JP2013069724A - Electromagnetic effect element using electromagnetic effect material having akermanite structure containing magnetic ion - Google Patents

Electromagnetic effect element using electromagnetic effect material having akermanite structure containing magnetic ion Download PDF

Info

Publication number
JP2013069724A
JP2013069724A JP2011205239A JP2011205239A JP2013069724A JP 2013069724 A JP2013069724 A JP 2013069724A JP 2011205239 A JP2011205239 A JP 2011205239A JP 2011205239 A JP2011205239 A JP 2011205239A JP 2013069724 A JP2013069724 A JP 2013069724A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
single crystal
effect element
electromagnetic effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011205239A
Other languages
Japanese (ja)
Other versions
JP5957195B2 (en
Inventor
Hideki Kuwabara
英樹 桑原
Noboru Akagi
暢 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sophia School Corp
Original Assignee
Sophia School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sophia School Corp filed Critical Sophia School Corp
Priority to JP2011205239A priority Critical patent/JP5957195B2/en
Publication of JP2013069724A publication Critical patent/JP2013069724A/en
Application granted granted Critical
Publication of JP5957195B2 publication Critical patent/JP5957195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic effect material exhibiting an electromagnetic effect even at a temperature higher than a magnetic transition temperature.SOLUTION: The electromagnetic effect element uses an electromagnetic effect material having an akermanite structure containing a magnetic ion. The electromagnetic effect material is an AMXO, wherein A is Ca, Sr, or Ba, X is Ge or Si, and M is a magnetic ion.

Description

本発明は、磁性イオンを含むオケルマナイト構造を有する電気磁気効果材料を用いた電気磁気効果素子に関する。   The present invention relates to an electromagnetism effect element using an electromagnetism effect material having an akermanite structure containing magnetic ions.

近年、外部から電場が印加されたときに磁化が誘起され、逆に、外部から磁場が印加されたときに電気分極が誘起される現象が確認されており、電気磁気効果と呼ばれている。そして、このような電気磁気効果を発現する材料はマルチフェロイック物質、あるいは電気磁気効果材料と呼ばれている。電気磁気効果を利用すれば、電場を用いて磁化を制御したり、逆に磁場を用いて電気分極を制御したりできるため、後述する磁気メモリ等の新たな電子デバイスへの応用が期待されている。   In recent years, a phenomenon has been confirmed in which magnetization is induced when an electric field is applied from the outside, and on the contrary, electric polarization is induced when a magnetic field is applied from the outside, which is called an electromagnetic effect. A material that exhibits such an electromagnetic effect is called a multiferroic substance or an electromagnetic effect material. By using the electromagnetism effect, it is possible to control the magnetization using an electric field, and conversely to control the electric polarization using a magnetic field, which is expected to be applied to new electronic devices such as a magnetic memory described later. Yes.

電気磁気効果を利用した電子デバイスを実用化するにあたっては、常温で動作できることが好ましいが、現状知られている電気磁気材料は、電気磁気効果の発現温度の低いものが多い。そこで、常温でも電気磁気効果を発現する電気磁気効果材料の開発が進められている。電気磁気効果材料においては、磁気転移温度以下の温度で磁場を印加することで電気分極が誘起されることが分かっている。そのため、常温でも電気磁気効果を発現する電気磁気効果材料を開発するために、磁気転移温度が常温よりも高い(例えば300K以上)電気磁気効果材料の開発が行われてきた。例えば、非特許文献1には、常温領域で数百ガウスという弱い磁場の印加で顕著な電気磁気効果を示すZ型六方晶フェライト(化学式SrCoFe2441)が開示されている。 In putting an electronic device using the electromagnetism effect into practical use, it is preferable that it can operate at room temperature. However, currently known electromagnetic materials often have low electromagnetism effect expression temperatures. Therefore, development of an electromagnetic effect material that exhibits an electromagnetism effect even at room temperature has been underway. It has been found that in an electromagnetic effect material, electric polarization is induced by applying a magnetic field at a temperature lower than the magnetic transition temperature. Therefore, in order to develop an electromagnetic effect material that exhibits an electromagnetism effect even at room temperature, an electromagnetism effect material having a magnetic transition temperature higher than room temperature (for example, 300 K or more) has been developed. For example, Non-Patent Document 1 discloses Z-type hexagonal ferrite (chemical formula Sr 3 Co 2 Fe 24 O 41 ) that exhibits a remarkable electromagnetic effect when a weak magnetic field of several hundred gauss is applied in a normal temperature region.

NATURE MATERIALS 9,797−802(2010)NATURE MATERIALS 9, 797-802 (2010) Physical Review Letters 105, 137202(2010)Physical Review Letters 105, 137202 (2010)

上述のSrCoFe2441は、類似構造や酸素量などから作製が困難である。そのため、簡単な構造で、作製が容易な電気磁気効果材料が望まれている。また、SrCoFe2441は常温で電気磁気効果を示すことが報告されているが、磁気転移温度を超えると、電気磁気効果は発現しなくなることが予想される。そのため、SrCoFe2441を用いた素子は、磁気転移温度を超えた温度で使用することはできない。そのため、温度によらず使用できる電気磁気効果素子が望まれている。 The above-described Sr 3 Co 2 Fe 24 O 41 is difficult to produce due to the similar structure and oxygen amount. For this reason, an electromagnetic effect material having a simple structure and easy to manufacture is desired. Sr 3 Co 2 Fe 24 O 41 has been reported to exhibit an electromagnetic effect at room temperature, but it is expected that the electromagnetism effect will not be exhibited when the magnetic transition temperature is exceeded. Therefore, an element using Sr 3 Co 2 Fe 24 O 41 cannot be used at a temperature exceeding the magnetic transition temperature. Therefore, an electromagnetic effect element that can be used regardless of temperature is desired.

本発明は、上述の問題を鑑みてなされたものであり、本発明の態様によれば、磁性イオンを含むオケルマナイト構造を有する電気磁気効果材料を用いた電気磁気効果素子であって、
前記電気磁気効果材料はAMXであって、AはCa,Sr,Baであり、XはGe,Siであり、Mは磁性イオンであり、
前記電気磁気効果材料の磁気転移温度よりも高い温度において電気磁気効果を発現することを特徴とする電気磁気効果素子が提供される。
The present invention has been made in view of the above problems, and according to an aspect of the present invention, there is provided an electromagnetism effect element using an electromagnetism effect material having an akermanite structure containing magnetic ions,
The electromagnetic effect material is A 2 MX 2 O 7 , A is Ca, Sr, Ba, X is Ge, Si, M is a magnetic ion,
An electromagnetic effect element is provided that exhibits an electromagnetic effect at a temperature higher than the magnetic transition temperature of the electromagnetic effect material.

本発明によれば、AMX(A=Ca,Sr,Ba、X=Ge,Si、M=磁性イオン)という簡単な構造であって容易に作成可能な電気磁気効果素子が提供される。また、従来は磁気転移温度よりも高い温度で電気磁気効果を発現する電気磁気効果素子は存在しなかったが、本発明に係る電気磁気効果素子は、磁気転移温度よりも高い温度においても電気磁気効果を発現する。そのため、常温領域で動作することはもちろん、結晶の融点などからくる制約を除いて任意の温度で動作させることができる。なお、本発明の電気磁気効果素子は、MがMn、Co、Fe、Cuのいずれか1つであってもよい。 According to the present invention, there is provided an electromagnetic effect element that has a simple structure of A 2 MX 2 O 7 (A = Ca, Sr, Ba, X = Ge, Si, M = magnetic ion) and can be easily produced. Is done. Conventionally, there has been no electromagnetism effect element that exhibits an electromagnetism effect at a temperature higher than the magnetic transition temperature. However, the electromagnetism effect element according to the present invention has an electromagnetism even at a temperature higher than the magnetic transition temperature. The effect is expressed. Therefore, it can be operated at an arbitrary temperature except for the restriction caused by the melting point of the crystal and the like as well as operating in the normal temperature region. In the electromagnetic effect element of the present invention, M may be any one of Mn, Co, Fe, and Cu.

本発明の電気磁気効果素子は、前記電気磁気効果材料の単結晶であって、所定の方向をc軸方向とする結晶構造を有する単結晶を含んでもよく、前記単結晶の前記c軸方向の両端には一組の電極が形成されていてもよい。例えば、図1(a)(b)に示されるような結晶構造を有する単結晶において、c軸方向の両端に一組の電極が形成されている場合には、c軸と垂直な面内において磁場を印加したときに、電極に磁気誘起電気分極による誘導電荷が現れる。なお、後述のように、本明細書においては磁場によって誘起される電気分極を、適宜、磁場誘起電気分極と呼ぶ。   The electro-magnetic effect element of the present invention may include a single crystal of the electro-magnetic effect material having a crystal structure in which a predetermined direction is a c-axis direction. A pair of electrodes may be formed at both ends. For example, in a single crystal having a crystal structure as shown in FIGS. 1A and 1B, when a pair of electrodes are formed at both ends in the c-axis direction, the plane is perpendicular to the c-axis. When a magnetic field is applied, an induced charge due to magnetically induced electric polarization appears on the electrode. As will be described later, in this specification, electric polarization induced by a magnetic field is appropriately referred to as magnetic field induced electric polarization.

本発明の電気磁気効果素子は前記電気磁気効果材料の単結晶であって、所定の方向をc軸方向とする結晶構造を有する単結晶を含んでもよく、前記磁気効果素子は、前記単結晶の前記c軸と垂直な面内において時間的に変動する外部磁場が印加された際に、前記c軸方向に磁場誘起電気分極を発現することにより前記外部磁場を検出する磁場センサであってもよい。この場合には、単結晶の大きさ、形状を任意にしうるので、例えばサブミクロンサイズの極小の磁場センサを作製することができる。   The electromagnetism effect element of the present invention may be a single crystal of the electromagnetism effect material, and may include a single crystal having a crystal structure having a predetermined direction as a c-axis direction. It may be a magnetic field sensor that detects the external magnetic field by expressing a magnetic field induced electric polarization in the c-axis direction when an external magnetic field that changes with time in a plane perpendicular to the c-axis is applied. . In this case, since the size and shape of the single crystal can be arbitrarily set, for example, a submicron-size extremely small magnetic field sensor can be manufactured.

本発明の電気磁気効果素子は、前記電気磁気効果材料の単結晶であって、所定の方向をc軸方向とする結晶構造を有する単結晶と、前記単結晶のc軸方向両端に配置された電極とを備えてもよく、前記単結晶のc軸に垂直な平面内において、前記単結晶を横切る方向の変動磁場が印加された場合に、前記電極から磁場誘起電流を出力する発電素子であってもよい。この場合には、単結晶の大きさ、形状を任意にしうるので、例えばサブミクロンサイズの極小の発電素子を作製することができる。なお、後述のように、本明細書においては、磁場誘起電気分極の変化に伴って発生する電流を磁場誘起電流と呼ぶ。さらに、発電素子は、前記単結晶のc軸に垂直な平面内において、前記単結晶を横切る方向の磁場を発生させる磁場発生機構と、前記磁場を時間的に変動させる磁場変動機構とを備えてもよい。   The electromagnetism effect element of the present invention is a single crystal of the electromagnetism effect material, and has a single crystal having a crystal structure having a predetermined direction as the c-axis direction, and is disposed at both ends of the single crystal in the c-axis direction. And a power generation element that outputs a magnetic field induced current from the electrode when a varying magnetic field is applied across the single crystal in a plane perpendicular to the c-axis of the single crystal. May be. In this case, since the size and shape of the single crystal can be arbitrarily set, for example, an extremely small power generation element of submicron size can be manufactured. As will be described later, in the present specification, a current generated in accordance with a change in magnetic field induced electric polarization is referred to as a magnetic field induced current. Furthermore, the power generation element includes a magnetic field generation mechanism that generates a magnetic field in a direction across the single crystal in a plane perpendicular to the c-axis of the single crystal, and a magnetic field variation mechanism that varies the magnetic field with time. Also good.

本発明によれば、温度によらず使用できる電気磁気効果素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electromagnetism effect element which can be used irrespective of temperature can be provided.

図1(a)、(b)はオケルマナイト構造を示す概略図である。FIGS. 1A and 1B are schematic views showing an akermanite structure. 図2(a)、(b)は磁化の向きと電気分極の向きの関係を示す概略図である。2A and 2B are schematic diagrams showing the relationship between the direction of magnetization and the direction of electric polarization. 図3は一般の電気磁気効果材料における電気分極ドメインの概略図である。FIG. 3 is a schematic view of an electric polarization domain in a general electromagnetic effect material. 図4の上段グラフはSrCoSiの単結晶の温度を4.5K、7K、8K、10Kにした状態で、ab平面内においてc軸の周りに回転する外部回転磁場(8T)を印加し、c軸方向に誘起される電気分極の大きさを測定した結果を示すグラフであり、図4の下段グラフは、SrCoSi単結晶の温度を4.5Kにした状態で、ab平面内においてc軸の周りに回転する外部磁場として、0T、0.5T、1T、2T、4T、8Tの大きさの外部回転磁場を印加した場合に、c軸方向に誘起される電気分極の大きさを測定した結果を示すグラフである。The upper graph of FIG. 4 shows an external rotating magnetic field (8T) that rotates around the c-axis in the ab plane with the temperature of the single crystal of Sr 2 CoSi 2 O 7 being 4.5K, 7K, 8K, and 10K. FIG. 5 is a graph showing the result of measuring the magnitude of electric polarization induced in the c-axis direction when applied, and the lower graph of FIG. 4 shows the state in which the temperature of the Sr 2 CoSi 2 O 7 single crystal is 4.5K. When an external rotating magnetic field having a magnitude of 0T, 0.5T, 1T, 2T, 4T, or 8T is applied as an external magnetic field that rotates around the c-axis in the ab plane, the electricity induced in the c-axis direction It is a graph which shows the result of having measured the magnitude | size of polarization. 図5上段のグラフは、SrCoSiにおける各温度での磁化の磁場依存性をプロットしたグラフであり、図5下段のグラフは、SrCoSiにおける各温度での電気分極の磁場依存性をプロットしたグラフである。The upper graph in FIG. 5 is a graph plotting the magnetic field dependence of magnetization at each temperature in Sr 2 CoSi 2 O 7 , and the lower graph in FIG. 5 is the electric polarization at each temperature in Sr 2 CoSi 2 O 7 . It is the graph which plotted the magnetic field dependence of. 図6は、単結晶試料の作製方法の手順を示すフローチャートである。FIG. 6 is a flowchart showing a procedure of a method for producing a single crystal sample. 図7は赤外線加熱単結晶作製装置10の概略図である。FIG. 7 is a schematic view of the infrared heating single crystal manufacturing apparatus 10. 図8は磁場誘起電気分極測定装置60の概略図である。FIG. 8 is a schematic view of the magnetic field induced electric polarization measuring device 60. 図9の上段のグラフは、回転磁場のa軸方向の成分(μ)の時間変化を示すグラフであり、図9の中段の太線で示したグラフは、回転磁場によって誘起された磁場誘起電気分極の変化に伴う磁場誘起電流の時間変化を示すグラフであり、図9中段の細線で示したグラフは、磁場誘起電流信号に含まれる2つの成分のうち、磁場の回転周期の半分の周期をもつ成分のみを抜き出したものであり、図9下段のグラフは磁場誘起電気分極の時間変化のグラフである。The upper graph in FIG. 9 is a graph showing the time change of the component (μ 0 H a ) in the a-axis direction of the rotating magnetic field, and the graph shown by the bold line in the middle in FIG. 9 is the magnetic field induced by the rotating magnetic field. FIG. 10 is a graph showing a time change of a magnetic field induced current accompanying a change in induced electric polarization, and a graph indicated by a thin line in the middle stage of FIG. 9 is a half of the rotation period of the magnetic field among two components included in the magnetic field induced current signal. Only a component having a period is extracted, and the lower graph in FIG. 9 is a graph of the time change of the magnetic field induced electric polarization. 図10は発電素子100の概略図である。FIG. 10 is a schematic view of the power generation element 100.

本発明に係る、磁性イオンを含むオケルマナイト構造を有する電気磁気効果材料として、SrCoSiを例に挙げて説明する。なお、本明細書中において、「磁性イオンを含むオケルマナイト構造を有する」物質とは、鉱物のオケルマナイト(CaMgSi)と類似の結晶構造を有する化合物であって、鉱物のオケルマナイトのMgの部分をMn、Co、Fe、Cu等の磁性イオンに置き換えたものを意味している。ここで、鉱物のオケルマナイトのMgの部分をMn、Co、Fe、Cuの各元素に置き換えたものについては結晶の作製が報告されている。しかしながら、本発明に係る「磁性イオンを含むオケルマナイト構造を有する」物質は、必ずしも磁性イオンとして、Mn、Co、Fe、Cuを含む物質に限定されるわけではなく、発明者らの知見によれば、周期表の3〜11族元素(遷移元素)を含む物質であってもよいと考えられる。なお、鉱物のオケルマナイトのCaの部分は、Sr、Ba等の他のアルカリ土類金属に置き換えてもよく、Siの部分はGeに置き換えてもよい。 As an electromagnetic effect material having an akermanite structure containing magnetic ions according to the present invention, Sr 2 CoSi 2 O 7 will be described as an example. In the present specification, the substance “having an akermanite structure containing magnetic ions” is a compound having a crystal structure similar to that of mineral akermanite (Ca 2 MgSi 2 O 7 ), Is replaced with magnetic ions such as Mn, Co, Fe, and Cu. Here, the production of crystals has been reported for those in which the Mg portion of the mineral akermanite is replaced with each element of Mn, Co, Fe, and Cu. However, the substance “having an akermanite structure containing magnetic ions” according to the present invention is not necessarily limited to a substance containing Mn, Co, Fe, or Cu as magnetic ions, and according to the knowledge of the inventors. It is considered that the substance may contain a group 3-11 element (transition element) in the periodic table. The Ca portion of the mineral akermanite may be replaced with other alkaline earth metals such as Sr and Ba, and the Si portion may be replaced with Ge.

SrCoSiは、図1(a)、(b)に示すように、Co及びSiがそれぞれ4つのOに取り囲まれた四面体構造を含む結晶構造を有している。詳細には、SrCoSiは、互いに頂点(O)を共有するCoO四面体及びSiO四面体と、それらに挟まれたSr2+イオンとを含む、非中心対称な正方晶構造(空間群P(−4)2m)を有する。 As shown in FIGS. 1A and 1B, Sr 2 CoSi 2 O 7 has a crystal structure including a tetrahedral structure in which Co and Si are each surrounded by four Os. Specifically, Sr 2 CoSi 2 O 7 has a non-centrosymmetric tetragonal structure including a CoO 4 tetrahedron and a SiO 4 tetrahedron that share a vertex (O) with each other, and Sr 2+ ions sandwiched between them. (Space group P (−4) 2 1 m).

ここで、1個のCoO四面体が、図2(a)、(b)に示される向きに配置されている場合を考える。CoO四面体に対して、c軸に垂直な平面内(ab平面)においてc軸の周りに回転する外部磁場が印加された場合には、CoのスピンSが外部磁場の回転に伴って回転する。このとき、図2(a)に示すように、CoのスピンSが[110]方向に平行である場合には、c軸方向に平行な電気分極+Pが誘起され、図2(b)に示すように、CoのスピンSが[1−10]方向に平行であるときには、c軸方向に反平行な電気分極−Pが誘起されることが知られている。このような、磁場によって誘起される電気分極を、適宜、磁場誘起電気分極と呼ぶ。 Here, consider a case where one CoO 4 tetrahedron is arranged in the orientation shown in FIGS. 2 (a) and 2 (b). Against CoO 4 tetrahedra, when an external magnetic field which rotates around the c-axis in a plane perpendicular to the c-axis (ab plane) is applied, the spin S of Co is in accordance with the rotation of the external magnetic field rotation To do. At this time, as shown in FIG. 2A, when the spin S of Co is parallel to the [110] direction, electric polarization + Pz parallel to the c-axis direction is induced, and FIG. as shown, when the spin S of Co is parallel to [110] direction, antiparallel electric polarization -P z in c-axis direction is known to be induced. Such electric polarization induced by a magnetic field is appropriately referred to as magnetic field induced electric polarization.

SrCoSiの結晶において、全てのCoO四面体が同じ向きを向いているわけではない。図1(a)において4隅に配置されているCoO四面体と、中央に配置されているCoO四面体とは等価ではなく、互いに異なる向きを向いている。そのため、CoのスピンSがc軸に垂直な平面(ab平面)内の所定方向(例えば[110]方向)を向いている場合に誘起される電気分極ベクトルの向き及び/又は大きさは、これらの2種類のCoO四面体において互いに異なる。しかしながら、これらの2種類のCoO四面体は、誘起された電気分極ベクトルが互いに打ち消しあうような位置関係で配置されているわけではない。そのため、SrCoSiの結晶全体において、CoのスピンSをab平面内でc軸の周りに回転させた場合に誘起される電気分極ベクトルはゼロとはならない。 In the Sr 2 CoSi 2 O 7 crystal, not all CoO 4 tetrahedra are oriented in the same direction. And CoO 4 tetrahedra are arranged at four corners in FIG. 1 (a), it is not equivalent to the CoO 4 tetrahedra that are located in the center, facing different directions. Therefore, the direction and / or the magnitude of the electric polarization vector induced when the Co spin S is oriented in a predetermined direction (eg, [110] direction) in a plane (ab plane) perpendicular to the c-axis is The two types of CoO 4 tetrahedrons are different from each other. However, these two types of CoO 4 tetrahedrons are not arranged in such a positional relationship that induced electric polarization vectors cancel each other. Therefore, in the entire crystal of Sr 2 CoSi 2 O 7 , the electric polarization vector induced when the Co spin S is rotated around the c-axis in the ab plane is not zero.

なお、一般の電気磁気効果材料においては、図3に示すように、磁気転移温度より高い温度では常誘電性(PE)を示し、磁気転移温度より低い温度において強誘電性(FE)を示す。なお、強誘電体は、通常、内部に複数の電気分極ドメインを含み、各ドメイン毎にそれぞれ自発分極を有している。各ドメイン毎の自発分極が同じ方向を向いているわけではなく、互いに打ち消しあっているので、結晶全体として大きな自発電気分極を観測するためには、外部から電場(E)を印加してドメインを一方向に揃える過程、いわゆるポーリング処理を行う必要がある。これに対して、本発明に係るSrCoSi結晶においては、上述のように2種類のCoO四面体に対するスピンの向きによって電気分極の方向が決まるので、外部電場によるポーリングを行わなくとも、結晶全体として大きな自発電気分極を観測できる。 Note that, as shown in FIG. 3, a general electromagnetic effect material exhibits paraelectricity (PE) at a temperature higher than the magnetic transition temperature and exhibits ferroelectricity (FE) at a temperature lower than the magnetic transition temperature. In general, a ferroelectric includes a plurality of electric polarization domains inside, and each domain has spontaneous polarization. The spontaneous polarization of each domain is not in the same direction, but cancels each other. Therefore, in order to observe a large spontaneous electric polarization as a whole crystal, an electric field (E) is applied from the outside and the domain is It is necessary to perform a process of aligning in one direction, so-called polling processing. On the other hand, in the Sr 2 CoSi 2 O 7 crystal according to the present invention, since the direction of electric polarization is determined by the direction of spin with respect to the two types of CoO 4 tetrahedron as described above, polling by an external electric field is not performed. In both cases, large spontaneous electric polarization can be observed in the entire crystal.

このことは、例えば、SrCoSi結晶と同様の構造を有するBaCoGe結晶において実験的に確かめられている(非特許文献2参照)。本発明者らは、SrCoSi結晶においても以下に示すような実験を行って、磁場誘起電気分極を計測した。 This has been confirmed experimentally in, for example, a Ba 2 CoGe 2 O 7 crystal having the same structure as the Sr 2 CoSi 2 O 7 crystal (see Non-Patent Document 2). The present inventors also performed experiments as shown below for Sr 2 CoSi 2 O 7 crystals to measure magnetic field induced electric polarization.

後述の方法により作製したSrCoSiの単結晶の温度を4.5K、7K、8K、10Kにした状態で、ab平面内においてc軸の周りに回転する外部回転磁場(8T)を印加し、c軸方向に誘起される電気分極の大きさを測定した。なお、SrCoSiの磁気転移温度は約7Kである。そのときの測定結果を図4の上段のグラフに示す。また、SrCoSi単結晶の温度を4.5Kにした状態で、ab平面内においてc軸の周りに回転する外部磁場として、0T、0.5T、1T、2T、4T、8Tの大きさの外部回転磁場を印加した場合に、c軸方向に誘起される電気分極の大きさを測定した。そのときの測定結果を図4の下段のグラフに示す。 An external rotating magnetic field (8T) that rotates around the c-axis in the ab plane in a state where the temperature of the single crystal of Sr 2 CoSi 2 O 7 produced by the method described later is set to 4.5K, 7K, 8K, and 10K. And the magnitude of electric polarization induced in the c-axis direction was measured. Note that the magnetic transition temperature of Sr 2 CoSi 2 O 7 is about 7K. The measurement results at that time are shown in the upper graph of FIG. In addition, in the state where the temperature of the Sr 2 CoSi 2 O 7 single crystal is 4.5 K, an external magnetic field rotating around the c-axis in the ab plane is 0T, 0.5T, 1T, 2T, 4T, and 8T. When an external rotating magnetic field having a magnitude was applied, the magnitude of electric polarization induced in the c-axis direction was measured. The measurement results at that time are shown in the lower graph of FIG.

図4の上段のグラフから、SrCoSi単結晶の温度が磁気転移温度(7K)近傍の温度である8Kあるいはそれ以下の温度である場合において、比較的大きな電気分極が誘起されていることが分かった。そして、結晶温度が磁気転移温度と比べて低くなればなるほど、誘起される電気分極が大きくなることが分かった。また、図4の下段のグラフから、一定温度の条件の下では、印加した外部回転磁場の大きさが大きくなればなるほど、誘起される電気分極が大きくなることが分かった。また、外部回転磁場がc軸の周りを180°回転する間に、誘起される電気分極は1回振動する。言い換えると、外部回転磁場の回転周期に比べて、電気分極の振動周期は半分であることが分かった。 From the upper graph of FIG. 4, when the temperature of the Sr 2 CoSi 2 O 7 single crystal is a temperature near 8 K, which is a temperature near the magnetic transition temperature (7 K), a relatively large electric polarization is induced. I found out. It was found that the lower the crystal temperature compared to the magnetic transition temperature, the greater the induced electrical polarization. Further, from the lower graph of FIG. 4, it was found that the induced electric polarization increases as the magnitude of the applied external rotating magnetic field increases under a constant temperature condition. Further, while the external rotating magnetic field rotates 180 ° around the c-axis, the induced electric polarization vibrates once. In other words, it was found that the oscillation period of electric polarization was half that of the rotation period of the external rotating magnetic field.

本発明者は、さらに、磁化飽和時における電気分極の振る舞い、及び、常磁性状態での電気分極の振る舞いを観測するために、数T〜約50Tのパルス強磁場下における電気分極の温度依存性及び磁場依存性の測定を行った。SrCoSiは、磁気転移温度(約7K)以下の温度では反強磁性を示し、磁気秩序状態が実現される。このような温度下でSrCoSi試料に強磁場を印加すると、SrCoSi試料の磁化が飽和することが予想される。そこで、磁気転移温度以下の温度において、上述のパルス強磁場を印加して、磁化飽和時の電気分極の振る舞いを観測した。また、磁気転移温度より十分高い温度では、SrCoSi試料は常磁性状態となる。ここで、前述の8T程度の外部磁場を印加した実験では、10Kの温度においてほとんど電気分極を観測できなかった。そこで、8Tよりもさらに強いパルス強磁場を印加して、常磁性状態での電気分極の振る舞いを詳しく観測することにした。 Furthermore, the present inventor further investigated the temperature dependence of the electric polarization under a pulsed strong magnetic field of several T to about 50 T in order to observe the behavior of the electric polarization at the time of magnetization saturation and the behavior of the electric polarization in the paramagnetic state. In addition, the magnetic field dependency was measured. Sr 2 CoSi 2 O 7 exhibits antiferromagnetism at a temperature lower than the magnetic transition temperature (about 7 K), and a magnetic ordered state is realized. When such a temperature under Sr 2 CoSi 2 O 7 applies a strong magnetic field to the sample, the magnetization of the Sr 2 CoSi 2 O 7 samples are expected to saturate. Therefore, the above-mentioned pulsed strong magnetic field was applied at a temperature lower than the magnetic transition temperature, and the behavior of electric polarization at the time of magnetization saturation was observed. At a temperature sufficiently higher than the magnetic transition temperature, the Sr 2 CoSi 2 O 7 sample is in a paramagnetic state. Here, in the experiment in which an external magnetic field of about 8T was applied, almost no electric polarization was observed at a temperature of 10K. Therefore, it was decided to apply a pulsed strong magnetic field stronger than 8T and observe in detail the behavior of electric polarization in the paramagnetic state.

図5上段のグラフは、SrCoSiにおける各温度での磁化の磁場依存性をプロットしたものであり、図5下段のグラフは、SrCoSiにおける各温度での電気分極の磁場依存性をプロットしたものである。図5下段のグラフから、SrCoSiでは30K,100K,200K,300Kの温度でも磁気誘導電気分極が発現することが分かった。この実験を通じて、本発明者らは、SrCoSiにおいては常磁性状態であっても十数テスラ以上の強磁場を印加することにより電気分極を誘起できることを見出した。 The upper graph in FIG. 5 is a plot of the magnetic field dependence of magnetization at each temperature in Sr 2 CoSi 2 O 7 , and the lower graph in FIG. 5 is the electric polarization at each temperature in Sr 2 CoSi 2 O 7 . This is a plot of the magnetic field dependence of. From the lower graph of FIG. 5, it was found that Sr 2 CoSi 2 O 7 exhibits magnetic induction electric polarization even at temperatures of 30K, 100K, 200K, and 300K. Through this experiment, the present inventors have found that Sr 2 CoSi 2 O 7 can induce electrical polarization by applying a strong magnetic field of more than a dozen Tesla even in a paramagnetic state.

本発明者らはさらに鋭意検討を重ね、常磁性状態であっても十数テスラ以上の強磁場を印加することにより電気分極を誘起できるのであれば、強磁場に代えて繰り返し周期の非常に短い変動磁場を印加することによっても、常磁性状態において電気分極を観測できるかもしれないと考え、本発明に至った。ここで、本発明者らは、試料表面の電極に溜まる分極電荷(P)の時間変化を電流(i)として検出することにより、磁場誘起電気分極の磁場変化を調べる際に、iはdP/dtに比例することから、電気分極の時間変化が大きくなれば大きな電流が流れることに着目した。磁場を速く変化させることで強磁場を用いなくても、常磁性状態の試料に対する磁場誘起電気分極の観測が可能となるかもしれないと考え、本発明に至った。   The inventors of the present invention have made further intensive studies, and even in the paramagnetic state, if the electric polarization can be induced by applying a strong magnetic field of 10 or more Tesla, the repetition period is very short instead of the strong magnetic field. The inventors have considered that electric polarization can be observed in a paramagnetic state even by applying a varying magnetic field, and the present invention has been achieved. Here, when investigating the magnetic field change of the magnetic field induced electric polarization by detecting the time change of the polarization charge (P) accumulated on the electrode on the sample surface as the current (i), the present inventors indicate that i is dP / Since it is proportional to dt, it has been noted that a large current flows if the time change of the electric polarization increases. We thought that it would be possible to observe magnetic field-induced electric polarization on a paramagnetic sample without using a strong magnetic field by rapidly changing the magnetic field, and the present invention was achieved.

以下、本発明者らが行った、早い繰り返し周期の変動磁場を用いた実験について詳細に説明する。実験に先がけて、本実験に用いるSrCoSiの単結晶試料を以下の手順により作製した。図6に単結晶試料の作製方法の手順をを示す。先ず、純度99.9%以上の原料粉末(SrCO、CoO、SiO)を目的の組成比となるように電子天秤を用いて秤量し(秤量工程S1)、メノウ乳鉢に入れて混合した。なお、混合に際しては、原料粉末が十分に混合されるようにエタノールを加えた湿式混合法を用いた(湿式混合工程S2)。このようにして原料粉末を十分に混合した後、エタノールを蒸発させて混合粉末を得た。 Hereinafter, an experiment conducted by the inventors using a fluctuating magnetic field with a fast repetition period will be described in detail. Prior to the experiment, a single crystal sample of Sr 2 CoSi 2 O 7 used in this experiment was prepared by the following procedure. FIG. 6 shows a procedure of a method for manufacturing a single crystal sample. First, a raw material powder (SrCO 3 , CoO, SiO 2 ) having a purity of 99.9% or more was weighed using an electronic balance so as to have a target composition ratio (weighing step S1), and mixed in an agate mortar. In mixing, a wet mixing method in which ethanol was added so that the raw material powders were sufficiently mixed was used (wet mixing step S2). After sufficiently mixing the raw material powder in this way, ethanol was evaporated to obtain a mixed powder.

次に、十分に混合された混合粉末をアルミナ製のるつぼに移し、電気炉を用いて空気雰囲気中、800℃で12時間程度仮焼を行った(仮焼工程S3)。なお、均一に反応させるために、仮焼の後、乾式混合を行い(第1乾式混合工程S4)、さらにその後、900℃で12時間程度、再度仮焼を行った(第2仮焼工程S5)。   Next, the sufficiently mixed powder was transferred to an alumina crucible and calcined at 800 ° C. for about 12 hours in an air atmosphere using an electric furnace (calcination step S3). In addition, in order to make it react uniformly, after calcination, dry mixing was performed (first dry mixing step S4), and then, calcination was performed again at 900 ° C. for about 12 hours (second calcination step S5). ).

2度の仮焼の後、さらに乾式混合を行い(第2乾式混合工程S6)、均一な密度になるようにゴム風船に詰めた。まっすぐな棒状にするためにこのゴム風船を紙で巻き、油圧プレス機を用いて300〜400kgf/cm程度の圧力をかけて加圧成形して、直径約6mm、長さ約100mmの棒状の原料棒を得た(加圧成形工程S7)。加圧成形された原料棒を電気炉で1000℃、48時間程度本焼を行い、焼結棒を作製した(本焼工程S8)。 After calcination twice, dry mixing was further performed (second dry mixing step S6), and packed in a rubber balloon so as to have a uniform density. In order to make it into a straight bar shape, this rubber balloon is wrapped with paper and pressed using a hydraulic press machine with a pressure of about 300 to 400 kgf / cm 2 to form a rod-like shape having a diameter of about 6 mm and a length of about 100 mm. A raw material rod was obtained (pressure forming step S7). The press-molded raw material bar was baked for about 48 hours at 1000 ° C. in an electric furnace to produce a sintered bar (main baking step S8).

本焼した焼結棒を用いて、浮遊帯域溶融法(Floating Zone法;以下FZ法と呼ぶ)により単結晶試料の作製を行った(結晶成長工程S9)。FZ法には、キャノンマシナリー製の赤外線加熱単結晶製造装置1(SC−M15HD)を用いた。赤外線加熱単結晶装置10は、図7に示すように、2つの回転楕円体形状のミラー11a,11bを、それぞれの焦点の1つ(第1焦点)が互いに重なるように組み合わせた回転楕円面鏡11と、各回転楕円体形状のミラー11a,11bの他の焦点(第2焦点)にそれぞれ配置された、熱源である2つのハロゲンランプ12と、各回転楕円体形状のミラー11a,11bの第1焦点を挟んで上下に対向するように配置されて、試料20を上下方向からそれぞれ固定する2つの主軸13a,bとを主に備える。主軸13a,bは、主軸13a,bの中心を回転軸として試料20を回転させつつ、試料20を上下方向に昇降させることができる。なお、試料20は各回転楕円体形状のミラー11a,11bの第1焦点に位置付けられる。   A single crystal sample was prepared by a floating zone melting method (Floating Zone method; hereinafter referred to as FZ method) using the sintered bar which was baked (crystal growth step S9). For the FZ method, an infrared heating single crystal production apparatus 1 (SC-M15HD) manufactured by Canon Machinery was used. As shown in FIG. 7, the infrared heating single crystal device 10 is a spheroid mirror in which two spheroid mirrors 11a and 11b are combined such that one of the respective focal points (first focal point) overlaps each other. 11, two halogen lamps 12 serving as heat sources respectively disposed at the other focal points (second focal points) of the spheroid mirrors 11 a and 11 b, and the first of the spheroid mirrors 11 a and 11 b. It is mainly provided with two main shafts 13a and 13b which are arranged so as to face each other vertically with one focal point interposed therebetween and fix the sample 20 from above and below, respectively. The main shafts 13a and 13b can move the sample 20 up and down while rotating the sample 20 with the center of the main shafts 13a and 13b as the rotation axis. The sample 20 is positioned at the first focal point of each spheroid mirror 11a, 11b.

各回転楕円体形状のミラー11a,11bの第2焦点にそれぞれ配置された、2つのハロゲンランプ12から放出された赤外線IRは、第1焦点に収束されるため、第1焦点に配置されるように主軸13a,bに取り付けられた試料20に赤外線IRが照射される。試料20の、赤外線IRが照射された部分は加熱されて溶融して溶融帯を形成する。この状態で上下の主軸13a,bを下に動かすことにより、試料20の溶融帯の位置を上方に移動させることができる。試料20の、第1焦点からずれた部分は、赤外線IRがほとんど照射されなくなるため、冷えて結晶化して種結晶が生成される。このようにして、試料20の溶融帯の位置を徐々に上方に移動させることにより、種結晶を成長させて、単結晶試料を得ることができる。このとき、上下の主軸13a,bは溶融帯を安定に保つため、及び、試料の不均一をなくすために、互いに逆回転させている。なお、溶融帯はそれと全く同じ組成の試料20と種結晶で保持されているため、不純物により汚染されるおそれがない。   The infrared rays IR emitted from the two halogen lamps 12 respectively arranged at the second focal points of the spheroid-shaped mirrors 11a and 11b are converged to the first focal point, so that they are arranged at the first focal point. Infrared IR is irradiated to the sample 20 attached to the main shafts 13a and 13b. The portion of the sample 20 irradiated with the infrared IR is heated and melted to form a molten zone. By moving the upper and lower main shafts 13a and 13b downward in this state, the position of the melting zone of the sample 20 can be moved upward. Since the portion of the sample 20 that deviates from the first focus is hardly irradiated with the infrared IR, it is cooled and crystallized to produce a seed crystal. In this manner, by gradually moving the position of the melting zone of the sample 20 upward, the seed crystal can be grown and a single crystal sample can be obtained. At this time, the upper and lower main shafts 13a and 13b are rotated in reverse from each other in order to keep the melting zone stable and to eliminate the non-uniformity of the sample. In addition, since the molten zone is held by the sample 20 and the seed crystal having the same composition as that, there is no possibility of being contaminated by impurities.

上述のFZ法により作製された単結晶試料は、急冷されたことに起因して、ドメイン混合のような結晶の小さな歪みが残留している可能性がある。そこで、この歪みを解消するために、酸素雰囲気中で500℃で2時間保持した後、20時間ほどかけて室温まで徐々に冷却した(アニール工程S10)。このようにして、SrCoSiの単結晶試料を作製した。 The single crystal sample produced by the above-described FZ method may have a small crystal distortion such as domain mixing due to being rapidly cooled. Therefore, in order to eliminate this distortion, after being held at 500 ° C. for 2 hours in an oxygen atmosphere, it was gradually cooled to room temperature over about 20 hours (annealing step S10). In this way, a single crystal sample of Sr 2 CoSi 2 O 7 was produced.

次に、室温での磁場誘起電気分極の観測を行うために、以下のような実験を行った。先ず、上述の方法により作製したSrCoSiの単結晶試料から、c軸方向が厚さ方向に一致するようにして、縦横2mm、厚さ0.5mmの直方体状の試料51を切り出した。試料51のc軸方向の両側の面には後述する電流(磁場誘起電流)を観測するための電極51aを形成し、試料51を磁場誘起電気分極測定装置60に配置した。 Next, in order to observe the magnetic field induced electric polarization at room temperature, the following experiment was conducted. First, a rectangular parallelepiped sample 51 having a length of 2 mm and a thickness of 0.5 mm is cut out from a single crystal sample of Sr 2 CoSi 2 O 7 produced by the above method so that the c-axis direction coincides with the thickness direction. It was. Electrodes 51a for observing a later-described current (magnetic field induced current) were formed on both surfaces in the c-axis direction of the sample 51, and the sample 51 was placed in the magnetic field induced electric polarization measuring device 60.

図8に示すように、磁場誘起電気分極測定装置60は、試料51を支持する円筒状の試料ホルダ61と、試料ホルダ61の外側において、試料ホルダ61を覆うように同心状に配置されたマグネットホルダ62と、試料ホルダ61に支持された試料51を挟むように、マグネットホルダ62に配置された一対のネオジムマグネット63と、試料ホルダ61の内部に試料51とともに固定されたピックアップコイル64と、マグネットホルダ62に連結されて、マグネットホルダ62を試料ホルダ61の周りで回転させるモータ65と、電極51a及びピックアップコイル64に接続されて、電極51a及びピックアップコイル64からの信号(電流信号)を観測する不図示のデジタルオシロスコープとを備える。   As shown in FIG. 8, the magnetic field induced electric polarization measuring device 60 includes a cylindrical sample holder 61 that supports the sample 51 and a magnet that is concentrically disposed outside the sample holder 61 so as to cover the sample holder 61. A pair of neodymium magnets 63 arranged in the magnet holder 62 so as to sandwich the holder 62, the sample 51 supported by the sample holder 61, a pickup coil 64 fixed together with the sample 51 inside the sample holder 61, and a magnet Connected to the holder 62 and connected to the motor 65 for rotating the magnet holder 62 around the sample holder 61, the electrode 51a and the pickup coil 64, signals (current signals) from the electrode 51a and the pickup coil 64 are observed. A digital oscilloscope (not shown).

モータ65を駆動してマグネットホルダ62を試料ホルダ61の周りで回転させると、マグネットホルダ62に固定されている1対のネオジムマグネット63が試料51の周りを回転する。ここで、ネオジムマグネット63による磁場の方向は、試料51のab平面に平行である。そのため、モータ65を駆動することにより、試料51のc軸の周りを回転する、ab平面に平行な向きの回転磁場を発生させることができる。なお、不図示のホール素子による測定により、ネオジムマグネット63が試料51の位置に作り出す磁場の強さは0.222T程度であることが分かった。また、ピックアップコイル64は試料51のa軸方向に平行に配置されている。そのため、ピックアップコイル64により、回転磁場のa軸方向の成分の大きさ(μ)を測定することができる。 When the motor 65 is driven to rotate the magnet holder 62 around the sample holder 61, a pair of neodymium magnets 63 fixed to the magnet holder 62 rotate around the sample 51. Here, the direction of the magnetic field by the neodymium magnet 63 is parallel to the ab plane of the sample 51. Therefore, by driving the motor 65, a rotating magnetic field rotating around the c-axis of the sample 51 and oriented in parallel to the ab plane can be generated. In addition, it was found by measurement using a hall element (not shown) that the strength of the magnetic field created by the neodymium magnet 63 at the position of the sample 51 is about 0.222T. Further, the pickup coil 64 is arranged in parallel with the a-axis direction of the sample 51. Therefore, the magnitude (μ 0 H a ) of the component in the a-axis direction of the rotating magnetic field can be measured by the pickup coil 64.

このような磁場誘起電気分極測定装置60の試料ホルダ61に試料51を配置して、モータ65を駆動することによって、試料51のc軸の周りを高速で回転する回転磁場を発生させた。そして、この回転磁場により誘起される磁場誘起電気分極を、磁場誘起電気分極の変化に伴って発生する電流として測定した。なお、本明細書では、このような磁場誘起電気分極の変化に伴って発生する電流を磁場誘起電流と呼ぶことにする。ここで、磁場誘起電流の大きさは電気分極の時間変化に比例し、電気分極の時間変化は、磁場の時間変化に比例する。そのため、磁場の時間変化を大きくすればするほど、観測される磁場誘起電流は大きくなると予想される。そこで、できるだけ磁場の時間変化を大きくするために、モータ65として高速回転可能なDCモータ(約20000rpm)を採用した。なお、本実験は常温の環境下で行われた。   The sample 51 was placed on the sample holder 61 of such a magnetic field induced electric polarization measuring device 60 and the motor 65 was driven to generate a rotating magnetic field rotating around the c-axis of the sample 51 at high speed. Then, the magnetic field induced electric polarization induced by this rotating magnetic field was measured as a current generated with a change in the magnetic field induced electric polarization. In the present specification, a current generated with such a change in magnetic field induced electric polarization is referred to as a magnetic field induced current. Here, the magnitude of the magnetic field induced current is proportional to the time change of the electric polarization, and the time change of the electric polarization is proportional to the time change of the magnetic field. Therefore, it is expected that the observed magnetic field induced current increases as the time change of the magnetic field increases. Therefore, in order to increase the time change of the magnetic field as much as possible, a DC motor (about 20000 rpm) capable of high-speed rotation was adopted as the motor 65. This experiment was performed in an environment at room temperature.

図9に本測定の結果を示す。図9の上段のグラフは、ab面内を高速回転する回転磁場によってピックアップコイル64に発生した誘導電流に基づいて測定された、回転磁場のa軸方向の成分(μ)の時間変化を示すグラフである。これを見ると、周期2.916ms(周波数342.9Hz)で磁場が回転していることが分かる。 FIG. 9 shows the result of this measurement. The upper graph of FIG. 9 shows the time change of the component (μ 0 H a ) in the a-axis direction of the rotating magnetic field measured based on the induced current generated in the pickup coil 64 by the rotating magnetic field rotating at high speed in the ab plane. It is a graph which shows. From this, it can be seen that the magnetic field is rotating at a period of 2.916 ms (frequency 342.9 Hz).

図9の中段の太線で示したグラフは、回転磁場によって誘起された磁場誘起電気分極の変化に伴う磁場誘起電流の時間変化を示すグラフである。このグラフの周波数成分を解析することにより、磁場誘起電流信号には、磁場の回転周期と同じ周期をもつ成分と、磁場の回転周期の半分の周期をもつ成分との2つの成分が含まれていることが分かった。なお、図9中段の細線で示したグラフは、磁場誘起電流信号に含まれる2つの成分のうち、磁場の回転周期の半分の周期をもつ成分のみを抜き出したものである。   The graph shown by the thick line in the middle of FIG. 9 is a graph showing the time change of the magnetic field induced current accompanying the change of the magnetic field induced electric polarization induced by the rotating magnetic field. By analyzing the frequency components of this graph, the magnetic field induced current signal contains two components: a component having the same period as the rotation period of the magnetic field and a component having a period that is half the rotation period of the magnetic field. I found out. Note that the graph indicated by the thin line in the middle stage of FIG. 9 is obtained by extracting only the component having a period that is half the rotation period of the magnetic field from the two components included in the magnetic field induced current signal.

発明者らの知見によれば、磁場誘起電流信号に含まれる、磁場の回転周期と同じ周期を持つ成分は、回転磁場により発生した誘導電流に起因するものであると考えられる。電気回路的には、電極51aと、これに接続された配線しかないため、一見すると誘導電流は発生しないようにも思われる。しかしながら、配線には不可避的にインダクタンス成分が含まれているため、これに起因して誘導電流が発生したものと考えられる。これに対して、磁場誘起電流信号に含まれる、磁場の回転周期の半分の周期を持つ成分は、回転磁場により誘起された磁場誘起電気分極の変化に伴う、真の磁場誘起電流に対応するものである。そして、この真の磁場誘起電流に対応する、磁場の回転周期の半分の周期を持つ成分を積分することにより、磁場誘起電気分極の時間変化を求めることができる。図9下段に、このようにして得られた磁場誘起電気分極の時間変化のグラフを示す。このように、常温においても、磁場誘起電気分極を観測できた。   According to the knowledge of the inventors, the component having the same period as the rotation period of the magnetic field included in the magnetic field induced current signal is considered to be caused by the induced current generated by the rotating magnetic field. In terms of electrical circuit, since there is only the electrode 51a and wiring connected thereto, it seems that no induced current is generated at first glance. However, since the wiring inevitably contains an inductance component, it is considered that an induced current is generated due to this. On the other hand, a component having a period that is half the rotation period of the magnetic field included in the magnetic field induced current signal corresponds to a true magnetic field induced current accompanying a change in magnetic field induced electrical polarization induced by the rotating magnetic field. It is. Then, by integrating a component having a half of the rotation period of the magnetic field corresponding to the true magnetic field induced current, the time change of the magnetic field induced electric polarization can be obtained. The graph of the time change of the magnetic field induced electric polarization obtained in this way is shown in the lower part of FIG. Thus, the magnetic field induced electric polarization could be observed even at room temperature.

従来、電気磁気効果材料は、磁気転移温度以下の温度において、すなわち、磁気秩序状態にある場合において、磁場誘起電気分極が発現することが知られていた。前述のように、常温(例えば300K)でも磁場誘起電気分極を発現する電気磁気効果材料はこれまでにも報告されているが、この場合であっても、あくまでも磁気転移温度が常温以上なのであって、磁気転移温度を超えて常磁性状態にある試料において、磁場誘起電気分極が観測された例は無かった。   Conventionally, it has been known that an electromagnetic effect material exhibits magnetic field induced electric polarization at a temperature lower than a magnetic transition temperature, that is, in a magnetic ordered state. As described above, an electromagnetic effect material that exhibits magnetic field induced electric polarization even at room temperature (for example, 300K) has been reported so far, but even in this case, the magnetic transition temperature is still above room temperature. In the sample in the paramagnetic state exceeding the magnetic transition temperature, no magnetic field induced electric polarization was observed.

これに対して、前述のように、SrCoSiの磁気転移温度は約7Kであるので、常温においては、SrCoSiは常磁性を示す。にもかかわらず、上述の実験のように、ab面内で高速に回転する回転磁場を印加することにより、回転磁場により誘起された磁場誘起電気分極を観測することができた。 On the other hand, as described above, since the magnetic transition temperature of Sr 2 CoSi 2 O 7 is about 7K, Sr 2 CoSi 2 O 7 exhibits paramagnetism at room temperature. Nevertheless, as in the experiment described above, by applying a rotating magnetic field rotating at high speed in the ab plane, it was possible to observe the magnetic field induced electric polarization induced by the rotating magnetic field.

このように、SrCoSi結晶は、磁気転移温度以下において、すなわち、磁気秩序状態にある場合において磁場誘起電気分極が発現することはもちろん、磁気転移温度より高い温度においても、すなわち、常磁性状態にある場合においても磁場誘起電気分極が発現することが分かった。言い換えると、磁気転移温度より高いか低いかを問わず、いかなる温度領域においても、電気磁気効果が発現することが分かった。 Thus, the Sr 2 CoSi 2 O 7 crystal exhibits magnetic field-induced electric polarization below the magnetic transition temperature, that is, in the magnetically ordered state, and also at a temperature higher than the magnetic transition temperature, that is, It was found that the magnetic field induced electric polarization was developed even in the paramagnetic state. In other words, it has been found that the electromagnetic effect is exhibited in any temperature range regardless of whether it is higher or lower than the magnetic transition temperature.

次に、本発明に係る電気磁気効果材料を用いた電気磁気素子について、いくつかの例を挙げて説明する。上述のように、SrCoSiは、いかなる温度領域においても磁場誘起電気分極等の電気磁気効果が発現することが分かったので、これを利用すれば、動作温度を選ばない電気磁気素子を開発することができる。 Next, the electromagnetic element using the electromagnetism effect material according to the present invention will be described with some examples. As described above, it has been found that Sr 2 CoSi 2 O 7 exhibits an electromagnetic effect such as magnetic field induced electric polarization in any temperature range. Can be developed.

例えば、上述の試料51のように、SrCoSiの単結晶のc軸方向両端に電極を形成した素子を変動磁場センサとして利用することができる。上述の実験において、結晶のc軸の周りに回転磁場を印加したとき、それに起因して誘起される磁場誘起電気分極の変化に伴って磁場誘起電流が観測された。これを逆に見れば、磁場誘起電流が観測されたとき、結晶のc軸の周りに変動磁場が発生したことが分かる。また、磁場誘起電流の大きさ、極性、周波数等から、変動磁場の大きさ、極性、周波数等を検出することもできる。なお、結晶の大きさに制限はないため、任意の大きさ、形状の磁場変動センサを作製できる。例えば、極小のサイズの変動磁場センサを作製することもできる。 For example, an element in which electrodes are formed on both ends in the c-axis direction of a single crystal of Sr 2 CoSi 2 O 7 like the sample 51 described above can be used as a variable magnetic field sensor. In the above experiment, when a rotating magnetic field was applied around the c-axis of the crystal, a magnetic field induced current was observed along with a change in magnetic field induced electric polarization induced by the rotating magnetic field. Conversely, it can be seen that when a magnetic field induced current was observed, a fluctuating magnetic field was generated around the c-axis of the crystal. In addition, the magnitude, polarity, frequency, etc. of the varying magnetic field can be detected from the magnitude, polarity, frequency, etc. of the magnetic field induced current. In addition, since there is no restriction | limiting in the magnitude | size of a crystal | crystallization, the magnetic field variation sensor of arbitrary magnitude | sizes and shapes can be produced. For example, a magnetic field sensor having a minimum size can be manufactured.

上述の試料51のように、SrCoSiの単結晶のc軸方向両端に電極を形成した素子は発電素子としても利用することができる。図10に示すように、電磁誘導を利用した通常の発電素子では、コイルを通過する磁束密度を変化させることにより、コイルに誘導起電力を発生させている。これに対して、本発明にかかる発電素子は、結晶のab面内において回転する回転磁場のようなab面内における変動磁場を発電素子100に印加することにより、結晶のc軸に磁場誘起電気分極を発生させ、これにより磁場誘起電流を発生させている。ここでも、結晶の大きさに制限はないため、任意の大きさ、形状の発電素子を作製できる。 Like the sample 51 described above, an element in which electrodes are formed at both ends in the c-axis direction of a single crystal of Sr 2 CoSi 2 O 7 can also be used as a power generation element. As shown in FIG. 10, in a normal power generation element using electromagnetic induction, an induced electromotive force is generated in the coil by changing the magnetic flux density passing through the coil. On the other hand, the power generation element according to the present invention applies a magnetic field induced in the ab plane, such as a rotating magnetic field rotating in the ab plane of the crystal, to the power generation element 100 to thereby generate a magnetic field induced electric current on the c-axis of the crystal. Polarization is generated, thereby generating a magnetic field induced current. Again, since the size of the crystal is not limited, a power generation element having an arbitrary size and shape can be manufactured.

上述の例では、磁場を印加することにより、電気分極を制御しうることに着目していたが、逆に、電場を印加することにより、磁化の向きを制御することもできる。このような、電気磁気効果の電場により磁化の向きを制御しうる点に着目すれば、本発明に係る電気磁気効果材料を電場制御可能な磁気メモリに応用しうる。あるいは、光の偏光制御を電場及び磁場で行うといった磁気光学素子等の光学素子への応用も可能である。   In the above example, attention has been paid to the fact that the electric polarization can be controlled by applying a magnetic field, but conversely, the direction of magnetization can also be controlled by applying an electric field. If attention is paid to the fact that the direction of magnetization can be controlled by the electric field of the electromagnetism effect, the electromagnetism effect material according to the present invention can be applied to a magnetic memory capable of controlling the electric field. Alternatively, application to an optical element such as a magneto-optical element in which polarization control of light is performed by an electric field and a magnetic field is also possible.

なお、上述の説明において、磁性イオンを含むオケルマナイト構造を有する電気磁気効果材料として、SrCoSiを例に挙げて説明してきたが、本発明はこれには限られず、例えば、オケルマナイト構造を有するACoB、ANiB、AFeB(但し、AはCa、Sr又はBa、BはGe又はSi)に適用可能である。 In the above description, Sr 2 CoSi 2 O 7 has been described as an example of an electromagnetic effect material having an akermanite structure containing magnetic ions, but the present invention is not limited to this, and for example, an akermanite structure It is applicable to A 2 CoB 2 O 7 , A 2 NiB 2 O 7 , A 2 FeB 2 O 7 (where A is Ca, Sr or Ba, and B is Ge or Si).

本発明に係る電気磁気効果材料を発電素子に応用する場合、コイルを作製するのが困難であって、通常の電磁誘導を用いた発電素子では対応できないほど小さな発電素子を作製することができる(例えば、ミクロンオーダー、サブミクロンオーダーの発電素子など)。これにより、極小のマシンに電力を供給する発電素子として利用することができる。   When the electromagnetic effect material according to the present invention is applied to a power generation element, it is difficult to manufacture a coil, and a power generation element that is too small to be handled by a power generation element using ordinary electromagnetic induction can be manufactured ( For example, power generation elements of micron order and submicron order). Thereby, it can utilize as an electric power generation element which supplies electric power to a very small machine.

60 磁場誘起電気分極測定装置
61 試料ホルダ
62 マグネットホルダ
63 ネオジムマグネット
60 Magnetic Field Induced Electrical Polarization Measuring Device 61 Sample Holder 62 Magnet Holder 63 Neodymium Magnet

Claims (6)

磁性イオンを含むオケルマナイト構造を有する電気磁気効果材料を用いた電気磁気効果素子であって、
前記電気磁気効果材料はAMXであって、AはCa,Sr,Baのいずれか1つであり、XはGe又はSiであり、Mは磁性イオンであり、
前記電気磁気効果材料の磁気転移温度よりも高い温度において電気磁気効果を発現することを特徴とする電気磁気効果素子。
An electro-magnetic effect element using an electro-magnetic effect material having an akermanite structure containing magnetic ions,
The electromagnetic effect material is A 2 MX 2 O 7 , A is any one of Ca, Sr, Ba, X is Ge or Si, M is a magnetic ion,
An electromagnetism effect element that exhibits an electromagnetism effect at a temperature higher than a magnetic transition temperature of the electromagnetism effect material.
MがMn、Co、Fe、Cuのいずれか1つであることを特徴とする請求項1に記載の電気磁気効果素子。   2. The electro-magnetic effect element according to claim 1, wherein M is any one of Mn, Co, Fe, and Cu. 前記電気磁気効果素子は前記電気磁気効果材料の単結晶であって、所定の方向をc軸方向とする結晶構造を有する単結晶を含み、前記単結晶の、前記c軸方向の両端には電極が形成されていることを特徴とする請求項1又は2に記載の電気磁気効果素子。   The electro-magnetic effect element is a single crystal of the electro-magnetic effect material, and includes a single crystal having a crystal structure in which a predetermined direction is a c-axis direction. Electrodes are provided at both ends of the single crystal in the c-axis direction. The electro-magnetic effect element according to claim 1, wherein the electro-magnetic effect element is formed. 前記電気磁気効果素子は前記電気磁気効果材料の単結晶であって、所定の方向をc軸方向とする結晶構造を有する単結晶を含み、
前記磁気効果素子は、前記単結晶の、前記c軸と垂直な面内において時間的に変動する外部磁場が印加された際に、前記c軸方向に磁場誘起電気分極を発現することにより前記外部磁場を検出する磁場センサであることを特徴とする請求項1〜3のいずれか一項に記載の電気磁気効果素子。
The electromagnetic effect element is a single crystal of the electromagnetic effect material, and includes a single crystal having a crystal structure in which a predetermined direction is a c-axis direction,
The magnetic effect element exhibits the magnetic field induced electric polarization in the c-axis direction when an external magnetic field that varies with time in a plane perpendicular to the c-axis of the single crystal is applied. The electromagnetic effect element according to claim 1, wherein the electromagnetism effect element is a magnetic field sensor that detects a magnetic field.
前記電気磁気効果素子は、
前記電気磁気効果材料の単結晶であって、所定の方向をc軸方向とする結晶構造を有する単結晶と、
前記単結晶の前記c軸方向両端に配置された電極とを備え、
前記単結晶の前記c軸に垂直な平面内において、前記単結晶を横切る方向の変動磁場が印加された場合に、前記電極から磁場誘起電流を出力する発電素子であることを特徴とする請求項1〜3のいずれか一項に記載の電気磁気効果素子。
The electromagnetic effect element is
A single crystal of the electromagnetic effect material having a crystal structure in which a predetermined direction is a c-axis direction;
Electrodes disposed at both ends of the c-axis direction of the single crystal,
The power generating element that outputs a magnetic field induced current from the electrode when a varying magnetic field in a direction crossing the single crystal is applied in a plane perpendicular to the c-axis of the single crystal. The electromagnetic effect element as described in any one of 1-3.
前記発電素子は、さらに、前記単結晶のc軸に垂直な平面内において、前記単結晶を横切る方向の磁場を発生させる磁場発生機構と、
前記磁場を時間的に変動させる磁場変動機構とを備えることを特徴とする請求項5に記載の電気磁気効果素子。
The power generating element further includes a magnetic field generating mechanism that generates a magnetic field in a direction across the single crystal in a plane perpendicular to the c-axis of the single crystal.
The electromagnetic effect element according to claim 5, further comprising a magnetic field variation mechanism that temporally varies the magnetic field.
JP2011205239A 2011-09-20 2011-09-20 Electromagnetic effect element using an electromagnetic effect material having an akermanite structure containing magnetic ions Active JP5957195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205239A JP5957195B2 (en) 2011-09-20 2011-09-20 Electromagnetic effect element using an electromagnetic effect material having an akermanite structure containing magnetic ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205239A JP5957195B2 (en) 2011-09-20 2011-09-20 Electromagnetic effect element using an electromagnetic effect material having an akermanite structure containing magnetic ions

Publications (2)

Publication Number Publication Date
JP2013069724A true JP2013069724A (en) 2013-04-18
JP5957195B2 JP5957195B2 (en) 2016-07-27

Family

ID=48475122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205239A Active JP5957195B2 (en) 2011-09-20 2011-09-20 Electromagnetic effect element using an electromagnetic effect material having an akermanite structure containing magnetic ions

Country Status (1)

Country Link
JP (1) JP5957195B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543227A (en) * 1990-06-29 1993-02-23 Ube Ind Ltd Electromagnetic-effect material
JP2010109021A (en) * 2008-10-29 2010-05-13 Japan Science & Technology Agency Multiferroic electronic apparatus
JP2010275127A (en) * 2009-05-26 2010-12-09 Osaka Prefecture Univ Ceramic material having electromagnetic effect
JP2011135018A (en) * 2009-12-25 2011-07-07 Japan Science & Technology Agency Multiferroic element
JP2012001396A (en) * 2010-06-17 2012-01-05 Osaka Univ Electromagnetic effect material and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543227A (en) * 1990-06-29 1993-02-23 Ube Ind Ltd Electromagnetic-effect material
JP2010109021A (en) * 2008-10-29 2010-05-13 Japan Science & Technology Agency Multiferroic electronic apparatus
JP2010275127A (en) * 2009-05-26 2010-12-09 Osaka Prefecture Univ Ceramic material having electromagnetic effect
JP2011135018A (en) * 2009-12-25 2011-07-07 Japan Science & Technology Agency Multiferroic element
JP2012001396A (en) * 2010-06-17 2012-01-05 Osaka Univ Electromagnetic effect material and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015040884; 赤木暢,外5名: '「Sr_2CoSi_2O_7結晶における電気分極の強磁場角度依存性」' 日本物理学会講演概要集 66(1-3), 20110303, p.522, 一般社団法人日本物理学会 *

Also Published As

Publication number Publication date
JP5957195B2 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
Wang et al. Ferromagnetic (Mn, N)-codoped ZnO nanopillars array: Experimental and computational insights
Vinnik et al. Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals
Srinivas et al. Study of magnetic and magnetoelectric measurements in bismuth iron titanate ceramic—Bi8Fe4Ti3O24
Pillai et al. Synthesis of single phase bismuth ferrite compound by reliable one-step method
Wu et al. Crystal growth and magnetic property of YFeO 3 crystal
Kocsis et al. Magnetoelectric effect and magnetic phase diagram of a polar ferrimagnet CaBaFe 4 O 7
Chaturvedi et al. Coercivity and exchange bias of bismuth ferrite nanoparticles isolated by polymer coating
Mudinepalli et al. Magnetoelectric properties of lead-free Ni0. 93Co0. 02Mn0. 05Fe1. 95O4–Na0. 5Bi0. 5TiO3 multiferroic composites synthesized by spark plasma sintering
JP5957195B2 (en) Electromagnetic effect element using an electromagnetic effect material having an akermanite structure containing magnetic ions
El-Hagary Structural, electronic and magnetic properties of Mo (4d)-based complex perovskites Ba2MMoO6 (M= Cr and Fe)
Srimathy et al. On the Neel temperature and magnetic domain wall movements of Ga2− xFexO3 single crystals grown by floating-zone technique
Li et al. Magnetic and electric properties of single crystal MnI2
Egorysheva et al. Magnetic glass–ceramics containing multiferroic BiFeO3 crystals
Anbarasu et al. Effect of trivalent transition metal ion substitution in multifunctional properties of Dy 2 O 3 system
Kumari et al. Microstructure and frequency sensitive electrical conductivity in Fe3BO6: B2O3 of a hybrid vitroceramic nanocomposite
Mihalik et al. The magnetic properties of single crystal SrCo2Ti2Fe8O19 compound
Saija Synthesis and Characterization of Tetravalent Cation Substituted Mn-Zn Ferrite Suitable for High Frequency Applications
Vinnik et al. Magnetic properties of Mn substituted barium hexaferrite single crystals
Dey Single-crystal growth, Magnetic and Thermodynamic Investigations of Ilmenite Titanates and Lanthanum Nickelates
Si Crystal Growth, Characterization and Neutron Scattering Studies of Frustrated SrRE2O4 (RE= Rare Earth) Compounds
Wang et al. Magnetic Transition and Magnetocaloric Effect of Gd 1− x Nd x Mn 2 Ge 2 (x= 0.3 and 0.4) Compounds
Jeppesen Magnetocaloric materials
He Synthesis and crystal growth of complex oxides with novel physical properties
CN109097652B (en) Diluted magnetic alloy material RIn3-xFexAnd method for preparing the same
Valenta Magnetism in non-centrosymmetric uranium compound: UIrSi3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5957195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250