JP2013068533A - Battery cell state detection device, battery module, and method for detecting battery cell state - Google Patents

Battery cell state detection device, battery module, and method for detecting battery cell state Download PDF

Info

Publication number
JP2013068533A
JP2013068533A JP2011207534A JP2011207534A JP2013068533A JP 2013068533 A JP2013068533 A JP 2013068533A JP 2011207534 A JP2011207534 A JP 2011207534A JP 2011207534 A JP2011207534 A JP 2011207534A JP 2013068533 A JP2013068533 A JP 2013068533A
Authority
JP
Japan
Prior art keywords
voltage
battery cell
cell
battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011207534A
Other languages
Japanese (ja)
Inventor
Eiji Hayashi
英司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2011207534A priority Critical patent/JP2013068533A/en
Publication of JP2013068533A publication Critical patent/JP2013068533A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for making simple a configuration for detecting a cell temperature and a cell voltage of a battery cell.SOLUTION: A battery cell state detection device 10 comprises series circuits SC1 to SC3, sensors Th1 to Th3, and a temperature detection circuit 30. The series circuits are series circuits in which switches SW1 to SW3 are connected in series to voltage dividing resistors R1 to R3, respectively, and are connected to first lines (L1, L2 and L3) connecting a voltage detection circuit 20 to positive poles of battery cells CL, respectively, and second lines (L0, L1 and L2) connecting the voltage detection circuit to negative poles of the battery cells, respectively, and are connected in parallel to the battery cells CL, respectively. The temperature detection circuit 30, when detecting a cell temperature of the battery cell, turns off switches SW of the respective serial circuits to obtain cell voltages VC, turns on the switch SW of the serial circuit corresponding to the battery cell to be detected to obtain a divided voltage VR by a voltage dividing resistor, and detects the cell temperature of the battery cell on the basis of the cell voltages VC and the divided voltage VR.

Description

本発明は、電池セル状態検出装置、電池モジュール、および電池セルの状態検出に関する。   The present invention relates to a battery cell state detection device, a battery module, and a state detection of a battery cell.

従来より、複数の単位電池(セル)を直列的に接続して、所定の高電圧を得るようにした組電池が広く知られている。この種の組電池では、例えば下記特許文献1にもあるように、通常、各セルの状態を把握するために、各セルの電圧および温度が検出されている。   Conventionally, an assembled battery in which a plurality of unit batteries (cells) are connected in series to obtain a predetermined high voltage is widely known. In this type of battery pack, for example, as described in Patent Document 1 below, the voltage and temperature of each cell are usually detected in order to grasp the state of each cell.

特開2006−236789号公報JP 2006-236789 A

しかしながら、上記特許文献1においては、組電池(燃料電池スタック)における温度検出は、電圧検出とは別途の配線を用いて個別に行われる。そのため、検出のために多数の配線が必要とされたり、あるいは検出のための回路構成が複雑になったりするという不都合があった。すなわち、組電池あるいは電池セルのセル温度検出をセル電圧検出と個別に行おうとすると検出に係る構成が複雑化するという不都合があった。
本発明は上記のような事情に基づいて完成されたものであって、電池セルのセル温度およびセル電圧の検出に係る構成を簡易化する技術を提供するものである。
However, in Patent Document 1, temperature detection in the assembled battery (fuel cell stack) is performed individually using wiring separate from voltage detection. For this reason, there are inconveniences that a large number of wirings are required for detection or the circuit configuration for detection becomes complicated. That is, there is an inconvenience that the detection-related configuration becomes complicated if cell temperature detection of the assembled battery or battery cell is performed separately from cell voltage detection.
The present invention has been completed based on the above situation, and provides a technique for simplifying the configuration relating to the detection of the cell temperature and the cell voltage of the battery cell.

本明細書によって開示される電池セル状態検出装置は、少なくとも一個の電池セルを有する電池に対して、前記電池セルの状態を検出する電池セル状態検出装置であって、電圧を検出する電圧検出回路と、前記電圧検出回路と電池セルの正極とを接続する第1ラインと、前記電圧検出回路と電池セルの負極とを接続する第2ラインと、スイッチと分圧抵抗との直列回路であって、前記第1ラインと前記第2ラインとに接続されるとともに、前記電池セルと並列に接続される少なくとも一個の直列回路と、前記電池セルの近傍の前記第1ライン上において、前記直列回路と前記第1ラインとの接続点と、前記電池セルの正極との間に設けられる少なくとも一個のセンサと、前記各電池セルの温度を検出する際に、前記各直列回路のスイッチをオフさせて温度を検出する検出電池セルのセル電圧を前記電圧検出回路から取得し、前記検出電池セルに対応する直列回路のスイッチをオンさせて、前記分圧抵抗による電圧降下である分圧電圧を前記電圧検出回路から取得し、前記セル電圧および前記分圧電圧に基づいて前記検出電池セルのセル温度を検出する温度検出回路とを備える。   A battery cell state detection device disclosed in this specification is a battery cell state detection device that detects a state of the battery cell with respect to a battery having at least one battery cell, and a voltage detection circuit that detects a voltage. A first line that connects the voltage detection circuit and the positive electrode of the battery cell, a second line that connects the voltage detection circuit and the negative electrode of the battery cell, and a series circuit of a switch and a voltage dividing resistor. And at least one series circuit connected in parallel to the battery cell and connected to the first line and the second line, and the series circuit on the first line in the vicinity of the battery cell; At least one sensor provided between the connection point with the first line and the positive electrode of the battery cell, and when detecting the temperature of each battery cell, the switch of each series circuit is turned off. The cell voltage of the detection battery cell that detects the temperature is acquired from the voltage detection circuit, the switch of the series circuit corresponding to the detection battery cell is turned on, and a divided voltage that is a voltage drop due to the voltage dividing resistor is obtained. A temperature detection circuit that is obtained from the voltage detection circuit and detects a cell temperature of the detection battery cell based on the cell voltage and the divided voltage.

本構成によれば、センサと直列回路との配置構成によって、電圧検出回路によるセル電圧と分圧電圧の電圧検知のみによって、セル電圧の計測ができるとともにセル温度の計測もできる。すなわち、セル温度の計測において、例えば、分圧電圧からセル電流およびセンサの電圧降下が算出でき、センサの電圧降下とセル電流からセンサの抵抗値が算出できる。また、センサの抵抗値からセル温度が検出できる。そのため、セル電圧計測およびセル温度計測のために、個別の配線および検出回路が不要となる。その結果、セル電圧検出およびセル温度検出のための検出装置の構成を簡略化でき、それによって検出装置のコストを低減することができる。   According to this configuration, the cell voltage can be measured and the cell temperature can be measured only by detecting the cell voltage and the divided voltage by the voltage detection circuit by the arrangement configuration of the sensor and the series circuit. That is, in the cell temperature measurement, for example, the cell current and the sensor voltage drop can be calculated from the divided voltage, and the sensor resistance value can be calculated from the sensor voltage drop and the cell current. Further, the cell temperature can be detected from the resistance value of the sensor. This eliminates the need for separate wiring and detection circuits for cell voltage measurement and cell temperature measurement. As a result, the configuration of the detection device for cell voltage detection and cell temperature detection can be simplified, thereby reducing the cost of the detection device.

また、上記電池セル状態検出装置において、前記温度検出回路は、前記セル温度を検出する際に、前記電池セルに対応する前記センサの電圧降下と前記センサに流れるセンサ電流とを算出し、前記電圧降下と前記センサ電流とから前記センサの抵抗値を算出するようにしてもよい。
この場合、センサの抵抗値を算出することによって、センサの抵抗値と温度との関係からセル温度を検出することができる。
In the battery cell state detection device, the temperature detection circuit calculates a voltage drop of the sensor corresponding to the battery cell and a sensor current flowing in the sensor when detecting the cell temperature, and the voltage The resistance value of the sensor may be calculated from the drop and the sensor current.
In this case, by calculating the resistance value of the sensor, the cell temperature can be detected from the relationship between the resistance value of the sensor and the temperature.

また、上記電池セル状態検出装置において、前記センサの抵抗値と前記セル温度との関係を示すセンサ特性テーブルを格納するメモリを備え、前記温度検出回路は、前記センサ特性テーブルを参照して、前記セル温度を検出するようにしてもよい。この場合、センサ特性テーブルを参照することによって、セル温度の検出を迅速に行える。
また、上記電池セル状態検出装置において、前記センサは温度センサとしてもよい。
The battery cell state detection device further includes a memory for storing a sensor characteristic table indicating a relationship between the resistance value of the sensor and the cell temperature, and the temperature detection circuit refers to the sensor characteristic table, and The cell temperature may be detected. In this case, the cell temperature can be detected quickly by referring to the sensor characteristic table.
In the battery cell state detection device, the sensor may be a temperature sensor.

また、少なくとも一個の電池セルと、上記いずれかの電池セル状態検出装置とを備えた電池モジュールを構成してもよい。   Moreover, you may comprise the battery module provided with at least 1 battery cell and one of the said battery cell state detection apparatuses.

また、本明細書によって開示される電池モジュールは、少なくとも一個の電池セルと、前記少なくとも一個の電池セルを有する電池に対して、各電池セルの状態を検出する電池セル状態検出装置とを備えた電池モジュールであって、前記電池セル状態検出装置は、電圧を検出する電圧検出回路と、前記電圧検出回路と各電池セルの正極とを接続する第1ラインと、前記電圧検出回路と各電池セルの負極とを接続する第2ラインと、スイッチと分圧抵抗との直列回路であって、前記第1ラインと前記第2ラインとに接続されるとともに、前記電池セルと並列に接続される少なくとも一個の直列回路と、前記電池セルの近傍の前記第1ライン上において、前記直列回路と前記第1ラインとの接続点と、前記電池セルの正極との間に設けられる少なくとも一個のセンサと、前記各電池セルの温度を検出する際に、前記各直列回路のスイッチをオフさせて温度を検出する検出電池セルのセル電圧を前記電圧検出回路から取得し、前記検出電池セルに対応する直列回路のスイッチをオンさせて、前記分圧抵抗による電圧降下である分圧電圧を前記電圧検出回路から取得し、前記セル電圧および前記分圧電圧に基づいて前記検出電池セルのセル温度を検出する温度検出回路とを含む。   The battery module disclosed in the present specification includes at least one battery cell, and a battery cell state detection device that detects the state of each battery cell with respect to the battery having the at least one battery cell. In the battery module, the battery cell state detection device includes a voltage detection circuit that detects a voltage, a first line that connects the voltage detection circuit and a positive electrode of each battery cell, the voltage detection circuit, and each battery cell. A series circuit of a second line connecting the negative electrode of the switch, a switch and a voltage dividing resistor, connected to the first line and the second line, and at least connected in parallel to the battery cell On the first line in the vicinity of the battery cell, there is a small amount provided between the connection point of the series circuit and the first line and the positive electrode of the battery cell. When the temperature of each battery cell is detected with one sensor, the cell voltage of the detection battery cell for detecting the temperature by turning off the switch of each series circuit is obtained from the voltage detection circuit, and the detection battery The switch of the series circuit corresponding to the cell is turned on to obtain a divided voltage, which is a voltage drop due to the voltage dividing resistor, from the voltage detection circuit, and based on the cell voltage and the divided voltage, the detection battery cell And a temperature detection circuit for detecting the cell temperature.

また、本明細書によって開示される電池セルの状態検出方法は、少なくとも一個の電池セルを有する電池に対して、前記電池セルの状態を検出する電池セルの状態検出方法であって、前記電池は、電圧を検出する電圧検出回路と、前記電圧検出回路と電池セルの正極とを接続する第1ラインと、前記電圧検出回路と電池セルの負極とを接続する第2ラインと、スイッチと分圧抵抗との直列回路であって、前記第1ラインと前記第2ラインとに接続されるとともに、前記電池セルと並列に接続される直列回路と、前記電池セルの近傍の前記第1ライン上において、前記直列回路と前記第1ラインとの接続点と、前記電池セルの正極との間に設けられるセンサとを備え、該電池セルの状態検出方法は、前記直列回路のスイッチをオフさせて前記電圧検出回路によって前記電池セルのセル電圧を取得するセル電圧取得ステップと、前記直列回路のスイッチをオンさせて、前記分圧抵抗による電圧降下である分圧電圧を前記電圧検出回路によって取得する分圧取得ステップと、前記セル電圧および前記分圧電圧に基づいて前記センサの電圧降下と前記センサに流れるセンサ電流とを算出し、前記電圧降下と前記センサ電流とから前記センサの抵抗値を算出する算出ステップと、前記センサの抵抗値と前記電池セルのセル温度との関係を示すセンサ特性テーブルを参照して、前記電池セルのセル温度を検出するセル温度検出ステップとを含む。   The battery cell state detection method disclosed in the present specification is a battery cell state detection method for detecting the state of the battery cell with respect to a battery having at least one battery cell. A voltage detection circuit for detecting a voltage; a first line connecting the voltage detection circuit and the positive electrode of the battery cell; a second line connecting the voltage detection circuit and the negative electrode of the battery cell; a switch and a voltage divider A series circuit with a resistor, connected to the first line and the second line, and connected in parallel to the battery cell, and on the first line in the vicinity of the battery cell A sensor provided between a connection point between the series circuit and the first line, and a positive electrode of the battery cell, and the battery cell state detection method includes: Electric A cell voltage acquisition step of acquiring a cell voltage of the battery cell by a detection circuit, and a voltage dividing circuit that turns on a switch of the series circuit and acquires a divided voltage that is a voltage drop due to the voltage dividing resistor by the voltage detection circuit Calculating a voltage drop of the sensor and a sensor current flowing in the sensor based on the acquisition step, the cell voltage and the divided voltage, and calculating a resistance value of the sensor from the voltage drop and the sensor current; And a cell temperature detecting step of detecting a cell temperature of the battery cell with reference to a sensor characteristic table indicating a relationship between a resistance value of the sensor and a cell temperature of the battery cell.

本発明によれば、スイッチと分圧抵抗との直列回路が、第1ライン(電池セルの正極に接続されるライン)と第2ライン(電池セルの負極に接続されるライン)とに接続されるとともに、電池セルと並列に接続される。また、センサが、電池セルの近傍の第1ライン上において、直列回路と第1ラインとの接続点と、電池セルの正極との間に接続される。このような、直列回路とセンサとの配置によって、単に電圧検出回路による電圧検出に基づいて、電池セルのセル温度およびセル電圧の検出を行うことができる。したがって、電池セルのセル温度を検出するために個別の配線および回路を設ける必要がなく、電池セルのセル温度およびセル電圧の検出に係る構成を簡易化することができる。   According to the present invention, the series circuit of the switch and the voltage dividing resistor is connected to the first line (line connected to the positive electrode of the battery cell) and the second line (line connected to the negative electrode of the battery cell). And connected in parallel with the battery cell. Further, the sensor is connected between the connection point between the series circuit and the first line and the positive electrode of the battery cell on the first line in the vicinity of the battery cell. With such an arrangement of the series circuit and the sensor, the cell temperature and the cell voltage of the battery cell can be detected simply based on the voltage detection by the voltage detection circuit. Therefore, it is not necessary to provide individual wirings and circuits for detecting the cell temperature of the battery cell, and the configuration relating to the detection of the cell temperature and the cell voltage of the battery cell can be simplified.

一実施形態に係る電池モジュールの電気的構成を概略的に示すブロック図1 is a block diagram schematically showing an electrical configuration of a battery module according to an embodiment. セル状態検出処理を概略的に示すフローチャートFlowchart schematically showing cell state detection processing セル状態検出装置のスイッチの状態を示す説明図Explanatory drawing which shows the state of the switch of a cell state detection apparatus セル状態検出装置のスイッチの状態を示す説明図Explanatory drawing which shows the state of the switch of a cell state detection apparatus

<実施形態>
図1〜図4を参照して、本発明の一実施形態に係る電池モジュールを説明する。図1は、電池モジュール1の電気的構成を概略的に示すブロック図である。
電池モジュール1は、少なくとも一個の電池セルを有する電池としての組電池Baと、電池セル状態検出装置としての組電池のセル状態検出装置(以下、単に「セル状態検出装置」という)10とを含む。セル状態検出装置10は、複数(本実施形態では3個)の電池セル(以下、単に「セル」と記す)CLが直列に接続されて構成される組電池Baに対して各セルCL1〜CL3の温度TCおよびセル電圧VCを検出する。
<Embodiment>
With reference to FIGS. 1-4, the battery module which concerns on one Embodiment of this invention is demonstrated. FIG. 1 is a block diagram schematically showing the electrical configuration of the battery module 1.
The battery module 1 includes an assembled battery Ba as a battery having at least one battery cell, and an assembled battery cell state detection device (hereinafter simply referred to as a “cell state detection device”) 10 as a battery cell state detection device. . The cell state detection device 10 includes a plurality of (three in this embodiment) battery cells (hereinafter simply referred to as “cells”) CL connected to each other in series with respect to the assembled battery Ba. The temperature TC and the cell voltage VC are detected.

二次電池、例えば、リチウム電池であるバッテリBaは本発明に係る電池に相当するものである。なお、図1にはバッテリBaが、3つの単位電池であるセルCL1〜CL3を直列的に接続された組電池として示されるが、バッテリBaのセルCLの直列数は任意である。また、電池は二次電池に限られず、例えば、燃料電池であってもよい。   The battery Ba, which is a secondary battery, for example, a lithium battery, corresponds to the battery according to the present invention. In FIG. 1, the battery Ba is shown as an assembled battery in which cells CL <b> 1 to CL <b> 3 that are three unit batteries are connected in series, but the series number of the cells CL of the battery Ba is arbitrary. The battery is not limited to a secondary battery, and may be a fuel cell, for example.

1.セル状態検出装置の構成
セル状態検出装置10は、図1に示されるように、電圧検出回路20、CPU30、メモリ40、グラウンドラインL0、電圧検出ラインL1〜L3、直列回路SC1〜SC3、およびサーミスタTh1〜Th3を含む。
1. Configuration of Cell State Detection Device As shown in FIG. 1, the cell state detection device 10 includes a voltage detection circuit 20, a CPU 30, a memory 40, a ground line L0, voltage detection lines L1 to L3, series circuits SC1 to SC3, and a thermistor. Includes Th1 to Th3.

電圧検出回路20は、セルCLの直列接続段数に応じた段数、すなわち3段の入力端子(入力部に相当)A1〜A3とグラウンド端子G、および3つの出力端子B1〜B3を備える。各出力端子B1〜B3がそれぞれ、CPU30のA/D変換ポートAD1〜AD3に1対1の対応関係で接続されている。   The voltage detection circuit 20 includes a number of stages corresponding to the number of series connection stages of the cells CL, that is, three stages of input terminals (corresponding to input sections) A1 to A3, a ground terminal G, and three output terminals B1 to B3. The output terminals B1 to B3 are respectively connected to the A / D conversion ports AD1 to AD3 of the CPU 30 in a one-to-one correspondence relationship.

電圧検出回路20は、各端子A1〜A3、Gに入力される入力電圧E1〜E3から電圧差V1〜V3を検出し、電圧差V1〜V3を各出力端子B1〜B3を通じてCPU30に出力する。電圧検出回路20は、例えば、複数個の差動アンプ(図略)等を含む。   The voltage detection circuit 20 detects the voltage differences V1 to V3 from the input voltages E1 to E3 input to the terminals A1 to A3 and G, and outputs the voltage differences V1 to V3 to the CPU 30 through the output terminals B1 to B3. The voltage detection circuit 20 includes, for example, a plurality of differential amplifiers (not shown).

電圧検出ラインL1〜L3は、電圧検出回路20の各端子A1〜A3と各セルCL1〜CL3の正極とを1対1の対応関係で接続する。すなわち、一段目のセルCL1の正極と第1入力端子A1とが、第1電圧検出ラインL1により接続され、二段目のセルCL2の正極と第2入力端子A2とが第2電圧検出ラインL2により接続され、三段目のセルCL3と第3入力端子A3とが第3電圧検出ラインL3により接続されている。そして、一段目のセルCL1の負極と、グラウンド端子Gとの間がグラウンドラインL0により接続されている。   The voltage detection lines L1 to L3 connect the terminals A1 to A3 of the voltage detection circuit 20 and the positive electrodes of the cells CL1 to CL3 in a one-to-one correspondence relationship. That is, the positive electrode of the first-stage cell CL1 and the first input terminal A1 are connected by the first voltage detection line L1, and the positive electrode of the second-stage cell CL2 and the second input terminal A2 are connected by the second voltage detection line L2. The third-stage cell CL3 and the third input terminal A3 are connected by the third voltage detection line L3. The negative electrode of the first-stage cell CL1 and the ground terminal G are connected by a ground line L0.

この構成により、第1電圧検出ラインL1を通じて第1入力端子A1に印加された第1入力電圧(グラウンドを基準とした電位)E1(V1)が、出力端子B1を通じてCPU30のAD1に入力される。なお、第1入力電圧E1は、第1入力電圧E1とグラウンド電圧の差分に相当する第1電圧V1と等しい。   With this configuration, the first input voltage (potential with respect to the ground) E1 (V1) applied to the first input terminal A1 through the first voltage detection line L1 is input to AD1 of the CPU 30 through the output terminal B1. The first input voltage E1 is equal to the first voltage V1 corresponding to the difference between the first input voltage E1 and the ground voltage.

また、第2電圧検出ラインL2を通じて第2入力端子A2に印加された第2入力電圧E2(グラウンドを基準とした電位)と第1入力電圧E1との差分に相当する第2電圧V2が、出力端子B2を通じてCPU30のAD2に入力される。   Further, the second voltage V2 corresponding to the difference between the second input voltage E2 (potential with respect to the ground) applied to the second input terminal A2 through the second voltage detection line L2 and the first input voltage E1 is output. The signal is input to AD2 of the CPU 30 through the terminal B2.

さらに、第3電圧検出ラインL3を通じて第3入力端子A3に印加された第3入力電圧E3(グラウンドを基準とした電位)と第1入力電圧E2の差分に相当する第3電圧V3が出力端子B3を通じてCPU30のAD3に出力される。   Further, the third voltage V3 corresponding to the difference between the third input voltage E3 (potential with respect to the ground) applied to the third input terminal A3 through the third voltage detection line L3 and the first input voltage E2 is the output terminal B3. Is output to AD3 of the CPU 30.

各直列回路SC1〜SC3は、スイッチSW1〜SW3と分圧抵抗R1〜R3との直列回路である。第1直列回路SC1は第1電圧検出ライン(初段の電圧検出ライン)L1とグラウンドGNDとの間において、第1セルCL1と並列に接続される。第2直列回路SC2は、第1電圧検出ラインL1と第2電圧検出ラインL2との間において、第2セルCL2と並列に接続される。また、第3直列回路SC3は、第2電圧検出ラインL2と第3電圧検出ラインL3との間において、第3セルCL3と並列に接続される。各スイッチSW1〜SW3は、例えば、FET等の半導体スイッチで構成される。   Each series circuit SC1 to SC3 is a series circuit of switches SW1 to SW3 and voltage dividing resistors R1 to R3. The first series circuit SC1 is connected in parallel with the first cell CL1 between the first voltage detection line (first-stage voltage detection line) L1 and the ground GND. The second series circuit SC2 is connected in parallel with the second cell CL2 between the first voltage detection line L1 and the second voltage detection line L2. The third series circuit SC3 is connected in parallel with the third cell CL3 between the second voltage detection line L2 and the third voltage detection line L3. Each switch SW1-SW3 is comprised by semiconductor switches, such as FET, for example.

ここで、電圧差である第1〜第3電圧V1〜V3は、各直列回路SC1〜SC3のスイッチSW1〜SW3がオフの場合は、セル電圧VC1〜VC2に相当する。また、電圧差V1〜V3は、直列回路SC1〜SC3のいずれかのスイッチSW1〜SW3がオンの場合は、オンされた直列回路の分圧抵抗R1〜R3による電圧降下(分圧電圧)VR1〜VR3に相当する。   Here, the first to third voltages V1 to V3, which are voltage differences, correspond to the cell voltages VC1 to VC2 when the switches SW1 to SW3 of the respective series circuits SC1 to SC3 are off. Further, when any of the switches SW1 to SW3 of the series circuits SC1 to SC3 is turned on, the voltage differences V1 to V3 are voltage drops (divided voltages) VR1 to VR1 caused by the voltage dividing resistors R1 to R3 of the turned on series circuit. It corresponds to VR3.

各サーミスタ(センサおよび温度センサの一例)Th1〜Th3は、各セルCL1〜CL3の近傍の各電圧検出ラインL1〜L3上において、各直列回路SC1〜SC3と各電圧検出ラインL1〜L3との接続点Nd1〜Nd3と、各セルCL1〜CL3の正極との間に設けられる。なお、温度センサはサーミスタに限られず、検出温度とセンサ抵抗との間に相関関係のある温度センサであればよい。   Each thermistor (an example of a sensor and a temperature sensor) Th1 to Th3 is connected to each series circuit SC1 to SC3 and each voltage detection line L1 to L3 on each voltage detection line L1 to L3 in the vicinity of each cell CL1 to CL3. It is provided between the points Nd1 to Nd3 and the positive electrodes of the cells CL1 to CL3. The temperature sensor is not limited to the thermistor, and may be any temperature sensor that has a correlation between the detected temperature and the sensor resistance.

具体的には、第1サーミスタTh1は、第1セルCL1の近傍の第1電圧検出ラインL1上において、第1直列回路SC1と第1電圧検出ラインL1との接続点Nd1と、第1セルCL1の正極との間に設けられる。また、第2サーミスタTh2は、第2セルCL2の近傍の第2電圧検出ラインL2上において、第2直列回路SC2と第2電圧検出ラインL2との接続点Nd2と、第2セルCL2の正極との間に設けられる。また、第3サーミスタTh3は、第3セルCL3の近傍の第3電圧検出ラインL3上において、第3直列回路SC3と第3電圧検出ラインL3との接続点Nd3と、第3セルCL3の正極との間に設けられる。   Specifically, the first thermistor Th1 includes a connection point Nd1 between the first series circuit SC1 and the first voltage detection line L1 on the first voltage detection line L1 in the vicinity of the first cell CL1, and the first cell CL1. Between the positive electrode and the positive electrode. The second thermistor Th2 is connected to the connection point Nd2 between the second series circuit SC2 and the second voltage detection line L2 on the second voltage detection line L2 in the vicinity of the second cell CL2, and the positive electrode of the second cell CL2. Between. The third thermistor Th3 is connected to the connection point Nd3 between the third series circuit SC3 and the third voltage detection line L3 on the third voltage detection line L3 in the vicinity of the third cell CL3, and the positive electrode of the third cell CL3. Between.

CPU(温度検出回路の一例)20は、3つのA/D変換ポートAD1〜AD3を備える。CPU30は、各セルCL1〜CL3の温度TC1〜TC3を検出する際に、対応する直列回路SCのスイッチSWをオフさせて温度TCを検出する検出セルCLのセル電圧VCを電圧検出回路20から取得する。そして、CPU30は、検出セルCLに対応する直列回路SCのスイッチSWをオンさせて、分圧抵抗Rによる電圧降下である分圧電圧VRを電圧検出回路20から取得し、セル電圧VCおよび分圧電圧VRに基づいて検出セルCLのセル温度TCを検出する。   The CPU (an example of a temperature detection circuit) 20 includes three A / D conversion ports AD1 to AD3. When detecting the temperatures TC1 to TC3 of the cells CL1 to CL3, the CPU 30 turns off the switch SW of the corresponding series circuit SC and acquires the cell voltage VC of the detection cell CL that detects the temperature TC from the voltage detection circuit 20. To do. Then, the CPU 30 turns on the switch SW of the series circuit SC corresponding to the detection cell CL, and acquires the divided voltage VR, which is a voltage drop due to the voltage dividing resistor R, from the voltage detection circuit 20, and the cell voltage VC and the divided voltage are obtained. The cell temperature TC of the detection cell CL is detected based on the voltage VR.

また、CPU30は、各スイッチSW1〜SW3のオン・オフを個別に制御するスイッチ信号Ssw1〜Ssw3を生成し、各スイッチ信号Ssw1〜Ssw3によって各スイッチSW1〜SW3のオン・オフを個別に制御する。なお、図1には、便宜上、各スイッチ信号Ssw1〜Ssw3の経路は、単一の破線で示される。   Further, the CPU 30 generates switch signals Ssw1 to Ssw3 for individually controlling the on / off of the switches SW1 to SW3, and individually controls the on / off of the switches SW1 to SW3 by the switch signals Ssw1 to Ssw3. In FIG. 1, for convenience, the paths of the switch signals Ssw1 to Ssw3 are indicated by a single broken line.

なお、本実施形態では、第1セルCL1に対しては、第1電圧検出ラインL1が本発明における「第1ライン」に相当し、グラウンドラインL0が本発明における「第2ライン」に相当する。また、第2セルCL2に対しては、第2電圧検出ラインL2が「第1ライン」に相当し、第1電圧検出ラインL1が「第2ライン」に相当する。また、第3セルCL3に対しては、第3電圧検出ラインL3が「第1ライン」に相当し、第2電圧検出ラインL2が「第2ライン」に相当する。「第1ライン」は、電圧検出回路20と各セルCL1〜CL3の正極とを接続するラインを意味し、「第2ライン」は、電圧検出回路20と各セルの負極とを接続するラインを意味する。そのため、各電圧検出ラインL1〜L3は、「第1ライン」と「第2ライン」の機能を兼ねる。   In the present embodiment, for the first cell CL1, the first voltage detection line L1 corresponds to the “first line” in the present invention, and the ground line L0 corresponds to the “second line” in the present invention. . For the second cell CL2, the second voltage detection line L2 corresponds to a “first line”, and the first voltage detection line L1 corresponds to a “second line”. For the third cell CL3, the third voltage detection line L3 corresponds to a “first line”, and the second voltage detection line L2 corresponds to a “second line”. The “first line” means a line connecting the voltage detection circuit 20 and the positive electrodes of the cells CL1 to CL3, and the “second line” means a line connecting the voltage detection circuit 20 and the negative electrode of each cell. means. Therefore, each of the voltage detection lines L1 to L3 functions as a “first line” and a “second line”.

2.セル温度検出処理
次に、図2〜図4を参照して、本実施形態におけるセル温度検出処理を説明する。図2は、セル温度検出処理の各処理を概略的に示すフローチャートであり、図3および図4はセル温度検出処理における各スイッチSW1〜SW3の状態を示す説明図である。セル温度検出処理は、例えば、メモリ40に格納されたプログラムにしたがってCPU30によって、所定時間毎、あるいは処理指示にしたがって適時、実行される。
2. Cell Temperature Detection Process Next, the cell temperature detection process in the present embodiment will be described with reference to FIGS. FIG. 2 is a flowchart schematically showing each process of the cell temperature detection process, and FIGS. 3 and 4 are explanatory diagrams showing states of the switches SW1 to SW3 in the cell temperature detection process. The cell temperature detection process is executed by the CPU 30 according to a program stored in the memory 40, for example, at predetermined time intervals or at appropriate times according to a processing instruction.

まず、CPU30は、各スイッチSW1〜SW3をオフした状態で第1電圧V1、第2電圧V2および第3電圧V3を電圧検出回路20から取得する(ステップS10)。この時の取得電圧値をそれぞれVM11、VM12、VM13とすると、電圧値VM11は第1セルCL1のセル電圧VC1に相当し、電圧値VM12は第2セルCL2のセル電圧VC2に相当し、電圧値VM13は第3セルCL3のセル電圧VC3に相当する。   First, the CPU 30 acquires the first voltage V1, the second voltage V2, and the third voltage V3 from the voltage detection circuit 20 with the switches SW1 to SW3 turned off (step S10). If the acquired voltage values at this time are VM11, VM12, and VM13, respectively, the voltage value VM11 corresponds to the cell voltage VC1 of the first cell CL1, and the voltage value VM12 corresponds to the cell voltage VC2 of the second cell CL2. VM13 corresponds to the cell voltage VC3 of the third cell CL3.

次いで、CPU30は、第1セルCL1のセル温度TC1を検出するために、第1スイッチSW1のみをオンし(図3参照)、第1スイッチSW1をオンした状態で第1電圧V1を電圧検出回路20から取得する(ステップS12)。この時の取得電圧値をVM21とすると、取得電圧値VM21は第1分圧抵抗R1の分圧電圧VR1に相当する。すなわち、取得電圧値VM21は、第1セル電圧VC1を第1サーミスタTh1の抵抗Rth1と第1分圧抵抗R1とで分圧した値となる。そして、CPU30は、第1サーミスタの抵抗Rth1を、下式1によって算出する(ステップS14)。   Next, in order to detect the cell temperature TC1 of the first cell CL1, the CPU 30 turns on only the first switch SW1 (see FIG. 3), and uses the first voltage V1 with the first switch SW1 turned on. 20 (step S12). If the acquired voltage value at this time is VM21, the acquired voltage value VM21 corresponds to the divided voltage VR1 of the first voltage dividing resistor R1. That is, the acquired voltage value VM21 is a value obtained by dividing the first cell voltage VC1 by the resistor Rth1 of the first thermistor Th1 and the first voltage dividing resistor R1. Then, the CPU 30 calculates the resistance Rth1 of the first thermistor by the following equation 1 (step S14).

Rth1=サーミスタの電圧降下Vt1/サーミスタ電流It1
=(VM11−VM21)/(VM21/R1)…… 式1
次いで、CPU30は、例えば、メモリ40に格納された第1サーミスタの抵抗Rth1と温度Tとの関係を示すセンサ特性テーブルから第1セルCL1のセル温度TC1を検出する(ステップS16)。
Rth1 = Thermistor voltage drop Vt1 / Thermistor current It1
= (VM11-VM21) / (VM21 / R1) ... Formula 1
Next, for example, the CPU 30 detects the cell temperature TC1 of the first cell CL1 from the sensor characteristic table indicating the relationship between the resistance Rth1 of the first thermistor stored in the memory 40 and the temperature T (step S16).

続いて、CPU30は、第2セルCL1のセル温度TC2を検出するために、第2スイッチSW2のみをオンし(図4参照)、第2スイッチSW2をオンした状態で第2電圧V2を電圧検出回路20から取得する(ステップS22)。この時の取得電圧値をVM22とすると、取得電圧値VM22は第2分圧抵抗R2の分圧電圧(電圧降下)VR2に相当する。すなわち、取得電圧値VM22は、第2セル電圧VC2を、第1サーミスタTh1の抵抗Rth1、第2サーミスタTh2の抵抗Rth2および第2分圧抵抗R2とで分圧した際の、第2分圧抵抗R2の分圧電圧VR2に相当する値となる。そして、CPU30は、第2サーミスタの抵抗Rth2を、下式2によって算出する(ステップS24)。   Subsequently, in order to detect the cell temperature TC2 of the second cell CL1, the CPU 30 turns on only the second switch SW2 (see FIG. 4), and detects the second voltage V2 with the second switch SW2 turned on. Obtained from the circuit 20 (step S22). When the acquired voltage value at this time is VM22, the acquired voltage value VM22 corresponds to the divided voltage (voltage drop) VR2 of the second voltage dividing resistor R2. That is, the acquired voltage value VM22 is the second voltage dividing resistance when the second cell voltage VC2 is divided by the resistor Rth1 of the first thermistor Th1, the resistor Rth2 of the second thermistor Th2, and the second voltage dividing resistor R2. The value corresponds to the divided voltage VR2 of R2. And CPU30 calculates resistance Rth2 of a 2nd thermistor by the following Formula 2 (step S24).

Rth2=サーミスタの電圧降下Vt2/サーミスタ電流It2
=(VM12−(Rth1*VM22/R2+VM22))/(VM22/R2)…… 式2
そして、CPU30は、例えば、メモリ40に格納された第2サーミスタの抵抗Rth2と温度Tとの関係を示すセンサ特性テーブルから第2セルCL2のセル温度TC2を検出する(ステップS26)。
Rth2 = Thermistor voltage drop Vt2 / Thermistor current It2
= (VM12- (Rth1 * VM22 / R2 + VM22)) / (VM22 / R2) ...... Formula 2
Then, for example, the CPU 30 detects the cell temperature TC2 of the second cell CL2 from the sensor characteristic table indicating the relationship between the resistance Rth2 of the second thermistor stored in the memory 40 and the temperature T (step S26).

続いて、CPU30は、第3セルCL3のセル温度TC3を検出するために、セル温度TC2の場合と同様に、第3スイッチSW3のみをオンし、第3スイッチSW3をオンした状態で第3電圧V3を電圧検出回路20から取得する(ステップS32)。この時の取得電圧値をVM23とすると、取得電圧値VM23は第3分圧抵抗R3の分圧電圧(電圧降下)VR3に相当する。すなわち、取得電圧値VM23は、第3セル電圧VC3を、第2サーミスタTh2の抵抗Rth2、第3サーミスタTh3の抵抗Rth3および第3分圧抵抗R3とで分圧した際の、第3分圧抵抗R3の分圧電圧VR3に相当する値となる。そして、CPU30は、第3サーミスタの抵抗Rth3を、式2と同様な下式3によって算出する(ステップS34)。   Subsequently, in order to detect the cell temperature TC3 of the third cell CL3, the CPU 30 turns on only the third switch SW3 and turns on the third voltage with the third switch SW3 turned on, as in the case of the cell temperature TC2. V3 is acquired from the voltage detection circuit 20 (step S32). If the acquired voltage value at this time is VM23, the acquired voltage value VM23 corresponds to the divided voltage (voltage drop) VR3 of the third voltage dividing resistor R3. That is, the acquired voltage value VM23 is the third voltage dividing resistance when the third cell voltage VC3 is divided by the resistor Rth2 of the second thermistor Th2, the resistor Rth3 of the third thermistor Th3, and the third voltage dividing resistor R3. The value corresponds to the divided voltage VR3 of R3. Then, the CPU 30 calculates the resistance Rth3 of the third thermistor by the following equation 3 similar to the equation 2 (step S34).

Rth3=サーミスタの電圧降下Vt3/サーミスタ電流It3
=(VM13−(Rth2*VM23/R3+VM23))/(VM23/R3)…… 式3
そして、CPU30は、例えば、メモリ40に格納された第3サーミスタの抵抗Rth3と温度Tとの関係を示すセンサ特性テーブルから第3セルCL3のセル温度TC3を検出する(ステップS36)。
Rth3 = Thermistor voltage drop Vt3 / Thermistor current It3
= (VM13- (Rth2 * VM23 / R3 + VM23)) / (VM23 / R3) ...... Formula 3
Then, for example, the CPU 30 detects the cell temperature TC3 of the third cell CL3 from the sensor characteristic table indicating the relationship between the resistance Rth3 of the third thermistor stored in the memory 40 and the temperature T (step S36).

3.実施形態の効果
上記したように、本実施形態においては、スイッチSW1〜SW3と分圧抵抗R1〜R3との直列回路SC1〜SC3が、第1ライン(L1,L2,L3)と第2ライン(L0,L1,L3)とに接続されるとともに、セルCL1〜〜CL3と並列に接続される。また、サーミスタTh1〜Th3が、各セルの近傍の第1ライン(L1,L2,L3)上において、直列回路SC1〜SC3と第1ラインとの接続点Nd1〜Nd3と、各セルの正極との間に設けられる。
言いかえれば、直列回路SC1〜SC3は、初段の電圧検出ラインL1とグラウンドGNDとの間、および各電圧検出ライン間(L1−L2,L2−L3)においてセルCL1〜CL3と並列に接続される。また、サーミスタTh1〜Th3が、各セルの近傍の各電圧検出ライン上において、各直列回路SC1〜SC3と各電圧検出ラインとの接続点と、各セルの正極との間に接続される。
このような、直列回路SC1〜SC3とサーミスタTh1〜Th3との配置によって、単に電圧検出回路20による電圧検出に基づいて、電池セルCL1〜CL3のセル温度TC1〜TC3およびセル電圧VC1〜VC3の検出を行うことができる。したがって、セルCLのセル温度TCおよびセル電圧VCを検出するために個別の配線および回路を設ける必要がなく、セルCLのセル温度およびセル電圧の検出、すなわち、セル状態検出に係る構成を簡易化することができる。それは、セル状態検出装置10の低コスト化につながる。
3. As described above, in this embodiment, the series circuits SC1 to SC3 of the switches SW1 to SW3 and the voltage dividing resistors R1 to R3 are connected to the first line (L1, L2, L3) and the second line ( L0, L1, L3) and in parallel with the cells CL1 to CL3. Further, the thermistors Th1 to Th3 are connected to the connection points Nd1 to Nd3 between the series circuits SC1 to SC3 and the first line on the first line (L1, L2, L3) in the vicinity of each cell, and the positive electrode of each cell. Between.
In other words, the series circuits SC1 to SC3 are connected in parallel with the cells CL1 to CL3 between the voltage detection line L1 of the first stage and the ground GND and between the voltage detection lines (L1-L2, L2-L3). . The thermistors Th1 to Th3 are connected between the connection points of the series circuits SC1 to SC3 and the voltage detection lines on the voltage detection lines in the vicinity of the cells and the positive electrodes of the cells.
With such an arrangement of the series circuits SC1 to SC3 and the thermistors Th1 to Th3, the detection of the cell temperatures TC1 to TC3 and the cell voltages VC1 to VC3 of the battery cells CL1 to CL3 simply based on the voltage detection by the voltage detection circuit 20 It can be performed. Therefore, it is not necessary to provide individual wirings and circuits for detecting the cell temperature TC and the cell voltage VC of the cell CL, and the configuration relating to the detection of the cell temperature and the cell voltage of the cell CL, that is, the cell state detection is simplified. can do. This leads to cost reduction of the cell state detection device 10.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では、組電池として3つのセル(単位電池)CL1〜CL3を直列接続してなる構成のものを例示したが、セルの接続段数は三段に限定されるものでなく四段、五段あるいはそれ以上であってもよい。あるいは、セルの接続段数は一段であってもよい、すなわち、電池は組電池に限られない。   (1) In the above-described embodiment, the assembled battery is configured by connecting three cells (unit batteries) CL1 to CL3 in series. However, the number of connection stages of the cells is not limited to three but four. There may be stages, five stages or more. Alternatively, the number of cell connection stages may be one, that is, the battery is not limited to an assembled battery.

(2)上記実施形態では、温度検出回路をCPU30で構成する例を示したがこれに限られない。温度検出回路は例えば、ASIC(特定用途向け集積回路)によって構成してもよい。また、上記実施形態では電圧検出回路20と温度検出回路30とを個別に構成する例を示したが、これに限られず、電圧検出回路が温度検出回路を兼ねる構成としてもよい。例えば、電圧検出回路と温度検出回路とを一つのASICで構成してもよい。その際、ASICは、電池の他の制御を兼ねるものであってもよい。   (2) In the above embodiment, the example in which the temperature detection circuit is configured by the CPU 30 has been described, but the present invention is not limited thereto. The temperature detection circuit may be constituted by, for example, an ASIC (Application Specific Integrated Circuit). In the above embodiment, the voltage detection circuit 20 and the temperature detection circuit 30 are individually configured. However, the present invention is not limited to this, and the voltage detection circuit may also serve as the temperature detection circuit. For example, the voltage detection circuit and the temperature detection circuit may be configured by one ASIC. At that time, the ASIC may also serve as another control of the battery.

(3)上記実施形態では、サーミスタの抵抗Rthからセル温度TCを検出する際にセンサ特性テーブルを参照する例を示したが、これに限られない。例えば、サーミスタの抵抗Rthと温度Tとの関係を示す式からセル温度TCを算出するようにしてもよい。また、センサ(温度センサ)としてサーミスタに限られない。センサとしては、センサの抵抗値と電池セル温度とに所定の相関関係を有するセンサであればよい。   (3) In the above embodiment, an example is shown in which the sensor characteristic table is referred to when the cell temperature TC is detected from the resistance Rth of the thermistor. However, the present invention is not limited to this. For example, the cell temperature TC may be calculated from an equation indicating the relationship between the thermistor resistance Rth and the temperature T. The sensor (temperature sensor) is not limited to the thermistor. The sensor may be any sensor that has a predetermined correlation between the resistance value of the sensor and the battery cell temperature.

1…電池モジュール
10…セル状態検出装置
20…電圧検出回路
30…CPU(温度検出回路)
L1〜L3…電圧検出ライン
SC1〜SC3…直列回路
R1〜R3…分圧抵抗
SW1〜SW3…スイッチ
Th1〜Th3…サーミスタ(温度センサ)
DESCRIPTION OF SYMBOLS 1 ... Battery module 10 ... Cell state detection apparatus 20 ... Voltage detection circuit 30 ... CPU (temperature detection circuit)
L1 to L3 Voltage detection line SC1 to SC3 Series circuit R1 to R3 Voltage dividing resistor SW1 to SW3 Switch Th1 to Th3 Thermistor (temperature sensor)

Claims (7)

少なくとも一個の電池セルを有する電池に対して各電池セルの状態を検出する電池セル状態検出装置であって、
電圧を検出する電圧検出回路と、
前記電圧検出回路と各電池セルの正極とを接続する第1ラインと、
前記電圧検出回路と各電池セルの負極とを接続する第2ラインと、
スイッチと分圧抵抗との直列回路であって、前記第1ラインと前記第2ラインとに接続されるとともに、前記電池セルと並列に接続される少なくとも一個の直列回路と、
前記電池セルの近傍の前記第1ライン上において、前記直列回路と前記第1ラインとの接続点と、前記電池セルの正極との間に設けられる少なくとも一個のセンサと、
前記各電池セルの温度を検出する際に、前記各直列回路のスイッチをオフさせて温度を検出する検出電池セルのセル電圧を前記電圧検出回路から取得し、前記検出電池セルに対応する直列回路のスイッチをオンさせて、前記分圧抵抗による電圧降下である分圧電圧を前記電圧検出回路から取得し、前記セル電圧および前記分圧電圧に基づいて前記検出電池セルのセル温度を検出する温度検出回路と、
を備える電池セル状態検出装置。
A battery cell state detection device for detecting a state of each battery cell with respect to a battery having at least one battery cell,
A voltage detection circuit for detecting the voltage;
A first line connecting the voltage detection circuit and the positive electrode of each battery cell;
A second line connecting the voltage detection circuit and the negative electrode of each battery cell;
A series circuit of a switch and a voltage dividing resistor, connected to the first line and the second line, and at least one series circuit connected in parallel to the battery cell;
On the first line in the vicinity of the battery cell, at least one sensor provided between a connection point of the series circuit and the first line and a positive electrode of the battery cell;
When detecting the temperature of each battery cell, the cell voltage of the detection battery cell for detecting the temperature by turning off the switch of each series circuit is obtained from the voltage detection circuit, and the series circuit corresponding to the detection battery cell A voltage at which a divided voltage that is a voltage drop caused by the voltage dividing resistor is acquired from the voltage detection circuit, and a cell temperature of the detection battery cell is detected based on the cell voltage and the divided voltage A detection circuit;
A battery cell state detection device.
前記温度検出回路は、前記セル温度を検出する際に、前記電池セルに対応する前記センサの電圧降下と前記センサに流れるセンサ電流とを算出し、前記電圧降下と前記センサ電流とから前記センサの抵抗値を算出する、請求項1に記載の電池セル状態検出装置。   When detecting the cell temperature, the temperature detection circuit calculates a voltage drop of the sensor corresponding to the battery cell and a sensor current flowing through the sensor, and the sensor detection circuit calculates the sensor current from the voltage drop and the sensor current. The battery cell state detection device according to claim 1, wherein the resistance value is calculated. 前記センサの抵抗値と前記セル温度との関係を示すセンサ特性テーブルを格納するメモリを備え、
前記温度検出回路は、前記センサ特性テーブルを参照して、前記セル温度を検出する、請求項2に記載の電池セル状態検出装置。
A memory for storing a sensor characteristic table indicating a relationship between the resistance value of the sensor and the cell temperature;
The battery cell state detection device according to claim 2, wherein the temperature detection circuit detects the cell temperature with reference to the sensor characteristic table.
前記センサは温度センサである、請求項1から請求項3のいずれか一項に記載の電池セル状態検出装置。   The battery cell state detection device according to any one of claims 1 to 3, wherein the sensor is a temperature sensor. 少なくとも一個の電池セルと、
請求項1から請求項4のいずれか一項に記載の電池セル状態検出装置と、
を備えた電池モジュール。
At least one battery cell;
The battery cell state detection device according to any one of claims 1 to 4,
Battery module with
少なくとも一個の電池セルと、
前記少なくとも一個の電池セルを有する電池に対して、各電池セルの状態を検出する電池セル状態検出装置とを備えた電池モジュールであって、
前記電池セル状態検出装置は、
電圧を検出する電圧検出回路と、
前記電圧検出回路と各電池セルの正極とを接続する第1ラインと、
前記電圧検出回路と各電池セルの負極とを接続する第2ラインと、
スイッチと分圧抵抗との直列回路であって、前記第1ラインと前記第2ラインとに接続されるとともに、前記電池セルと並列に接続される少なくとも一個の直列回路と、
前記電池セルの近傍の前記第1ライン上において、前記直列回路と前記第1ラインとの接続点と、前記電池セルの正極との間に設けられる少なくとも一個のセンサと、
前記各電池セルの温度を検出する際に、前記各直列回路のスイッチをオフさせて温度を検出する検出電池セルのセル電圧を前記電圧検出回路から取得し、前記検出電池セルに対応する直列回路のスイッチをオンさせて、前記分圧抵抗による電圧降下である分圧電圧を前記電圧検出回路から取得し、前記セル電圧および前記分圧電圧に基づいて前記検出電池セルのセル温度を検出する温度検出回路とを含む、電池モジュール。
At least one battery cell;
A battery module comprising a battery cell state detection device for detecting a state of each battery cell for a battery having at least one battery cell,
The battery cell state detection device includes:
A voltage detection circuit for detecting the voltage;
A first line connecting the voltage detection circuit and the positive electrode of each battery cell;
A second line connecting the voltage detection circuit and the negative electrode of each battery cell;
A series circuit of a switch and a voltage dividing resistor, connected to the first line and the second line, and at least one series circuit connected in parallel to the battery cell;
On the first line in the vicinity of the battery cell, at least one sensor provided between a connection point of the series circuit and the first line and a positive electrode of the battery cell;
When detecting the temperature of each battery cell, the cell voltage of the detection battery cell for detecting the temperature by turning off the switch of each series circuit is obtained from the voltage detection circuit, and the series circuit corresponding to the detection battery cell A voltage at which a divided voltage that is a voltage drop caused by the voltage dividing resistor is acquired from the voltage detection circuit, and a cell temperature of the detection battery cell is detected based on the cell voltage and the divided voltage A battery module including a detection circuit.
少なくとも一個の電池セルを有する電池に対して、前記電池セルの状態を検出する電池セルの状態検出方法であって、
前記電池は、電圧を検出する電圧検出回路と、前記電圧検出回路と電池セルの正極とを接続する第1ラインと、前記電圧検出回路と電池セルの負極とを接続する第2ラインと、スイッチと分圧抵抗との直列回路であって、前記第1ラインと前記第2ラインとに接続されるとともに、前記電池セルと並列に接続される直列回路と、前記電池セルの近傍の前記第1ライン上において、前記直列回路と前記第1ラインとの接続点と、前記電池セルの正極との間に設けられるセンサとを備え、該電池セルの状態検出方法は、
前記直列回路のスイッチをオフさせて前記電圧検出回路によって前記電池セルのセル電圧を取得するセル電圧取得ステップと、
前記直列回路のスイッチをオンさせて、前記分圧抵抗による電圧降下である分圧電圧を前記電圧検出回路によって取得する分圧取得ステップと、
前記セル電圧および前記分圧電圧に基づいて前記センサの電圧降下と前記センサに流れるセンサ電流とを算出し、前記電圧降下と前記センサ電流とから前記センサの抵抗値を算出する算出ステップと、
前記センサの抵抗値と前記電池セルのセル温度との関係を示すセンサ特性テーブルを参照して、前記電池セルのセル温度を検出するセル温度検出ステップと、
を含む、電池セルの状態検出方法。
A battery cell state detection method for detecting a state of the battery cell with respect to a battery having at least one battery cell,
The battery includes a voltage detection circuit that detects a voltage, a first line that connects the voltage detection circuit and a positive electrode of the battery cell, a second line that connects the voltage detection circuit and a negative electrode of the battery cell, and a switch And a voltage dividing resistor connected to the first line and the second line and connected in parallel to the battery cell, and the first circuit in the vicinity of the battery cell. On the line, a sensor provided between a connection point of the series circuit and the first line and a positive electrode of the battery cell, and the battery cell state detection method,
A cell voltage acquisition step of acquiring a cell voltage of the battery cell by the voltage detection circuit by turning off the switch of the series circuit;
A voltage dividing acquisition step of turning on the switch of the series circuit and acquiring a divided voltage that is a voltage drop by the voltage dividing resistor by the voltage detection circuit;
Calculating a voltage drop of the sensor and a sensor current flowing through the sensor based on the cell voltage and the divided voltage, and calculating a resistance value of the sensor from the voltage drop and the sensor current;
A cell temperature detecting step of detecting a cell temperature of the battery cell with reference to a sensor characteristic table showing a relationship between a resistance value of the sensor and a cell temperature of the battery cell;
A battery cell state detection method.
JP2011207534A 2011-09-22 2011-09-22 Battery cell state detection device, battery module, and method for detecting battery cell state Withdrawn JP2013068533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011207534A JP2013068533A (en) 2011-09-22 2011-09-22 Battery cell state detection device, battery module, and method for detecting battery cell state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011207534A JP2013068533A (en) 2011-09-22 2011-09-22 Battery cell state detection device, battery module, and method for detecting battery cell state

Publications (1)

Publication Number Publication Date
JP2013068533A true JP2013068533A (en) 2013-04-18

Family

ID=48474387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011207534A Withdrawn JP2013068533A (en) 2011-09-22 2011-09-22 Battery cell state detection device, battery module, and method for detecting battery cell state

Country Status (1)

Country Link
JP (1) JP2013068533A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019511A1 (en) * 2013-08-09 2015-02-12 株式会社東芝 Substrate and assembled battery module
JP2018017528A (en) * 2016-07-25 2018-02-01 株式会社デンソー Electric leakage determination device
JP2021018969A (en) * 2019-07-24 2021-02-15 三洋電機株式会社 Management device and electrical power system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019511A1 (en) * 2013-08-09 2015-02-12 株式会社東芝 Substrate and assembled battery module
JP2015035408A (en) * 2013-08-09 2015-02-19 株式会社東芝 Circuit board and battery pack module
JP2018017528A (en) * 2016-07-25 2018-02-01 株式会社デンソー Electric leakage determination device
JP2021018969A (en) * 2019-07-24 2021-02-15 三洋電機株式会社 Management device and electrical power system
JP7260433B2 (en) 2019-07-24 2023-04-18 三洋電機株式会社 Management device, power supply system

Similar Documents

Publication Publication Date Title
US8659265B2 (en) Battery pack and method of sensing voltage of battery pack
JP5353914B2 (en) Battery voltage monitoring device
US10666066B2 (en) Differential voltage measurement device
EP2891577B1 (en) Method and apparatus to detect leakage current between power sources
JP2008064536A (en) Battery pack total voltage detection and leak detector
JP2002343445A (en) Voltage detecting circuit for battery pack
EP3336565B1 (en) Secondary battery monitoring device and method for diagnosing failure
JP6044512B2 (en) Battery characteristics learning device
CN104330737B (en) Ice storing time circuit path resnstance transformer system and method
JP2014157075A (en) Battery voltage detection device, and battery pack management system
JP2013172544A (en) Battery pack monitoring device
JP2012044768A5 (en) Battery pack system, voltage monitoring system, and voltage monitoring device
JP2014137272A (en) Voltage monitoring device
JP2017096628A (en) Current detector, power supply system
JP2017198546A (en) Semiconductor device, battery monitoring system, and detection method
JP2013068533A (en) Battery cell state detection device, battery module, and method for detecting battery cell state
KR20210093687A (en) Power control circuit of renewable energy source, and control method using thereof
JP6518082B2 (en) Voltage detection apparatus, voltage detection method and battery pack system
JP2010122162A (en) Power supply device
JP2013108924A (en) Battery monitoring device
US10921378B2 (en) System for measuring voltage differences between battery cells and for obtaining battery cell voltages using the voltage differences
JP2017032349A (en) Secondary battery state detection device
TW200817706A (en) V/I source and test system incorporating the same
JP2012244812A (en) Device and method for equalizing inter-terminal voltage of secondary battery
JP4571888B2 (en) Voltage measuring device and degradation determination method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202