JP2013071478A - Assembly method of frame structure - Google Patents

Assembly method of frame structure Download PDF

Info

Publication number
JP2013071478A
JP2013071478A JP2011209819A JP2011209819A JP2013071478A JP 2013071478 A JP2013071478 A JP 2013071478A JP 2011209819 A JP2011209819 A JP 2011209819A JP 2011209819 A JP2011209819 A JP 2011209819A JP 2013071478 A JP2013071478 A JP 2013071478A
Authority
JP
Japan
Prior art keywords
welding
frame
welded
long side
frame structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011209819A
Other languages
Japanese (ja)
Inventor
Tomonori Suzuki
智典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2011209819A priority Critical patent/JP2013071478A/en
Publication of JP2013071478A publication Critical patent/JP2013071478A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a welding method of a frame structure by which, when performing welding after abutting rectangular pipe-shaped frame materials to each other, deformation due to welding is suppressed and a junction strength of a welded part can be secured.SOLUTION: According to an assembly method of the frame structure, an end face of one rectangular pipe-shaped frame material 20 (cross frame) is abutted to a side surface of another rectangular pipe-shaped frame material 10 (side frame), the abutted parts thereof are welded, thereby the frame structure 100 is assembled. When welding a longer side S1 among sides constituting a circumferential edge of an end face 21 of the cross frame 20, welding is performed by dividing a length of the longer side S1 into two or more parts.

Description

本発明は、角筒状のアルミニウム系の押出材等を溶接接合し、車体フレーム等のフレーム構造体を組み立てる方法に関する。   The present invention relates to a method for assembling a frame structure such as a vehicle body frame by welding and joining rectangular tubular aluminum-based extruded materials.

乗用車やトラックの車体フレーム等のフレーム構造体は、アルミニウム系押出材等からなる角筒状のフレーム材を溶接して組み立てることにより形成されている。溶接によりフレーム構造体に変形が生じると、決められた寸法精度を得ることができないため、各フレーム材を溶接する際には、各部材を治具により拘束する等して、溶接により生じるフレーム構造体の変形を抑制している。   A frame structure such as a body frame of a passenger car or a truck is formed by welding and assembling a rectangular tube-shaped frame material made of an aluminum-based extruded material or the like. If the frame structure is deformed by welding, the determined dimensional accuracy cannot be obtained. Therefore, when welding each frame material, the frame structure is generated by welding by restraining each member with a jig. Suppresses body deformation.

また、特許文献1では、左右一対のフレーム材(サイドメンバ)同士の間に複数のフレーム材(クロスメンバ)を突き当てて溶接する際に、変形を抑制するため、サイドメンバに対するクロスメンバの突き当て部での溶接の向きと順序の最適化を図っている。   Further, in Patent Document 1, in order to suppress deformation when a plurality of frame members (cross members) are abutted and welded between a pair of left and right frame members (side members), the protrusion of the cross member with respect to the side members is suppressed. The direction and sequence of welding at the abutment are optimized.

また、特許文献2では、他方のフレーム材(被溶接部材)に突き当てるべき一方のフレーム材の端面を予めテーパ状に形成することで、突き当て部の四辺部のうち一辺部に相当する位置において他方のフレーム材との間にV溝状の開先を形成しておき、開先を形成した一辺部を最初に溶接し、その後に反対側の一辺部の溶接を行うことで、倒れ量(変形量)を相殺している。   Moreover, in patent document 2, the end surface of one frame material which should be abutted against the other frame material (member to be welded) is formed in a tapered shape in advance, so that one of the four sides of the abutting portion corresponds to one side. In this example, a groove having a V-groove shape is formed between the other frame material, and one side where the groove is formed is welded first, and then the other side is welded. (Deformation amount) is offset.

特開2002‐356177号公報JP 2002-356177 A 特開2005‐21933号公報Japanese Patent Laid-Open No. 2005-21933

しかしながら、フレーム構造体の変形の抑制と、必要な接合強度の確保との両方を満足することは難しいという問題があった。   However, there is a problem that it is difficult to satisfy both the suppression of the deformation of the frame structure and the securing of the necessary bonding strength.

本発明は、このような事情に鑑みてなされたもので、角筒状のフレーム材同士を突き合わせて溶接を施すにあたり、溶接に伴う変形を抑制するとともに、溶接部の接合強度を確保することができるフレーム構造体の溶接方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and when performing welding by abutting square tube-shaped frame materials, it is possible to suppress deformation accompanying welding and to secure the joint strength of the welded portion. An object of the present invention is to provide a welding method for a frame structure.

本発明は、角筒状の一方のフレーム材の側面に、角筒状の他方のフレーム材の端面を突き当てた状態で、その突き当て部を溶接することにより、フレーム構造体を組立てるフレーム構造体の組立方法であって、前記他方のフレーム材の端面の周縁を構成する辺のうち、長さの長い長辺を溶接する際には、その長辺の長さを二つ以上に分割して溶接することを特徴とする。   The present invention relates to a frame structure in which a frame structure is assembled by welding the abutting portion in a state where the end surface of the other square tube-shaped frame material is abutted against the side surface of one rectangular tube-shaped frame material. In the method of assembling the body, when welding a long side having a long length among the sides constituting the peripheral edge of the end face of the other frame member, the length of the long side is divided into two or more. And welding.

溶接部の入熱量及び熱溶融領域は、溶接長が長くなるにつれて増えていく。このため、溶接長が長くなるとフレーム材への入熱量が増え、フレーム材の溶接部とそれ以外の部分との温度差が大きくなるとともに、熱溶融領域が広くなり、変形(ゆがみ)が生じ易い。
長辺部分の溶接を二つ以上に分割して行うことにより、フレーム材への入熱量を小さくでき、熱溶融領域を減らすことができるので、溶接に伴う変形を抑制できるとともに、連続で溶接したときと同等以上の接合強度を確保することができる。
The amount of heat input and the heat melting region of the welded portion increase as the weld length increases. For this reason, as the weld length increases, the amount of heat input to the frame material increases, the temperature difference between the welded portion of the frame material and the other portions increases, the thermal melting region widens, and deformation (distortion) is likely to occur. .
By splitting the long side part into two or more parts, the amount of heat input to the frame material can be reduced and the heat melting area can be reduced, so that deformation due to welding can be suppressed and welding is performed continuously. It is possible to secure a bonding strength equivalent to or better than that of the time.

本発明のフレーム構造体の組立方法において、前記長辺の溶接は、該長辺の一方の端部から中央部にかけて溶接した後に、該長辺の他方の端部から中央部にかけて溶接を行うとよい。
このように、溶接部のエンド部を、長辺の中央部に配置して接合することで、さらに溶接に伴う変形を低減することができる。
In the method for assembling the frame structure according to the present invention, the welding of the long side is performed by welding from one end of the long side to the center and then welding from the other end of the long side to the center. Good.
Thus, the deformation | transformation accompanying welding can be further reduced by arrange | positioning and joining the end part of a welding part in the center part of a long side.

本発明によれば、溶接長が長くなるフレーム材の長辺を、二つ以上に分割して溶接を行うことで、フレーム材への入熱量を小さくでき、熱溶融領域を減らすことができる。したがって、溶接に伴う変形を抑制するとともに、連続で溶接したときと同等以上の接合強度を確保することができる。   According to the present invention, by dividing the long side of the frame material having a long weld length into two or more and performing welding, the amount of heat input to the frame material can be reduced, and the heat melting region can be reduced. Therefore, it is possible to suppress the deformation accompanying welding and to secure a joint strength equal to or higher than that of continuous welding.

本発明の第1実施形態のフレーム構造体の組立方法を説明する斜視図である。It is a perspective view explaining the assembly method of the frame structure of 1st Embodiment of this invention. 図1に示すフレーム構造体のA矢視図である。It is A arrow directional view of the frame structure shown in FIG. 変形量の測定方法を説明する斜視図である。It is a perspective view explaining the measuring method of deformation. 変形量の測定点を説明するフレーム構造体の上面図である。It is a top view of the frame structure explaining the measurement point of deformation. 接合強度の測定方法を説明する斜視図である。It is a perspective view explaining the measuring method of joint strength. 実施例における各試料の条件を一覧にした表である。It is the table | surface which listed the conditions of each sample in an Example.

以下、本発明のフレーム構造体の組立方法の一実施形態について、図面を参照しながら説明する。
本実施形態のフレーム構造体の組立方法は、図1に示すように、断面が口型の角筒状に形成された一方のフレーム材10(以下、サイドフレーム)の側面に、同じく角筒状に形成された他方のフレーム材20(以下、クロスフレーム)の端面を突き当てた状態で、その突き当て部を溶接することにより、サイドフレーム10とクロスフレーム20とを接合し、フレーム構造体100を組み立てる方法である。
Hereinafter, an embodiment of a method for assembling a frame structure according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the method of assembling the frame structure according to the present embodiment has a rectangular tube shape on the side surface of one frame member 10 (hereinafter referred to as a side frame) having a cross section formed into a square tube shape. The side frame 10 and the cross frame 20 are joined by welding the abutting portion in a state where the end surface of the other frame member 20 (hereinafter referred to as a cross frame) formed on the abutting surface is abutted. It is a method of assembling.

サイドフレーム10及びクロスフレーム20は、アルミニウム合金の押出成形によって角筒状に形成されており、例えば、高さH:100mm、幅W:30mm、厚さt:2.5mmとされている。
フレーム構造体100を組み立てるにあたり、図1及び図2に示すように、サイドフレーム10の側面にクロスフレーム20の端面21を突き当て、クロスフレーム20の端面21の周縁を構成する辺のうち、長さの長い辺(長辺S1)が垂直になるように配置する。そして、所定の位置に配置した状態でクランプ等の治具(図示略)により拘束する。
次に、サイドフレーム10とクロスフレーム20との突き当て部に、例えば、電子ビーム溶接による溶解溶接法により溶接を行う。溶接条件としては、使用するフレーム材の条件によって設定が異なるが、本実施形態では、溶接電流160A、溶接速度100cm/minに設定する。
The side frame 10 and the cross frame 20 are formed in a rectangular tube shape by extrusion molding of an aluminum alloy. For example, the height H is 100 mm, the width W is 30 mm, and the thickness t is 2.5 mm.
In assembling the frame structure 100, as shown in FIGS. 1 and 2, the end surface 21 of the cross frame 20 is abutted against the side surface of the side frame 10, and the length of the side that forms the periphery of the end surface 21 of the cross frame 20 is long. It arrange | positions so that a long side (long side S1) may become perpendicular | vertical. And it restrains with jig | tool (not shown), such as a clamp, in the state arrange | positioned in a predetermined position.
Next, welding is performed on the abutting portion between the side frame 10 and the cross frame 20 by, for example, a melting welding method using electron beam welding. As the welding conditions, the setting varies depending on the conditions of the frame material to be used, but in this embodiment, the welding current is set to 160A and the welding speed is set to 100 cm / min.

また、図2に示す破線矢印(1)〜(5)は、溶接順序及び溶接の方向を示しており、クロスフレーム20の端面21の周縁を構成する辺のうち溶接長の長い長辺S1から順に溶接する。
この際、垂直に配置された長辺S1を、二つ以上に分割して溶接する。例えば、図2に破線矢印(1),(2)で示すように、長辺S1の下端部から中央部に向かって溶接(上進溶接)した後に、長辺S1の上端部から中央部に向かって溶接(下進溶接)することにより、長辺S1を二分割して溶接する。次に、長辺S1の反対側の長辺S1も同様に、下端部から中央部に向かって溶接し(破線矢印(3))、その後に上端部から中央部に向かって溶接する(破線矢印(4))ことにより、溶接を施す。両長辺S1の溶接終了後、上側の短辺S2を溶接し(破線矢印(5))、フレーム構造体100の組み立てを完了させる。
なお、両長辺S1の溶接により必要な接合強度が得られれば、短辺S2は必ずしも溶接することを必要としない。
Also, broken line arrows (1) to (5) shown in FIG. 2 indicate the welding sequence and the welding direction, and from the long side S1 having a long welding length among the sides constituting the peripheral edge of the end surface 21 of the cross frame 20. Weld sequentially.
At this time, the long side S1 arranged vertically is divided into two or more and welded. For example, as shown by broken line arrows (1) and (2) in FIG. 2, after welding (upward welding) from the lower end portion of the long side S1 toward the center portion, the upper end portion of the long side S1 is changed to the center portion. By welding toward the bottom (downward welding), the long side S1 is divided into two parts and welded. Next, the long side S1 opposite to the long side S1 is similarly welded from the lower end portion toward the central portion (broken line arrow (3)), and then welded from the upper end portion toward the central portion (broken line arrow). (4)) Thus, welding is performed. After the welding of both long sides S1, the upper short side S2 is welded (broken line arrow (5)), and the assembly of the frame structure 100 is completed.
Note that the short side S2 does not necessarily need to be welded if the necessary joint strength is obtained by welding the long sides S1.

このように、本実施形態のフレーム構造体の組立方法によれば、溶接長が長くなる長辺S1の溶接を二分割して行うことにより、サイドフレーム10及びクロスフレーム20への入熱量を小さくでき、熱溶融領域を減らすことができる。したがって、溶接に伴うフレーム構造体100の変形の発生を低減することができるとともに、溶接部15の接合強度を確保することができる。
なお、長辺を二分割して溶接する場合には、長辺の端部から中央部へ向けての溶接だけでなく、中央部から端部へ向けての溶接(後述する図6の試料7)、いずれも同一方向へ行う溶接(後述する図6の試料8)のいずれをも採用することができる。
As described above, according to the method for assembling the frame structure of the present embodiment, the amount of heat input to the side frame 10 and the cross frame 20 is reduced by performing the welding of the long side S1 with a long welding length in two. And the heat melting region can be reduced. Therefore, the occurrence of deformation of the frame structure 100 due to welding can be reduced, and the joint strength of the welded portion 15 can be ensured.
In the case of welding by dividing the long side into two parts, not only welding from the end part of the long side toward the central part but also welding from the central part to the end part (sample 7 in FIG. 6 described later). ), Both of which are performed in the same direction (sample 8 in FIG. 6 described later) can be employed.

次に、本発明のフレーム構造体の組立方法に係る実施例について説明する。
図5に示すように、高さ(長辺)H:100mm、幅W(短辺):30mm、厚さt:2.5mmの角筒状のフレーム材で形成された長さL1:300mmのサイドフレーム10と、長さL2:270mmのクロスフレーム20とを用意し、図6に示す溶接方法で試料1〜9のフレーム構造体100を組立て、各フレーム構造体100の変形の大きさ及び接合強度(破断強度)を確認した。なお、フレーム材の材料には、JIS規格における6000系合金のアルミニウムを使用した。また、各フレーム構造体100の溶接は、電子ビーム溶接による溶解溶接法を用い、溶接条件としては、溶接電流160A、溶接速度100cm/minとした。
Next, an embodiment according to the method for assembling the frame structure of the present invention will be described.
As shown in FIG. 5, a length L1: 300 mm formed of a rectangular tubular frame material having a height (long side) H: 100 mm, a width W (short side): 30 mm, and a thickness t: 2.5 mm. A side frame 10 and a cross frame 20 having a length L2 of 270 mm are prepared, and the frame structures 100 of the samples 1 to 9 are assembled by the welding method shown in FIG. The strength (breaking strength) was confirmed. The frame material used was aluminum of 6000 series alloy according to JIS standards. Further, the welding of each frame structure 100 was performed by a melting welding method using electron beam welding, and the welding conditions were a welding current of 160 A and a welding speed of 100 cm / min.

図6の溶接方法に示す矢印(1)〜(4)は、溶接順序及び溶接の方向を示している。
例えば、試料1〜4の溶接条件は、各長辺を一度に連続して溶接したことを表している。また、試料1〜3は、長辺の全長100mmの全域を溶接したことを示し、試料4は、長辺の両端部を残した内側80mmの領域に溶接を施したことを示す。
試料5〜9においては、各長辺を二分割して溶接したことを表している。例えば、試料5は、長辺の上端部から中央部に向かって溶接した後に(矢印(1))、長辺の下端部から中央部に向かって溶接することにより(矢印(2))、長辺を二分割して溶接した。また、試料7は、長辺の中央部から上端部に向かって溶接した後に(矢印(1))、長辺の中央部から下端部に向かって溶接することにより(矢印(2))、長辺を二分割して溶接した。
Arrows (1) to (4) shown in the welding method of FIG. 6 indicate the welding sequence and the welding direction.
For example, the welding conditions of samples 1 to 4 indicate that each long side is continuously welded at once. Samples 1 to 3 show that the entire region with a long side of 100 mm is welded, and Sample 4 shows that the inner 80 mm region where both ends of the long side are left is welded.
Samples 5 to 9 indicate that each long side is divided into two parts and welded. For example, the sample 5 is welded from the upper end of the long side toward the center (arrow (1)), and then welded from the lower end of the long side toward the center (arrow (2)). The sides were divided in two and welded. In addition, the sample 7 was welded from the center part of the long side toward the upper end part (arrow (1)) and then welded from the center part of the long side toward the lower end part (arrow (2)). The sides were divided in two and welded.

また、変形の大きさは、クロスフレーム20との接合面12とは反対側のサイドフレーム10の側面(測定面11)において、サイドフレーム10とクロスフレーム20との溶接前後の各測定点M1〜M6の変位量を測定することにより確認した。
各測定点M1〜M6の変位量の測定は、図3に示すように、測定ブロック30の90°で交差する基準面31A,31Bにクロスフレーム20の二面を突き当てることにより、サイドフレーム10を上方に配置するとともに、クロスフレーム20を垂直に立てた状態とし、クロスフレーム20の上面(測定面11)を測定することにより行う。
Further, the magnitude of the deformation is measured at each measurement point M1 before and after welding of the side frame 10 and the cross frame 20 on the side surface (measurement surface 11) of the side frame 10 opposite to the joint surface 12 with the cross frame 20. This was confirmed by measuring the displacement amount of M6.
As shown in FIG. 3, the displacement of each measurement point M1 to M6 is measured by bringing the two surfaces of the cross frame 20 into contact with the reference surfaces 31A and 31B intersecting at 90 ° of the measurement block 30. Is measured by measuring the upper surface (measurement surface 11) of the cross frame 20 with the cross frame 20 standing vertically.

測定面11の測定は、図4に示すように、6点の測定点M1〜M6を測定することにより行う。これら測定点M1〜M6の測定は、測定面11の中央に設定された基準点M0を基準(ゼロ点)として行う。なお、基準点M0は、測定面11の裏面側に配置されたクロスフレーム20の端面21中央位置に重なる点に設定されている。
また、図6に示す「ひずみの総和」は、測定点M1〜M6の溶接前後における変位量の絶対値の総和を算出したものである。
The measurement of the measurement surface 11 is performed by measuring six measurement points M1 to M6 as shown in FIG. These measurement points M1 to M6 are measured using a reference point M0 set at the center of the measurement surface 11 as a reference (zero point). The reference point M0 is set to a point that overlaps the center position of the end surface 21 of the cross frame 20 disposed on the back surface side of the measurement surface 11.
Further, the “total strain” shown in FIG. 6 is obtained by calculating the total sum of absolute values of displacement amounts before and after welding at the measurement points M1 to M6.

接合強度は、図5に示すように、接合後のフレーム構造体100のサイドフレーム10を垂直に立てた状態に治具(図示略)で固定し、水平状態に配置されたクロスフレーム20に荷重Fを加え、サイドフレーム10とクロスフレーム20との溶接部15に破断が生じるまで荷重Fを加え続け、その際に記録された最大荷重の大きさにより評価した。各フレーム構造体の最大荷重の測定結果を図6に示す。
なお、荷重Fは、サイドフレーム10とクロスフレーム20との接合面からの180mm(距離D)の位置で加えた。
As shown in FIG. 5, the bonding strength is obtained by fixing the side frame 10 of the frame structure 100 after bonding with a jig (not shown) in a vertically standing state, and applying a load to the cross frame 20 arranged in a horizontal state. F was added and the load F was continuously applied until the welded portion 15 between the side frame 10 and the cross frame 20 was broken, and the evaluation was made based on the magnitude of the maximum load recorded at that time. The measurement result of the maximum load of each frame structure is shown in FIG.
The load F was applied at a position of 180 mm (distance D) from the joint surface between the side frame 10 and the cross frame 20.

また、図6の「立ち上がり剛性」は、弾性範囲内で、荷重Fを加えた部位の沈み込み量(mm)に対する荷重(kN)の比率(荷重/沈み込み量)を示しており、値が大きくなる程、剛性が高いことを表す。   Further, “rise rigidity” in FIG. 6 indicates the ratio (load / sink amount) of the load (kN) to the sink amount (mm) of the portion to which the load F is applied within the elastic range. The larger the value, the higher the rigidity.

図6に示すとおり、長辺の全長に連続して溶接を施した試料1〜3では、ひずみの総和が4mmを超え、変形量が大きくなった。一方、同様に長辺の全長に溶接を施したが、長辺の全長を二分割して溶接した試料5〜8では、ひずみの総和が3mm台に抑えられ、全長を連続して溶接した場合と比べて変形量を抑えることができた。さらに、試料5〜8は、接合強度においても、全長を連続して溶接した試料1〜3と同等以上の強度を得られることが確認できた。
また、長辺の全長を二分割して溶接した試料5〜8のうち、長辺の一方の端部から中央部にかけて溶接した後に、長辺の他方の端部から中央部にかけて溶接を行うことにより、溶接部のエンド部を長辺の中央部に配置した試料5及び試料6においては、他の場合と比べてさらに変形量を低減でき、接合強度を高くできることがわかった。
As shown in FIG. 6, in Samples 1 to 3 that were welded continuously over the entire length of the long side, the total strain exceeded 4 mm, and the amount of deformation increased. On the other hand, although welding was performed on the entire length of the long side in the same manner, in the samples 5 to 8 which were welded by dividing the entire length of the long side, the total strain was suppressed to a level of 3 mm, and the entire length was continuously welded. The amount of deformation could be reduced compared to. Furthermore, it was confirmed that Samples 5 to 8 were able to obtain a strength equal to or higher than that of Samples 1 to 3 in which the entire length was continuously welded in the bonding strength.
In addition, among samples 5 to 8 which are welded by dividing the entire length of the long side, welding is performed from one end portion of the long side to the central portion, and then welding is performed from the other end portion of the long side to the central portion. Thus, it was found that in Sample 5 and Sample 6 in which the end portion of the welded portion is arranged at the center of the long side, the amount of deformation can be further reduced and the joint strength can be increased as compared with other cases.

また、長辺の両端部を残し、内側80mmの領域に溶接を施した試料4と、長辺の両端部及び中央部を残すとともに、二分割して溶接を施した試料9においては、ひずみの総和が2mm台となり、変形量を大幅に抑えることができた。しかし、溶接部の面積が小さくなるため、長辺の全長を溶接した場合と比べて最大荷重が小さくなり、両長辺の接合だけでは必要な接合強度が得られないことがわかった。
さらに、長辺を二分割して溶接した場合には、連続して溶接した場合と比較して、立ち上がり剛性が高くなることがわかった。
Moreover, in the sample 4 which left both ends of the long side and was welded in the inner 80 mm region, and the sample 9 which left the both ends and the center of the long side and was divided and welded, The total was in the 2 mm range, and the amount of deformation could be greatly suppressed. However, since the area of the welded portion is reduced, the maximum load is reduced as compared with the case where the entire length of the long side is welded, and it has been found that the necessary joint strength cannot be obtained only by joining the two long sides.
Furthermore, it has been found that when the long side is divided into two parts and welded, the rising rigidity is higher than in the case of continuous welding.

以上のように、溶接長が長くなる長辺の溶接を二分割して行うことにより、溶接に伴うフレーム構造体の変形を低減できるとともに、連続で溶接したときと同等以上の接合強度を確保することができる。   As described above, by performing the long side welding with a long weld length in two, the deformation of the frame structure accompanying the welding can be reduced and a joint strength equal to or higher than that of continuous welding can be secured. be able to.

なお、本発明は上記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態においては、長辺を二分割して溶接を行ったが、二つ以上に分割して多分割の溶接を行ってもよい。
また、上記実施形態においては、電子ビーム溶接による溶解溶接法により溶接を行ったが、これに限定されるものではない。例えば、レーザー溶接法、アーク溶接等によっても行うことができる。
また、サイドフレーム及びクロスフレームを構成するフレーム材は、断面が口型の角筒状のものに限定されるものではない。
In addition, this invention is not limited to the thing of the structure of the said embodiment, In a detailed structure, a various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the above-described embodiment, the long side is divided into two parts and welding is performed. However, it is also possible to divide into two or more parts and perform multi-part welding.
Moreover, in the said embodiment, although welding was performed by the melt | dissolution welding method by electron beam welding, it is not limited to this. For example, it can also be performed by laser welding, arc welding, or the like.
Further, the frame material constituting the side frame and the cross frame is not limited to a rectangular tube having a mouth shape in cross section.

10 サイドフレーム(フレーム材)
11 測定面
12 接合面
15 溶接部
20 クロスフレーム(フレーム材)
21 端面
100 フレーム構造体
10 Side frame (frame material)
11 Measurement surface 12 Joint surface 15 Welded portion 20 Cross frame (frame material)
21 End face 100 Frame structure

Claims (2)

角筒状の一方のフレーム材の側面に、角筒状の他方のフレーム材の端面を突き当てた状態で、その突き当て部を溶接することにより、フレーム構造体を組立てるフレーム構造体の組立方法であって、前記他方のフレーム材の端面の周縁を構成する辺のうち、長さの長い長辺を溶接する際には、その長辺の長さを二つ以上に分割して溶接することを特徴とするフレーム構造体の組立方法。   Method of assembling a frame structure by assembling a frame structure by welding the abutting portion in a state where the end face of the other square tube-shaped frame material is abutted against the side surface of one square tube-shaped frame material And when welding the long side with a long length among the sides constituting the peripheral edge of the end face of the other frame material, the length of the long side is divided into two or more and welded. A method for assembling a frame structure. 前記長辺の溶接は、該長辺の一方の端部から中央部にかけて溶接した後に、該長辺の他方の端部から中央部にかけて溶接を行うことを特徴とする請求項1記載のフレーム構造体の組立方法。
2. The frame structure according to claim 1, wherein the long side is welded from one end of the long side to the center and then welded from the other end of the long side to the center. Body assembly method.
JP2011209819A 2011-09-26 2011-09-26 Assembly method of frame structure Pending JP2013071478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011209819A JP2013071478A (en) 2011-09-26 2011-09-26 Assembly method of frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011209819A JP2013071478A (en) 2011-09-26 2011-09-26 Assembly method of frame structure

Publications (1)

Publication Number Publication Date
JP2013071478A true JP2013071478A (en) 2013-04-22

Family

ID=48476336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011209819A Pending JP2013071478A (en) 2011-09-26 2011-09-26 Assembly method of frame structure

Country Status (1)

Country Link
JP (1) JP2013071478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019142349A (en) * 2018-02-20 2019-08-29 トヨタ自動車株式会社 Vehicle pillar structure and method of manufacturing vehicle pillar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356177A (en) * 2001-03-28 2002-12-10 Kobe Steel Ltd Joining method of aluminum alloy material for car body frame and car body frame made of aluminum alloy
JP2003136236A (en) * 2001-10-26 2003-05-14 Shin Kobe Electric Mach Co Ltd Arc welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356177A (en) * 2001-03-28 2002-12-10 Kobe Steel Ltd Joining method of aluminum alloy material for car body frame and car body frame made of aluminum alloy
JP2003136236A (en) * 2001-10-26 2003-05-14 Shin Kobe Electric Mach Co Ltd Arc welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019142349A (en) * 2018-02-20 2019-08-29 トヨタ自動車株式会社 Vehicle pillar structure and method of manufacturing vehicle pillar

Similar Documents

Publication Publication Date Title
KR101967571B1 (en) Structure for bonding press-molded article, structural article for automobile having said bonding structure, and method for manufacturing bonded article
WO2017170213A1 (en) Joint structure
JP6148385B2 (en) Aluminum structural member
JP6000932B2 (en) Method for manufacturing structure connecting member
CN109131566A (en) The welding method of the bridging arrangement and cross of vehicle beam and stringer, stringer
JP2019073152A (en) Side rail and manufacturing method for side rail
JP2013071478A (en) Assembly method of frame structure
WO2017170106A1 (en) Joint structure
JP5834436B2 (en) Strength evaluation method of laser lap weld joint
JPWO2017169998A1 (en) Junction structure
WO2023032740A1 (en) Battery case and method for manufacturing battery case
JP4734513B2 (en) Butt weld deformation test specimen
JP4234696B2 (en) Railcar head structure
US20190136886A1 (en) Welding method and corner joint component
JP6561813B2 (en) Through-diaphragm welded jointed steel pipe column and manufacturing method of through-diaphragm welded jointed steel pipe column
JP2012236441A (en) Welding joint method of panel material, and joint panel material
JP5885460B2 (en) Welded structure of frame structure
JP2019183417A (en) Method for manufacturing steel plate floor
JP3994927B2 (en) Vehicle frame structure and manufacturing method thereof
JP2019178517A (en) Steel plate floor manufacturing method
JP5685705B2 (en) Back cover for column
JP2019044327A (en) Joint structure
US11759883B2 (en) Inserts to enable friction stir welding joints and methods of forming friction stir welded assemblies
JP4698199B2 (en) Closed section welded structure and manufacturing method thereof
KR101185417B1 (en) Apparatus for fillet welding deformation test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929