JP2013069631A - Luminaire, lighting fixture, and lighting control system - Google Patents

Luminaire, lighting fixture, and lighting control system Download PDF

Info

Publication number
JP2013069631A
JP2013069631A JP2011209067A JP2011209067A JP2013069631A JP 2013069631 A JP2013069631 A JP 2013069631A JP 2011209067 A JP2011209067 A JP 2011209067A JP 2011209067 A JP2011209067 A JP 2011209067A JP 2013069631 A JP2013069631 A JP 2013069631A
Authority
JP
Japan
Prior art keywords
rendering index
color temperature
color rendering
light source
correlated color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011209067A
Other languages
Japanese (ja)
Inventor
Yoko Noguchi
瑶子 野口
Kazunori Yashiro
和徳 八代
Tomoko Ishiwatari
朋子 石渡
Kenji Takahashi
健治 高橋
Fumishige Iwata
文重 岩田
Shigehisa Kawazuru
滋久 川鶴
Hitoshi Kono
仁志 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2011209067A priority Critical patent/JP2013069631A/en
Priority to EP12179043A priority patent/EP2574148A2/en
Priority to US13/565,601 priority patent/US20130076262A1/en
Priority to CN2012103167110A priority patent/CN103017014A/en
Publication of JP2013069631A publication Critical patent/JP2013069631A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a luminaire, a lighting fixture, and a lighting control system capable of creating a wide variety of lighting environment.SOLUTION: A luminaire 10 includes first to fourth light sources 11-14, a control section 30, and an operation section 35. The first light source has a relatively high correlation color temperature, and a relatively high general color rendering index. The second light source has a relatively high correlation color temperature, and a relatively low general color rendering index. The third light source has a relatively low correlation color temperature, and a relatively high general color rendering index. The fourth light source has a relatively low correlation color temperature, and a relatively low general color rendering index. The control section 30 controls at least two of the flux, correlation color temperature, and general color rendering index of each light source. The operation section 35 specifies at least one of the correlation color temperature, and general color rendering index of each light source, and achieves spectral distribution having the correlation color temperature, and general color rendering index thus specified.

Description

本発明の実施形態は、各種の照明環境を造り出すことが可能な照明装置、照明器具および照明制御システムに関する。   Embodiments described herein relate generally to a lighting device, a lighting fixture, and a lighting control system capable of creating various lighting environments.

各種の照明環境を造り出すため、一般的には蛍光灯の白い光や電球の暖かい光など、光色が異なりかつ調光可能な複数の光源を備えることにより、光色と明るさを調整することが行われている。   To create various lighting environments, generally adjust the light color and brightness by providing multiple light sources with different light colors, such as white light from fluorescent lights and warm light from light bulbs. Has been done.

特開2001−184910号公報JP 2001-184910 A 特開2008−300117号公報JP 2008-300117 A

しかしながら、各種の照明環境を演出するためには、例えば、店で選んだ色の服で外を歩いた場合に、思っていた色と違って見えるようなことが生じないように、色の見え方(演色性)も良好にすることが必要である。このため、光色と明るさを制御できるとともに、色の見え方を如何にして制御し、各種多様な照明環境を造り出すかが重要な課題になっている。   However, in order to produce various lighting environments, for example, when you walk outside with the clothes of the color selected in the store, the color appearance does not appear different from the color you expected. It is necessary to improve the color direction (color rendering). For this reason, it is an important issue to be able to control the light color and brightness and how to control the appearance of the color to create various lighting environments.

また、店舗などでは、上記のように、照明器具の相関色温度や平均演色評価数Raは空間の雰囲気や商品の見え方を考慮する上で重要な要素ある。特に平均演色評価数Raは高いほど色の見え方が忠実になる一方で器具効率とトレードオフの関係にあるため、どの程度の平均演色評価数Raを有する器具を選択すべきか、購入の時点でユーザーが判断することは難しい問題がある。   In stores and the like, as described above, the correlated color temperature and the average color rendering index Ra of the lighting fixture are important factors in considering the atmosphere of the space and the appearance of the product. In particular, the higher the average color rendering index Ra is, the more faithful the appearance of the color is, but there is a trade-off relationship with the efficiency of the apparatus. Therefore, what kind of average color rendering index Ra should be selected at the time of purchase. There are difficult issues for users to judge.

本発明は、上記の課題に鑑みなされたもので、各種多様な照明環境を造り出すことが可能な照明装置、照明器具および照明制御システムを提供しようとするものである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a lighting device, a lighting fixture, and a lighting control system capable of creating various various lighting environments.

本発明の実施形態における照明装置は、第1〜第4光源、制御部、操作部を具備する。第1光源は、相対的に相関色温度が高く、相対的に平均演色評価数が高い。第2光源は、相対的に相関色温度が高く、相対的に平均演色評価数が低い。第3光源は、相対的に相関色温度が低く、相対的に平均演色評価数が高い。第4光源は、相対的に相関色温度が低く、相対的に平均演色評価数が低い。制御部は、前記各光源の光束、相関色温度、平均演色評価数の少なくとも2つを制御する。操作部は、前記各光源の相関色温度、平均演色評価数の少なくとも1つを指定し、指定した相関色温度、平均演色評価数を有する分光分布を実現させる。   The illuminating device in embodiment of this invention comprises a 1st-4th light source, a control part, and an operation part. The first light source has a relatively high correlated color temperature and a relatively high average color rendering index. The second light source has a relatively high correlated color temperature and a relatively low average color rendering index. The third light source has a relatively low correlated color temperature and a relatively high average color rendering index. The fourth light source has a relatively low correlated color temperature and a relatively low average color rendering index. The control unit controls at least two of the light flux of each light source, the correlated color temperature, and the average color rendering index. The operation unit designates at least one of the correlated color temperature and the average color rendering index of each light source, and realizes a spectral distribution having the designated correlated color temperature and average color rendering index.

本発明によれば、各種多様な照明環境を造り出すことが可能な照明装置、照明器具および照明制御システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the illuminating device, lighting fixture, and lighting control system which can create various various lighting environments can be provided.

本発明の実施形態である照明装置の発光モジュールを示し、(a)は正面図、(b)は裏面図。The light emitting module of the illuminating device which is embodiment of this invention is shown, (a) is a front view, (b) is a back view. 同じく照明装置の光源を拡大して示す断面図。Sectional drawing which similarly expands and shows the light source of an illuminating device. 同じく照明装置における各光源の分光分布図。The spectral distribution figure of each light source in an illuminating device. 同じく照明装置の発光モジュールを、一部を拡大して示す正面図。The front view which similarly shows the light emitting module of an illuminating device partially expanded. 同じく照明装置の電気回路図。Similarly, an electrical circuit diagram of the lighting device. 同じく照明装置における器具光束を一定とし、相関色温度3500Kで平均演色評価数Ra70〜95における各光源の調光率を示すグラフ。The graph which similarly shows the light control rate of each light source in the relative color temperature of 3500K and average color rendering index Ra70-95 with the fixture light beam in an illuminating device constant. 同じく照明装置における器具光束を一定とし、平均演色評価数Ra80で相関色温度2850K〜5000Kにおける各光源の調光率を示すグラフ。The graph which similarly shows the light control rate of each light source in correlation color temperature 2850K-5000K by making the fixture light beam in an illuminating device constant, and average color-rendering evaluation number Ra80. 同じく照明装置の操作部を示す正面図。The front view which similarly shows the operation part of an illuminating device. 同じく照明器具を示し、(a)は一部を切り欠いて示す斜視図、(b)はベース体の正面図。The lighting fixture is similarly shown, (a) is a perspective view showing a part cut away, (b) is a front view of the base body. 同じく照明制御システムを示し、照明器具が設置された天井を示す図。The figure which similarly shows a lighting control system and shows the ceiling in which the lighting fixture was installed. 同じく照明装置の変形例における発光モジュールを、一部を拡大して示す正面図。Similarly, the front view which expands and shows a part of the light emitting module in the modification of an illuminating device.

以下、本発明の実施形態について図に従い説明する。本実施形態は、各種多様な照明環境を造り出すことが可能で、かつ各種多様な照明環境を体感することが可能な照明ショールームに設置される照明制御システム。この照明制御システムに用いられる照明装置および照明器具を構成するもので、先ず照明装置の構成につき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment is a lighting control system installed in a lighting showroom that can create various lighting environments and can experience various lighting environments. The lighting device and the lighting fixture used in this lighting control system will be described. First, the configuration of the lighting device will be described.

本実施形態の照明装置10は、発光ダイオード(以下「LED」と称す)を光源とする照明装置で、図1(a)(b)に示すように、相対的に相関色温度が高く、相対的に平均演色評価数Raが高い第1光源11と;相対的に相関色温度が高く、相対的に平均演色評価数Raが低い第2光源12と;相対的に相関色温度が低く、相対的に平均演色評価数Raが高い第3光源13と;相対的に相関色温度が低く、相対的に平均演色評価数Raが低い第4光源14と;前記各光源の光束、相関色温度、平均演色評価数Raを制御する制御部30と;前記各光源の相関色温度、平均演色評価数の少なくとも1つを指定し、指定した相関色温度、平均演色評価数を有する分光分布を実現させる操作部35で構成する。   The lighting device 10 of the present embodiment is a lighting device using a light emitting diode (hereinafter referred to as “LED”) as a light source, and has a relatively high correlated color temperature as shown in FIGS. A first light source 11 having a relatively high average color rendering index Ra; a second light source 12 having a relatively high correlated color temperature and a relatively low average color rendering index Ra; A third light source 13 having a relatively high average color rendering index Ra; a fourth light source 14 having a relatively low correlated color temperature and a relatively low average color rendering index Ra; a luminous flux of each of the light sources, a correlated color temperature, A control unit 30 for controlling the average color rendering index Ra; at least one of the correlated color temperature and the average color rendering index of each light source is specified, and a spectral distribution having the specified correlated color temperature and average color rendering index is realized. The operation unit 35 is configured.

上記の第1〜第4光源11〜14は、本実施形態では、次のように構成した。   Said 1st-4th light sources 11-14 were comprised as follows in this embodiment.

第1光源11は、青色発光ダイオードと、青色発光ダイオードによって励起される蛍光体を有し、相関色温度が5000K以上、本実施形態では約5000K、平均演色評価数Raが90以上、本実施形態では約92の第1のLEDで構成した。   The first light source 11 includes a blue light-emitting diode and a phosphor excited by the blue light-emitting diode. The correlated color temperature is 5000 K or higher, in this embodiment, about 5000 K, and the average color rendering index Ra is 90 or higher. Then, it comprised with about 92 1st LED.

第2光源12は、青色発光ダイオードと、青色発光ダイオードによって励起される蛍光体を有し、相関色温度が5000K以上、本実施形態では約5000K、平均演色評価数Raが70以下、本実施形態では約70の第2のLEDで構成した。   The second light source 12 includes a blue light emitting diode and a phosphor excited by the blue light emitting diode. The correlated color temperature is 5000 K or more, in this embodiment, about 5000 K, and the average color rendering index Ra is 70 or less. Then, it comprised with about 70 2nd LED.

第3光源13は、青色発光ダイオードと、青色発光ダイオードによって励起される蛍光体を有し、相関色温度が3000K以下、本実施形態では約2700K、平均演色評価数Raが90以上、本実施形態では約92の第3のLEDで構成した。   The third light source 13 includes a blue light-emitting diode and a phosphor excited by the blue light-emitting diode. The correlated color temperature is 3000 K or less, in this embodiment, about 2700 K, and the average color rendering index Ra is 90 or more. Then, it comprised with about 92 3rd LED.

第4光源14は、青色発光ダイオードと、青色発光ダイオードによって励起される蛍光体を有し、相関色温度が3000K以下、本実施形態では約2700K、平均演色評価数Raが70以下、本実施形態では約67の第4のLEDで構成した。   The fourth light source 14 includes a blue light emitting diode and a phosphor excited by the blue light emitting diode. The correlated color temperature is 3000 K or less, in this embodiment, about 2700 K, and the average color rendering index Ra is 70 or less. Then, it consisted of about 67 4th LED.

そして、上記第1〜第4の各光源11〜14は、SMD(Surface Mount Device)タイプのLEDからなり、図2に示すように、青色LEDチップ15が回路パターンを有する基板16上に実装されている。なお、LEDは、基板に直接実装される複数個のLEDチップおよびこのLEDチップから照射される光により励起される蛍光体を含む樹脂で封止して構成されたCOB(Chip on Board)タイプであってもよい。   The first to fourth light sources 11 to 14 are composed of SMD (Surface Mount Device) type LEDs, and as shown in FIG. 2, a blue LED chip 15 is mounted on a substrate 16 having a circuit pattern. ing. The LED is a COB (Chip on Board) type configured by sealing with a resin including a plurality of LED chips directly mounted on a substrate and a phosphor excited by light emitted from the LED chips. There may be.

基板16は、放熱性と剛性を有するアルミニウム等からなる矩形状をなす平板が用いられ、基板16上に電気絶縁層17を介して陰極側と陽極側の回路パターン18がそれぞれ形成されている。回路パターン18は、銅(Cu)等で構成されている。   The substrate 16 is a rectangular flat plate made of aluminum or the like having heat dissipation and rigidity, and circuit patterns 18 on the cathode side and the anode side are formed on the substrate 16 with an electrical insulating layer 17 interposed therebetween. The circuit pattern 18 is made of copper (Cu) or the like.

そして、青色LEDチップ15の底面電極が一方の電極側の回路パターン18に電気的に接続され、上面電極が他方の電極側の回路パターン18に対して、金線等で構成されたボンディングワイヤ19を介して電気的に接続されている。また、基板16上には樹脂製のフレーム20が設けられ、フレームには凹部20aが形成されている。フレーム20は、例えば白色のPBT(ポリブチレンテレフタレート)等の合成樹脂で構成され、凹部20a内の中央部に青色LEDチップ15が配置されて収容される。   Then, the bottom electrode of the blue LED chip 15 is electrically connected to the circuit pattern 18 on one electrode side, and the bonding electrode 19 is formed of a gold wire or the like on the upper electrode on the circuit pattern 18 on the other electrode side. It is electrically connected via. Further, a resin frame 20 is provided on the substrate 16, and a recess 20a is formed in the frame. The frame 20 is made of, for example, a synthetic resin such as white PBT (polybutylene terephthalate), and the blue LED chip 15 is disposed and accommodated in the central portion of the recess 20a.

そして、青色LEDチップ15が収容された凹部20a内に蛍光体をシリコーン樹脂やエポキシ樹脂等の透明樹脂に混合して分散させた蛍光体含有樹脂が塗布または充填されて蛍光体含有樹脂層21が形成され、青色LEDチップ15は、この蛍光体含有樹脂層21によって覆われて構成される。そして、青色LEDチップ15から放射される青色光と、青色LEDチップ15によって蛍光体が励起されて放射される光とが混合して白色の光を放射する。   The phosphor-containing resin layer 21 is formed by applying or filling a phosphor-containing resin in which a phosphor is mixed and dispersed in a transparent resin such as a silicone resin or an epoxy resin in the recess 20a in which the blue LED chip 15 is accommodated. The blue LED chip 15 is formed and covered with the phosphor-containing resin layer 21. And the blue light radiated | emitted from the blue LED chip | tip 15 and the light which a fluorescent substance is excited by the blue LED chip | tip 15 radiate | mixes, and radiates | emits white light.

上述した第1〜第4光源11〜14は、それぞれ上述した図2と同様な構成をなしているが、蛍光体含有樹脂層21に含有される蛍光体がそれぞれ異なっている。すなわち、目的とする性能を有する蛍光体を選択することによって、必要な相関色温度および平均演色評価数Raを有する光を得るように構成される。   The first to fourth light sources 11 to 14 described above have the same configuration as that of FIG. 2 described above, but the phosphors contained in the phosphor-containing resin layer 21 are different from each other. That is, it is configured to obtain light having a necessary correlated color temperature and an average color rendering index Ra by selecting a phosphor having a target performance.

すなわち、第1光源11は、図3のグラフ中、曲線11(細点線)で示すように、ピーク波長約440nm近辺の範囲にある青色系で、相関色温度が5000K以上、本実施形態では約5000K、平均演色評価数Raが90以上、本実施形態では、Ra約92の光を発光する。   That is, the first light source 11 is a blue system having a peak wavelength in the vicinity of about 440 nm as shown by a curve 11 (thin dotted line) in the graph of FIG. 5000 K, average color rendering index Ra is 90 or more, and in this embodiment, about 92 Ra is emitted.

第2光源12は、図3のグラフ中、曲線12(太実線)で示すように、ピーク波長が約440nm近辺の範囲にある青色系で、相関色温度が5000K以上、本実施形態では約5000K、平均演色評価数Raが70以下、本実施形態ではRa約70の光を発光する。   The second light source 12 is a blue system having a peak wavelength in the range of about 440 nm as shown by a curve 12 (thick solid line) in the graph of FIG. 3, and the correlated color temperature is 5000 K or more, and in this embodiment, about 5000 K. The average color rendering index Ra is 70 or less, and in this embodiment, about 70 Ra is emitted.

第3光源13は、図3のグラフ中、曲線13(太点線)で示すように、ピーク波長が約640nm近辺の範囲にある赤色系で、相関色温度が3000K以下、本実施形態では約2700K、平均演色評価数Raが90以上、本実施形態ではRa約92の光を発光する。   The third light source 13 is a red system having a peak wavelength in the range of about 640 nm as shown by a curve 13 (thick dotted line) in the graph of FIG. 3, and the correlated color temperature is 3000 K or less, and in this embodiment, about 2700 K. The average color rendering index Ra is 90 or more, and in this embodiment, about 92 Ra is emitted.

第4光源14は、図3のグラフ中、曲線14(細実線)に示すように、ピーク波長が約580nm近辺の範囲にある黄色系で、相関色温度が3000K以下、本実施形態では約2700K、平均演色評価数Raが70以下、本実施形態ではRa約67の光を発光する。   As shown by the curve 14 (thin solid line) in the graph of FIG. 3, the fourth light source 14 is a yellow system having a peak wavelength in the range of about 580 nm and a correlated color temperature of 3000 K or less, and in this embodiment, about 2700 K. The average color rendering index Ra is 70 or less, and in this embodiment, about 67 Ra is emitted.

上記に構成された第1〜第4の各光源11〜14は、それぞれを構成する第1〜第4のLEDが、図1(a)(b)に示すように、長方形状をなす基板16に対し、第1〜第4の各LEDが配置される。各光源(第1〜第4のLED各1つ、すなわち、4つが1セット)は、12セットが直列に接続されて用いられている。そして、第1〜第4の各LEDが所定の略等しい間隔を有し、かつ、基板16の長手方向に沿って略平行に列をなすように配置され、長方形状をなす発光モジュール22が構成される。上記に構成された本実施形態の発光モジュール22の長さ寸法L1は約256mm、幅寸法W1は約84mmである。   Each of the first to fourth light sources 11 to 14 configured as described above includes a substrate 16 in which the first to fourth LEDs constituting each of them form a rectangular shape as shown in FIGS. On the other hand, the first to fourth LEDs are arranged. Each light source (one each of the first to fourth LEDs, that is, one set of four) is used with 12 sets connected in series. The first to fourth LEDs have predetermined substantially equal intervals and are arranged so as to be arranged in parallel in the longitudinal direction of the substrate 16, thereby forming a light emitting module 22 having a rectangular shape. Is done. The length dimension L1 of the light emitting module 22 of the present embodiment configured as described above is about 256 mm, and the width dimension W1 is about 84 mm.

また、本実施形態では、各光源11〜14は、次のように配置されている。すなわち、図4に一部を拡大して示すように、長方形状をなす発光モジュール22を、図の縦方向に8個単位で見たとき、図中点線枠のグループで示すように、「低Ra」と「高Ra」のLEDチップが交互になるように配置した。換言すれば、「低Ra」と「高Ra」のLEDチップのグループが、図中矢印で示すように対角線上に位置して交差するように配置した。この配置によって、「低Ra」と「高Ra」のLEDチップのグループ、すなわち、略同様の平均演色評価数Raを有するグループが一方に片寄ることがなく、各光源によって造り出された目的の平均演色評価数Raによる略均一な照明を行うことが可能になる。なお、図4中「低Ra」は、平均演色評価数Raが低いLEDチップを示し、「高Ra」は、平均演色評価数Raが高いLEDチップを示す。「L」は、相関色温度が低いLEDチップを示し、「W」は、相関色温度が高いLEDチップを示す。   Moreover, in this embodiment, each light source 11-14 is arrange | positioned as follows. That is, as shown in a partially enlarged view in FIG. 4, when the light emitting module 22 having a rectangular shape is viewed in units of eight in the vertical direction of the figure, as shown by a group of dotted frame in the figure, “low Ra "and" High Ra "LED chips were alternately arranged. In other words, a group of LED chips of “low Ra” and “high Ra” are arranged so as to intersect and intersect diagonally as indicated by arrows in the figure. By this arrangement, a group of “low Ra” and “high Ra” LED chips, that is, a group having a substantially similar average color rendering index Ra does not shift to one side, and the average of the target created by each light source It becomes possible to perform substantially uniform illumination with the color rendering index Ra. In FIG. 4, “low Ra” indicates an LED chip having a low average color rendering index Ra, and “high Ra” indicates an LED chip having a high average color rendering index Ra. “L” indicates an LED chip having a low correlated color temperature, and “W” indicates an LED chip having a high correlated color temperature.

次に、制御部30は、上記に構成された各光源11〜14の光束、相関色温度、平均演色評価数Raを制御するもので、図5の電気回路図に示すように、12個のLEDが直列に接続された第1〜第4光源11〜14個々に点灯回路31が設けられ、この各点灯回路31と電源Eとの間に制御部30が設けられる。制御部30は、マイクロコンピュータ等で構成され、光束を制御することによって相関色温度、平均演色評価数Raの各要素をそれぞれ制御し、さらに光出力を制御して、各種多様な照明環境を造り出す。   Next, the control unit 30 controls the luminous flux, the correlated color temperature, and the average color rendering index Ra of each of the light sources 11 to 14 configured as described above. As shown in the electric circuit diagram of FIG. A lighting circuit 31 is provided for each of the first to fourth light sources 11 to 14 in which LEDs are connected in series, and a controller 30 is provided between each of the lighting circuits 31 and the power source E. The control unit 30 is configured by a microcomputer or the like, and controls each element of the correlated color temperature and the average color rendering index Ra by controlling the light flux, and further controls the light output to create various lighting environments. .

例えば、相関色温度3500K(電球色近傍)における色の見え方を良好にするために、平均演色評価数の高いRa95の照明環境を得るためには、次のように制御する。   For example, in order to obtain a Ra95 illumination environment having a high average color rendering index in order to improve the appearance of color at a correlated color temperature of 3500 K (near the light bulb color), the following control is performed.

図6に示すグラフは、器具光束を4000lm一定とした場合、相関色温度3500Kで平均演色評価数Ra70〜95における各光源11〜14の調光率、すなわち、光束比(%)を表したグラフで、平均演色評価数Ra5刻みにおける各光源11〜14の光束比(%)との関係を示したもので、このグラフから明らかなように、
相関色温度が5000K、平均演色評価数Raが92の第1のLEDからなる第1光源11(曲線11)の光束比を約43%、
相関色温度が5000K、平均演色評価数Raが70の第2のLEDからなる第2光源12(曲線12)の光束比を約0%、
相関色温度が2700K、平均演色評価数Raが92の第3のLEDからなる第3光源13(曲線13)の光束比を約52%
相関色温度が2700K、平均演色評価数Raが67の第4のLEDからなる第4光源14(曲線14)の光束比を約5%に、
それぞれを調光制御することによって、相関色温度3500Kにおける平均演色評価数Ra95の照明環境を造りだすことができる。
The graph shown in FIG. 6 is a graph showing the dimming rate, that is, the luminous flux ratio (%) of each of the light sources 11 to 14 at an average color rendering index Ra70 to 95 at a correlated color temperature of 3500 K when the instrument luminous flux is constant at 4000 lm. And shows the relationship with the luminous flux ratio (%) of each of the light sources 11 to 14 in the mean color rendering index Ra5 increments. As is apparent from this graph,
The luminous flux ratio of the first light source 11 (curve 11) composed of the first LED having a correlated color temperature of 5000K and an average color rendering index Ra of 92 is about 43%,
The luminous flux ratio of the second light source 12 (curve 12) composed of the second LED having a correlated color temperature of 5000K and an average color rendering index Ra of 70 is about 0%,
The luminous flux ratio of the third light source 13 (curve 13) composed of the third LED having a correlated color temperature of 2700K and an average color rendering index Ra of 92 is about 52%.
The luminous flux ratio of the fourth light source 14 (curve 14) comprising the fourth LED having a correlated color temperature of 2700K and an average color rendering index Ra of 67 is set to about 5%.
By performing dimming control of each, it is possible to create an illumination environment having an average color rendering index Ra95 at a correlated color temperature of 3500K.

同様にして、平均演色評価数Ra85の照明環境は、第1光源11の光束比を約36%、第2光源12の光束比を約5%、第3光源13の光束比を約22%、第4光源14の光束比を約36%に、それぞれ調光制御することによって造り出すことができる。同様にして、各光源11〜14の各光束比を調光制御することによって、器具光束を一定とし相関色温度3500K(電球色近辺)における平均演色評価数Raが約70〜約95の範囲の照明環境を造り出すことができる。   Similarly, in the illumination environment having the average color rendering index Ra85, the luminous flux ratio of the first light source 11 is approximately 36%, the luminous flux ratio of the second light source 12 is approximately 5%, the luminous flux ratio of the third light source 13 is approximately 22%, The fourth light source 14 can be made to have a luminous flux ratio of about 36% by performing dimming control. Similarly, the light flux ratio of each of the light sources 11 to 14 is dimmed and controlled so that the fixture luminous flux is constant and the average color rendering index Ra at a correlated color temperature of 3500 K (near the light bulb color) is in the range of about 70 to about 95. A lighting environment can be created.

さらに、上記と同様にして、図6のグラフに示すように、器具光束を一定とし、相関色温度、例えば2850K〜5000Kにおける各光源11〜14の光束比(%)、すなわち調光率と平均演色評価数Raの関係を抽出することによって、各種の相関色温度における各種の平均演色評価数Raを有する多様な照明環境を造り出すことが可能になる。しかも、これら照明環境は各グラフの曲線に沿って連続的にかつ任意に造り出すことも可能になる。   Further, in the same manner as described above, as shown in the graph of FIG. 6, the luminous flux of the instrument is constant, the luminous flux ratio (%) of each of the light sources 11 to 14 at the correlated color temperature, for example, 2850 K to 5000 K, that is, the dimming rate and the average By extracting the relationship between the color rendering index Ra, it is possible to create various lighting environments having various average color rendering indices Ra at various correlated color temperatures. Moreover, these lighting environments can be created continuously and arbitrarily along the curve of each graph.

また、例えば平均演色評価数Raが80で、相関色温度5000K(昼白色近傍)の照明環境を得るためには、次のように制御する。   For example, in order to obtain an illumination environment having an average color rendering index Ra of 80 and a correlated color temperature of 5000 K (near white), the following control is performed.

図7に示すグラフは、器具光束を4000lm一定とした場合、平均演色評価数Ra80で相関色温度2850K〜5000Kにおける各光源11〜14の調光率、すなわち、光束比(%)を表したグラフで、相関色温度50K刻みにおける各光源11〜14の光束比(%)との関係を示したもので、このグラフから明らかなように、
相関色温度が5000K、平均演色評価数Raが92の第1のLEDからなる第1光源11(曲線11)の光束比を約40%、
相関色温度が5000K、平均演色評価数Raが70の第2のLEDからなる第2光源12(曲線12)の光束比を約55%、
相関色温度が2700K、平均演色評価数Raが92の第3のLEDからなる第3光源13(曲線13)の光束比を約0%
相関色温度が2700K、平均演色評価数Raが67の第4のLEDからなる第4光源14(曲線14)の光束比を約0%に
それぞれ調光制御することによって平均演色評価数Ra80における相関色温度5000Kの照明環境を造り出すことができる。
The graph shown in FIG. 7 is a graph showing the dimming rate of each of the light sources 11 to 14 at the correlated color temperature of 2850 K to 5000 K, that is, the luminous flux ratio (%) when the instrument luminous flux is constant 4000 lm. This shows the relationship with the luminous flux ratio (%) of each of the light sources 11 to 14 at the correlated color temperature in increments of 50K. As is apparent from this graph,
The luminous flux ratio of the first light source 11 (curve 11) comprising the first LED having a correlated color temperature of 5000K and an average color rendering index Ra of 92 is about 40%,
The luminous flux ratio of the second light source 12 (curve 12) composed of the second LED having a correlated color temperature of 5000 K and an average color rendering index Ra of 70 is about 55%;
The luminous flux ratio of the third light source 13 (curve 13) comprising the third LED having a correlated color temperature of 2700K and an average color rendering index Ra of 92 is about 0%.
Correlation at the average color rendering index Ra80 by controlling the light intensity of the fourth light source 14 (curve 14) comprising the fourth LED having a correlated color temperature of 2700K and an average color rendering index Ra of 67 to about 0%. An illumination environment with a color temperature of 5000K can be created.

同様にして、相関色温度4000Kの照明環境は、第1光源11の光束比を約38%、第2光源12の光束比を約25%、第3光源13の光束比を約0%、第4光源14の光束比を約38%に、それぞれ調光制御することによって造り出すことができる。同様にして、各光源の光束比を制御することによって、器具光束を一定とした平均演色評価数Ra80における相関色温度が2850K〜5000Kの多様な照明環境を造り出すことができる。   Similarly, in an illumination environment having a correlated color temperature of 4000K, the luminous flux ratio of the first light source 11 is approximately 38%, the luminous flux ratio of the second light source 12 is approximately 25%, the luminous flux ratio of the third light source 13 is approximately 0%, The light source ratio of the four light sources 14 can be set to about 38% by controlling the light control respectively. Similarly, by controlling the luminous flux ratio of each light source, it is possible to create various lighting environments having a correlated color temperature of 2850K to 5000K at an average color rendering index Ra80 with a constant instrument luminous flux.

さらに、上記と同様にして、図7のグラフに示すように、器具光束を一定とし、平均演色評価数Ra、例えば70〜95における各光源11〜14の光束比(%)、すなわち調光率と相関色温度(K)の関係を抽出することによって、各種の平均演色評価数Raにおける各種の相関色温度を有する多様な照明環境を造り出することが可能になる。しかも、これら照明環境は各グラフの曲線に沿って連続的にかつ任意に造り出すことも可能になる。   Further, in the same manner as described above, as shown in the graph of FIG. 7, the luminous flux of the instrument is constant, and the luminous intensity ratio Ra is, for example, the luminous flux ratio (%) of each of the light sources 11 to 14 at 70 to 95, that is, the dimming rate. And the correlated color temperature (K) can be extracted to create various lighting environments having various correlated color temperatures at various average color rendering index Ra. Moreover, these lighting environments can be created continuously and arbitrarily along the curve of each graph.

また、制御部30では、上記のように、各光源11〜14の光束を制御することによって相関色温度(K)、平均演色評価数Raの各要素をそれぞれ制御し、さらに光出力を制御して、各種多様な照明環境を任意に造り出すことができる。さらに、これら全ての要素を制御することなく、光束と相関色温度、光束と平均演色評価数Ra、若しくは相関色温度と平均演色評価数Ra等、これら要素の内、少なくとも2つの要素を制御することによって各種多様な照明環境を造り出すことが可能になる。   Further, as described above, the control unit 30 controls each element of the correlated color temperature (K) and the average color rendering index Ra by controlling the luminous flux of each of the light sources 11 to 14, and further controls the light output. Various lighting environments can be created arbitrarily. Furthermore, without controlling all these elements, at least two of these elements such as the luminous flux and the correlated color temperature, the luminous flux and the average color rendering index Ra, or the correlated color temperature and the average color rendering index Ra are controlled. As a result, various lighting environments can be created.

また、制御部30は、演算部によって都度演算して任意または連続的に各種の照明環境を造り出すように制御してもよいが、予め決められた各種の照明パターン、すなわち、実現可能な光束、平均演色評価数Ra、相関色温度の範囲において、予め各光源11〜14の調光率を計算したテーブルを記憶部に保持しておき、記憶された照明パターンを適宜呼び出すことによって各種多様な照明環境、シーンを演出するようにしてもよい。記憶させる照明パターンは、例えば、朝・昼・夕の一日の時間帯や季節等の時間的要素、天候や気温等の自然的要素、部屋の使用状況、住宅・オフィス・作業場・工場等の使用環境等の各要素を勘案して、各種の照明パターンを作成するとよい。   Further, the control unit 30 may perform calculation by the calculation unit each time and control to create various illumination environments arbitrarily or continuously, but various predetermined illumination patterns, that is, realizable light fluxes, In the range of the average color rendering index Ra and the correlated color temperature, a table in which the dimming rate of each of the light sources 11 to 14 is calculated in advance is stored in the storage unit, and various illuminations can be obtained by appropriately calling the stored illumination patterns. You may make it produce an environment and a scene. The lighting patterns to be memorized include, for example, time elements such as morning, noon, and evening time zones and seasons, natural elements such as weather and temperature, room usage conditions, houses, offices, workplaces, factories, etc. Various lighting patterns may be created in consideration of each element such as the usage environment.

次に操作部35は、照明装置10のインターフェース上で所定範囲内の任意の平均演色評価数Raおよび所定範囲内の相関色温度をそれぞれ指定することにより、指定した平均演色評価数Raと相関色温度を有する分光分布の光を実現することができる。   Next, the operation unit 35 designates an arbitrary average color rendering index Ra within a predetermined range and a correlated color temperature within a predetermined range on the interface of the lighting device 10, thereby specifying the specified average color rendering index Ra and the correlated color. A light having a spectral distribution having a temperature can be realized.

そして、図8に示すように、本実施形態の操作部は、部屋の壁面等に設置される操作パネルPによって構成される。操作パネルPは、パネルケース内に、上述したマイクロコンピュータ等からなる制御部30が内蔵され、前面にカラー液晶パネルからなら第1表示部P1と第2表示部P2と、タッチ形の第1操作ボタンP11と第2操作ボタンP12と、メモリーボタンP3と、リセットボタンP4で構成される。なお、操作部35は、リモコンRで構成してもよい。また、制御部30は、操作パネルPやリモコンRに内蔵することなく、後述する照明器具等に設置されてもよい。  And as shown in FIG. 8, the operation part of this embodiment is comprised by the operation panel P installed in the wall surface etc. of a room. The operation panel P includes a control unit 30 composed of the above-described microcomputer or the like in a panel case. If the front panel is a color liquid crystal panel, the first display unit P1 and the second display unit P2, and the touch-type first operation. The button P11, the second operation button P12, the memory button P3, and the reset button P4 are included. The operation unit 35 may be configured with a remote controller R. Further, the control unit 30 may be installed in a lighting fixture or the like described later without being incorporated in the operation panel P or the remote control R.

第1表示部P1は相関色温度を表示し、第2表示部P2は平均演色評価数Raを表示するもので、第1表示部P1が上部に、第2表示部P2が下部に設けられている。  The first display unit P1 displays the correlated color temperature, and the second display unit P2 displays the average color rendering index Ra. The first display unit P1 is provided at the top and the second display unit P2 is provided at the bottom. Yes.

第1操作ボタンP11は、相関色温度を表示する第1表示部P1の下部に設けられ、相関色温度を指定する数値ボタンP11−1と指定した相関色温度をさらに細かく指定するための数値調整ボタンP11−2が設けられている。  The first operation button P11 is provided below the first display portion P1 for displaying the correlated color temperature, and a numerical value button P11-1 for specifying the correlated color temperature and a numerical adjustment for further specifying the specified correlated color temperature. Button P11-2 is provided.

本実施形態において、数値ボタンP11−1は、2800K、3000K、4000K、5000Kの数値が表示され、表示された相関色温度のボタンを押すことによって目的とする相関色温度を指定することができる。  In the present embodiment, the numerical button P11-1 displays numerical values of 2800K, 3000K, 4000K, and 5000K, and a desired correlated color temperature can be designated by pressing the displayed correlated color temperature button.

また、本実施形態において、数値調整ボタンP11−2は、指定された数値ボタンP11−1の数値、例えば、3000Kから500Kまたは50Kをマイナスして調整する「−500K」、「−50K」の数値調整ボタンと、同様に、例えば、3000Kから500Kまたは50Kをプラスして調整する「+50K」、「+500K」の数値調整ボタンで構成した。  In the present embodiment, the numerical value adjustment button P11-2 is a numerical value of the designated numerical value button P11-1, for example, a numerical value of “−500K” or “−50K” that is adjusted by subtracting 500K or 50K from 3000K. Similarly, for example, it is configured by numerical adjustment buttons of “+ 50K” and “+ 500K” that are adjusted by adding, for example, 3000K to 500K or 50K.

第2操作ボタンP12は、平均演色評価数Raを表示する第2表示部P2の下部に設けられ、平均演色評価数Raを指定する数値ボタンP12−1と指定した平均演色評価数Raをさらに細かく指定するための数値調整ボタンP12−2が設けられている。  The second operation button P12 is provided at a lower portion of the second display portion P2 that displays the average color rendering evaluation number Ra, and the numerical button P12-1 that specifies the average color rendering evaluation number Ra and the specified average color rendering evaluation number Ra are further detailed. A numerical adjustment button P12-2 for designating is provided.

本実施形態において、数値ボタンP12−1は、Ra70、Ra80の数値が表示され、表示された平均演色評価数Raのボタンを押すことによって目的とする平均演色評価数Raを指定することができる。  In the present embodiment, the numerical value button P12-1 displays the numerical values Ra70 and Ra80, and the desired average color rendering index Ra can be designated by pressing the button of the displayed average color rendering index Ra.

また、本実施形態において、数値調整ボタンP12−2は、指定された数値ボタンP12−1の数値、例えば、Ra80からRa5をマイナスして調整する「Ra−5」の数値調整ボタンと、同様に、例えば、Ra80からRa5をプラスして調整する「Ra+5」の数値調整ボタンで構成した。  In the present embodiment, the numerical value adjustment button P12-2 is the same as the numerical value adjustment button of the designated numerical value button P12-1, for example, the numerical value adjustment button “Ra-5” for adjusting Ra80 to Ra5 minus. For example, a numerical value adjustment button of “Ra + 5” for adjusting Ra80 to Ra5 plus is used.

なお、図8に示す操作部35は、相関色温度を2800Kに指定し、平均演色評価数をRa85にして指定した状態を、表示部P1、P2にそれぞれ表示した状態を示している。  Note that the operation unit 35 shown in FIG. 8 shows a state in which the correlated color temperature is specified as 2800K and the average color rendering index is specified as Ra85, which is displayed on the display units P1 and P2, respectively.

そして、例えば、相関色温度3500K(電球色近傍)における色の見え方を良好にするために、平均演色評価数の高いRa95の照明環境を得るためには、次のように操作する。  Then, for example, in order to obtain a lighting environment of Ra95 having a high average color rendering index in order to improve the color appearance at a correlated color temperature of 3500 K (near the light bulb color), the following operation is performed.

先ず、第1操作ボタンP11を押すことによって3500Kの相関色温度を指定する。次に、第2操作ボタン12を押すことによってRa95の平均演色評価数を指定する。これにより指定された信号が制御部30に伝送され、制御部30の演算部によって各光源11〜14の調光率(光束比%)が演算され、演算された調光率によって各光源11〜14が点灯制御される。これにより、相関色温度3500K(電球色近傍)において、平均演色評価数の高いRa95の照明環境、すなわち、色の見え方を良好にした照明環境を造り出すことができる。  First, the correlated color temperature of 3500K is designated by pressing the first operation button P11. Next, the average color rendering index of Ra 95 is designated by pressing the second operation button 12. Thus, the designated signal is transmitted to the control unit 30, the dimming rate (light flux ratio%) of each light source 11 to 14 is calculated by the calculation unit of the control unit 30, and each light source 11 to 11 is calculated based on the calculated dimming rate. 14 is turned on. As a result, it is possible to create an illumination environment of Ra95 having a high average color rendering index, that is, an illumination environment with a good color appearance at a correlated color temperature of 3500 K (near the light bulb color).

同様に第1操作ボタン11、第2操作ボタン12を選択して指定することによって、2300K〜5500Kの相関色温度における平均演色評価数がRa65〜85の範囲の多様な照明環境を造り出すことができる。  Similarly, by selecting and specifying the first operation button 11 and the second operation button 12, it is possible to create various lighting environments in which the average color rendering index at the correlated color temperature of 2300K to 5500K is in the range of Ra65 to 85. .

また、例えば、平均演色評価数Raが80で、相関色温度5000K(昼白色近傍)の照明環境を得るためには、リセットボタンP4によって、先に指定されていた照明環境の設定をリセットし、先ず、第2操作ボタン12を押すことによってRa80の平均演色評価数を指定する。次に、第1操作ボタンP11を押すことによって5000Kの相関色温度を指定する。これにより指定された信号が制御部30に伝送され、制御部30の演算部によって各光源11〜14の調光率(光束比%)が演算され、演算された調光率によって各光源11〜14が点灯制御される。これにより、平均演色評価数Raが80で、相関色温度5000K(昼白色近傍)の照明環境を造りだすことができる。  Further, for example, in order to obtain an illumination environment having an average color rendering index Ra of 80 and a correlated color temperature of 5000K (near white), the setting of the illumination environment previously specified is reset by the reset button P4. First, the average color rendering index of Ra 80 is designated by pressing the second operation button 12. Next, the correlated color temperature of 5000K is designated by pressing the first operation button P11. Thus, the designated signal is transmitted to the control unit 30, the dimming rate (light flux ratio%) of each light source 11 to 14 is calculated by the calculation unit of the control unit 30, and each light source 11 to 11 is calculated based on the calculated dimming rate. 14 is turned on. As a result, an illumination environment having an average color rendering index Ra of 80 and a correlated color temperature of 5000 K (near white) can be created.

同様に第2操作ボタン12、第1操作ボタン11を選択して指定することによって、平均演色評価数Ra80における相関色温度が2300K〜5500Kの多様な照明環境を造り出すことができる。  Similarly, by selecting and specifying the second operation button 12 and the first operation button 11, it is possible to create various lighting environments in which the correlated color temperature at the average color rendering index Ra80 is 2300K to 5500K.

同様に第2操作ボタン12、第1操作ボタン11を選択して指定することによって、平均演色評価数Ra65〜85における2300K〜5500Kの相関色温度を有する多様な照明環境を造り出すことができる。  Similarly, by selecting and specifying the second operation button 12 and the first operation button 11, various lighting environments having correlated color temperatures of 2300K to 5500K in the average color rendering index Ra65 to 85 can be created.

また、メモリーボタンP3は、制御部30に記憶された照明パターンを呼び出すためのボタンで、本実施形態では、4個のメモリーボタン(M1、M2、M3、M4)を有している。そして、4個のメモリーボタンP3を、それぞれ選択して押すことによって、予め決められた各種の照明パターン、すなわち、実現可能な光束、平均演色評価数Ra、相関色温度の範囲において、予め各光源11〜14の調光率を計算し記憶部に保持されたテーブルが呼び出され、各種多様な照明環境、シーンを演出することができる。  In addition, the memory button P3 is a button for calling an illumination pattern stored in the control unit 30, and has four memory buttons (M1, M2, M3, M4) in this embodiment. Then, by selecting and pressing each of the four memory buttons P3, each light source is preliminarily set in various illumination patterns determined in advance, that is, in the range of light flux that can be realized, average color rendering index Ra, and correlated color temperature. The dimming rate of 11 to 14 is calculated and a table held in the storage unit is called up, and various lighting environments and scenes can be produced.

本実施形態において、メモリーボタン(M1)には、平均演色評価数Raの高い、太陽光に近い照明環境を、メモリーボタン(M2)には、相関色温度3000K近辺で、冬の居間における暖かみをもった電球色を主体とした照明環境を、メモリーボタン(M3)には、相関色温度5000K近辺で、春または秋の居間におけるやわらかい白色を主体とした昼白色の照明環境を、メモリーボタン(M4)には、相関色温度6500K近辺で夏の居間における青みがかった涼しげな昼光色を主体とした照明環境を設定し、それぞれの照明環境を、単にメモリーボタンP3を押す操作によって、簡単かつ確実に指定した照明環境を造り出すことができるように構成した。  In this embodiment, the memory button (M1) has a high average color rendering index Ra and a lighting environment close to sunlight, and the memory button (M2) has a warm color in the winter living room at a correlated color temperature of about 3000K. The memory environment (M3) has a lighting environment mainly composed of a light bulb color, and the memory button (M4) has a memory environment (M4) that has a daylight white environment mainly composed of soft white in the living room in spring or autumn at a correlated color temperature of 5000K. ) Set the lighting environment mainly in bluish cool daylight color in the summer living room near the correlated color temperature of 6500K, and specified each lighting environment simply and reliably by simply pressing the memory button P3 It was configured to create a lighting environment.

なお、本実施形態では、前記各光源11〜14の相関色温度、平均演色評価数Raをともに指定するように構成したが、相関色温度、平均演色評価数Raのいずれか一方を指定することにより、各種の照明環境を造り出すようにしてもよく、要は相関色温度、平均演色評価数Raの少なくとも一方を指定するように構成すればよい。また、光出力を落とした省エネモードを造り出すように構成してもよい。  In the present embodiment, the correlated color temperature and the average color rendering index Ra of each of the light sources 11 to 14 are specified, but either one of the correlated color temperature or the average color rendering index Ra is specified. Thus, various lighting environments may be created. In short, it is only necessary to configure to specify at least one of the correlated color temperature and the average color rendering index Ra. Moreover, you may comprise so that the energy-saving mode which reduced the optical output may be created.

さらに、実現可能な光束、平均演色評価数Ra、相関色温度の範囲において、テンキーによって、任意の数値に指定できるように構成してもよく、また、指定した照明環境から他の指定した照明環境に対して光束、平均演色評価数Ra、相関色温度が連続的に変化するように構成してもよい。  Furthermore, it may be configured to be able to specify an arbitrary numerical value with the numeric keypad within the range of the luminous flux that can be realized, the average color rendering index Ra, and the correlated color temperature, or from the specified lighting environment to another specified lighting environment. However, the light flux, the average color rendering index Ra, and the correlated color temperature may be continuously changed.

上記により、基板16に実装された第1〜第4の各LEDからなる光源11〜14を有し、各光源を制御する制御部30および操作部35を具備する照明装置10が構成される。上記に構成された照明装置10は、照明装置1個で構成してもよいが、複数個用いることによって照明器具が構成される。本実施形態の照明器具は、図9に示すように、照明装置10を8個使用した天井埋込形の照明器具を構成した。   As described above, the illuminating device 10 having the light sources 11 to 14 including the first to fourth LEDs mounted on the substrate 16 and including the control unit 30 and the operation unit 35 for controlling the respective light sources is configured. The illuminating device 10 configured as described above may be configured by one illuminating device, but a luminaire is configured by using a plurality of illuminating devices. As shown in FIG. 9, the lighting fixture of the present embodiment is a ceiling-embedded lighting fixture using eight lighting devices 10.

次に、照明器具の構成につき説明する。照明器具40は、図9(a)(b)に示すように、器具本体41と、器具本体41に配設された上記構成の照明装置10で構成される。   Next, the configuration of the lighting fixture will be described. As illustrated in FIGS. 9A and 9B, the lighting fixture 40 includes a fixture main body 41 and the lighting device 10 having the above-described configuration disposed in the fixture main body 41.

器具本体41は、略正方形をなす鋼板等からなるベース体41aと、ベース体41aをカバーする乳白色の合成樹脂からなるセード41bで構成される。本実施形態における器具本体41の縦・横寸法は、約600mmに構成した。   The instrument body 41 includes a base body 41a made of a substantially square steel plate and the like, and a shade 41b made of milky white synthetic resin that covers the base body 41a. The vertical and horizontal dimensions of the instrument body 41 in the present embodiment are configured to be about 600 mm.

ベース体41aには、上記に構成した照明装置10が8個設置される。8個の照明装置は、4個ずつに分けられ、正方形のベース体41aの一辺に略平行し、各照明装置10が略等しい間隔を有して配置される。各照明装置10は、並列になるように電気的に接続され、8個の照明装置10における各光源11〜14の各点灯回路31が集められ、制御部と共に点灯ケース31a内に収容されベース体41aの裏面側に設置される。そして各照明装置10は、各点灯回路31および制御部30を介して電源Eに接続される。   Eight lighting devices 10 configured as described above are installed on the base body 41a. The eight illuminating devices are divided into four pieces, substantially parallel to one side of the square base body 41a, and the illuminating devices 10 are arranged with substantially equal intervals. Each lighting device 10 is electrically connected so as to be in parallel, and each lighting circuit 31 of each of the light sources 11 to 14 in the eight lighting devices 10 is collected and housed in a lighting case 31a together with a control unit. It is installed on the back side of 41a. Each lighting device 10 is connected to the power source E via each lighting circuit 31 and the control unit 30.

なお、本実施形態において、照明器具40は、相関色温度が約3000K近辺の電球色で平均演色評価数Raが60と90、また相関色温度が約6500K近辺の昼光色で平均演色評価数Raが60と90の4種類のLEDを搭載した8個の照明装置10によって、可変色・可変演色性器具として構成した。   In the present embodiment, the lighting fixture 40 has an average color rendering index Ra of 60 and 90 for a light bulb color having a correlated color temperature of about 3000K and a daylight color having a correlated color temperature of about 6500K, and an average color rendering index Ra of about 6500K. The eight lighting devices 10 equipped with four types of LEDs 60 and 90 were used as variable color / variable color rendering instruments.

なお、本実施形態において、制御部30は、8個の照明装置10の調光率データを同一として共通に制御することによって各種多様な照明環境を造り出すように構成したが、8個の照明装置10の調光率データを異ならせて個別に制御するようにしてもよい。例えば、電球色、昼白色、昼光色等を組み合わせたり、4個の光出力を落として不点灯となした省エネモードを造り出すようにしてもよい。なお、図中、Pは部屋の壁面に設置される操作パネル、Rはリモコンで、目的とする照明環境を造りだすための無線信号を制御部30に対して送信するもので、操作パネルPとリモコンRの両方を設置しても、いずれか一方を設置するようにしてもよい。また、制御部30は、操作パネルPまたはリモコンR内に設けられたものであってもよい。   In the present embodiment, the control unit 30 is configured to create various lighting environments by commonly controlling the dimming rate data of the eight lighting devices 10 as the same, but the eight lighting devices are configured. The 10 dimming rate data may be controlled separately. For example, a light bulb color, day white, daylight color, or the like may be combined, or an energy saving mode may be created in which four light outputs are turned off and the lamp is not lit. In the figure, P is an operation panel installed on the wall surface of the room, R is a remote controller, and transmits a radio signal for creating a target lighting environment to the control unit 30. Either the remote controller R or either one may be installed. The control unit 30 may be provided in the operation panel P or the remote controller R.

次に、上記に構成された照明器具を用いた照明ショールームに設置される照明制御システムの構成を説明する。本実施形態の照明制御システム50は、図10に示すように、上記構成の照明器具40を9台使用して構成される。   Next, the structure of the illumination control system installed in the illumination showroom using the illumination apparatus configured as described above will be described. As shown in FIG. 10, the lighting control system 50 of the present embodiment is configured by using nine lighting fixtures 40 having the above-described configuration.

各照明器具40は、ショールームに設置された部屋の略正方形をなす天井Xに、3台ずつが3列に略等間隔に位置するように設置される。そして、各照明器具40は、並列になるように電気的に接続され、9台の照明器具40を共通に制御する制御部30が天井等に設けられて構成される。また、操作パネルPが壁面に設置され、リモコンRが設置されて照明制御システム50が構成される。   Each of the lighting fixtures 40 is installed on a ceiling X that forms a substantially square shape of a room installed in the showroom so that three units are positioned in three rows at approximately equal intervals. And each lighting fixture 40 is electrically connected so that it may become parallel, and the control part 30 which controls nine lighting fixtures 40 in common is provided in a ceiling etc., and is comprised. In addition, the operation panel P is installed on the wall surface, and the remote control R is installed to configure the illumination control system 50.

上記に構成された照明制御システム50は、ショールームの来場者に対して、ガイドがリモコンRまたは操作パネルPを操作し色温度と演色性の連続的変化を体感してもらうことができる。特に本実施形態によれば、平均演色評価数Ra、すなわち、演色性を変化させることができ、居住者の顔色が良くなったり悪くなったりすることが顕著に現われ、平均演色評価数Raの変化を実際に体感できる。また、同時に相関色温度も変化させることができ、相関色温度の変化、例えば、電球色から昼白色さらには昼光色に至る空間の雰囲気を体感することもできる。また、予め記憶されたそれぞれの照明環境を、単にリモコンRのボタンを押す操作によって、簡単かつ確実に造り出すことができる。さらに、各種の照明設計仕様を再現することも可能で、仕様決定の場とすることも可能になり、特に照明ショールームに好適な照明制御システムを提供することが可能になる。   In the lighting control system 50 configured as described above, the guide can operate the remote controller R or the operation panel P to allow the showroom visitors to experience continuous changes in color temperature and color rendering. In particular, according to the present embodiment, the average color rendering index Ra, that is, the color rendering property can be changed, and the occupant's facial color is significantly improved or deteriorated, and the average color rendering index Ra is changed. You can actually experience. In addition, the correlated color temperature can be changed at the same time, and a change in the correlated color temperature, for example, an atmosphere in a space from a light bulb color to a daylight white color or a daylight color can be experienced. In addition, each illumination environment stored in advance can be easily and reliably created by simply pressing a button on the remote controller R. Furthermore, it is possible to reproduce various lighting design specifications, which can be used as a place for specification determination, and it is possible to provide a lighting control system particularly suitable for a lighting showroom.

なお、本実施形態の照明制御システムにおいて、制御部30は、9台の照明器具40の調光率データを同一にして共通に制御することによって各種多様な照明環境を造り出すように構成したが、9台の照明器具40の調光率データを異ならせて個別に制御するようにしてもよい。例えば、電球色、昼白色、昼光色等の器具を組み合わせたり、器具の一部の光出力を落として不点灯となした省エネモードを造り出すようにしてもよい。また、本実施形態において、明制御システム50は、照明器具40のみによって照を構成したが、照明器具40と照明装置10を組み合わせて構成してもよい。さらに、照明装置10のみによって構成してもよい。   In the lighting control system of the present embodiment, the control unit 30 is configured to create various lighting environments by controlling the dimming rate data of the nine lighting fixtures 40 to be the same. The dimming rate data of the nine lighting fixtures 40 may be controlled separately. For example, an energy saving mode may be created in which light bulb color, day white, daylight color, or the like is combined, or a light output of a part of the device is turned off and the light is turned off. In the present embodiment, the light control system 50 is configured to illuminate only by the lighting fixture 40, but may be configured by combining the lighting fixture 40 and the lighting device 10. Furthermore, you may comprise only with the illuminating device 10. FIG.

以上、本実施形態において、各光源をLEDで構成したが、LEDに替えて白熱電球や蛍光ランプ等を組み合わせて構成しても、LEDにこれら白熱電球や蛍光ランプ等を組み合わせて構成してもよい。また、相関色温度を5000K以上の光源と3000K以下の光源で構成したが、用途に応じて5000K〜3000K内の相関色温度を有する光源で構成してもよい。また、平均演色評価数Raを90以上の光源と70以下の光源で構成したが、用途に応じて90〜70内の平均演色評価数Raを有する光源で構成してもよい。   As mentioned above, in this embodiment, although each light source was comprised with LED, even if it replaces with LED and it comprises and combines with an incandescent lamp, a fluorescent lamp, etc., it may comprise by combining these incandescent lamp, a fluorescent lamp, etc. with LED. Good. Further, although the correlated color temperature is composed of a light source having a correlated color temperature of 5000K or more and a light source having a correlated color of 3000K or less, the correlated color temperature may be composed of a light source having a correlated color temperature within 5000K to 3000K. Moreover, although the average color rendering index Ra is configured with 90 or more light sources and 70 or less light sources, the average color rendering index Ra may be configured with a light source having an average color rendering index Ra within 90 to 70 depending on the application.

また、各光源の基板への配置は、図11に一部を拡大して示すように、長方形状をなす発光モジュール22を図の縦方向に8個単位で見たとき、図中点線枠のグループで示すように、相関色温度が低いLEDチップ「L」と、相関色温度が高いLEDチップ「W」のLEDチップが交互になるように配置した。換言すれば、「L」と「W」のLEDチップのグループが、図中矢印で示すように対角線上に位置して交差するように配置した。この配置によって、「L」と「W」のLEDチップのグループ、すなわち、略同様の相関色温度を有するグループが一方に片寄ることがなく、各光源によって造り出された目的の相関色温度による略均一な照明を行うことが可能になる。なお、図10中「低Ra」は、平均演色評価数Raが低いLEDチップを示し、「高Ra」は、平均演色評価数Raが高いLEDチップを示す。「L」は、相関色温度が低いLEDチップを示し、「W」は、相関色温度が高いLEDチップを示す。   Further, the arrangement of each light source on the substrate is as shown in a partly enlarged view in FIG. 11 when the light emitting module 22 having a rectangular shape is viewed in units of eight in the vertical direction of the figure. As shown in the group, the LED chip “L” having a low correlated color temperature and the LED chip “W” having a high correlated color temperature are alternately arranged. In other words, the groups of “L” and “W” LED chips are arranged so as to intersect and intersect diagonally as indicated by arrows in the figure. With this arrangement, groups of “L” and “W” LED chips, that is, groups having substantially the same correlated color temperature do not shift to one side, and the approximates of the target correlated color temperatures created by the respective light sources. It becomes possible to perform uniform illumination. In FIG. 10, “low Ra” indicates an LED chip having a low average color rendering index Ra, and “high Ra” indicates an LED chip having a high average color rendering index Ra. “L” indicates an LED chip having a low correlated color temperature, and “W” indicates an LED chip having a high correlated color temperature.

また、本実施形態において、照明器具は、上記に例示した照明ショールームに限らず、店舗、オフィスなど施設・業務用等、さらに住宅用の各種の照明器具、さらには防犯灯・街路灯・道路灯など屋外用の各種照明器具を構成してもよい。以上、本発明の好適な実施形態を説明したが、本発明は上述の実施形態に限定されることなく、本発明の要旨を逸脱しない範囲内において、種々の設計変更を行うことができる。   Further, in the present embodiment, the lighting fixture is not limited to the above-illustrated lighting showroom, but also various lighting fixtures for facilities such as stores and offices, for business use, and for residential use, and crime prevention lights, street lights, and road lights. Various kinds of outdoor lighting fixtures may be configured. The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and various design changes can be made without departing from the scope of the present invention.

10 照明装置
11 第1光源
12 第2光源
13 第3光源
14 第4光源
30 制御部
35 操作部
40 照明器具
41 器具本体
50 照明制御システム
DESCRIPTION OF SYMBOLS 10 Illuminating device 11 1st light source 12 2nd light source 13 3rd light source 14 4th light source 30 Control part 35 Operation part 40 Lighting fixture 41 Appliance main body 50 Lighting control system

Claims (4)

相対的に相関色温度が高く、相対的に平均演色評価数が高い第1光源と;
相対的に相関色温度が高く、相対的に平均演色評価数が低い第2光源と;
相対的に相関色温度が低く、相対的に平均演色評価数が高い第3光源と;
相対的に相関色温度が低く、相対的に平均演色評価数が低い第4光源と;
前記各光源の光束、相関色温度、平均演色評価数の少なくとも2つを制御する制御部と;
前記各光源の相関色温度、平均演色評価数の少なくとも1つを指定し、指定した相関色温度、平均演色評価数を有する分光分布を実現させる操作部と;
を具備していることを特徴とする照明装置。
A first light source having a relatively high correlated color temperature and a relatively high average color rendering index;
A second light source having a relatively high correlated color temperature and a relatively low average color rendering index;
A third light source having a relatively low correlated color temperature and a relatively high average color rendering index;
A fourth light source having a relatively low correlated color temperature and a relatively low average color rendering index;
A control unit that controls at least two of the luminous flux, correlated color temperature, and average color rendering index of each light source;
An operation unit that designates at least one of the correlated color temperature and the average color rendering index of each light source and realizes a spectral distribution having the specified correlated color temperature and average color rendering index;
An illumination device comprising:
青色発光ダイオードと、青色発光ダイオードによって励起される蛍光体を有し、相関色温度が5000K以上、平均演色評価数が90以上の第1の発光ダイオードと;
青色発光ダイオードと、青色発光ダイオードによって励起される蛍光体を有し、相関色温度が5000K以上、平均演色評価数が70以下の第2の発光ダイオードと;
青色発光ダイオードと、青色発光ダイオードによって励起される蛍光体を有し、相関色温度が3000K以下、平均演色評価数が90以上の第3の発光ダイオードと;
青色発光ダイオードと、青色発光ダイオードによって励起される蛍光体を有し、相関色温度が3000K以下、平均演色評価数が70以下の第4の発光ダイオードと;
前記各発光ダイオードの光束、相関色温度、平均演色評価数の少なくとも2つを制御する制御部と;
前記各発光ダイオードの相関色温度、平均演色評価数の少なくとも1つを指定し、指定した相関色温度、平均演色評価数を有する分光分布を実現させる操作部と;
を具備していることを特徴とする照明装置。
A blue light emitting diode and a first light emitting diode having a phosphor excited by the blue light emitting diode, having a correlated color temperature of 5000 K or higher and an average color rendering index of 90 or higher;
A blue light emitting diode and a second light emitting diode having a phosphor excited by the blue light emitting diode and having a correlated color temperature of 5000 K or more and an average color rendering index of 70 or less;
A blue light emitting diode and a third light emitting diode having a phosphor excited by the blue light emitting diode and having a correlated color temperature of 3000 K or less and an average color rendering index of 90 or more;
A blue light emitting diode and a fourth light emitting diode having a phosphor excited by the blue light emitting diode and having a correlated color temperature of 3000 K or less and an average color rendering index of 70 or less;
A control unit that controls at least two of the luminous flux, correlated color temperature, and average color rendering index of each light emitting diode;
An operation unit that designates at least one of the correlated color temperature and the average color rendering index of each of the light emitting diodes, and realizes a spectral distribution having the specified correlated color temperature and the average color rendering index;
An illumination device comprising:
器具本体と;
器具本体に配設された請求項1または2に記載の照明装置と;
を具備していることを特徴とする照明器具。
An instrument body;
The lighting device according to claim 1 or 2, which is disposed on the instrument body;
The lighting fixture characterized by comprising.
請求項1または2に記載の照明装置およびまたは請求項3に記載の照明器具を具備していることを特徴とする照明制御システム。

An illumination control system comprising the illumination device according to claim 1 and / or the illumination fixture according to claim 3.

JP2011209067A 2011-09-26 2011-09-26 Luminaire, lighting fixture, and lighting control system Withdrawn JP2013069631A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011209067A JP2013069631A (en) 2011-09-26 2011-09-26 Luminaire, lighting fixture, and lighting control system
EP12179043A EP2574148A2 (en) 2011-09-26 2012-08-02 Lighting device, lighting equipment, and lighting control system
US13/565,601 US20130076262A1 (en) 2011-09-26 2012-08-02 Lighting Device, Lighting Equipment, and Lighting Control System
CN2012103167110A CN103017014A (en) 2011-09-26 2012-08-30 Lighting device, lighting equipment, and lighting control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011209067A JP2013069631A (en) 2011-09-26 2011-09-26 Luminaire, lighting fixture, and lighting control system

Publications (1)

Publication Number Publication Date
JP2013069631A true JP2013069631A (en) 2013-04-18

Family

ID=48475072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011209067A Withdrawn JP2013069631A (en) 2011-09-26 2011-09-26 Luminaire, lighting fixture, and lighting control system

Country Status (1)

Country Link
JP (1) JP2013069631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222639A (en) * 2013-05-14 2014-11-27 パナソニック株式会社 Illuminating apparatus
KR101852436B1 (en) 2016-06-22 2018-04-26 엘지전자 주식회사 Car lamp using semiconductor light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222639A (en) * 2013-05-14 2014-11-27 パナソニック株式会社 Illuminating apparatus
KR101852436B1 (en) 2016-06-22 2018-04-26 엘지전자 주식회사 Car lamp using semiconductor light emitting device

Similar Documents

Publication Publication Date Title
JP4749912B2 (en) lighting equipment
KR101722265B1 (en) Lighting device and method of making
KR101419954B1 (en) Lighting device and lighting method
TWI582338B (en) Light emitting apparatuses ,and electronic devices and illumination methods including the same
JP5325208B2 (en) Lighting device and lighting method
US8212466B2 (en) Solid state lighting devices including light mixtures
US8664846B2 (en) Solid state lighting device including green shifted red component
JP5056520B2 (en) Lighting device
JP2015528187A (en) Adjustable correlated color temperature LED-based white light source with mixing chamber and remote phosphor exit window
WO2013070929A1 (en) Solid state lighting device including multiple wavelength conversion materials
JP2002057376A (en) Led lamp
JP2009117080A (en) Illumination device
JP5015301B2 (en) lighting equipment
JP2012113958A (en) Light-emitting device
JP2008270701A (en) Light emitting device and illuminating fitting
US20130076262A1 (en) Lighting Device, Lighting Equipment, and Lighting Control System
JP2013084544A (en) Luminaire, lighting fixture, and lighting control system
JP2013069631A (en) Luminaire, lighting fixture, and lighting control system
JP2013098038A (en) Lightning apparatus
CN103346152A (en) Adjustable 380-780nm wavelength COB packing technique
JP5906381B2 (en) lighting equipment
KR102556270B1 (en) LED sunlight and LED luminaire
JP2013098037A (en) Lightning apparatus
Craford LED LIGHTING
JP2020136121A (en) Light emitting device, outdoor luminaire and emergency luminaire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202