width direction of the belt layer 7. Alternatively, for example, a configuration in which two reinforcing layers are provided and each reinforcing layer is disposed so as to cover only the end portion in the tire width direction of the belt layer 7 may be employed. That is, the belt reinforcing layer 8 overlaps at least the end portion in the tire width direction of the belt layer 7. The belt reinforcing layer 8 is provided by winding a strip-shaped strip material (for example, a width of 10 [mm]) in the tire circumferential direction.

図2は、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た外観図であり、図3〜図6は、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である。上述のように構成された空気入りタイヤ1は、図2に示すように、少なくとも一方のタイヤサイド部Sにおいて、当該タイヤサイド部Sの面よりタイヤの外側に突出する凸部9が多数設けられ、かつタイヤサイド部Sの面よりタイヤの内側に窪む凹部10が多数設けられている。   FIG. 2 is an external view of the pneumatic tire according to the present embodiment as viewed from the tire width direction. FIGS. 3 to 6 are partial views of the pneumatic tire according to the present embodiment as viewed from the tire width direction. It is an external view. As shown in FIG. 2, the pneumatic tire 1 configured as described above includes at least one tire side portion S provided with a plurality of convex portions 9 that protrude outward from the surface of the tire side portion S. In addition, a large number of recesses 10 that are recessed from the surface of the tire side portion S to the inside of the tire are provided.

ここで、タイヤサイド部Sとは、図1において、トレッド部2の接地端Tからタイヤ幅方向外側であってリムチェックラインLからタイヤ径方向外側の範囲で一様に連続する面をいう。また、接地端Tとは、空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧を充填するとともに正規荷重の70%をかけたとき、この空気入りタイヤ1のトレッド部2のトレッド面21が路面と接地する領域において、タイヤ幅方向の両最外端をいい、タイヤ周方向に連続する。また、リムチェックラインLとは、タイヤのリム組みが正常に行われているか否かを確認するためのラインであり、一般には、ビード部5の表側面において、リムフランジよりもタイヤ径方向外側であってリムフランジ近傍となる部分に沿ってタイヤ周方向に連続する環状の凸線として示されている。   Here, the tire side portion S in FIG. 1 refers to a surface that is uniformly continuous from the ground contact end T of the tread portion 2 to the outer side in the tire width direction and from the rim check line L to the outer side in the tire radial direction. Further, the ground contact T is a tread surface 21 of the tread portion 2 of the pneumatic tire 1 when the pneumatic tire 1 is assembled on a regular rim and filled with a regular internal pressure and 70% of the regular load is applied. In the region where the road contacts the road surface, it means both outermost ends in the tire width direction and continues in the tire circumferential direction. The rim check line L is a line for confirming whether or not the tire rim is assembled normally. Generally, on the front side surface of the bead portion 5, the rim check line L is outside the rim flange in the tire radial direction. However, it is shown as an annular convex line that continues in the tire circumferential direction along the portion that is in the vicinity of the rim flange.

なお、正規リムとは、JATMAで規定する「標準リム」、TRAで規定する「Design Rim」、あるいは、ETRTOで規定する「Measuring Rim」である。また、正規内圧とは、JATMAで規定する「最高空気圧」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「INFLATION PRESSURES」である。また、正規荷重とは、JATMAで規定する「最大負荷能力」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「LOAD CAPACITY」である。   The regular rim is “standard rim” defined by JATMA, “Design Rim” defined by TRA, or “Measuring Rim” defined by ETRTO. The normal internal pressure is “maximum air pressure” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO. The normal load is “maximum load capacity” defined by JATMA, a maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “LOAD CAPACITY” defined by ETRTO.

凸部9は、図2に示すように、タイヤサイド部Sの範囲において、タイヤ径方向に長手状に形成されたゴム材(タイヤサイド部Sを構成するゴム材であっても、当該ゴム材とは異なるゴム材であってもよい)からなる突条として形成され、かつタイヤ周方向に間隔をおいて複数配置されている。凸部9のタイヤ周方向の個数は、例えば、乗用車用タイヤの場合、10個〜70個が好ましい。   As shown in FIG. 2, the convex portion 9 is a rubber material formed in the tire radial direction in the range of the tire side portion S (even if the rubber material constituting the tire side portion S is the rubber material). And may be a rubber material different from the above), and a plurality of protrusions are arranged at intervals in the tire circumferential direction. For example, in the case of a tire for a passenger car, the number of the convex portions 9 in the tire circumferential direction is preferably 10 to 70.

凸部9は、図3に示すように、タイヤ径方向に沿って直線状に形成されていてもよく、図4に示すように、タイヤ径方向に対して傾いて直線状に形成されていてもよく、図5に示すように、屈曲して形成されていてもよく、図6に示すように、湾曲して形成されていてもよい。この凸部9は、図2に示すように、タイヤ周方向に等間隔で配置されていてもよく、図には明示しないが、タイヤ周方向に所定間隔で隣接する複数の凸部9を1つの群とし、当該凸部9の群がタイヤ周方向に等間隔で配置されていてもよい。また、凸部9は、図には明示しないが、タイヤ周方向に互い違いに長さが異なるように配置されていてもよい。   The convex portion 9 may be formed linearly along the tire radial direction as shown in FIG. 3, and is formed linearly inclined with respect to the tire radial direction as shown in FIG. 4. Alternatively, it may be bent as shown in FIG. 5, or may be bent as shown in FIG. As shown in FIG. 2, the convex portions 9 may be arranged at equal intervals in the tire circumferential direction. Although not clearly shown in the drawing, the convex portions 9 adjacent to each other at predetermined intervals in the tire circumferential direction are defined as 1. The group of the convex parts 9 may be arranged at equal intervals in the tire circumferential direction. Moreover, although the convex part 9 is not shown in a figure, you may arrange | position so that length may become different in the tire circumferential direction alternately.

また、凸部9は、タイヤ幅方向から視た場合の外形状が、図2〜図6に示すように長方形状であったり、図には明示しないが、端部が円弧状であったり、端部が尖っていたり、三角形状であったりしてもよい。   Moreover, as for the convex part 9, the outer shape at the time of seeing from a tire width direction is a rectangular shape as shown in FIGS. 2-6, although it does not show clearly in a figure, an edge part is circular arc shape, The end may be pointed or triangular.

また、凸部9は、長手方向に直交する断面形状が、半円形状、半楕円形状、半長円形状、三角形状、四角形状、台形状、または断面外形の少なくとも1部が円弧を有して形成されている。ここで、凸部9の長手方向に直交するとは、その延在方向に直交することを意味し、凸部9が湾曲して形成されている場合は、湾曲部分の接線に直交することを意味する。   Further, the convex portion 9 has a semicircular shape, a semi-elliptical shape, a semi-elliptical shape, a triangular shape, a quadrangular shape, a trapezoidal shape, or a circular shape at least in a cross-sectional shape perpendicular to the longitudinal direction. Is formed. Here, orthogonal to the longitudinal direction of the convex portion 9 means orthogonal to the extending direction, and when the convex portion 9 is curved, it means orthogonal to the tangent of the curved portion. To do.

凹部10は、各凸部9の間の領域に設けられている。この凹部10を有する領域は、図3〜図6に示すように、タイヤ周方向で隣接する各凸部9のタイヤ径方向最外側の端部同士を繋ぐ仮想直線と、タイヤ周方向で隣接する各凸部9のタイヤ径方向最内側の端部同士を繋ぐ仮想直線との間の領域をいう。なお、凹部10は、上記領域内に少なくとも配置されていればよいが、上記領域外のタイヤサイド部Sに設けられていてもよい。   The concave portion 10 is provided in a region between the convex portions 9. As shown in FIGS. 3 to 6, the region having the concave portion 10 is adjacent to the virtual straight line connecting the outermost ends in the tire radial direction of the convex portions 9 adjacent to each other in the tire circumferential direction, in the tire circumferential direction. The region between the imaginary straight lines connecting the innermost ends of the respective convex portions 9 in the tire radial direction is referred to. In addition, although the recessed part 10 should just be arrange | positioned at least in the said area | region, you may be provided in the tire side part S outside the said area | region.

凹部10は、タイヤサイド部Sの表面に開口する開口形状が、円形状、楕円形状、長円形状、多角形状などに形成されている(図2では、円形状の開口形状として示す)。また、凹部10は、断面形状が、半円形状、半楕円形状、半長円形状、すり鉢形状、または矩形状などに形成されている。   In the recess 10, the opening shape that opens on the surface of the tire side portion S is formed in a circular shape, an elliptical shape, an oval shape, a polygonal shape, or the like (shown as a circular opening shape in FIG. 2). In addition, the recess 10 is formed in a semicircular shape, a semi-elliptical shape, a semi-elliptical shape, a mortar shape, a rectangular shape, or the like.

この凹部は、例えば、図2に示すようにタイヤ周方向とタイヤ径方向とで等間隔に配置されている。また、凹部10は、図には明示しないが、千鳥状に配置されていてもよく、四角形または三角形を基準とするように配置されていてもよい。   For example, as shown in FIG. 2, the recesses are arranged at equal intervals in the tire circumferential direction and the tire radial direction. Moreover, although not shown in the drawing, the recesses 10 may be arranged in a staggered manner, or may be arranged with reference to a quadrangle or a triangle.

このように、本実施の形態の空気入りタイヤ1は、少なくとも一方のタイヤサイド部Sに、多数の凸部9および多数の凹部10を有し、凸部9は、タイヤ径方向に沿って長手状の突条として形成され、かつタイヤ周方向で間隔を空けて配置されており、凹部10は、各凸部9の間の領域に設けられている。   Thus, the pneumatic tire 1 of the present embodiment has a large number of convex portions 9 and a large number of concave portions 10 in at least one tire side portion S, and the convex portions 9 are elongated along the tire radial direction. The protrusions 10 are formed as ridges and are spaced apart in the tire circumferential direction, and the recesses 10 are provided in regions between the protrusions 9.

図7は、本実施の形態に係る空気入りタイヤのタイヤサイド部の一部をタイヤ周方向で切断した断面図である。なお、図7においては、凹部10を省略して示している。例えば、図7中の左側をタイヤ回転方向前側とし、図7中の右側をタイヤ回転方向後側とした場合、空気の流れは、図7に矢印Fで示すように、タイヤ回転方向前側からタイヤ回転方向後側に流れる。そして、この空気の流れは、タイヤサイド部Sの表面において、凸部9を乗り越えるようにして通過する。凸部9は、この空気の流れを乱流化させる。このため、凸部9を有する部分に乱流境界層が発生し、通過する空気がタイヤサイド部Sから離れて広がることが抑えられるので、タイヤの空気抵抗が低減され、燃費を向上することが可能になる。   FIG. 7 is a cross-sectional view in which a part of the tire side portion of the pneumatic tire according to the present embodiment is cut in the tire circumferential direction. In FIG. 7, the recess 10 is omitted. For example, when the left side in FIG. 7 is the front side in the tire rotation direction and the right side in FIG. 7 is the rear side in the tire rotation direction, the air flow from the front side in the tire rotation direction as indicated by an arrow F in FIG. Flows backward in the direction of rotation. And this air flow passes over the convex part 9 on the surface of the tire side part S. The convex part 9 makes this air flow turbulent. For this reason, since a turbulent boundary layer is generated in the portion having the convex portion 9 and the passing air is prevented from spreading away from the tire side portion S, the air resistance of the tire is reduced, and the fuel efficiency can be improved. It becomes possible.

ところで、凸部9付近では、図7に示すように空気が滞留して溜まりやすい部分となる。また、凸部9を設けた箇所のゴムゲージが他の箇所よりも厚くなることでタイヤの発熱量が多くなったり、エンジンやブレーキの排熱を持った空気によってタイヤのゴムの温度が上昇したりする。このため、凸部9のタイヤ周方向の両側での放熱性が低下するおそれがある。この点、本実施の形態の空気入りタイヤ1では、各凸部9の間の領域に凹部10が設けられているため、当該凹部10がタイヤサイド部Sのゴムボリュームを低減するとともに空気を乱流化させる。このため、ゴムボリュームの低減化によって熱の発生が抑制される。しかも、凹部10による空気の乱流化によって、凹部10を設けていない場合である図7に一点鎖線で示す空気の流れF1に対し、凹部10を設けた場合である図7に実線で示す空気の流れF2のように、凸部9の間を通過する空気がタイヤサイド部Sから離れて広がることがより抑えられる。このように、凸部9の間を通過する空気のタイヤサイド部Sの外側への広がりをより抑えることで、空気の流れF2によって放熱性が向上するため、タイヤ発熱や温度上昇が抑えられ、タイヤの耐久性を向上することが可能になる。さらに、凸部9の間を通過する空気のタイヤサイド部Sの外側への広がりをより抑えることで、タイヤの空気抵抗がより低減され、燃費を向上することが可能になる。   By the way, in the vicinity of the convex portion 9, as shown in FIG. Also, the rubber gauge at the location where the protrusions 9 are provided is thicker than at other locations, so the amount of heat generated by the tire increases, or the temperature of the tire rubber rises due to air with exhaust heat from the engine and brakes. To do. For this reason, there exists a possibility that the heat dissipation on the both sides of the tire circumferential direction of the convex part 9 may fall. In this regard, in the pneumatic tire 1 of the present embodiment, since the recesses 10 are provided in the regions between the protrusions 9, the recesses 10 reduce the rubber volume of the tire side portion S and disturb the air. Let it flow. For this reason, heat generation is suppressed by reducing the rubber volume. Moreover, the air shown by the solid line in FIG. 7 when the recess 10 is provided with respect to the air flow F1 shown by the alternate long and short dash line in FIG. 7 where the recess 10 is not provided due to the turbulent air flow by the recess 10. As in the flow F <b> 2, the air passing between the convex portions 9 is further suppressed from spreading away from the tire side portion S. Thus, by suppressing the spread of the air passing between the convex portions 9 to the outside of the tire side portion S, the heat dissipation is improved by the air flow F2, so that the tire heat generation and the temperature rise are suppressed, The durability of the tire can be improved. Furthermore, the air resistance of the tire is further reduced and the fuel efficiency can be improved by further suppressing the spread of the air passing between the convex portions 9 to the outside of the tire side portion S.

すなわち、この空気入りタイヤ1によれば、タイヤサイド部Sに設けられた突条の凸部9と、凸部9の間の領域に設けられた凹部10とで、それぞれタイヤ周りの空気流をさらに改善することが可能である。   That is, according to this pneumatic tire 1, the air flow around the tire is respectively generated by the protruding portion 9 of the protrusion provided in the tire side portion S and the recessed portion 10 provided in the region between the protruding portions 9. Further improvements are possible.

また、本実施の形態の空気入りタイヤ1は、図3〜図6に示すように、タイヤ周方向で隣接する各凸部9の間の領域を、タイヤ周方向で3つの領域に分割して各凸部9寄りの各領域D1と、各領域D1の間の領域D2とし、各領域D1と領域D2とに配置される凹部10の割合を異ならせている。   Moreover, as shown in FIGS. 3 to 6, the pneumatic tire 1 according to the present embodiment divides a region between the convex portions 9 adjacent in the tire circumferential direction into three regions in the tire circumferential direction. Each region D1 near each convex portion 9 is defined as a region D2 between each region D1, and the ratio of the concave portions 10 disposed in each region D1 and region D2 is different.

領域D1は、図3〜図6に示すように、隣接する各凸部9のタイヤ径方向の各中点Mを結ぶ直線をピッチ長Pとし、このピッチ長Pの1/5の範囲で各凸部9寄りの領域である。また、領域D2は、ピッチ長Pの3/5の範囲の各領域D1の間の領域である。各領域D1と領域D2との境界線は、図3〜図6に示すように、凸部9の長手方向に沿って当該凸部9の中心を通過する凸部9の中心線Gを、凸部9のタイヤ周方向での配置に基づいて凸部9からピッチ長Pの1/5の位置に配置したものとする。   As shown in FIGS. 3 to 6, the region D <b> 1 has a straight line connecting the midpoints M in the tire radial direction of the adjacent convex portions 9 as a pitch length P, and each region within a range of 1/5 of the pitch length P. This is a region near the convex portion 9. The region D2 is a region between the regions D1 in the range of 3/5 of the pitch length P. As shown in FIGS. 3 to 6, the boundary line between each region D <b> 1 and region D <b> 2 projects the center line G of the convex portion 9 passing through the center of the convex portion 9 along the longitudinal direction of the convex portion 9. It is assumed that the portion 9 is disposed at a position that is 1/5 of the pitch length P from the convex portion 9 based on the arrangement of the portion 9 in the tire circumferential direction.

この空気入りタイヤ1によれば、各領域D1と領域D2とに配置される凹部10の割合を異ならせることで、タイヤ周りの空気流をさらに改善することが可能である。例えば、各領域D1での凹部10の配置割合を、領域D2での凹部10の配置割合よりも比較的大きくすれば、図7において、凸部9付近で空気が滞留して溜まりやすい領域D1での放熱性がより向上する傾向となる。一方、例えば、領域D2での凹部10の配置割合を、各領域D1での凹部10の配置割合よりも比較的大きくすれば、凸部9の間を通過する空気が、領域D2においてタイヤサイド部Sから離れて広がることがより抑えられ、タイヤの空気抵抗がより低減される傾向となる。このように、各領域D1と領域D2とに配置される凹部10の割合を異ならせることで、放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果をより顕著に得ることが可能になる。   According to this pneumatic tire 1, it is possible to further improve the air flow around the tire by making the ratios of the recesses 10 arranged in the respective regions D1 and D2 different. For example, if the arrangement ratio of the recesses 10 in each area D1 is relatively larger than the arrangement ratio of the recesses 10 in the area D2, the area D1 in FIG. This tends to improve the heat dissipation. On the other hand, for example, if the arrangement ratio of the recesses 10 in the region D2 is relatively larger than the arrangement ratio of the recesses 10 in each region D1, the air passing between the protrusions 9 is tire side portions in the region D2. Spreading away from S is further suppressed, and the air resistance of the tire tends to be further reduced. Thus, by making the ratios of the recesses 10 arranged in the respective regions D1 and D2 different, it is possible to obtain the effect of improving the heat dissipation or the effect of reducing the air resistance of the tire more remarkably. Become.

なお、凹部10の配置割合とは、凹部10の開口面積および深さを一定(凹部10の容積を一定)として凹部10の間隔を異ならせても、凹部10の間隔を一定として凹部10の開口面積または深さを(凹部10の容積を)異ならせてもよい。タイヤを製造する上では、凹部10の開口面積および深さを一定(凹部10の容積を一定)として凹部10の間隔を異ならせるほうが容易であり好ましい。   Note that the arrangement ratio of the recesses 10 means that the opening area and depth of the recesses 10 are constant (the volume of the recesses 10 is constant) and the intervals between the recesses 10 are different even if the intervals between the recesses 10 are different. The area or depth may be varied (the volume of the recess 10). In manufacturing a tire, it is easier and preferable to make the interval between the recesses 10 different by making the opening area and depth of the recesses 10 constant (the volume of the recesses 10 is constant).

具体的に、本実施の形態の空気入りタイヤ1は、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である図8に示すように、各領域D1に配置される凹部10の割合を等しくし、かつ各領域D1に配置される凹部10の割合を領域D2よりも大きくする。なお、図8は、凸部9がタイヤ径方向に沿って直線状に形成され、凹部10が円形に開口している形態を例示している。   Specifically, the pneumatic tire 1 of the present embodiment is disposed in each region D1, as shown in FIG. 8 which is a partial external view of the pneumatic tire according to the present embodiment as viewed from the tire width direction. The ratio of the concave portions 10 is made equal, and the ratio of the concave portions 10 arranged in each region D1 is made larger than that of the region D2. FIG. 8 illustrates a form in which the convex portion 9 is formed linearly along the tire radial direction and the concave portion 10 is opened in a circular shape.

この空気入りタイヤ1によれば、凸部9付近で空気が滞留して溜まりやすい各領域D1での放熱性がより向上する傾向となるため、放熱性を向上させる効果をより顕著に得ることが可能になる。各領域D1に配置される凹部10の割合を等しくすることは、車両装着時でのタイヤ回転方向が指定されていない空気入りタイヤにおいて、タイヤ回転方向がどちらであっても、放熱性を向上させる効果を同等に得ることが可能となるうえで好ましい。   According to this pneumatic tire 1, since the heat dissipation in each region D1 where air is likely to stay and collect in the vicinity of the convex portion 9 tends to be improved, the effect of improving the heat dissipation can be obtained more remarkably. It becomes possible. Making the proportion of the recesses 10 arranged in each region D1 equal improves the heat dissipation in a pneumatic tire in which the tire rotation direction at the time of vehicle mounting is not specified regardless of the tire rotation direction. It is preferable in that the same effect can be obtained.

さらに、本実施の形態の空気入りタイヤ1は、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である図9に示すように、各凸部9に近づくに従って凹部10の配置間隔を小さくすることが好ましい。この場合は、凹部10の開口面積および深さを一定(凹部10の容積を一定)として凹部10のタイヤ周方向の間隔を異ならせる。なお、図9は、凸部9がタイヤ径方向に沿って直線状に形成され、凹部10が円形に開口している形態を例示している。   Furthermore, as shown in FIG. 9 which is a partial external view of the pneumatic tire according to the present embodiment viewed from the tire width direction, the pneumatic tire 1 according to the present embodiment has a concave portion as it approaches each convex portion 9. It is preferable to reduce the arrangement interval of 10. In this case, the opening area and the depth of the recess 10 are constant (the volume of the recess 10 is constant), and the intervals in the tire circumferential direction of the recess 10 are varied. FIG. 9 illustrates an example in which the convex portion 9 is linearly formed along the tire radial direction and the concave portion 10 is opened in a circular shape.

この空気入りタイヤ1によれば、凸部9に近づくほど凹部10の配置間隔が小さくなることで、空気が滞留して溜まりやすい凸部9付近での放熱性がさらに向上する傾向となるため、放熱性を向上させる効果をより顕著に得ることが可能になる。   According to this pneumatic tire 1, the closer to the convex portion 9, the smaller the arrangement interval of the concave portions 10, so that the heat dissipation near the convex portion 9 where air tends to stay and collect tends to be further improved. The effect of improving heat dissipation can be obtained more remarkably.

また、本実施の形態の空気入りタイヤ1は、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である図10に示すように、各領域D1に配置される凹部10の割合を等しくし、かつ領域D2に配置される凹部10の割合を各領域D1よりも大きくする。なお、図10は、凸部9がタイヤ径方向に沿って直線状に形成され、凹部10が円形に開口している形態を例示している。   Moreover, the pneumatic tire 1 of the present embodiment is a recess disposed in each region D1, as shown in FIG. 10 which is a partial external view of the pneumatic tire according to the present embodiment as viewed from the tire width direction. The ratio of 10 is made equal, and the ratio of the recesses 10 arranged in the region D2 is made larger than each region D1. FIG. 10 illustrates a form in which the convex portion 9 is formed linearly along the tire radial direction and the concave portion 10 is opened in a circular shape.

この空気入りタイヤ1によれば、凸部9の間を通過する空気が、領域D2においてタイヤサイド部Sから離れて広がることがより抑えられ、タイヤの空気抵抗がより低減される傾向となるため、タイヤの空気抵抗を低減する効果をより顕著に得ることが可能になる。各領域D1に配置される凹部10の割合を等しくすることは、車両装着時でのタイヤ回転方向が指定されていない空気入りタイヤにおいて、タイヤ回転方向がどちらであっても、放熱性を向上させる効果を同等に得ることが可能となるうえで好ましい。   According to the pneumatic tire 1, air passing between the convex portions 9 is further suppressed from spreading away from the tire side portion S in the region D <b> 2, and the air resistance of the tire tends to be further reduced. The effect of reducing the air resistance of the tire can be obtained more remarkably. Making the proportion of the recesses 10 arranged in each region D1 equal improves the heat dissipation in a pneumatic tire in which the tire rotation direction at the time of vehicle mounting is not specified regardless of the tire rotation direction. It is preferable in that the same effect can be obtained.

さらに、本実施の形態の空気入りタイヤ1は、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である図11に示すように、各凸部9から遠ざかるに従って凹部10の配置間隔を小さくすることが好ましい。この場合は、凹部10の開口面積および深さを一定(凹部10の容積を一定)として凹部10のタイヤ周方向の間隔を異ならせる。なお、図11は、凸部9がタイヤ径方向に沿って直線状に形成され、凹部10が円形に開口している形態を例示している。   Furthermore, the pneumatic tire 1 of the present embodiment has a concave portion as it moves away from each convex portion 9 as shown in FIG. 11 which is a partial external view of the pneumatic tire according to the present embodiment as viewed from the tire width direction. It is preferable to reduce the arrangement interval of 10. In this case, the opening area and the depth of the recess 10 are constant (the volume of the recess 10 is constant), and the intervals in the tire circumferential direction of the recess 10 are varied. In addition, FIG. 11 has illustrated the form in which the convex part 9 was formed linearly along the tire radial direction, and the recessed part 10 was opened circularly.

この空気入りタイヤ1によれば、凸部9から遠ざかるほど凹部10の配置間隔が小さくなることで、空気の流れがタイヤサイド部Sから離れて広がることがさらに抑えられ、タイヤの空気抵抗がさらに低減される傾向となるため、タイヤの空気抵抗を低減する効果をより顕著に得ることが可能になる。   According to the pneumatic tire 1, the distance between the concave portions 10 decreases as the distance from the convex portion 9 decreases, so that the air flow is further suppressed from spreading away from the tire side portion S, and the air resistance of the tire is further increased. Since it tends to be reduced, the effect of reducing the air resistance of the tire can be obtained more remarkably.

また、本実施の形態の空気入りタイヤ1は、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である図12に示すように、車両装着時でのタイヤ回転方向が指定されており、タイヤ回転方向前側の凸部9寄りの領域D1に配置される凹部10の割合をA、領域D2に配置される凹部10の割合をB、タイヤ回転方向後側の凸部9寄りの領域D1に配置される凹部10の割合をCとした場合、A>B>Cの関係とする。なお、図12は、凸部9がタイヤ径方向に沿って直線状に形成され、凹部10が円形に開口している形態を例示している。   The pneumatic tire 1 of the present embodiment is a tire rotation direction when the vehicle is mounted, as shown in FIG. 12 which is a partial external view of the pneumatic tire according to the present embodiment as viewed from the tire width direction. Is specified, and the ratio of the recesses 10 disposed in the region D1 near the convex portion 9 on the front side in the tire rotation direction is A, the ratio of the concave portions 10 disposed in the region D2 is B, and the convex portion on the rear side in the tire rotation direction When the ratio of the recesses 10 arranged in the region D1 closer to 9 is C, the relation of A> B> C is established. FIG. 12 illustrates a form in which the convex portion 9 is formed linearly along the tire radial direction and the concave portion 10 is opened in a circular shape.

ここで、車両装着時でのタイヤ回転方向が指定される空気入りタイヤ1は、図には明示しないが、タイヤ回転方向が、例えば、サイドウォール部4に設けられた指標により示されている。すなわち、タイヤ回転方向の指定に従ってリム組みし、車両に装着することにより、タイヤ回転方向が規定される。   Here, the pneumatic tire 1 in which the tire rotation direction at the time of mounting on the vehicle is specified is not clearly shown in the drawing, but the tire rotation direction is indicated by, for example, an index provided on the sidewall portion 4. That is, the tire rotation direction is defined by assembling the rim according to the designation of the tire rotation direction and mounting the rim on the vehicle.

図13は、本実施の形態に係る空気入りタイヤのタイヤサイド部の一部をタイヤ周方向で切断した断面図である。なお、図13においては、凹部10を省略して示している。図13に示すように、タイヤの回転時の空気の流れは、図13に矢印Fで示すように、タイヤ回転方向前側からタイヤ回転方向後側に流れる。この場合、タイヤ回転方向前側の凸部9寄りの領域D1では、凸部9のタイヤ回転方向後側に位置するため、凸部9を乗り越えた直後の空気の流れが滞留して溜まりやすく、空力的に凹部10の効果が比較的小さい。そこで、このタイヤ回転方向前側の凸部9寄りの領域D1での凹部10の配置割合Aを他(B,C)よりも増加させることで、図13に実線で示す空気の流れF3のように、タイヤ回転方向前側の凸部9寄りの領域D1においてタイヤサイド部Sの表面に空気の流れを引き込んで、凹部10による放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果を得やすい傾向とする。また、タイヤ回転方向後側になるに従って凹部10の配置割合B,Cを減少させることで、図13に実線で示す空気の流れF3のように、タイヤ回転方向後側の凸部9に近づくに従って空気の流れがタイヤサイド部Sから剥離しやすくなり、タイヤ回転方向後側の凸部9を空気の流れが乗り越えやすくなるため、タイヤの空気抵抗を低減するとともに、排熱しやすくして放熱性を向上させることが可能になる。   FIG. 13 is a cross-sectional view in which a part of the tire side portion of the pneumatic tire according to the present embodiment is cut in the tire circumferential direction. In FIG. 13, the recess 10 is omitted. As shown in FIG. 13, the air flow during the rotation of the tire flows from the front side in the tire rotation direction to the rear side in the tire rotation direction, as indicated by an arrow F in FIG. 13. In this case, since the region D1 near the convex portion 9 on the front side in the tire rotation direction is located on the rear side in the tire rotational direction of the convex portion 9, the air flow immediately after overcoming the convex portion 9 tends to stay and accumulate, In particular, the effect of the recess 10 is relatively small. Therefore, by increasing the arrangement ratio A of the concave portions 10 in the region D1 near the convex portion 9 on the front side in the tire rotation direction as compared with the other (B, C), an air flow F3 indicated by a solid line in FIG. The air flow is drawn into the surface of the tire side portion S in the region D1 near the convex portion 9 on the front side in the tire rotation direction, and the effect of improving the heat dissipation by the concave portion 10 or the effect of reducing the air resistance of the tire is easily obtained. Let it be a trend. Further, by decreasing the arrangement ratios B and C of the recesses 10 toward the rear side in the tire rotation direction, as the air flow F3 indicated by the solid line in FIG. The air flow is easy to peel off from the tire side portion S, and the air flow easily gets over the convex portion 9 on the rear side in the tire rotation direction. Therefore, the air resistance of the tire is reduced, and heat is easily exhausted to reduce heat dissipation. It becomes possible to improve.

さらに、本実施の形態の空気入りタイヤ1は、図12に示すように、車両装着時でのタイヤ回転方向が指定される空気入りタイヤ1において、タイヤ回転方向前側の凸部9寄りの領域D1に配置される凹部10の間隔を凸部9の長手方向で一定にすることが好ましい。   Further, as shown in FIG. 12, the pneumatic tire 1 of the present embodiment is a region D1 near the convex portion 9 on the front side in the tire rotation direction in the pneumatic tire 1 in which the tire rotation direction when the vehicle is mounted is specified. It is preferable to make the interval between the concave portions 10 arranged in the vertical direction constant in the longitudinal direction of the convex portions 9.

上述したように、タイヤ回転方向前側の凸部9寄りの領域D1では、凸部9のタイヤ回転方向後側に位置するため、凸部9を乗り越えた直後の空気の流れが滞留して溜まりやすく、空力的に凹部10の効果が比較的小さい。そこで、タイヤ回転方向前側の凸部9寄りの領域D1に配置される凹部10の間隔を凸部9の長手方向で一定にすることで、タイヤ回転方向前側の凸部9寄りの領域D1において、凸部9の長手方向に沿ってタイヤサイド部Sの表面に空気の流れを引き込んで、凹部10による放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果をより得やすい傾向とする。   As described above, in the region D1 near the convex portion 9 on the front side in the tire rotation direction, the air flow immediately after overcoming the convex portion 9 is likely to stay and accumulate because the convex portion 9 is located on the rear side in the tire rotational direction. The effect of the recess 10 is aerodynamically relatively small. Therefore, in the region D1 near the convex portion 9 on the front side in the tire rotation direction by making the interval between the concave portions 10 arranged in the region D1 near the convex portion 9 on the front side in the tire rotation direction constant in the longitudinal direction of the convex portion 9, The air flow is drawn into the surface of the tire side part S along the longitudinal direction of the convex part 9, and the effect of improving the heat dissipation by the concave part 10 or the effect of reducing the air resistance of the tire is more likely to be obtained.

さらに、本実施の形態の空気入りタイヤ1は、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である図14に示すように、車両装着時でのタイヤ回転方向が指定される空気入りタイヤ1において、タイヤ回転方向後側に近づくに従い、領域D2の凹部10の配置間隔を大きくすることが好ましい。なお、図14は、凸部9がタイヤ径方向に沿って直線状に形成され、凹部10が円形に開口している形態を例示している。   Furthermore, as shown in FIG. 14 which is a partial external view of the pneumatic tire 1 according to the present embodiment as viewed from the tire width direction, the pneumatic tire 1 according to the present embodiment is the tire rotation direction when the vehicle is mounted. In the pneumatic tire 1 in which is designated, it is preferable to increase the arrangement interval of the recesses 10 in the region D2 as it approaches the rear side in the tire rotation direction. FIG. 14 illustrates a form in which the convex portion 9 is formed linearly along the tire radial direction and the concave portion 10 is opened in a circular shape.

凹部10の間隔とは、タイヤ径方向やタイヤ周方向での凹部10の間隔をいう。この空気入りタイヤ1によれば、タイヤ回転方向後側に近づくに従い、領域D2の凹部10の配置間隔を大きくすることで、タイヤ回転方向後側の凸部9に近づくに従って空気の流れがタイヤサイド部Sから剥離しやすくなり、タイヤ回転方向後側の凸部9を空気の流れが乗り越えやすくなるため、タイヤの空気抵抗を低減するとともに、排熱しやすくして放熱性を向上させる効果をより得やすい傾向とする。   The space | interval of the recessed part 10 means the space | interval of the recessed part 10 in a tire radial direction or a tire circumferential direction. According to this pneumatic tire 1, as the distance between the concave portions 10 in the region D <b> 2 increases as the distance toward the rear side in the tire rotation direction increases, the air flow increases toward the tire side as the distance from the convex portion 9 on the rear side in the tire rotation direction approaches. Since it is easy to peel off from the part S and the air flow easily gets over the convex part 9 on the rear side in the tire rotation direction, the air resistance of the tire is reduced and the effect of improving heat dissipation by making it easier to exhaust heat is obtained. It tends to be easy.

さらに、本実施の形態の空気入りタイヤ1は、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である図15に示すように、車両装着時でのタイヤ回転方向が指定される空気入りタイヤ1において、タイヤ回転方向後側の凸部9寄りの領域D1に凹部10を配置しなくてもよい。なお、図15は、凸部9がタイヤ径方向に沿って直線状に形成され、凹部10が円形に開口している形態を例示している。   Furthermore, the pneumatic tire 1 of the present embodiment is a tire rotation direction when the vehicle is mounted, as shown in FIG. 15 which is a partial external view of the pneumatic tire according to the present embodiment viewed from the tire width direction. In the pneumatic tire 1 in which is designated, the concave portion 10 may not be disposed in the region D1 near the convex portion 9 on the rear side in the tire rotation direction. FIG. 15 illustrates a form in which the convex portion 9 is formed linearly along the tire radial direction and the concave portion 10 is opened in a circular shape.

この空気入りタイヤ1によれば、タイヤ回転方向後側の凸部9寄りの領域D1に凹部10を配置しないこと、すなわち配置割合Cを0とすることで、タイヤ回転方向後側の凸部9に近づくに従って空気の流れがタイヤサイド部Sから剥離しやすくなり、タイヤ回転方向後側の凸部9を空気の流れが乗り越えやすくなるため、タイヤの空気抵抗を低減するとともに、排熱しやすくして放熱性を向上させる効果をより得やすい傾向とする。   According to this pneumatic tire 1, the concave portion 10 is not arranged in the region D1 near the convex portion 9 on the rear side in the tire rotation direction, that is, the arrangement ratio C is set to 0, so that the convex portion 9 on the rear side in the tire rotational direction. As the air flow approaches, the air flow easily separates from the tire side portion S and the air flow easily gets over the convex portion 9 on the rear side in the tire rotation direction, so that the air resistance of the tire is reduced and heat is easily exhausted. The effect of improving heat dissipation is more likely to be obtained.

さらに、本実施の形態の空気入りタイヤ1は、車両装着時でのタイヤ回転方向が指定される空気入りタイヤ1において、タイヤ回転方向前側の凸部9寄りの領域D1に配置される凹部10の開口割合Aが、各領域D1および領域D2全ての凹部10に対して20[%]以上50[%]以下であり、領域D2に配置される凹部10の開口割合Bが、各領域D1および領域D2全ての凹部10に対して5[%]以上30[%]以下であることが好ましい。   Furthermore, in the pneumatic tire 1 according to the present embodiment, in the pneumatic tire 1 in which the tire rotation direction at the time of vehicle mounting is specified, the concave portion 10 disposed in the region D1 near the convex portion 9 on the front side in the tire rotation direction. The opening ratio A is 20% to 50% with respect to all the recesses 10 in each of the regions D1 and D2, and the opening ratio B of the recesses 10 arranged in the region D2 is set in each region D1 and region. It is preferable that it is 5 [%] or more and 30 [%] or less with respect to all the recessed parts 10 of D2.

タイヤ回転方向前側の凸部9寄りの領域D1に配置される凹部10の開口割合Aが、各領域D1および領域D2全ての凹部10に対して20[%]以上50[%]以下であることが、タイヤ回転方向前側の凸部9寄りの領域D1において、タイヤサイド部Sの表面に空気の流れを引き込んで、凹部10による放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果を得やすい傾向とするうえで好ましい。また、領域D2に配置される凹部10の開口割合Bが、各領域D1および領域D2全ての凹部10に対して5[%]以上30[%]以下であることが、タイヤ回転方向後側の凸部9に近づくに従って空気の流れがタイヤサイド部Sから剥離しやすくなり、タイヤ回転方向後側の凸部9を空気の流れが乗り越えやすくなるため、タイヤの空気抵抗を低減するとともに、排熱しやすくして放熱性を向上させる効果を得るうえで好ましい。   The opening ratio A of the concave portion 10 disposed in the region D1 near the convex portion 9 on the front side in the tire rotation direction is 20% to 50% with respect to all the concave portions 10 in each of the regions D1 and D2. However, in the region D1 near the convex portion 9 on the front side in the tire rotation direction, an effect of improving the heat dissipation by the concave portion 10 by drawing the air flow into the surface of the tire side portion S or reducing the air resistance of the tire. It is preferable to make it easy to obtain. In addition, the opening ratio B of the recesses 10 disposed in the region D2 is 5% to 30% with respect to all the recesses 10 in each of the regions D1 and D2. The air flow is easily separated from the tire side portion S as the convex portion 9 is approached, and the air flow easily gets over the convex portion 9 on the rear side in the tire rotation direction, thereby reducing the air resistance of the tire and exhausting heat. It is preferable in order to obtain the effect of improving the heat dissipation by facilitating.

また、本実施の形態の空気入りタイヤ1では、本実施の形態に係る空気入りタイヤをタイヤ幅方向から視た一部外観図である図16に示すように、凹部10は、タイヤ径方向内側に向かって容積を大きく形成されていることが好ましい。なお、図16は、凸部9がタイヤ径方向に沿って直線状に形成され、凹部10が円形に開口している形態を例示している。   Moreover, in the pneumatic tire 1 of the present embodiment, as shown in FIG. 16 which is a partial external view of the pneumatic tire according to the present embodiment as viewed from the tire width direction, the recess 10 is formed on the inner side in the tire radial direction. It is preferable that the volume is increased toward the surface. FIG. 16 illustrates a form in which the convex portion 9 is linearly formed along the tire radial direction and the concave portion 10 is opened in a circular shape.

凹部10の容積は、凹部10の深さ、または凹部10の開口部の面積によって変化する。例えば、図16では、凹部10の深さを一定として開口部の面積をタイヤ径方向内側に向かって漸次大きくしている形態を例示している。タイヤサイド部Sは、タイヤ径方向内側に近づくに連れて回転速度が相対的に遅くなるため、その部分により近い側の凹部の容積を大きくすることで、タイヤ径方向内側において回転速度が遅くても、凸部9の間を通過する空気のタイヤサイド部Sの外側への広がりをより抑えることで、タイヤ発熱や温度上昇が抑えられる傾向となり、かつタイヤの空気抵抗がより低減される傾向となる。また、車両装着時でのタイヤ回転方向が指定される空気入りタイヤ1においては、タイヤ径方向内側において回転速度が遅くても、タイヤ回転方向前側の凸部9寄りの領域D1において、タイヤサイド部Sの表面に空気の流れを引き込んで、凹部10による放熱性を向上させる効果、またはタイヤの空気抵抗を低減する効果が得やすい傾向となる。なお、図16では、車両装着時でのタイヤ回転方向が指定される空気入りタイヤ1として示しているが、車両装着時でのタイヤ回転方向が指定されない空気入りタイヤ1であってもよく、タイヤ径方向内側に向かって凹部10の容積を大きく形成することの上記効果を得ることが可能である。   The volume of the recess 10 varies depending on the depth of the recess 10 or the area of the opening of the recess 10. For example, FIG. 16 illustrates a mode in which the depth of the recess 10 is constant and the area of the opening is gradually increased toward the inside in the tire radial direction. Since the rotation speed of the tire side portion S is relatively slow as it approaches the inner side in the tire radial direction, the rotation speed is slower on the inner side in the tire radial direction by increasing the volume of the concave portion closer to the portion. However, by further suppressing the spread of the air passing between the convex portions 9 to the outside of the tire side portion S, the tire heat generation and the temperature rise tend to be suppressed, and the tire air resistance is further reduced. Become. Further, in the pneumatic tire 1 in which the tire rotation direction at the time of vehicle mounting is specified, even if the rotation speed is slow inside the tire radial direction, the tire side portion It tends to be easy to obtain an effect of improving the heat dissipation by the recess 10 by reducing the air flow to the surface of S or reducing the air resistance of the tire. Although FIG. 16 shows the pneumatic tire 1 in which the tire rotation direction when the vehicle is mounted is designated, the pneumatic tire 1 may not be designated when the vehicle is mounted. It is possible to obtain the above effect of increasing the volume of the concave portion 10 toward the radially inner side.

また、本実施の形態の空気入りタイヤ1は、凸部9の長手方向寸法が5[mm]以上であることが好ましい。   In the pneumatic tire 1 of the present embodiment, it is preferable that the longitudinal dimension of the convex portion 9 is 5 [mm] or more.

凸部9の長手方向寸法が5[mm]未満であると、当該凸部9による空気を乱流化させる作用が得難くなる。このため、凸部9の長手方向寸法を5[mm]以上とすることが、空気を乱流化させ、タイヤの空気抵抗を低減する効果を顕著に得ることが可能になる。   When the longitudinal dimension of the convex portion 9 is less than 5 [mm], it is difficult to obtain an effect of turbulent air flow by the convex portion 9. For this reason, when the longitudinal dimension of the convex portion 9 is set to 5 [mm] or more, it becomes possible to remarkably obtain the effect of turbulent air flow and reducing the air resistance of the tire.

また、本実施の形態の空気入りタイヤ1は、凸部9の突出高さが0.5[mm]以上10.0[mm]以下であることが好ましい。   In the pneumatic tire 1 of the present embodiment, it is preferable that the protruding height of the convex portion 9 is 0.5 [mm] or more and 10.0 [mm] or less.

凸部9の高さが0.5[mm]未満の場合、凸部9が空気に接触する範囲が小さいことから、空気の流れが乱流化し難く、タイヤの空気抵抗の低減効果が小さくなる。また、凸部9の高さが10.0[mm]を超える場合、凸部9が空気に接触する範囲が大きいことから、凸部9の後方での空気の流れが膨らむ傾向となり、タイヤの空気抵抗の低減効果が小さくなる。この点、本実施の形態の空気入りタイヤ1によれば、凸部9が空気に適宜接触することで、空気の流れが乱流化し、凸部9の後方での空気の膨らみが減少するため、タイヤの空気抵抗を低減する効果を顕著に得ることが可能になる。なお、タイヤの空気抵抗を低減する効果をより顕著に得るため、凸部9の高さを1[mm]以上5[mm]以下とすることが好ましい。なお、凸部9の高さが0.5[mm]以上10.0[mm]以下の範囲は、乗用車用の空気入りタイヤにおいて好ましく、重荷重用のような外径が大きい空気入りタイヤの場合は、この範囲に限らず、当該乗用車用の範囲を超える。   When the height of the convex portion 9 is less than 0.5 [mm], since the range in which the convex portion 9 contacts the air is small, the air flow is hardly turbulent and the effect of reducing the tire air resistance is small. . Moreover, when the height of the convex part 9 exceeds 10.0 [mm], since the range in which the convex part 9 contacts air is large, the air flow behind the convex part 9 tends to swell, and the tire The effect of reducing air resistance is reduced. In this regard, according to the pneumatic tire 1 of the present embodiment, the convex portion 9 appropriately contacts the air, whereby the air flow is turbulent, and the swelling of the air behind the convex portion 9 is reduced. The effect of reducing the air resistance of the tire can be significantly obtained. In addition, in order to obtain the effect which reduces the air resistance of a tire more notably, it is preferable that the height of the convex part 9 shall be 1 [mm] or more and 5 [mm] or less. In addition, the range whose height of the convex part 9 is 0.5 [mm] or more and 10.0 [mm] or less is preferable in a pneumatic tire for passenger cars, and in the case of a pneumatic tire having a large outer diameter for heavy loads. Is not limited to this range and exceeds the range for passenger cars.

また、本実施の形態の空気入りタイヤ1は、凸部9の断面形状が、頂点を有して底面側に漸次広がることが好ましい。   Moreover, in the pneumatic tire 1 of the present embodiment, it is preferable that the cross-sectional shape of the convex portion 9 has a vertex and gradually spreads toward the bottom surface side.

すなわち、凸部9の長手方向に直交する断面形状が三角形状に近似することとなり、これにより、凸部9の体積が矩形断面などと比較して少なくなることから、凸部9のゴムボリュームが低減化されてタイヤ重量の増加を抑えるため、燃費をより向上することが可能になる。   That is, the cross-sectional shape orthogonal to the longitudinal direction of the convex portion 9 approximates a triangular shape, and thus the volume of the convex portion 9 is reduced compared to a rectangular cross section, etc. The fuel consumption can be further improved because the tire weight is reduced and the increase in tire weight is suppressed.

また、本実施の形態の空気入りタイヤ1は、凸部9の断面形状が、少なくとも1つの円弧を有することが好ましい。   In the pneumatic tire 1 of the present embodiment, it is preferable that the cross-sectional shape of the convex portion 9 has at least one arc.

例えば、凸部の断面図である図17に示すように、凸部9の断面形状が円弧で膨らむように形成されていたり、凸部の断面図である図18に示すように、凸部9の断面形状が円弧で凹むように形成されていたりすることで、凸部9の体積が矩形断面などと比較して少なくなることから、凸部9のゴムボリュームが低減化されてタイヤ重量の増加を抑えるため、燃費をより向上することが可能になる。   For example, as shown in FIG. 17 which is a cross-sectional view of the convex portion, the cross-sectional shape of the convex portion 9 is formed so as to swell with an arc, or as shown in FIG. 18 which is a cross-sectional view of the convex portion, Since the cross-sectional shape of the convex portion 9 is formed so as to be recessed with an arc, the volume of the convex portion 9 is smaller than that of a rectangular cross section, etc., so the rubber volume of the convex portion 9 is reduced and the tire weight is increased. Therefore, fuel consumption can be further improved.

また、本実施の形態の空気入りタイヤ1は、凹部10の深さが0.5[mm]以上5.0[mm]以下であることが好ましい。   In the pneumatic tire 1 of the present embodiment, the depth of the recess 10 is preferably 0.5 [mm] or more and 5.0 [mm] or less.

凹部10の深さが0.5[mm]未満の場合、凹部10の内面が空気に接触する範囲が小さいことから、空気の流れが乱流化し難くなる。また、凹部10の深さが5.0[mm]を超える場合、凹部10の内面が空気に接触する範囲が大きすぎて、空気抵抗が増加する傾向となるうえ、凹部10を有する領域の元々のゴムボリュームが増大するため、タイヤ重量の増大を招く。この点、本実施の形態の空気入りタイヤ1によれば、凹部10の内面が空気に適宜接触することで、空気の流れが適宜乱流化するため、タイヤの空気抵抗を低減する効果や、放熱性を向上させる効果を顕著に得ることが可能になる。なお、凹部10の深さが0.5[mm]以上5.0[mm]以下の範囲は、乗用車用の空気入りタイヤにおいて好ましく、重荷重用のような外径が大きい空気入りタイヤの場合は、この範囲に限らず、当該乗用車用の範囲を超える。   When the depth of the concave portion 10 is less than 0.5 [mm], the range in which the inner surface of the concave portion 10 is in contact with air is small, so that the air flow is less likely to be turbulent. Further, when the depth of the recess 10 exceeds 5.0 [mm], the range in which the inner surface of the recess 10 contacts the air is too large, and the air resistance tends to increase, and the region having the recess 10 originally exists. Since the rubber volume of the tire increases, the tire weight increases. In this regard, according to the pneumatic tire 1 of the present embodiment, the air flow is appropriately turbulent by appropriately contacting the inner surface of the recess 10 with the air, the effect of reducing the air resistance of the tire, The effect of improving the heat dissipation can be remarkably obtained. In addition, the range where the depth of the recessed part 10 is 0.5 [mm] or more and 5.0 [mm] or less is preferable in the pneumatic tire for passenger cars, and in the case of a pneumatic tire having a large outer diameter for heavy loads. Not limited to this range, it exceeds the range for the passenger car.

なお、上述した空気入りタイヤ1は、乗用車用のみならず、重荷重用やランフラット用の空気入りタイヤに適用される。乗用車用の場合は、上述のごとく効果が得られる。また、重荷重用の場合は、特に、大荷重において、凸部9によってタイヤサイド部Sの圧縮時でのタイヤの変形をより抑えるとともに、凹部10によってタイヤサイド部Sの圧縮時での温度上昇を抑えて、耐久性を向上する。また、ランフラット用の場合も、特に、パンク時において、凸部9によってタイヤサイド部Sの圧縮時でのタイヤの変形をより抑えるとともに、凹部10によってタイヤサイド部Sの圧縮時での温度上昇を抑えて、耐久性を向上する。   In addition, the pneumatic tire 1 mentioned above is applied not only for passenger cars but also for heavy loads and run-flat pneumatic tires. In the case of a passenger car, the effect is obtained as described above. Further, in the case of heavy loads, particularly at a heavy load, the convex portion 9 suppresses the deformation of the tire when the tire side portion S is compressed, and the concave portion 10 increases the temperature when the tire side portion S is compressed. Suppress and improve durability. Also in the case of run-flat, particularly during puncture, the convex portion 9 further suppresses the deformation of the tire when the tire side portion S is compressed, and the concave portion 10 increases the temperature when the tire side portion S is compressed. To improve durability.

本実施例では、条件が異なる複数種類の空気入りタイヤについて、燃費や荷重耐久性に関する性能試験が行われた(図19および図20参照)。   In this example, performance tests on fuel efficiency and load durability were performed for a plurality of types of pneumatic tires with different conditions (see FIGS. 19 and 20).

この性能試験では、タイヤサイズ185/65R15の空気入りタイヤを、正規リムにリム組みし、正規内圧を充填した。   In this performance test, a pneumatic tire having a tire size of 185 / 65R15 was assembled on a regular rim and filled with a regular internal pressure.

燃費の性能試験は、上記空気入りタイヤを、排気量1500[cc]+モータアシスト駆動の小型前輪駆動車に装着し、この試験車両にて、全周2[km]のテストコースで時速100[km/h]にて50周走行した場合の燃費を計測した。そして、この計測結果に基づいて、従来例の空気入りタイヤを基準(100)とし燃費改善率を指数評価する。この指数評価は、数値が大きいほど燃費改善率が向上されていることを示している。   In the fuel efficiency performance test, the pneumatic tire is mounted on a small front wheel drive vehicle with a displacement of 1500 [cc] + motor assist, and this test vehicle uses a test course with a circumference of 2 [km] at a speed of 100 [hours]. km / h] was measured for 50 laps. Then, based on the measurement result, the fuel efficiency improvement rate is index-evaluated using the conventional pneumatic tire as a reference (100). This index evaluation shows that the fuel efficiency improvement rate is improved as the value increases.

荷重耐久性の性能試験は、上記空気入りタイヤを正規リムに装着し、空気圧を180[kPa]にした。この空気入りタイヤを、ドラム表面が平滑な鋼性で直径1707[mm]のドラム試験機を用い、周辺温度38±3[℃]に制御した環境にて、速度を81[km/h]、負荷加重をJATMA規定の最大荷重の88[%]から2時間毎に13[%]ずつ荷重を増加させてタイヤが破壊するまでの総走行距離を測定した。そして、この測定結果に基づいて、従来例の空気入りタイヤを基準(100)とし荷重耐久性を指数評価する。この指数評価は、数値が大きいほど荷重耐久性が向上されていることを示している。   In the load durability performance test, the pneumatic tire was mounted on a regular rim, and the air pressure was set to 180 [kPa]. The speed of the pneumatic tire was 81 [km / h] in an environment controlled to an ambient temperature of 38 ± 3 [° C.] using a drum tester having a steel surface with a smooth drum surface and a diameter of 1707 [mm]. The total distance traveled until the tire breaks by increasing the load by 13 [%] every 2 hours from 88 [%] of the maximum load specified by JATMA was measured. Based on the measurement results, the load durability is index-evaluated using the conventional pneumatic tire as a reference (100). This index evaluation shows that the load durability is improved as the numerical value increases.

図19において、従来例の空気入りタイヤは、両側のタイヤサイド部に凸部および凹部を有していない。また、比較例の空気入りタイヤは、両側のタイヤサイド部に突条の凸部が設けられているが、凸部間に凹部を有していない。なお、凸部は、タイヤ径方向に沿って長さが均等で、タイヤ周方向で等間隔に配置され、タイヤ周方向に30個設けられ、幅が3[mm]とされ、ピッチ長Pが51[mm]とされている。   In FIG. 19, the conventional pneumatic tire does not have convex portions and concave portions at the tire side portions on both sides. Moreover, the pneumatic tire of the comparative example is provided with protrusions on the ridges on the tire side portions on both sides, but does not have a recess between the protrusions. In addition, the convex part has a uniform length along the tire radial direction, is arranged at equal intervals in the tire circumferential direction, is provided in the tire circumferential direction, has a width of 3 [mm], and has a pitch length P of 51 [mm].

一方、図19および図20において、実施例1〜実施例18の空気入りタイヤは、両側のタイヤサイド部に凸部が設けられ、凸部間に凹部が設けられている。なお、凸部は、タイヤ径方向に沿って長さが均等で、タイヤ周方向で等間隔に配置され、タイヤ周方向に30個設けられ、幅が3[mm]とされ、ピッチ長Pが51[mm]とされている。また、凹部は、実施例1〜実施例12、実施例14において開口面積および深さを一定(容積を一定)とされ、実施例13、実施例15〜実施例18において深さが一定で開口面積(容積)を異ならせている。そして、実施例1〜実施例3の空気入りタイヤは、凹部の開口割合(配置割合)が各領域D1=領域D2であって、凹部の間隔が均等とされている。また、実施例4〜実施例6の空気入りタイヤは、凹部の開口割合(配置割合)が領域D1=領域D1であって、領域D1>領域D2とされている。そのうち、実施例6は、凸部に近づくに従って凹部の間隔が小さく配置されている。また、実施例7および実施例8の空気入りタイヤは、凹部の開口割合(配置割合)が領域D1=領域D1であって、領域D1<領域D2とされている。そのうち、実施例8は、凸部から遠ざかるに従って凹部の間隔が小さく配置されている。また、実施例9〜実施例18の空気入りタイヤは、タイヤの回転方向が指定され、凹部の開口割合(配置割合)A,B,Cが、A>B>Cの関係とされている。そのうち、実施例実施例11、実施例12および実施例18の空気入りタイヤは、タイヤ回転方向前側の領域D1での凹部のタイヤ径方向の間隔が一定とされている。実施例12および実施例18の空気入りタイヤは、タイヤ回転方向後側への領域D2での凹部の配置間隔が大きくされている。実施例14〜実施例18の空気入りタイヤは、タイヤ回転方向後側の頂域D1に凹部が設けられていない。実施例16の空気入りタイヤは、凸部の断面形状が三角形(二等辺三角形)とされている。実施例17および実施例18の空気入りタイヤは、凸部の断面形状が三角形(二等辺三角形)の2辺が円弧の凹みで形成されている(図18参照)。   On the other hand, in FIGS. 19 and 20, the pneumatic tires of Examples 1 to 18 are provided with convex portions on the tire side portions on both sides, and are provided with concave portions between the convex portions. In addition, the convex part has a uniform length along the tire radial direction, is arranged at equal intervals in the tire circumferential direction, is provided in the tire circumferential direction, has a width of 3 [mm], and has a pitch length P of 51 [mm]. In addition, the opening area and depth of the recesses are constant (the volume is constant) in Examples 1 to 12 and 14, and the openings are constant in Examples 13 and 15 to 18. The area (volume) is different. And as for the pneumatic tire of Example 1- Example 3, the opening ratio (arrangement ratio) of a recessed part is each area | region D1 = area | region D2, Comprising: The space | interval of a recessed part is made equal. Further, in the pneumatic tires of Examples 4 to 6, the opening ratio (arrangement ratio) of the recesses is region D1 = region D1, and region D1> region D2. Among them, in Example 6, the interval between the concave portions is arranged to be smaller as the convex portion is approached. In the pneumatic tires of Example 7 and Example 8, the opening ratio (arrangement ratio) of the recesses is region D1 = region D1, and region D1 <region D2. Among them, in Example 8, the interval between the concave portions is arranged to become smaller as the distance from the convex portion increases. In the pneumatic tires of Examples 9 to 18, the rotation direction of the tire is specified, and the opening ratios (arrangement ratios) A, B, and C of the recesses have a relationship of A> B> C. Among them, in the pneumatic tires of Example 11, Example 12, and Example 18, the distance in the tire radial direction between the recesses in the region D1 on the front side in the tire rotation direction is constant. In the pneumatic tires of Example 12 and Example 18, the arrangement interval of the recesses in the region D2 on the rear side in the tire rotation direction is increased. In the pneumatic tires of Examples 14 to 18, no recess is provided in the apex region D1 on the rear side in the tire rotation direction. In the pneumatic tire of Example 16, the cross-sectional shape of the convex portion is a triangle (isosceles triangle). In the pneumatic tires of Examples 17 and 18, the cross-sectional shape of the convex portion is formed by a recess having a circular arc on two sides (see FIG. 18).

そして、図19および図20の試験結果に示すように、実施例1〜実施例18の空気入りタイヤは、燃費や荷重耐久性が改善されていることが分かる。   And as shown to the test result of FIG. 19 and FIG. 20, it turns out that the pneumatic tire of Example 1- Example 18 has improved fuel consumption and load durability.

1 空気入りタイヤ
9 凸部
10 凹部
S タイヤサイド部
T 接地端
L リムチェックライン
D1 凸部寄りの領域
D2 各領域D1の間の領域
DESCRIPTION OF SYMBOLS 1 Pneumatic tire 9 Convex part 10 Concave part S Tire side part T Grounding end L Rim check line D1 Area | region near convex part D2 Area | region between each area | region D1

Claims (17)

少なくとも一方のタイヤサイド部に、多数の凸部および多数の凹部を有する空気入りタイヤにおいて、
前記凸部は、タイヤ径方向に沿って長手状の突条として形成され、かつタイヤ周方向で間隔を空けて配置されており、
前記凹部は、各前記凸部の間の領域に設けられていることを特徴とする空気入りタイヤ。
In a pneumatic tire having a large number of convex portions and a large number of concave portions on at least one tire side portion,
The convex portions are formed as elongated protrusions along the tire radial direction, and are arranged at intervals in the tire circumferential direction,
The pneumatic tire according to claim 1, wherein the concave portion is provided in a region between the convex portions.
タイヤ周方向で隣接する各前記凸部の間の領域を、タイヤ周方向で3つの領域に分割して各前記凸部寄りの各領域D1と、前記各領域D1の間の領域D2とし、前記各領域D1と前記領域D2とに配置される前記凹部の割合を異ならせることを特徴とする請求項1に記載の空気入りタイヤ。   The region between the convex portions adjacent in the tire circumferential direction is divided into three regions in the tire circumferential direction to form the regions D1 near the convex portions and the regions D2 between the regions D1, 2. The pneumatic tire according to claim 1, wherein the ratio of the concave portions arranged in each of the regions D <b> 1 and the region D <b> 2 is made different. 前記各領域D1に配置される前記凹部の割合を等しくし、かつ前記各領域D1に配置される前記凹部の割合を前記領域D2よりも大きくすることを特徴とする請求項2に記載の空気入りタイヤ。   The ratio of the said recessed part arrange | positioned at each said area | region D1 is made equal, and the ratio of the said recessed part arrange | positioned at each said area | region D1 is made larger than the said area | region D2, The pneumatic of Claim 2 characterized by the above-mentioned. tire. 各前記凸部に近づくに従って前記凹部の配置間隔を小さくすることを特徴とする請求項3に記載の空気入りタイヤ。   The pneumatic tire according to claim 3, wherein an interval between the concave portions is reduced as approaching each convex portion. 前記各領域D1に配置される前記凹部の割合を等しくし、かつ前記領域D2に配置される前記凹部の割合を前記各領域D1よりも大きくすることを特徴とする請求項2に記載の空気入りタイヤ。   The ratio of the said recessed part arrange | positioned at each said area | region D1 is made equal, and the ratio of the said recessed part arrange | positioned at the said area | region D2 is made larger than each said area | region D1, The pneumatic of Claim 2 characterized by the above-mentioned. tire. 各前記凸部から遠ざかるに従って前記凹部の配置間隔を小さくすることを特徴とする請求項5に記載の空気入りタイヤ。   The pneumatic tire according to claim 5, wherein an interval between the concave portions is reduced as the distance from each convex portion increases. 車両装着時でのタイヤ回転方向が指定されており、タイヤ回転方向前側の前記凸部寄りの前記領域D1に配置される前記凹部の割合をA、前記領域D2に配置される前記凹部の割合をB、タイヤ回転方向後側の前記凸部寄りの前記領域D1に配置される前記凹部の割合をCとした場合、A>B>Cの関係とすることを特徴とする請求項2に記載の空気入りタイヤ。   The tire rotation direction at the time of mounting on the vehicle is specified, and the ratio of the recesses arranged in the region D1 near the projections on the front side of the tire rotation direction is A, and the ratio of the recesses arranged in the region D2 is The relationship of A> B> C is established, where C is the ratio of the concave portions arranged in the region D1 near the convex portion on the rear side in the tire rotation direction. Pneumatic tire. タイヤ回転方向前側の前記凸部寄りの前記領域D1に配置される前記凹部の間隔を前記凸部の長手方向で一定にすることを特徴とする請求項7に記載の空気入りタイヤ。   The pneumatic tire according to claim 7, wherein the interval between the concave portions arranged in the region D <b> 1 near the convex portion on the front side in the tire rotation direction is made constant in the longitudinal direction of the convex portion. タイヤ回転方向後側に近づくに従い、前記領域D2の前記凹部の配置間隔を大きくすることを特徴とする請求項7または8に記載の空気入りタイヤ。   9. The pneumatic tire according to claim 7, wherein an interval between the concave portions in the region D <b> 2 is increased as approaching the rear side in the tire rotation direction. タイヤ回転方向後側の前記凸部寄りの前記領域D1に前記凹部を配置しないことを特徴とする請求項7〜9のいずれか1つに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 7 to 9, wherein the concave portion is not disposed in the region D1 near the convex portion on the rear side in the tire rotation direction. タイヤ回転方向前側の前記凸部寄りの前記領域D1に配置される前記凹部の開口割合Aが、前記各領域D1および前記領域D2全ての前記凹部に対して20[%]以上50[%]以下であり、前記領域D2に配置される前記凹部の開口割合Bが、前記各領域D1および前記領域D2全ての前記凹部に対して5[%]以上30[%]以下であることを特徴とする請求項7〜10のいずれか1つに記載の空気入りタイヤ。   The opening ratio A of the concave portions arranged in the region D1 near the convex portion on the front side in the tire rotation direction is 20% to 50% with respect to the concave portions in each of the regions D1 and the regions D2. The opening ratio B of the recesses disposed in the region D2 is 5% to 30% with respect to the recesses in all the regions D1 and the region D2. The pneumatic tire according to any one of claims 7 to 10. 前記凹部は、タイヤ径方向内側に向かって容積を大きく形成されていることを特徴とする請求項1〜11のいずれか1つに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 11, wherein the concave portion is formed to increase in volume toward the inner side in the tire radial direction. 前記凸部の長手方向寸法が5[mm]以上であることを特徴とする請求項1〜12のいずれか1つに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 12, wherein a longitudinal dimension of the convex portion is 5 mm or more. 前記凸部の突出高さが0.5[mm]以上10.0[mm]以下であることを特徴とする請求項1〜13のいずれか1つに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 13, wherein a protruding height of the convex portion is not less than 0.5 [mm] and not more than 10.0 [mm]. 前記凸部の断面形状が、頂点を有して底面側に漸次広がることを特徴とする請求項1〜14のいずれか1つに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 14, wherein a cross-sectional shape of the convex portion has a vertex and gradually spreads toward a bottom surface side. 前記凸部の断面形状が、少なくとも1つの円弧を有することを特徴とする請求項1〜15のいずれか1つに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 15, wherein a cross-sectional shape of the convex portion has at least one arc. 前記凹部の深さが0.5[mm]以上5.0[mm]以下であることを特徴とする請求項1〜16のいずれか1つに記載の空気入りタイヤ。   The depth of the said recessed part is 0.5 [mm] or more and 5.0 [mm] or less, The pneumatic tire as described in any one of Claims 1-16 characterized by the above-mentioned.
JP2011213012A 2011-09-28 2011-09-28 Pneumatic tire Expired - Fee Related JP5834708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011213012A JP5834708B2 (en) 2011-09-28 2011-09-28 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011213012A JP5834708B2 (en) 2011-09-28 2011-09-28 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2013071651A true JP2013071651A (en) 2013-04-22
JP5834708B2 JP5834708B2 (en) 2015-12-24

Family

ID=48476467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011213012A Expired - Fee Related JP5834708B2 (en) 2011-09-28 2011-09-28 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5834708B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029927A1 (en) * 2013-08-26 2015-03-05 横浜ゴム株式会社 Pneumatic tire
WO2015029928A1 (en) * 2013-08-26 2015-03-05 横浜ゴム株式会社 Pneumatic tire
WO2015029929A1 (en) * 2013-08-26 2015-03-05 横浜ゴム株式会社 Pneumatic tire
CN105392640A (en) * 2013-07-01 2016-03-09 普利司通美国轮胎运营有限责任公司 Methods and apparatuses for creating a visual effect on a rubber article
WO2016043191A1 (en) * 2014-09-17 2016-03-24 横浜ゴム株式会社 Pneumatic tire
WO2019116992A1 (en) * 2017-12-13 2019-06-20 株式会社ブリヂストン Tire
CN112109502A (en) * 2020-10-14 2020-12-22 厦门正新橡胶工业有限公司 Low aspect ratio pneumatic tire for motorcycle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105392640A (en) * 2013-07-01 2016-03-09 普利司通美国轮胎运营有限责任公司 Methods and apparatuses for creating a visual effect on a rubber article
US10322610B2 (en) 2013-07-01 2019-06-18 Bridgestone Americas Tire Operations, Llc Methods and apparatuses for creating a visual effect on a rubber article
US9562748B2 (en) 2013-07-01 2017-02-07 Bridgestone Americas Tire Operations, Llc Methods and apparatuses for creating a visual effect on a rubber article
WO2015029927A1 (en) * 2013-08-26 2015-03-05 横浜ゴム株式会社 Pneumatic tire
WO2015029928A1 (en) * 2013-08-26 2015-03-05 横浜ゴム株式会社 Pneumatic tire
WO2015029929A1 (en) * 2013-08-26 2015-03-05 横浜ゴム株式会社 Pneumatic tire
JP2015042535A (en) * 2013-08-26 2015-03-05 横浜ゴム株式会社 Pneumatic tire
CN107074041A (en) * 2014-09-17 2017-08-18 横滨橡胶株式会社 Pneumatic tire
JPWO2016043191A1 (en) * 2014-09-17 2017-06-29 横浜ゴム株式会社 Pneumatic tire
AU2015319188B2 (en) * 2014-09-17 2018-10-18 The Yokohama Rubber Co., Ltd. Pneumatic tire
AU2015319188B9 (en) * 2014-09-17 2019-02-28 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2016043191A1 (en) * 2014-09-17 2016-03-24 横浜ゴム株式会社 Pneumatic tire
CN107074041B (en) * 2014-09-17 2019-11-08 横滨橡胶株式会社 Pneumatic tire
WO2019116992A1 (en) * 2017-12-13 2019-06-20 株式会社ブリヂストン Tire
JP2019104396A (en) * 2017-12-13 2019-06-27 株式会社ブリヂストン tire
CN111479708A (en) * 2017-12-13 2020-07-31 株式会社普利司通 Tyre for vehicle wheels
CN112109502A (en) * 2020-10-14 2020-12-22 厦门正新橡胶工业有限公司 Low aspect ratio pneumatic tire for motorcycle

Also Published As

Publication number Publication date
JP5834708B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5246370B1 (en) Pneumatic tire
JP5482759B2 (en) Pneumatic tire
JP5868303B2 (en) Pneumatic tire
JP6318618B2 (en) Pneumatic tire
JP5834708B2 (en) Pneumatic tire
JP5482758B2 (en) Pneumatic tire
US9038684B2 (en) Pneumatic tire unit
JP6010932B2 (en) Pneumatic tire
JP6007551B2 (en) Pneumatic tire
JP6142798B2 (en) Pneumatic tire
JP6070413B2 (en) Vehicle air resistance reduction structure and vehicle
JP5891682B2 (en) Pneumatic tire
JP2013071659A (en) Tire/wheel assembly
JP5569494B2 (en) Pneumatic tire
JPWO2017090101A1 (en) Pneumatic tire
JP5929437B2 (en) Pneumatic tire
JP5828258B2 (en) Pneumatic tire
JP5799713B2 (en) Pneumatic tire
JP2014069587A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees