JP2013068099A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2013068099A
JP2013068099A JP2011205341A JP2011205341A JP2013068099A JP 2013068099 A JP2013068099 A JP 2013068099A JP 2011205341 A JP2011205341 A JP 2011205341A JP 2011205341 A JP2011205341 A JP 2011205341A JP 2013068099 A JP2013068099 A JP 2013068099A
Authority
JP
Japan
Prior art keywords
closing timing
ivc
fuel cut
valve
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011205341A
Other languages
Japanese (ja)
Other versions
JP5784436B2 (en
Inventor
Atsushi Murai
淳 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2011205341A priority Critical patent/JP5784436B2/en
Publication of JP2013068099A publication Critical patent/JP2013068099A/en
Application granted granted Critical
Publication of JP5784436B2 publication Critical patent/JP5784436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a control device of an internal combustion engine which can prevent a combustion chamber from being excessively cooled down in association with a deceleration fuel cut-off.SOLUTION: In the cylinder direct injection type internal combustion engine which has a variable valve timing mechanism for continuously making a rotational phase of an intake camshaft variable with respect to a crankshaft and in which lag closing miller cycle operation is performed, while a deceleration fuel is cut off, a period when an intake valve is closed is advanced from a period when the intake valve is closed during the lag closing miller cycle operation to approach a bottom dead center, thereby increasing an effective compression ratio, raising a compression temperature and preventing the combustion chamber (crown of a piston) from being excessively cooled down by new air during fuel cut-off. In this case, because a period when the intake valve is opened is also advanced in association with advance of the period when the intake valve is closed, which increases valve overlap and decreases charging efficiency, the rotational phase of the intake camshaft is advanced until the period when the intake valve is opened becomes the same period as the period when an exhaust valve is closed, so that the period when the intake valve is closed approaches the bottom dead center.

Description

本発明は、吸気バルブの閉時期を可変とする可変動弁機構を備えた内燃機関に適用される制御装置に関する。   The present invention relates to a control device applied to an internal combustion engine provided with a variable valve mechanism that varies the closing timing of an intake valve.

特許文献1には、減速燃料カット中は、吸気バルブの閉時期を下死点後90deg付近のバルブタイミングに設定し、燃料カット後の加速時に、吸気バルブの閉時期を進角させて下死点近くに変更する、制御装置が開示されている。   In Patent Document 1, during deceleration fuel cut, the closing timing of the intake valve is set to a valve timing of about 90 deg after bottom dead center, and the closing timing of the intake valve is advanced during acceleration after fuel cut to cause bottom dead A control device is disclosed that changes near the point.

特開2009−215956号公報JP 2009-215956 A

ところで、吸気バルブを下死点後に遅閉じすると、有効圧縮比が低くなるために圧縮温度が低くなり、更に、減速燃料カット状態では、新気によって燃焼室(ピストン冠面など)が冷却されるため、減速燃料カット状態で吸気バルブを遅閉じすると、燃焼室が過度に冷却される場合がある。
燃焼室が過度に冷却されると、燃料カット状態から燃料噴射を再開する場合に、燃焼室内(ピストン冠面)に向けて噴射された燃料の蒸発(霧化)が阻害され、十分な混合気形成がなされず、燃焼が不安定となり、排気性状の悪化やトルク変動による運転性の悪化が発生する。
By the way, if the intake valve is closed late after bottom dead center, the effective compression ratio becomes low and the compression temperature becomes low. Further, in the deceleration fuel cut state, the combustion chamber (piston crown surface, etc.) is cooled by fresh air. For this reason, if the intake valve is closed late in the deceleration fuel cut state, the combustion chamber may be excessively cooled.
If the combustion chamber is excessively cooled, the evaporation (atomization) of the fuel injected into the combustion chamber (piston crown surface) is hindered when the fuel injection is restarted from the fuel cut state. It is not formed, combustion becomes unstable, and exhaust properties deteriorate and drivability deteriorates due to torque fluctuations.

本発明は上記問題点に鑑みなされたものであり、減速燃料カットに伴って燃焼室が過度に冷却されることを抑制できる、内燃機関の制御装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device for an internal combustion engine that can suppress the combustion chamber from being excessively cooled due to the fuel cut.

そのため、本願発明では、減速運転における燃料カット時に、吸気バルブの閉時期を可変とする可変動弁機構を制御して、燃料カット開始前よりも吸気バルブの閉時期を下死点に近づけるようにした。   Therefore, in the present invention, when the fuel is cut in the deceleration operation, the variable valve mechanism that makes the intake valve closing timing variable is controlled so that the closing timing of the intake valve is closer to the bottom dead center than before the fuel cut starts. did.

上記発明によると、燃料カット中の圧縮温度が上昇するため、燃焼室(ピストン冠面など)が過度に冷却されることを抑制でき、燃料カット直後の燃焼が安定し、排気性状が改善され、運転性を向上できる。   According to the above invention, since the compression temperature during the fuel cut rises, the combustion chamber (piston crown surface, etc.) can be prevented from being excessively cooled, the combustion immediately after the fuel cut is stabilized, and the exhaust properties are improved. Driving performance can be improved.

本願発明の実施形態におけるエンジンのシステム図である。1 is a system diagram of an engine in an embodiment of the present invention. 減速燃料カット時における吸気バルブの閉時期IVCの制御を示すフローチャートである。It is a flowchart which shows control of the closing timing IVC of the intake valve at the time of deceleration fuel cut. 吸気バルブの閉時期IVCと圧縮温度との相関の一例を示すグラフである。It is a graph which shows an example of the correlation with the closing timing IVC of an intake valve, and compression temperature. エンジン温度に応じた閉時期IVCの進角目標の特性を示すグラフである。It is a graph which shows the characteristic of the advance angle target of closing timing IVC according to engine temperature. 減速から加速に移行するときのアクセル開度、エンジン回転速度、燃料カット、閉時期IVC、ブレーキスイッチの変化を示すタイムチャートである。6 is a time chart showing changes in accelerator opening, engine speed, fuel cut, closing timing IVC, and brake switch when shifting from deceleration to acceleration. 減速からそのままアイドルに移行するときのアクセル開度、エンジン回転速度、燃料カット、閉時期IVCの変化を示すタイムチャートである。6 is a time chart showing changes in accelerator opening, engine speed, fuel cut, and closing timing IVC when shifting from deceleration to idle as it is. 本願発明の実施形態におけるエンジンのシステム図である。1 is a system diagram of an engine in an embodiment of the present invention. 減速燃料カット時における吸気バルブの閉時期IVCの制御を示すフローチャートである。It is a flowchart which shows control of the closing timing IVC of the intake valve at the time of deceleration fuel cut. 吸気バルブの閉時期IVCと圧縮温度との相関の一例を示すグラフである。It is a graph which shows an example of the correlation with the closing timing IVC of an intake valve, and compression temperature.

以下に本発明の実施の形態を説明する。
図1は、本発明に係る制御装置を含む、車両用エンジンのシステム図である。
図1に示すエンジン1は、遅閉じミラーサイクル運転を行う、筒内直接噴射式内燃機関である。
エンジン1は、筒内に直接燃料を噴射する燃料噴射弁3を備える。
Embodiments of the present invention will be described below.
FIG. 1 is a system diagram of a vehicle engine including a control device according to the present invention.
An engine 1 shown in FIG. 1 is an in-cylinder direct injection internal combustion engine that performs a delayed closed mirror cycle operation.
The engine 1 includes a fuel injection valve 3 that directly injects fuel into a cylinder.

燃料噴射弁3が筒内に噴射した燃料は、吸気通路2、吸気バルブ4を介して燃焼室5内に吸引される空気と混合し、点火プラグ6による火花点火によって着火燃焼する。燃焼室5内の燃焼ガスは、排気バルブ7を介して排気通路8に排出される。
吸気通路2には、スロットルモータ9で開閉される電子制御スロットル10が配され、この電子制御スロットル10の開度によってエンジン1の吸入空気量を調整する。
The fuel injected into the cylinder by the fuel injection valve 3 is mixed with air sucked into the combustion chamber 5 through the intake passage 2 and the intake valve 4 and ignited and burned by spark ignition by the spark plug 6. The combustion gas in the combustion chamber 5 is discharged to the exhaust passage 8 through the exhaust valve 7.
An electronic control throttle 10 that is opened and closed by a throttle motor 9 is disposed in the intake passage 2, and the intake air amount of the engine 1 is adjusted by the opening degree of the electronic control throttle 10.

また、エンジン1は、吸気バルブ4のバルブタイミング(開閉時期)を可変とする可変バルブタイミング機構(VTC)20を備えている。
可変バルブタイミング機構20は、クランクシャフト21に対する吸気カムシャフト22の回転位相を連続的に可変とすることで、吸気バルブ4の作用角(開期間)の中心位相を連続的に可変とする機構である。
The engine 1 also includes a variable valve timing mechanism (VTC) 20 that makes the valve timing (opening / closing timing) of the intake valve 4 variable.
The variable valve timing mechanism 20 is a mechanism that continuously varies the central phase of the operating angle (open period) of the intake valve 4 by continuously varying the rotational phase of the intake camshaft 22 with respect to the crankshaft 21. is there.

燃料噴射弁3による燃料噴射、点火プラグ6による点火、電子制御スロットル10の開度、可変バルブタイミング機構20によるバルブタイミングなどを制御する制御装置として、コンピュータを備えるECM(エンジン・コントロール・モジュール)31を設けてある。
ECM31は、図外のアクセルペダルの踏み込み量(アクセル開度)ACCを検出するアクセル開度センサ34、エンジン1の吸入空気流量QAを検出するエアフローセンサ35、エンジン1の回転速度NEを検出する回転センサ36、エンジン1の冷却水温度TW(エンジン温度)を検出する水温センサ37、エンジン排気中の酸素濃度に応じてエンジン1における空燃比を検出する空燃比センサ38などからの検出信号を入力する。
An ECM (engine control module) 31 having a computer as a control device for controlling fuel injection by the fuel injection valve 3, ignition by the spark plug 6, opening of the electronic control throttle 10, valve timing by the variable valve timing mechanism 20, and the like. Is provided.
The ECM 31 includes an accelerator opening sensor 34 that detects an accelerator pedal depression amount (accelerator opening) ACC (not shown), an air flow sensor 35 that detects an intake air flow rate QA of the engine 1, and a rotation that detects a rotational speed NE of the engine 1. Detection signals from a sensor 36, a water temperature sensor 37 for detecting the coolant temperature TW (engine temperature) of the engine 1, an air-fuel ratio sensor 38 for detecting the air-fuel ratio in the engine 1 according to the oxygen concentration in the engine exhaust, and the like are input. .

そして、ECM31は、前述の各種センサの検出信号に基づいて、燃料噴射弁3による燃料噴射量及び噴射タイミング、点火プラグ6による点火時期、電子制御スロットル10の開度、可変バルブタイミング機構20によるバルブタイミングなどを制御する。
ECM31は、燃料噴射弁3による燃料噴射制御において、エンジン1の減速運転時に、燃料噴射弁3による燃料噴射を停止する減速燃料カットを実行する。
Then, the ECM 31 is based on the detection signals of the various sensors described above, the fuel injection amount and injection timing by the fuel injection valve 3, the ignition timing by the ignition plug 6, the opening of the electronic control throttle 10, and the valve by the variable valve timing mechanism 20. Control timing etc.
In the fuel injection control by the fuel injection valve 3, the ECM 31 executes a deceleration fuel cut that stops the fuel injection by the fuel injection valve 3 during the deceleration operation of the engine 1.

減速燃料カットにおいては、エンジン1の減速運転状態であって燃料噴射を停止できる条件(カット条件)が成立すると燃料噴射弁3による燃料噴射を停止させ、燃料噴射を停止させた後は、燃料噴射を再開させる条件(リカバリ条件)が成立すると燃料噴射弁3による燃料噴射を再開させる。
例えば、スロットル10の開度が全閉若しくは全閉付近の低開度で、かつ、エンジン回転速度がカット回転速度を上回っている減速運転状態を判定すると、燃料噴射弁3による燃料噴射を停止させ、その後、エンジン回転速度がリカバリ回転速度(リカバリ回転速度<カット回転速度)まで低下するか、及び/又は、スロットル10が開操作されると、燃料噴射弁3による燃料噴射を再開させる。
In the deceleration fuel cut, the fuel injection by the fuel injection valve 3 is stopped when the condition (cut condition) that allows the fuel injection to be stopped in the deceleration operation state of the engine 1 is satisfied, and after the fuel injection is stopped, the fuel injection is stopped. When the condition for restarting (recovery condition) is satisfied, the fuel injection by the fuel injection valve 3 is restarted.
For example, when the deceleration operation state in which the throttle 10 is fully closed or a low opening near the full close and the engine speed is higher than the cut speed is determined, the fuel injection by the fuel injection valve 3 is stopped. Thereafter, when the engine rotational speed decreases to the recovery rotational speed (recovery rotational speed <cut rotational speed) and / or when the throttle 10 is opened, the fuel injection by the fuel injection valve 3 is resumed.

尚、カット条件及びリカバリ条件を上記に限定するものではなく、公知のカット条件及びリカバリ条件に応じて燃料カットを行う減速燃料カットを適宜採用できる。また、減速燃料カットを、カット条件の成立から遅延して実行することができる。
また、ECM31は、吸気バルブ4の閉時期IVCを例えば下死点後90degに設定し、また、吸気バルブの4の開時期IVOを上死点後に設定して、エンジン1を所謂遅閉じミラーサイクルで運転させる。
Note that the cutting conditions and the recovery conditions are not limited to the above, and a deceleration fuel cut that performs fuel cutting according to the known cutting conditions and recovery conditions can be appropriately employed. Further, the deceleration fuel cut can be executed with a delay from the establishment of the cut condition.
Further, the ECM 31 sets the closing timing IVC of the intake valve 4 to 90 deg after the bottom dead center, for example, and sets the opening timing IVO of the intake valve 4 after the top dead center, so that the engine 1 is so-called delayed closing mirror cycle. To drive.

ところで、減速燃料カットを実施すると、燃焼室5(ピストン冠面18など)が新気で冷却されて過度に温度低下する場合があり、燃焼室5の温度が過度に低下した状態で、燃料噴射が再開されると、燃焼室5内(ピストン冠面18)に向けて噴射された燃料の霧化(気化)が阻害される結果、混合気の燃焼安定性が低下し、排気性状の悪化やトルク変動による運転性の悪化などが発生する可能性がある。
そこで、ECM31は、遅閉じミラーサイクル運転での(減速燃料カット前の)閉時期IVCよりも、減速燃料カット中は、閉時期IVCを下死点BDCに近づける制御を行うことで、減速燃料カット中の有効圧縮比(圧縮温度)を燃料カット前よりも高めることで、減速燃料カット中における燃焼室5の温度低下を抑制する制御(以下では、燃料カット時IVC制御という)を行う。
By the way, when the deceleration fuel cut is performed, the combustion chamber 5 (piston crown surface 18 or the like) may be cooled with fresh air and the temperature may be excessively decreased, and the fuel injection is performed in a state where the temperature of the combustion chamber 5 is excessively decreased. Is restarted, the fuel atomization (vaporization) injected into the combustion chamber 5 (piston crown surface 18) is hindered. As a result, the combustion stability of the air-fuel mixture decreases, and the exhaust properties deteriorate. There is a possibility that drivability deteriorates due to torque fluctuation.
Therefore, the ECM 31 performs a control to bring the closing timing IVC closer to the bottom dead center BDC during the deceleration fuel cut than the closing timing IVC (before the deceleration fuel cut) in the slow closing mirror cycle operation, thereby reducing the deceleration fuel cut. The effective compression ratio (compression temperature) in the inside is increased as compared with that before the fuel cut, thereby performing control for suppressing the temperature drop of the combustion chamber 5 during the deceleration fuel cut (hereinafter referred to as IVC control during fuel cut).

以下では、ECM31による燃料カット時IVC制御の詳細を、図2のフローチャートに従って説明する。
図2のフローチャートに示すルーチンは、設定時間毎にECM31によって割り込み実行され、まず、ステップS101では、エンジン1が冷機状態であるか否かを判断する。
冷機状態であるか否かは、例えば、水温センサ37が検出した冷却水温度TWが設定温度TWSLよりも低いか否かに基づいて判断する。
Below, the detail of IVC control at the time of fuel cut by ECM31 is demonstrated according to the flowchart of FIG.
The routine shown in the flowchart of FIG. 2 is interrupted and executed by the ECM 31 every set time. First, in step S101, it is determined whether or not the engine 1 is in a cold state.
Whether or not it is in the cold state is determined based on, for example, whether or not the cooling water temperature TW detected by the water temperature sensor 37 is lower than the set temperature TWSL.

ステップS101で判断する冷機とは、ミラーサイクル運転での閉時期IVC(IVC=ABDC90deg)のままで減速燃料カットを行った場合に、燃焼室5(ピストン冠面18)が過度に冷却され、燃料噴射を再開したときに、燃料噴射弁3からの燃料噴霧の気化が阻害されて燃焼が不安定となる、エンジン1の低温度域であり、設定温度TWSLとして前記低温度域であるか否かを区別できる温度を設定する。
換言すれば、ステップS101でエンジン1が冷機状態でないと判断した場合には、ミラーサイクル運転での閉時期IVCのまま減速燃料カットを行っても、燃焼室5(ピストン冠面18)が過度に冷却されることがなく、燃料を十分に霧化させて安定した燃焼を行える、エンジン1の高温域であると判断する。
The cooler determined in step S101 means that the combustion chamber 5 (piston crown surface 18) is excessively cooled when the deceleration fuel cut is performed with the closing timing IVC (IVC = ABDC90deg) in the mirror cycle operation being performed. Whether or not the low temperature range of the engine 1 where the vaporization of the fuel spray from the fuel injection valve 3 is hindered and the combustion becomes unstable when the injection is resumed, and the set temperature TWSL is the low temperature range. Set a temperature that can be distinguished.
In other words, if it is determined in step S101 that the engine 1 is not in the cold state, the combustion chamber 5 (piston crown surface 18) is excessive even if the deceleration fuel cut is performed with the closing timing IVC in the mirror cycle operation. It is determined that it is a high temperature range of the engine 1 that is not cooled and that can sufficiently atomize the fuel and perform stable combustion.

尚、エンジン1が冷機状態であるか否かの判断は、冷却水温度TWに基づき行える他、潤滑油温度、シリンダヘッド温度、シリンダブロック温度などの燃焼室5(ピストン冠面18)の温度に相関する温度に基づいて行える。
また、減速燃料カット中に燃焼室5(ピストン冠面18)が過度に冷却されるか否かは新気の温度に影響され、同じエンジン温度でも新気の温度が低いほど、減速燃料カット中に燃焼室5(ピストン冠面18)が過度に冷却され易くなる。そこで、例えば、外気温度や吸気温度が低いほど、設定温度TWSLをより高く変更することで、新気温度が低いほど、より高いエンジン温度域まで冷機と判断させることができる。
Whether the engine 1 is in the cold state or not can be determined based on the cooling water temperature TW, and can be determined based on the temperature of the combustion chamber 5 (piston crown surface 18) such as the lubricating oil temperature, the cylinder head temperature, and the cylinder block temperature. Can be based on correlated temperatures.
Whether or not the combustion chamber 5 (piston crown surface 18) is excessively cooled during the deceleration fuel cut is affected by the fresh air temperature. Even at the same engine temperature, the lower the fresh air temperature, the lower the deceleration fuel cut. Further, the combustion chamber 5 (piston crown surface 18) is easily cooled excessively. Therefore, for example, the lower the outside air temperature or the intake air temperature, the higher the set temperature TWSL is changed, so that the lower the fresh air temperature, the higher the engine temperature range can be determined to be cold.

ステップS101でエンジン1が冷機状態であると判断すると、ステップS102へ進み、減速燃料カット中であるか否かを判断する。
そして、冷機状態でエンジン1が減速運転され、減速燃料カットが実行されている場合には、ステップS103へ進む。
If it is determined in step S101 that the engine 1 is in the cold state, the process proceeds to step S102, and it is determined whether the deceleration fuel is being cut.
Then, when the engine 1 is decelerated in the cold state and the deceleration fuel cut is executed, the process proceeds to step S103.

ステップS103では、減速燃料カット中に、ブレーキペダルを踏み込んでいる車両の制動状態から、ブレーキペダルの踏み込みが解除されて非制動状態に切り替わったか否かを判断する。
係る判断は、ブレーキスイッチ33の信号に基づいて行われ、ブレーキペダルの踏み込み状態(制動状態)でONとなるブレーキスイッチ33の信号が、減速燃料カット中にONからOFFに切り替わった場合に、制動状態から非制動状態に切り替わったことを判定する。
尚、ブレーキペダルの踏力や、ブレーキ油圧などから、制動状態から非制動状態に切り替わったことを判断することができる。
In step S103, it is determined whether or not the brake pedal is released from the braking state of the vehicle in which the brake pedal is depressed during the deceleration fuel cut and the vehicle is switched to the non-braking state.
Such a determination is made based on the signal of the brake switch 33, and braking is performed when the signal of the brake switch 33 that is turned on when the brake pedal is depressed (braking state) is switched from ON to OFF during the deceleration fuel cut. It is determined that the state has been switched to the non-braking state.
It can be determined from the braking force of the brake pedal, the brake hydraulic pressure, etc. that the braking state has been switched to the non-braking state.

減速燃料カット中に制動状態から非制動状態に切り替わった場合、換言すれば、ブレーキペダルの踏み込みが解除された場合には、その後にアクセルペダルが踏み込まれて、エンジン1が減速状態から加速状態に移行する可能性がある。換言すれば、制動状態から非制動状態への切り替わりは、運転者の加速意図を示すものである。
前述のように、減速燃料カット時に、遅閉じミラーサイクル運転時での吸気バルブ4の閉時期IVC(例えば、ABDC90deg)よりも進角させ、閉時期IVCを下死点に近づける燃料カット時IVC制御を行う。そして、燃料噴射が再開される場合には、燃料カット時IVC制御をキャンセルして、ミラーサイクル運転での閉時期IVCに戻すが、可変バルブタイミング機構20で制御される閉時期IVCはステップ的に変化せず、遅れを持って徐々に変化する。
When the brake is switched from the braking state to the non-braking state during the deceleration fuel cut, in other words, when the depression of the brake pedal is released, the accelerator pedal is subsequently depressed, and the engine 1 changes from the deceleration state to the acceleration state. There is a possibility of migration. In other words, the switch from the braking state to the non-braking state indicates the driver's intention to accelerate.
As described above, at the time of deceleration fuel cut, the IVC control at the time of fuel cut is made to advance the closing timing IVC of the intake valve 4 at the time of slow closing mirror cycle operation (for example, ABCC 90 deg) to bring the closing timing IVC closer to the bottom dead center. I do. When the fuel injection is resumed, the IVC control at the time of fuel cut is canceled and returned to the closing timing IVC in the mirror cycle operation, but the closing timing IVC controlled by the variable valve timing mechanism 20 is stepwise. It does not change and gradually changes with a delay.

このため、全閉であったスロットル10が開かれ、燃料噴射を再開する時点(減速から加速に移行した時点)から、閉時期IVCを遅角させてミラーサイクル運転での閉時期IVCに戻す制御を行うと、燃料噴射の再開時点から閉時期IVCが実際にミラーサイクル運転での閉時期IVCに遅角するまでの応答遅れの間、ミラーサイクル運転時よりも閉時期IVCが下死点に近い状態で運転されることになる。
そして、閉時期IVCがミラーサイクル運転における設定時期よりも下死点に近いと、圧縮比が過度に高くなることで、ノッキングや大きなトルク変動などが発生する可能性がある。
For this reason, the throttle 10 which has been fully closed is opened, and the control is made to delay the closing timing IVC from the time when the fuel injection is restarted (when shifting from deceleration to acceleration) to return to the closing timing IVC in the mirror cycle operation. When the fuel injection is performed, the closing timing IVC is closer to the bottom dead center than during the mirror cycle operation during the response delay from when the fuel injection is restarted until the closing timing IVC is actually delayed to the closing timing IVC in the mirror cycle operation. Will be driven in a state.
When the closing timing IVC is closer to the bottom dead center than the set timing in the mirror cycle operation, the compression ratio becomes excessively high, which may cause knocking or large torque fluctuation.

そこで、減速から加速への移行(加速に伴う燃料噴射の再開)を、制動状態から非制動状態への切り替わりに基づいて事前に予測し、実際に加速に移行する前、換言すれば、加速に伴って燃料噴射が再開される前から、閉時期IVCを遅角させる制御を開始させる。これにより、燃料噴射の再開されたときに、閉時期IVCが、ミラーサイクル運転での閉時期IVCにまで変化しているか、若しくは、ミラーサイクル運転での閉時期IVCに十分に近い時期まで遅角されていて、圧縮比が過大であることによるノッキングやトルク変動の発生を抑制できるようにしてある。
即ち、制動状態から非制動状態への移行を、加速へ移行するための前段階として検出し、制動状態から非制動状態へ移行したときに、その後の加速への移行(燃料噴射の再開)を予測して、閉時期IVCを、ミラーサイクル運転での閉時期IVC(燃料噴射状態に適合する閉時期IVC)に戻す制御を予め開始させるようにしてある。
Therefore, the transition from deceleration to acceleration (resumption of fuel injection accompanying acceleration) is predicted in advance based on switching from the braking state to the non-braking state, and in other words, before the actual transition to acceleration, Accordingly, the control for delaying the closing timing IVC is started before the fuel injection is resumed. Thereby, when the fuel injection is restarted, the closing timing IVC has changed to the closing timing IVC in the mirror cycle operation, or is retarded until the timing sufficiently close to the closing timing IVC in the mirror cycle operation. Thus, knocking and torque fluctuation due to an excessive compression ratio can be suppressed.
That is, the transition from the braking state to the non-braking state is detected as a previous stage for shifting to the acceleration, and when the braking state is shifted to the non-braking state, the subsequent transition to acceleration (resumption of fuel injection) is performed. Predictingly, control for returning the closing timing IVC to the closing timing IVC in the mirror cycle operation (the closing timing IVC suitable for the fuel injection state) is started in advance.

そして、冷機状態での減速燃料カット中であって、制動状態から非制動状態へ移行がない場合には、ステップS104へ進む。
ステップS104では、エンジン回転速度NEが、減速燃料カットの開始条件であるカット回転速度NCUTよりも低く、かつ、燃料噴射の再開条件であるリカバリ回転速度NREよりも高い、カット時制御解除回転速度NCAN(NRE<NCAN<NCUT)よりも高いか否かを判断する。
If the deceleration fuel is being cut in the cold state and there is no transition from the braking state to the non-braking state, the process proceeds to step S104.
In step S104, the cut-time control release rotational speed NCAN is lower than the cut rotational speed NCUT, which is a start condition for decelerating fuel cut, and higher than the recovery rotational speed NRE, which is a fuel injection restart condition. It is determined whether or not (NRE <NCAN <NCUT).

減速燃料カットは、加速への移行に伴ってキャンセルされる他、エンジン回転速度NEがリカバリ回転速度NREにまで低下した場合もキャンセルされて、燃料噴射が再開される。
そして、エンジン回転速度NEの低下に伴って噴射が再開される場合も、エンジン回転速度NEがリカバリ回転速度NREに達して燃料噴射が再開される時点から、閉時期IVCをミラーサイクル運転での閉時期IVCに戻す制御を開始させると、閉時期IVC変化の応答遅れによって、燃料噴射の再開直後の閉時期IVCが下死点に近くなり、これによって圧縮比が過剰に高くなることで、ノッキングや大きなトルク変動が発生する可能性がある。
The deceleration fuel cut is canceled along with the shift to acceleration, and is also canceled when the engine rotational speed NE decreases to the recovery rotational speed NRE, and fuel injection is resumed.
Even when the injection is restarted as the engine speed NE decreases, the closing timing IVC is closed in the mirror cycle operation from the time when the engine speed NE reaches the recovery speed NRE and the fuel injection is restarted. When the control to return to the timing IVC is started, the closing timing IVC immediately after the resumption of fuel injection becomes close to the bottom dead center due to a delay in response to the change in the closing timing IVC, and this causes the compression ratio to become excessively high, thereby causing knocking and Large torque fluctuations may occur.

そこで、エンジン回転速度NEの低下に伴って燃料噴射が再開される場合においても、実際に燃料噴射が再開される前から、閉時期IVCをミラーサイクル運転での閉時期IVCに戻す制御を予め開始させ、燃料噴射の再開時には、閉時期IVCが、ミラーサイクル運転での閉時期IVCにまで変化しているか、若しくは、ミラーサイクル運転での閉時期IVCに十分に近い時期まで遅角されていて、圧縮比が過大であることによるノッキングやトルク変動などの発生を抑制できるようにする。
そのため、リカバリ回転速度NREよりも高いカット時制御解除回転速度NCANまでエンジン回転速度NEが低下した時点で、燃料カット時IVC制御をキャンセルし、閉時期IVCをミラーサイクル運転での閉時期IVCにまで遅角させる制御を開始させるようにしてある。
Therefore, even when the fuel injection is restarted as the engine speed NE decreases, the control for returning the closing timing IVC to the closing timing IVC in the mirror cycle operation is started before the fuel injection is actually restarted. When the fuel injection is resumed, the closing timing IVC is changed to the closing timing IVC in the mirror cycle operation or is delayed to a timing sufficiently close to the closing timing IVC in the mirror cycle operation. It is possible to suppress the occurrence of knocking or torque fluctuation due to an excessive compression ratio.
Therefore, when the engine speed NE decreases to the cut-time control release speed NCAN higher than the recovery speed NRE, the IVC control at the time of fuel cut is canceled, and the closing timing IVC reaches the closing timing IVC in the mirror cycle operation. Control for retarding is started.

換言すれば、カット時制御解除回転速度NCANまでエンジン回転速度NEが低下するまでの間で、燃料カット時IVC制御を実施して、吸気バルブ4の閉時期IVCを下死点に近づける。そして、エンジン回転速度NEがカット時制御解除回転速度NCANからリカバリ回転速度の間であるときに、実際の閉時期IVCがミラーサイクル運転での閉時期IVC付近にまで戻るようにする。
従って、カット時制御解除回転速度NCANは、可変バルブタイミング機構20による閉時期IVCの遅角制御の応答遅れを考慮し、カット時制御解除回転速度NCANにまでエンジン回転速度NEが低下して時点で燃料カット時IVC制御を解除すれば、エンジン回転速度NEがリカバリ回転速度NREになるまでに、換言すれば、燃料噴射が再開されるまでに、閉時期IVCがミラーサイクル運転での閉時期IVC付近にまで遅角し、燃料噴射再開時点でノッキングやトルク変動の発生を抑制できる圧縮比まで低下するように設定してある。
In other words, the fuel cut-time IVC control is performed until the engine speed NE decreases to the cut-time control release rotational speed NCAN, and the closing timing IVC of the intake valve 4 is brought close to the bottom dead center. When the engine rotational speed NE is between the cut-time control release rotational speed NCAN and the recovery rotational speed, the actual closing timing IVC is returned to the vicinity of the closing timing IVC in the mirror cycle operation.
Accordingly, the control release rotational speed NCAN at the time of cut takes into account the response delay of the retard control of the closing timing IVC by the variable valve timing mechanism 20, and at the time when the engine speed NE has decreased to the control release rotational speed NCAN at the time of cut. If the IVC control at the time of fuel cut is canceled, the closing timing IVC is close to the closing timing IVC in the mirror cycle operation until the engine rotation speed NE reaches the recovery rotation speed NRE, in other words, until the fuel injection is resumed. The compression ratio is set so as to decrease to a compression ratio that can suppress the occurrence of knocking and torque fluctuation when fuel injection is resumed.

ステップS104でエンジン回転速度NEがカット時制御解除回転速度NCANよりも高い(NE>NCAN)と判断すると、ステップS105へ進む。
ステップS105では、可変バルブタイミング機構20を制御して、吸気バルブ4の作用角の中心位相を、燃料カット前(ミラーサイクル運転時)よりも進角させて、吸気バルブ4の閉時期IVCを下死点に近づける、燃料カット時IVC制御を実施する。
If it is determined in step S104 that the engine rotational speed NE is higher than the cut-time control release rotational speed NCAN (NE> NCAN), the process proceeds to step S105.
In step S105, the variable valve timing mechanism 20 is controlled so that the center phase of the operating angle of the intake valve 4 is advanced from that before the fuel cut (during mirror cycle operation), and the closing timing IVC of the intake valve 4 is lowered. Carry out IVC control at the time of fuel cut to bring it close to the dead point.

例えば、遅閉じミラーサイクル運転での閉時期IVCが、例えば、燃料カット前において下死点後(ABDC)90degであったとすると、燃料カット時IVC制御では、下死点後(ABDC)90degとしたときの圧縮温度よりも高くなるように、閉時期IVCをミラーサイクル運転時よりも下死点BDCに近づける。吸気バルブ4の閉時期IVCを下死点BDCに近づけると、有効圧縮比が増加し、その結果、圧縮温度が上昇する。
一方、減速燃料カット中は、燃料の燃焼が行われず、シリンダ内に吸い込んだ新気によって燃焼室5(ピストン冠面18)が冷却されることになるが、有効圧縮比の増加によって圧縮温度が高くなれば、それだけ燃焼室5の温度低下を抑制できることになる。
For example, if the closing timing IVC in the delayed closing mirror cycle operation is 90 deg after bottom dead center (ABDC) before the fuel cut, for example, the IVC control at the time of fuel cut is 90 deg after bottom dead center (ABDC). The closing timing IVC is made closer to the bottom dead center BDC than during the mirror cycle operation so as to be higher than the compression temperature at that time. When the closing timing IVC of the intake valve 4 is brought close to the bottom dead center BDC, the effective compression ratio increases, and as a result, the compression temperature rises.
On the other hand, during the deceleration fuel cut, the fuel is not burned, and the combustion chamber 5 (piston crown surface 18) is cooled by the fresh air sucked into the cylinder. However, the compression temperature is increased by increasing the effective compression ratio. If it becomes high, the temperature fall of the combustion chamber 5 can be suppressed that much.

そして、減速燃料カット中における燃焼室5の温度低下(過冷却)を抑制できれば、燃料噴射を再開させたときに、燃焼室5内(ピストン冠面18)に向けて噴射された燃料の霧化(気化)が阻害されることを抑制できるので、燃焼安定性を維持できる混合気形成を行わせることができ、排気性状の悪化や、トルク変動による運転性の悪化を抑制できる。
尚、エンジン1が、ピストンの裏側に対して冷却用の潤滑油を噴射する潤滑油供給装置を備える場合には、燃料カット時IVC制御の実施中に、ピストン裏側に対する潤滑油の噴射を停止させるか、又は、潤滑油の噴射を継続させるものの噴射圧、噴射量を低下させ、潤滑油の噴射によってピストン温度が過渡に低下することを抑制することができる。
If the temperature drop (supercooling) of the combustion chamber 5 during the deceleration fuel cut can be suppressed, atomization of the fuel injected toward the combustion chamber 5 (piston crown surface 18) when the fuel injection is resumed. Since inhibition of (vaporization) can be suppressed, formation of an air-fuel mixture capable of maintaining combustion stability can be performed, and deterioration of exhaust properties and drivability due to torque fluctuation can be suppressed.
When the engine 1 is provided with a lubricating oil supply device that injects cooling lubricating oil to the back side of the piston, the injection of the lubricating oil to the back side of the piston is stopped during the fuel cut IVC control. Alternatively, although the injection of the lubricating oil is continued, the injection pressure and the injection amount can be reduced, and the piston temperature can be prevented from transiently decreasing due to the injection of the lubricating oil.

図3は、減速運転時における、吸気バルブ4の閉時期IVCと圧縮温度との相関の一例を示す。
図3に示すグラフの横軸は、閉時期IVCの下死点からの遅角角度(ABDC)であり、横軸の右側ほど下死点から遅角された位置で吸気バルブ4が閉じられる状態を示し、縦軸は閉時期IVC毎の圧縮温度を示す。また、圧縮温度を求めた条件は、吸気圧が−67kPa(−500mmHg)の減速運転であり、エンジン回転速度NEが2000rpmの場合と1200rpmの場合における圧縮温度の傾向を示す。
FIG. 3 shows an example of the correlation between the closing timing IVC of the intake valve 4 and the compression temperature during deceleration operation.
The horizontal axis of the graph shown in FIG. 3 is the retard angle (ABDC) from the bottom dead center of the closing timing IVC, and the intake valve 4 is closed at a position delayed from the bottom dead center toward the right side of the horizontal axis. The vertical axis indicates the compression temperature for each closing timing IVC. The condition for determining the compression temperature is a deceleration operation with an intake pressure of −67 kPa (−500 mmHg), and shows a tendency of the compression temperature when the engine speed NE is 2000 rpm and 1200 rpm.

遅閉じミラーサイクル運転で閉時期IVCをABDC90deg付近とする場合に比べて、閉時期IVCを進角させて下死点に近づけることで、圧縮温度は徐々に上昇するが、図3に示す例では、閉時期IVCがABDC50degを過ぎて更に下死点に近づくと、圧縮温度は低下する傾向を示し、閉時期IVCをABDC50degとしたときに、圧縮温度がピーク値(最大値)を示す。
有効圧縮比は、閉時期IVCのみに着目した場合、閉時期IVCを下死点BDC付近とすることで最大値を示すようになるものの、閉時期IVCを下死点に近づけるために、吸気バルブ4の作用角の中心位相を進角制御すると、同時に開時期IVOも進角してバルブオーバーラップが大きくなり、低回転域でバルブオーバーが大きくなると充填効率が低下し、実質的な圧縮比が低下してしまう。
Compared to the case where the closing timing IVC is set to around ABCDC 90 deg in the slow closing mirror cycle operation, the compression temperature gradually increases by advancing the closing timing IVC and approaching the bottom dead center, but in the example shown in FIG. When the closing timing IVC passes ABDC 50 deg and further approaches the bottom dead center, the compression temperature tends to decrease. When the closing timing IVC is set to ABDC 50 deg, the compression temperature shows a peak value (maximum value).
In the case where only the closing timing IVC is focused on, the effective compression ratio shows a maximum value by setting the closing timing IVC near the bottom dead center BDC. However, in order to bring the closing timing IVC closer to the bottom dead center, the intake valve When the central phase of the operating angle of 4 is controlled to advance, the opening timing IVO is also advanced at the same time to increase the valve overlap. When the valve over increases in the low rotation range, the charging efficiency decreases, and the substantial compression ratio is increased. It will decline.

図3の例では、閉時期IVCがABDC50deg付近であるときに、排気バルブ7の閉時期EVCと吸気バルブ4の開時期IVOとが略同時期となり、閉時期IVCをABDC50degよりも進角させるほど、バルブオーバーラップが拡大し、逆に、閉時期IVCをABDC50degよりも遅角させるほど、排気バルブ7の閉時期EVCから吸気バルブ4の開時期IVOまでの間隔が広がり、バルブオーバーラップを拡大させない範囲で閉時期IVCをなるべく進角させたABDC50degの位置で圧縮温度がピーク値を示す。
従って、燃料カット時IVC制御においては、閉時期IVCを下死点に近づけるほど圧縮温度を上げられるものではなく、同時に進角変化する開時期IVOによるバルブオーバーラップの影響を考慮して、閉時期IVCの目標を設定する。即ち、作用角の中心位相を、吸気バルブ4の開時期IVOが排気バルブ7の閉時期EVCと略同時期となるまで進角したときの閉時期IVCを、燃料カット時IVC制御における閉時期IVCの目標とすれば、圧縮温度を可及的に高くすることができる。
In the example of FIG. 3, when the closing timing IVC is in the vicinity of ABCC 50 deg, the closing timing EVC of the exhaust valve 7 and the opening timing IVO of the intake valve 4 are substantially simultaneous, and the closing timing IVC is advanced by more than ABDC 50 deg. As the valve overlap increases and, on the contrary, the closing timing IVC is retarded from ABDC 50 deg, the interval from the closing timing EVC of the exhaust valve 7 to the opening timing IVO of the intake valve 4 increases, and the valve overlap does not increase. The compression temperature shows a peak value at a position of ABDC 50 deg where the closing timing IVC is advanced as much as possible in the range.
Therefore, in the IVC control at the time of fuel cut, the compression temperature cannot be raised as the closing timing IVC approaches the bottom dead center, and the closing timing is considered in consideration of the influence of valve overlap due to the opening timing IVO that changes the advance angle at the same time. Set IVC goals. That is, the central phase of the operating angle is set to the closing timing IVC when the opening timing IVO of the intake valve 4 is advanced until the closing timing EVC of the exhaust valve 7 is substantially coincident with the closing timing IVC in the fuel cut IVC control. If the target is, the compression temperature can be made as high as possible.

具体的には、例えば、吸気バルブ4の作用角が220deg〜260degである場合、開時期IVOが上死点TDC付近であるときに、排気バルブ7の閉時期EVCと略同時期になるとすると、燃料カット時IVC制御における目標の閉時期IVCは、ABDC40deg〜ABDC80degとすればよいことになる。
尚、可変動弁機構として、例えば、可変バルブタイミング機構20と、作用角及び最大リフト量を可変とする可変リフト機構とを備えるエンジン1では、吸気バルブ4の開時期IVOと閉時期IVCとをそれぞれに独立して制御できるので、燃料カット時IVC制御において、吸気バルブ4の開時期IVOを排気バルブ7の閉時期EVCと略同時期とし、かつ、吸気バルブ4の閉時期IVCを下死点BDCに制御して、より高い圧縮温度を得ることが可能である。
Specifically, for example, when the operating angle of the intake valve 4 is 220 deg. To 260 deg. And the opening timing IVO is near the top dead center TDC, the exhaust valve 7 is close to the closing timing EVC. The target closing timing IVC in the IVC control at the time of fuel cut may be ABDC 40 deg to ABCD 80 deg.
Note that, as the variable valve mechanism, for example, in the engine 1 including the variable valve timing mechanism 20 and the variable lift mechanism that varies the operating angle and the maximum lift amount, the opening timing IVO and the closing timing IVC of the intake valve 4 are set. Since each can be controlled independently, in the fuel cut IVC control, the opening timing IVO of the intake valve 4 is set substantially at the same time as the closing timing EVC of the exhaust valve 7, and the closing timing IVC of the intake valve 4 is set to the bottom dead center. It is possible to obtain a higher compression temperature by controlling to BDC.

また、燃料カット時IVC制御における目標の閉時期IVC(閉時期IVCの進角量目標)を、エンジン1の温度に応じて可変に設定することができる。
即ち、エンジン1の温度が低いほど、燃料カット中に、燃焼室5(ピストン冠面18)の温度が、燃料の霧化が阻害される温度にまで低下し易いので、エンジン1の温度が低いほど、圧縮温度を高くすることが要求される。
Further, the target closing timing IVC (the advance amount target of the closing timing IVC) in the fuel cut IVC control can be variably set according to the temperature of the engine 1.
That is, as the temperature of the engine 1 is lower, the temperature of the engine 1 is lower because the temperature of the combustion chamber 5 (piston crown surface 18) is easily lowered to a temperature at which fuel atomization is inhibited during fuel cut. The higher the compression temperature is required.

一方、エンジン1の温度が比較的高い場合には、圧縮温度をそれほど高くしなくても、燃料カット中に燃料の霧化が阻害される温度にまで燃焼室5の温度が低下することを抑制でき、かつ、ミラーサイクル運転での閉時期IVCからの進角量を抑制できれば、燃料カット時IVC制御をキャンセルするときに、速やかに閉時期IVCをミラーサイクル運転での閉時期IVCに戻すことができ、燃料噴射再開時におけるエンジン1の運転性を改善できる。
そこで、エンジン温度に応じて燃料カット時IVC制御における目標の閉時期IVCを可変とする場合には、図4に示すように、エンジン温度が低いほど、ミラーサイクル運転での閉時期IVCからの進角量を大きくして、閉時期IVCをより下死点に近づけ、圧縮温度がより高くなるようにする。
On the other hand, when the temperature of the engine 1 is relatively high, the temperature of the combustion chamber 5 is suppressed from decreasing to a temperature at which fuel atomization is inhibited during the fuel cut even if the compression temperature is not so high. If the amount of advance from the closing timing IVC in the mirror cycle operation can be suppressed, the closing timing IVC can be quickly returned to the closing timing IVC in the mirror cycle operation when canceling the IVC control at the time of fuel cut. This can improve the drivability of the engine 1 when fuel injection is resumed.
Therefore, when the target closing timing IVC in the IVC control at the time of fuel cut is made variable according to the engine temperature, as the engine temperature becomes lower, the progress from the closing timing IVC in the mirror cycle operation becomes lower as shown in FIG. The angular amount is increased so that the closing timing IVC is closer to the bottom dead center and the compression temperature is higher.

例えば、閉時期IVCをABDC50degとしたときに圧縮温度がピーク値となる場合には、進角限界をABDC50degとして、遅閉じミラーサイクルでの閉時期IVC(ABDC90deg)からABDC50degまでの間で、エンジン温度が低いほど下死点に近い側の閉時期IVCを目標とすることで、過剰な進角制御を抑制できる。
尚、ステップS101の冷機時であるか否かの判断を省略する代わりに、燃料カット時IVC制御における目標の閉時期IVCの設定において、エンジン温度が設定温度よりも高い場合に進角量を零に設定して、高温域で実質的に閉時期IVCの進角制御が行われない(ミラーサイクル運転での閉時期IVCを保持させる)ようにすることができる。
For example, if the compression temperature reaches a peak value when the closing timing IVC is set to ABDC 50 deg, the advance temperature limit is set to ABDC 50 deg, and the engine temperature is between the closing timing IVC (ABDC 90 deg) in the delayed closing mirror cycle and ABDC 50 deg. By setting the closing timing IVC closer to the bottom dead center as the target is lower, excessive advance angle control can be suppressed.
Instead of omitting the determination of whether or not the engine is cold in step S101, the advance amount is set to zero when the engine temperature is higher than the set temperature in the setting of the target closing timing IVC in the fuel cut IVC control. Thus, the advance angle control of the closing timing IVC is not substantially performed in the high temperature range (the closing timing IVC in the mirror cycle operation is maintained).

また、エンジン温度が設定温度よりも高い場合に進角量を零に設定することで、閉時期IVCの進角制御をキャンセルする一方、エンジン温度が設定温度よりも低い場合に進角量を一定値(>0)に設定して、閉時期IVCを下死点に近づける進角制御を行わせることができる。
上記のようにして、燃料カット時IVC制御を行っている途中で、制動状態から非制動状態に切り替われば、その後の加速への移行を予測して、予め燃料カット時IVC制御をキャンセルし、吸気バルブ4の閉時期IVCをミラーサイクル運転時の閉時期IVCに向けて遅角させる(下死点から遠ざける)処理を開始させる。
Further, by setting the advance amount to zero when the engine temperature is higher than the set temperature, the advance angle control at the closing timing IVC is canceled, while the advance amount is constant when the engine temperature is lower than the set temperature. By setting the value (> 0), it is possible to perform the advance angle control for bringing the closing timing IVC closer to the bottom dead center.
As described above, during the fuel cut IVC control, if the braking state is switched to the non-braking state, the transition to the subsequent acceleration is predicted and the fuel cut IVC control is canceled in advance. A process of retarding (closing away from the bottom dead center) the closing timing IVC of the intake valve 4 toward the closing timing IVC during the mirror cycle operation is started.

図5は、ステップS103での処理で燃料カット時IVC制御がキャンセルされる場合における、アクセル開度(スロットル開度)、エンジン回転速度、燃料カット、閉時期IVC、ブレーキの変化を示すタイムチャートである。
図5において、アクセルペダルからブレーキペダルに踏み替えられることで、時点t1では、アクセルが略全閉で、かつ、制動状態になっている。そして、時点t1から、カット遅延時間TDLが経過した時点t2から減速燃料カットが開始される。
FIG. 5 is a time chart showing changes in accelerator opening (throttle opening), engine speed, fuel cut, closing timing IVC, and brake when the fuel cut IVC control is canceled by the process in step S103. is there.
In FIG. 5, when the accelerator pedal is switched to the brake pedal, at time t1, the accelerator is almost fully closed and is in a braking state. The deceleration fuel cut is started from time t2 when the cut delay time TDL has elapsed from time t1.

そして、減速燃料カットが開始されることで、燃料カット時IVC制御が開始され、吸気バルブ4の閉時期IVCが燃料カット開始前の遅閉じミラーサイクル運転での閉時期IVCから進角されて下死点に近づけられ、閉時期IVCを下死点に近づけ有効圧縮比を高くすることで、圧縮温度が上がり、燃料カット中における燃焼室5(ピストン冠面18)の温度低下を抑制する。
減速燃料カット中の時点t3で、ブレーキペダルから足が離され、制動状態から非制動状態に切り替わると、減速燃料カットは継続しているものの、その後の燃料噴射の再開に備えて燃料カット時IVC制御をキャンセルし、遅閉じミラーサイクル運転での閉時期IVCにまで遅角させる制御を開始させる。
Then, by starting the deceleration fuel cut, the IVC control at the time of fuel cut is started, and the closing timing IVC of the intake valve 4 is advanced from the closing timing IVC in the delayed closing mirror cycle operation before the fuel cut starts. By approaching the dead center and bringing the closing timing IVC closer to the bottom dead center and increasing the effective compression ratio, the compression temperature rises and the temperature drop of the combustion chamber 5 (piston crown surface 18) during fuel cut is suppressed.
At time t3 during deceleration fuel cut, when the foot is released from the brake pedal and the brake state is switched to the non-brake state, the deceleration fuel cut is continued, but in preparation for the restart of the subsequent fuel injection, IVC at the time of fuel cut The control is canceled and the control for delaying to the closing timing IVC in the delayed closing mirror cycle operation is started.

ここで、実際の閉時期IVCは、時点t3から徐々に遅角してミラーサイクル運転での閉時期IVCに近づくことになる。
そして、時点t3後の時点t4において、アクセルペダルが踏み込まれてアクセル開度が増大すると、減速燃料カットが停止され、燃料噴射が再開されるが、閉時期IVCを事前に遅閉じミラーサイクル運転での目標に戻す処理が開始されているので、燃料噴射の再開時点t4では、実際の閉時期IVCが遅閉じミラーサイクル運転での目標に十分に近づいている。
Here, the actual closing timing IVC is gradually delayed from the time t3 and approaches the closing timing IVC in the mirror cycle operation.
Then, at time t4 after time t3, when the accelerator pedal is depressed and the accelerator opening increases, the deceleration fuel cut is stopped and fuel injection is resumed, but the closing timing IVC is delayed and closed in advance by mirror cycle operation. Since the process for returning to the target is started, at the time t4 when the fuel injection is resumed, the actual closing timing IVC is sufficiently close to the target in the delayed closing mirror cycle operation.

これにより、減速から加速への移行に伴って減速燃料カット状態から燃料噴射が再開される場合に、燃料噴射の再開直後から閉時期IVCをミラーサイクル運転時での時期に十分に近い時期とすることができ、可変バルブタイミング機構20の応答遅れがあっても、圧縮比が過剰に高い状態のまま燃料噴射が再開されて、大きなトルク変動やノッキングなどが発生することを抑制できる。
また、燃料カット時IVC制御を行っている途中でリカバリ回転速度NRE直前の回転速度NCANまでエンジン回転速度NEが低下すると、その後の燃料噴射の再開を予測して、予め燃料カット時IVC制御をキャンセルし、吸気バルブ4の閉時期IVCをミラーサイクル運転時の閉時期IVCに向けて遅角させる(下死点から遠ざける)処理を開始させる。
As a result, when fuel injection is resumed from the deceleration fuel cut state in accordance with the transition from deceleration to acceleration, the closing timing IVC is set sufficiently close to the timing at the time of mirror cycle operation immediately after the restart of fuel injection. Even if there is a response delay of the variable valve timing mechanism 20, it is possible to suppress the occurrence of large torque fluctuations, knocking, etc., by restarting fuel injection while the compression ratio is excessively high.
When the engine speed NE decreases to the rotational speed NCAN immediately before the recovery rotational speed NRE during the fuel cut IVC control, the subsequent fuel injection restart is predicted and the fuel cut IVC control is canceled in advance. Then, a process of retarding (closing away from the bottom dead center) the closing timing IVC of the intake valve 4 toward the closing timing IVC during the mirror cycle operation is started.

図6は、ステップS104での処理で燃料カット時IVC制御がキャンセルされる場合における、アクセル開度(スロットル開度)、エンジン回転速度、燃料カット、閉時期IVCの変化を示すタイムチャートである。
図6において、アクセルが略全閉になった時点t1から、カット遅延時間TDLが経過した時点t2から減速燃料カットが開始される。そして、減速燃料カットが開始されることで、燃料カット時IVC制御が開始され、吸気バルブ4の閉時期が燃料カット開始前の遅閉じミラーサイクル運転での閉時期IVCから進角されて下死点に近づけられ、閉時期IVCを下死点に近づけ有効圧縮比を高くすることで、圧縮温度が上がり、燃料カット中における燃焼室5(ピストン冠面18)の温度低下を抑制する。
FIG. 6 is a time chart showing changes in the accelerator opening (throttle opening), the engine speed, the fuel cut, and the closing timing IVC when the fuel cut IVC control is canceled by the processing in step S104.
In FIG. 6, the deceleration fuel cut is started from the time t1 when the accelerator is substantially fully closed and from the time t2 when the cut delay time TDL has elapsed. When deceleration fuel cut is started, IVC control at the time of fuel cut is started, and the closing timing of the intake valve 4 is advanced from the closing timing IVC in the delayed closing mirror cycle operation before the fuel cut is started, and the bottom dead. By bringing the closing timing IVC closer to the bottom dead center and increasing the effective compression ratio, the compression temperature rises and the temperature drop of the combustion chamber 5 (piston crown surface 18) during fuel cut is suppressed.

燃料カット中にエンジン回転速度NEが低下し、時点t3において、リカバリ回転速度NRE直前のカット時制御解除回転速度NCANに達すると、減速燃料カットは継続しているものの、燃料カット時IVC制御をキャンセルして、遅閉じミラーサイクル運転での閉時期IVCにまで遅角させる制御を開始させる。
ここで、実際の閉時期IVCは、時点t3から徐々にミラーサイクル運転での閉時期IVCにまで遅角変化することになる。
When the engine speed NE decreases during the fuel cut and reaches the control release rotational speed NCAN immediately before the recovery rotational speed NRE at the time t3, the deceleration fuel cut continues, but the IVC control during the fuel cut is canceled. Then, the control for delaying to the closing timing IVC in the delayed closing mirror cycle operation is started.
Here, the actual closing timing IVC gradually changes from the time t3 to the closing timing IVC in the mirror cycle operation.

そして、エンジン回転速度NEがリカバリ回転速度NREにまで低下した時点t4において、減速燃料カットが停止され、燃料噴射が再開され、そのままアイドルに移行するが、事前に遅閉じミラーサイクル運転での目標に戻す処理が開始されているので、燃料噴射の再開時点t4では、実際の閉時期IVCが遅閉じミラーサイクル運転での目標に十分に近づいている。
これにより、エンジン回転速度NEの低下に伴って減速燃料カット状態から燃料噴射が再開される場合に、燃料噴射の再開直後からミラーサイクル運転時の閉時期IVCに十分に近い閉時期IVCとすることができ、可変バルブタイミング機構20の応答遅れがあっても、圧縮比が過剰に高い状態のまま燃料噴射が再開されて、ノッキングや大きなトルク変動が発生することを抑制できる。
Then, at the time t4 when the engine rotational speed NE has decreased to the recovery rotational speed NRE, the deceleration fuel cut is stopped, the fuel injection is resumed, and the state shifts to the idle state as it is. Since the returning process is started, the actual closing timing IVC is sufficiently close to the target in the delayed closing mirror cycle operation at the fuel injection restart time t4.
As a result, when fuel injection is resumed from the decelerated fuel cut state as the engine speed NE decreases, the closing timing IVC is sufficiently close to the closing timing IVC during mirror cycle operation immediately after the restart of fuel injection. Even if there is a response delay of the variable valve timing mechanism 20, it is possible to suppress the occurrence of knocking and large torque fluctuations by restarting fuel injection while the compression ratio is excessively high.

尚、吸気バルブの閉時期を可変とする可変動弁機構は、クランクシャフト21に対する吸気カムシャフト22の回転位相を連続的に可変とする可変バルブタイミング機構20に限定されず、例えば、複数種のカムの切り替えを行う機構、カムプロフィールが軸方向に変化する三次元カムを軸方向に変位させてバルブ駆動を行わせる機構などを用いることができ、更には、可変バルブタイミング機構20と、作用角及び最大リフト量を可変とする可変リフト機構との組み合わせや、電磁駆動バルブを用いることができる。
電磁力を用いて吸気バルブ4を開閉する電磁駆動バルブなどの、吸気バルブ4の閉時期を応答よく変化させることが可能な機構を採用した場合や、噴射再開時に閉時期BDCが下死点近くに進角していても、ノッキングの発生が十分に抑制されるエンジン1においては、図2のフローチャートにおけるステップS103及びステップS104の処理を省略し、冷機時の減速燃料カット状態において燃料カット時IVC制御を実施させることができる。
Note that the variable valve mechanism that makes the intake valve closing timing variable is not limited to the variable valve timing mechanism 20 that continuously changes the rotation phase of the intake camshaft 22 with respect to the crankshaft 21. A mechanism for switching cams, a mechanism for driving a valve by displacing a three-dimensional cam whose cam profile changes in the axial direction in the axial direction, and a variable valve timing mechanism 20 and an operating angle can be used. Further, a combination with a variable lift mechanism that makes the maximum lift amount variable, or an electromagnetically driven valve can be used.
When a mechanism that can change the closing timing of the intake valve 4 with good response, such as an electromagnetically driven valve that opens and closes the intake valve 4 using electromagnetic force, or when the injection is resumed, the closing timing BDC is near the bottom dead center. In the engine 1 in which the occurrence of knocking is sufficiently suppressed even when the angle is advanced, the processing of step S103 and step S104 in the flowchart of FIG. Control can be implemented.

また、早閉じミラーサイクル運転が行われるエンジン1においても、燃料カット時IVC制御を実施することで、減速燃料カット中に燃焼室5(ピストン冠面18)が過冷却されることを抑制できる。
但し、吸気バルブ4を下死点BDC後に閉じる遅閉じミラーサイクルでは、減速燃料カット中に有効圧縮比を高めるために、閉時期IVCを進角させて下死点BDCに近づけることになるが、吸気バルブ4を下死点BDC前に閉じる早閉じミラーサイクルでは、減速燃料カット中に有効圧縮比を高めるために、閉時期IVCを遅角させて下死点BDCに近づけることになる。
Further, even in the engine 1 in which the early closing mirror cycle operation is performed, it is possible to suppress the overcooling of the combustion chamber 5 (piston crown surface 18) during the deceleration fuel cut by performing the fuel cut IVC control.
However, in the delayed closing mirror cycle in which the intake valve 4 is closed after the bottom dead center BDC, the closing timing IVC is advanced to approach the bottom dead center BDC in order to increase the effective compression ratio during the deceleration fuel cut. In the early closing mirror cycle in which the intake valve 4 is closed before the bottom dead center BDC, the closing timing IVC is retarded to approach the bottom dead center BDC in order to increase the effective compression ratio during the deceleration fuel cut.

以下では、早閉じミラーサイクル運転を行うエンジン1であって、図7に示すように、可変バルブタイミング機構20と共に、吸気バルブ4の作用角及び最大リフト量を可変にする可変リフト機構23を備えたエンジン1における、燃料カット時IVC制御を、図8のフローチャートに従って説明する。
尚、図7において、図1と同一要素には同一符号を付してあり、詳細な説明は省略する。
In the following, the engine 1 that performs an early closing mirror cycle operation is provided with a variable lift mechanism 23 that makes the working angle and the maximum lift amount of the intake valve 4 variable together with the variable valve timing mechanism 20, as shown in FIG. The fuel cut IVC control in the engine 1 will be described with reference to the flowchart of FIG.
In FIG. 7, the same elements as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図8のフローチャートに示すルーチンは、ECM31によって設定時間毎に割り込み実行され、ステップS201〜ステップS204では、図2のフローチャートのステップS101〜104と同様な処理を行い、ステップS201〜ステップS204の各条件が成立していることを前提に、ステップS205の燃料カット時IVC制御を実施する。
即ち、エンジン1が冷機状態であって、かつ、減速燃料カット状態であって、かつ、制動状態から非制動状態への切り替わりがなく、かつ、エンジン回転速度NEがカット時制御解除回転速度NCANよりも高い場合に、ステップS205へ進む。
The routine shown in the flowchart of FIG. 8 is interrupted at every set time by the ECM 31, and in steps S201 to S204, the same processing as in steps S101 to S104 in the flowchart of FIG. Assuming that is established, the IVC control at the time of fuel cut in step S205 is performed.
That is, the engine 1 is in a cold state, is in a deceleration fuel cut state, is not switched from a braking state to a non-braking state, and the engine rotational speed NE is less than the cut-time control release rotational speed NCAN. If it is also higher, the process proceeds to step S205.

ステップS205では、可変バルブタイミング機構20を制御することにより吸気バルブ4の作用角の中心位相を遅角させ、かつ、可変リフト機構23を制御することにより吸気バルブ4の作用角を増大させることで、吸気バルブ4の閉時期IVCを、早閉じミラーサイクルでの閉時期IVC(例えば下死点前60deg)から下死点に向けて遅角させる、燃料カット時IVC制御を行う。
ここで、可変動弁機構として、可変バルブタイミング機構20と可変リフト機構23とを備えるエンジン1の場合には、排気バルブ7の閉時期EVCと略同時期の開時期IVOと、下死点の閉時期IVCとを同時に実現できる作用角及び中心位相に制御することができ、これによって圧縮温度を最も高くすることができる。
In step S205, the variable valve timing mechanism 20 is controlled to retard the central phase of the operating angle of the intake valve 4, and the variable lift mechanism 23 is controlled to increase the operating angle of the intake valve 4. Then, the fuel cut IVC control is performed to retard the closing timing IVC of the intake valve 4 from the closing timing IVC (for example, 60 deg before bottom dead center) in the early closing mirror cycle toward the bottom dead center.
Here, in the case of the engine 1 provided with the variable valve timing mechanism 20 and the variable lift mechanism 23 as the variable valve mechanism, the opening timing IVO substantially coincident with the closing timing EVC of the exhaust valve 7 and the bottom dead center. It is possible to control the operating angle and the center phase so that the closing timing IVC can be realized at the same time, whereby the compression temperature can be maximized.

そこで、ステップS205の燃料カット時IVC制御においては、排気バルブ7の閉時期EVCと略同時期に設定した開時期IVOから下死点BDCまでのクランク角度を、可変リフト機構23による作用角の増大目標値に設定し、また、排気バルブ7の閉時期EVCと略同時期に設定した開時期IVOと下死点BDCとの中間点を、可変バルブタイミング機構20による中心位相の遅角制御の目標値に設定することで、減速燃料カット中に、吸気バルブ4が、排気バルブ7の閉時期EVCと略同時期に開弁し、かつ、下死点BDC付近で閉じるようにする。
上記のようにして、減速燃料カット中の吸気バルブ4の閉時期IVCを、早閉じミラーサイクルでの閉時期IVC(減速燃料カット開始前)から遅角させて下死点付近に設定し、かつ、バルブオーバーラップの拡大による実質的な圧縮比の低下を抑制できるような開時期IVOに設定すれば、減速燃料カット中に燃焼室5(ピストン冠面18)の温度が過渡に低下することを、高い圧縮温度で抑制でき、燃料噴射再開時における排気性状の悪化やトルク変動による運転性の悪化を抑制できる。
Therefore, in the IVC control at the time of fuel cut in step S205, the crank angle from the opening timing IVO to the bottom dead center BDC set substantially at the same time as the closing timing EVC of the exhaust valve 7 is increased by the variable lift mechanism 23. The intermediate point between the opening timing IVO and the bottom dead center BDC, which is set to the target value and set substantially at the same time as the closing timing EVC of the exhaust valve 7, is the target of the retardation control of the center phase by the variable valve timing mechanism 20. By setting the value, the intake valve 4 is opened substantially simultaneously with the closing timing EVC of the exhaust valve 7 during the deceleration fuel cut, and is closed near the bottom dead center BDC.
As described above, the closing timing IVC of the intake valve 4 during the deceleration fuel cut is retarded from the closing timing IVC (before the deceleration fuel cut starts) in the early closing mirror cycle, and is set near the bottom dead center, and If the opening timing IVO is set such that a substantial reduction in the compression ratio due to the expansion of the valve overlap can be suppressed, the temperature of the combustion chamber 5 (piston crown surface 18) is transiently lowered during the deceleration fuel cut. Therefore, it is possible to suppress at a high compression temperature, and it is possible to suppress deterioration of exhaust properties and restartability due to torque fluctuation when fuel injection is resumed.

また、図2のフローチャートに従って燃料カット時IVC制御が行われる場合と同様に、可変バルブタイミング機構20や可変リフト機構23に応答遅れがあっても、早閉じミラーサイクル運転の閉時期IVCに十分に近い状態で、燃料噴射を再開させることができ、燃料噴射の再開時に、ノッキングやトルク変動が発生することを抑制できる。
図9は、可変バルブタイミング機構20と可変リフト機構23とを備え、早閉じミラーサイクル運転が行われるエンジン1における、吸気バルブ4の閉時期IVCと圧縮温度との相関を示す。
Similarly to the case where the IVC control at the time of fuel cut is performed according to the flowchart of FIG. 2, even if there is a response delay in the variable valve timing mechanism 20 or the variable lift mechanism 23, the closing timing IVC of the early closing mirror cycle operation is sufficient. The fuel injection can be restarted in a close state, and knocking and torque fluctuation can be suppressed from occurring when the fuel injection is restarted.
FIG. 9 shows the correlation between the closing timing IVC of the intake valve 4 and the compression temperature in the engine 1 that includes the variable valve timing mechanism 20 and the variable lift mechanism 23 and performs the early closing mirror cycle operation.

例えば、吸気バルブ4の開時期IVOを、排気バルブ7の閉時期EVCと略同時期の上死点TDC付近とし、閉時期IVCを下死点前60deg程度とする早閉じミラーサイクル運転から、減速燃料カットに入ったときに、開時期IVOをミラーサイクル運転時と同等に保持する一方、閉時期IVCを下死点前から下死点に近づける遅角制御を行った場合、閉時期IVCが下死点に近いほど有効圧縮比がより高くなることで、圧縮温度はより高くなる。
ここでは、閉時期IVCの遅角制御に伴って開時期IVOが変化せず、開時期IVOは、排気バルブ7の閉時期EVCと略同時期の上死点TDC付近を保持するので、バルブオーバーラップの変化による充填効率の変化がなく、圧縮温度は、閉時期IVCが遅角するほど高くなるが、下死点BDCを過ぎると、逆に有効圧縮比が低下するため圧縮温度は低下傾向となり、結果、圧縮温度は閉時期IVC=下死点BDCとしたときに、ピーク値を示すことになる。
For example, deceleration from an early closing mirror cycle operation in which the opening timing IVO of the intake valve 4 is set to the vicinity of the top dead center TDC at the same time as the closing timing EVC of the exhaust valve 7 and the closing timing IVC is set to about 60 degrees before the bottom dead center. When the fuel cut is started, the opening timing IVO is maintained at the same level as that in the mirror cycle operation, while the closing timing IVC is lowered when the closing timing IVC is controlled to approach the bottom dead center from the bottom dead center. The closer to the dead point, the higher the effective compression ratio, and the higher the compression temperature.
Here, the opening timing IVO does not change with the delay angle control of the closing timing IVC, and the opening timing IVO maintains the vicinity of the top dead center TDC at the same time as the closing timing EVC of the exhaust valve 7, so that the valve over There is no change in the charging efficiency due to the change in the lap, and the compression temperature becomes higher as the closing timing IVC is retarded. However, after the bottom dead center BDC, the compression ratio tends to decrease because the effective compression ratio decreases. As a result, the compression temperature shows a peak value when the closing timing IVC = bottom dead center BDC.

従って、ステップS205の燃料カット時IVC制御における閉時期IVCの目標を下死点BDCに設定することで、圧縮温度を最も高くして、燃焼室5の温度低下を効果的に抑制することができる。
前述した、可変リフト機構23を備えず、可変バルブタイミング機構20を備えるエンジンでは、作用角が一定であることから、排気バルブ7の閉時期EVCと略同時期の開時期IVOに設定した場合、閉時期IVCを下死点BDCに設定することができない。
Therefore, by setting the target of the closing timing IVC in the IVC control at the time of fuel cut in step S205 to the bottom dead center BDC, the compression temperature can be maximized and the temperature drop of the combustion chamber 5 can be effectively suppressed. .
In the engine provided with the variable valve timing mechanism 20 without the variable lift mechanism 23 described above, since the operating angle is constant, when the opening timing IVO is set substantially at the same time as the closing timing EVC of the exhaust valve 7, The closing timing IVC cannot be set to the bottom dead center BDC.

これに対し、可変バルブタイミング機構20と可変リフト機構23とを備えたエンジンでは、作用角及び作用角の中心位相を可変にできるから、排気バルブ7の閉時期EVCと略同時期の開時期IVOに設定しつつ、閉時期IVCを下死点BDCに設定することができ、より高い有効圧縮比(圧縮温度)を得られる。
尚、ステップS205における燃料カット時IVC制御においても、閉時期IVCの目標を、そのときのエンジン温度が低いほど下死点BDCにより近い位置に設定することができ、この場合、ミラーサイクル運転での閉時期IVC(例えば、下死点前60deg)から下死点BDCまでの角度範囲内で、エンジン温度に応じて閉時期IVCの目標を可変に設定することになる。
On the other hand, in the engine provided with the variable valve timing mechanism 20 and the variable lift mechanism 23, the operating angle and the central phase of the operating angle can be made variable, so that the closing timing EVC of the exhaust valve 7 and the opening timing IVO substantially at the same time. The closing timing IVC can be set to the bottom dead center BDC, and a higher effective compression ratio (compression temperature) can be obtained.
In the IVC control at the time of fuel cut in step S205, the target of the closing timing IVC can be set closer to the bottom dead center BDC as the engine temperature at that time is lower. In this case, in the mirror cycle operation Within the angle range from the closing timing IVC (for example, 60 deg before the bottom dead center) to the bottom dead center BDC, the target of the closing timing IVC is variably set according to the engine temperature.

また、早閉じミラーサイクル運転を行うエンジンにおいても、吸気バルブ4として電磁駆動弁を備えることができ、この場合、閉時期IVCを応答よく変化させることができるので、ステップS203,204の処理を省略することができる。
以上、好ましい実施形態を具体的に説明したが、当業者であれば、種々の変形態様を採り得ることは自明である。
Further, even in an engine that performs an early closing mirror cycle operation, an electromagnetically driven valve can be provided as the intake valve 4, and in this case, the closing timing IVC can be changed with good response, so the processing of steps S203 and 204 is omitted. can do.
Although the preferred embodiments have been specifically described above, it is obvious that those skilled in the art can take various modifications.

前述した燃料カット時IVC制御では、エンジン回転速度NEがカット時制御解除回転速度NCANにまで低下した時点で、燃料カット時IVC制御をキャンセルしたが、エンジン回転速度NEがリカバリ回転速度NREに近づくにつれて、遅閉じミラーサイクル運転時の閉時期IVC又は早閉じミラーサイクル運転時の閉時期IVCに向けて閉時期IVCの目標を徐々に近づけることができる。
また、減速燃料カット中に、制動状態から非制動状態に切り替わった場合に、燃料カット時IVC制御をキャンセルせずに、遅閉じミラーサイクル運転時の閉時期IVC又は早閉じミラーサイクル運転時の閉時期IVCと、燃料カット時IVC制御における閉時期IVCとの中間値にまで変化させたり、制動状態から非制動状態に切り替わった時点からの時間経過に応じて、遅閉じミラーサイクル運転時の閉時期IVC又は早閉じミラーサイクル運転時の閉時期IVCに向けて徐々に戻したりできる。
In the fuel cut IVC control described above, the fuel cut IVC control was canceled when the engine rotational speed NE decreased to the cut control release rotational speed NCAN. However, as the engine rotational speed NE approaches the recovery rotational speed NRE. The target of the closing timing IVC can be gradually approached toward the closing timing IVC during the delayed closing mirror cycle operation or the closing timing IVC during the early closing mirror cycle operation.
In addition, when switching from the braking state to the non-braking state during deceleration fuel cut, the IVC control at the time of fuel cut is not canceled and the closing timing IVC at the time of the slow closing mirror cycle operation or the closing at the time of the early closing mirror cycle operation The closing timing at the time of the delayed closing mirror cycle operation according to the passage of time from the time when the timing IVC is changed to an intermediate value between the timing of IVC control and the closing timing IVC in the IVC control at the time of fuel cut, or from the braking state to the non-braking state It can be gradually returned toward the closing timing IVC during IVC or early closing mirror cycle operation.

また、燃料カット時IVC制御を、吸気ポート噴射式内燃機関に適用することが可能である。吸気ポート噴射式内燃機関の場合、燃料カット中における燃焼室5の温度低下を抑制できることで、燃料カットがキャンセルされ、吸気行程噴射が再開される場合に、燃焼室5内での燃料の気化性能を改善でき、燃焼安定性を向上させることができる。   Further, it is possible to apply the IVC control at the time of fuel cut to an intake port injection type internal combustion engine. In the case of an intake port injection type internal combustion engine, the temperature drop of the combustion chamber 5 during the fuel cut can be suppressed, so that the fuel vaporization performance in the combustion chamber 5 when the fuel cut is canceled and the intake stroke injection is resumed. Can be improved, and combustion stability can be improved.

ここで、上記実施形態から把握し得る請求項以外の技術的思想について、以下に効果と共に記載する。
(イ)請求項1又は2記載の内燃機関の制御装置において、
燃料カット開始前よりも吸気バルブの閉時期を下死点に近づける制御を、燃料カット中に運転者の加速意図を検出した場合にキャンセルする、内燃機関の制御装置。
Here, technical ideas other than the claims that can be grasped from the above embodiment will be described together with effects.
(A) In the control device for an internal combustion engine according to claim 1 or 2,
A control device for an internal combustion engine, which cancels the control for bringing the closing timing of the intake valve closer to bottom dead center than before the start of fuel cut when the driver's intention to accelerate is detected during fuel cut.

上記発明によると、減速から加速への移行に伴う燃料噴射の再開に先んじて、閉時期を戻す制御が開始される。従って、減速から加速への移行に伴う燃料噴射の再開に対して、閉時期の戻しが遅れることによって、圧縮比が高い状態で燃料噴射が再開され、ノッキングやトルク変動が発生することを抑制できる。   According to the above invention, the control for returning the closing timing is started prior to the resumption of fuel injection accompanying the transition from deceleration to acceleration. Therefore, the delay in returning the closing timing with respect to the restart of the fuel injection accompanying the transition from the deceleration to the acceleration can suppress the occurrence of knocking and torque fluctuation by restarting the fuel injection with a high compression ratio. .

(ロ)請求項1又は2記載の内燃機関の制御装置において、
燃料カット開始前よりも吸気バルブの閉時期を下死点に近づける制御を、燃料カット中に、制動状態から非制動状態に切り替わった場合にキャンセルする、内燃機関の制御装置。
(B) In the control device for an internal combustion engine according to claim 1 or 2,
A control device for an internal combustion engine, which cancels the control for bringing the closing timing of the intake valve closer to the bottom dead center than before the start of fuel cut when the brake state is switched to the non-brake state during the fuel cut.

上記発明によると、減速から加速に移行する場合、一般的に、ブレーキペダルからアクペダルへの踏み替えが行われるから、ブレーキペダルから足を離して制動状態から非制動状態に切り替わった場合には、その後の加速を予測でき、係る加速予測に基づき、閉時期を戻す制御が開始される。従って、減速から加速への移行に伴う燃料噴射の再開に対して、閉時期の戻しが遅れることによって、圧縮比が高い状態で燃料噴射が再開され、ノッキングやトルク変動が発生することを抑制できる。   According to the above invention, when shifting from deceleration to acceleration, generally, the brake pedal is switched to the accelerator pedal, so when the foot is released from the brake pedal and the braking state is switched to the non-braking state, Subsequent acceleration can be predicted, and control for returning the closing timing is started based on the acceleration prediction. Therefore, the delay in returning the closing timing with respect to the restart of the fuel injection accompanying the transition from the deceleration to the acceleration can suppress the occurrence of knocking and torque fluctuation by restarting the fuel injection with a high compression ratio. .

(ハ)請求項1又は2記載の内燃機関の制御装置において、
燃料カット開始前よりも吸気バルブの閉時期を下死点に近づける制御を、燃料カット中に、機関回転速度が燃料噴射のリカバリ回転速度よりも高い回転速度まで低下した場合にキャンセルする、内燃機関の制御装置。
(C) In the control device for an internal combustion engine according to claim 1 or 2,
An internal combustion engine that cancels the control to bring the closing timing of the intake valve closer to the bottom dead center than before the start of fuel cut when the engine speed drops to a higher speed than the recovery speed of fuel injection during fuel cut Control device.

上記発明によると、減速燃料カット状態で、エンジン回転速度が低下してリカバリ回転速度に達すると、燃料噴射が再開されるが、リカバリ回転速度よりも高い回転速度で、閉時期を戻す制御が開始される。従って、エンジン回転速度の低下に伴う燃料噴射の再開に対して、閉時期の戻しが遅れることによって、圧縮比が高い状態で燃料噴射が再開され、ノッキングやトルク変動が発生することを抑制できる。   According to the above invention, when the engine speed decreases and reaches the recovery rotational speed in the deceleration fuel cut state, the fuel injection is resumed, but the control for returning the closing timing is started at a rotational speed higher than the recovery rotational speed. Is done. Therefore, it is possible to suppress the occurrence of knocking or torque fluctuation by restarting the fuel injection with a high compression ratio by delaying the return of the closing timing with respect to the restart of the fuel injection accompanying the decrease in the engine speed.

(ニ)請求項1又は2記載の内燃機関の制御装置において、
前記内燃機関が、遅閉じミラーサイクル運転が行われる内燃機関であり、
燃料カット時に、遅閉じミラーサイクル運転での閉時期よりも進角させて下死点に近づける、内燃機関の制御装置。
(D) In the control apparatus for an internal combustion engine according to claim 1 or 2,
The internal combustion engine is an internal combustion engine in which a delayed closed mirror cycle operation is performed;
A control device for an internal combustion engine that is advanced toward the bottom dead center by advancing more than the closing timing in the slow closing mirror cycle operation at the time of fuel cut.

上記発明によると、閉時期を下死点後とする遅閉じミラーサイクル運転が行われる内燃機関では、減速燃料カット時に、閉時期を進角させて下死点に近づけることで、有効圧縮比(圧縮温度)を増大させて、減速燃料カット中での燃焼室(ピストン冠面)温度の低下を抑制する。   According to the above-described invention, in an internal combustion engine in which the delayed closing mirror cycle operation with the closing timing after the bottom dead center is performed, when the fuel is decelerated, the closing timing is advanced to approach the bottom dead center so that the effective compression ratio ( (Compression temperature) is increased, and a decrease in the temperature of the combustion chamber (piston crown surface) during deceleration fuel cut is suppressed.

(ホ)請求項1又は2記載の内燃機関の制御装置において、
前記内燃機関が、早閉じミラーサイクル運転が行われる内燃機関であり、
燃料カット時に、早閉じミラーサイクル運転での閉時期よりも遅角させて下死点に近づける、内燃機関の制御装置。
(E) In the control device for an internal combustion engine according to claim 1 or 2,
The internal combustion engine is an internal combustion engine in which a mirror cycle operation is performed that is quickly closed,
A control device for an internal combustion engine that is brought closer to the bottom dead center by delaying the closing timing in the early closing mirror cycle operation when the fuel is cut.

上記発明によると、閉時期を下死点前とする早閉じミラーサイクル運転が行われる内燃機関では、減速燃料カット時に、閉時期を遅角させて下死点に近づけることで、有効圧縮比(圧縮温度)を増大させて、減速燃料カット中での燃焼室(ピストン冠面)温度の低下を抑制する。   According to the above-described invention, in an internal combustion engine in which the early closing mirror cycle operation is performed with the closing time before the bottom dead center, when the fuel is decelerated, an effective compression ratio ( (Compression temperature) is increased, and a decrease in the temperature of the combustion chamber (piston crown surface) during deceleration fuel cut is suppressed.

(ヘ)請求項1又は2記載の内燃機関の制御装置において、
燃料カット開始前よりも吸気バルブの閉時期を下死点に近づける制御において、前記吸気バルブの開時期を、排気バルブの閉時期と略同時期に設定しつつ、閉時期を可及的に下死点に近づける、内燃機関の制御装置。
(F) In the control device for an internal combustion engine according to claim 1 or 2,
In the control to bring the intake valve closing timing closer to bottom dead center than before the start of fuel cut, the closing timing is lowered as much as possible while the opening timing of the intake valve is set substantially at the same time as the closing timing of the exhaust valve. A control device for an internal combustion engine that approaches the dead center.

上記発明によると、バルブオーバーラップが大きいと充填効率の低下によって、実質的な圧縮比が低下し、圧縮温度が低下してしまうので、吸気バルブの開時期を排気バルブの閉時期と略同時期に維持させつつ、吸気バルブの閉時期をなるべく下死点に近づけることで、より高い圧縮温度が得られるようにする。   According to the above-described invention, if the valve overlap is large, the substantial compression ratio is lowered due to the reduction of the charging efficiency, and the compression temperature is lowered. Therefore, the intake valve opening timing is substantially the same as the exhaust valve closing timing. The intake valve is closed close to the bottom dead center as much as possible while maintaining a high compression temperature.

(ト)請求項1又は2記載の内燃機関の制御装置において、
前記内燃機関が、前記可変動弁機構として、クランクシャフトに対する吸気カムシャフトの回転位相を可変とする可変バルブタイミング機構と、吸気バルブの作用角を可変にする可変リフト機構とを備え、早閉じミラーサイクル運転が行われ、
燃料カット開始前よりも吸気バルブの閉時期を下死点に近づける制御において、開時期が、排気バルブの閉時期と略同時期になり、かつ、閉時期が下死点になるように、前記回転位相及び作用角を制御する、内燃機関の制御装置。
(G) In the control device for an internal combustion engine according to claim 1 or 2,
The internal combustion engine includes, as the variable valve mechanism, a variable valve timing mechanism that varies the rotational phase of the intake camshaft with respect to the crankshaft, and a variable lift mechanism that varies the operating angle of the intake valve, and an early closing mirror Cycle operation is performed,
In the control for bringing the closing timing of the intake valve closer to the bottom dead center than before the start of the fuel cut, the opening timing is substantially the same as the closing timing of the exhaust valve, and the closing timing becomes the bottom dead center. A control device for an internal combustion engine that controls a rotational phase and an operating angle.

上記発明によると、排気バルブの閉時期と略同時期の開時期と下死点との角度間隔から、作用角の目標値が定まり、また、排気バルブの閉時期と略同時期の開時期と下死点との中点が回転位相の目標値となり、排気バルブの閉時期と略同時期の開時期と、下死点の閉時期との双方を実現して、可及的に高い圧縮温度が得られる。   According to the above invention, the target value of the operating angle is determined from the angular interval between the closing timing of the exhaust valve and the opening timing substantially at the same time and the bottom dead center, and the closing timing of the exhaust valve and the opening timing at the substantially same time The midpoint of the bottom dead center is the target value of the rotation phase, and both the closing timing of the exhaust valve and the opening timing at approximately the same time and the closing timing of the bottom dead center are realized, and the compression temperature is as high as possible. Is obtained.

(チ)請求項1又は2記載の内燃機関の制御装置において、
前記内燃機関が、前記可変動弁機構として、クランクシャフトに対する吸気カムシャフトの回転位相を可変とする可変バルブタイミング機構を備え、遅閉じミラーサイクル運転が行われ、
燃料カット開始前よりも吸気バルブの閉時期を下死点に近づける制御において、
前記吸気バルブの開時期を、排気バルブの閉時期と略同時期になるように、吸気カムシャフトの回転位相を進角変化させることで、前記吸気バルブの閉時期を遅閉じミラーサイクル運転での閉時期よりも下死点に近づける、内燃機関の制御装置。
(H) In the control device for an internal combustion engine according to claim 1 or 2,
The internal combustion engine includes a variable valve timing mechanism that varies a rotational phase of an intake camshaft with respect to a crankshaft as the variable valve mechanism, and a slow closing mirror cycle operation is performed.
In the control to bring the closing timing of the intake valve closer to the bottom dead center than before the start of fuel cut,
By changing the rotational phase of the intake camshaft so that the intake valve opening timing is substantially coincident with the exhaust valve closing timing, the intake valve closing timing is delayed and closed in mirror cycle operation. A control device for an internal combustion engine that is closer to bottom dead center than the closing time.

上記発明によると、吸気バルブの開時期が、排気バルブの閉時期と略同時期になるように、吸気カムシャフトの回転位相を進角変化させると、開時期の変換角度だけ閉時期が進角して下死点に近づき、有効圧縮比が高くなって圧縮温度が上昇する。ここで、吸気バルブの開時期を、排気バルブの閉時期と略同時期よりも進角させると、吸気バルブの閉時期はより下死点に近づくことになるが、バルブオーバーラップの拡大によって充填効率が低下し、かえって圧縮温度を低下させることになるので、吸気バルブの開時期を、排気バルブの閉時期と略同時期としたときの閉時期で、圧縮温度がピーク値となり、燃焼室(ピストン冠面)温度の低下を効果的に抑制できる。   According to the above invention, when the intake camshaft rotation phase is advanced so that the intake valve opening timing is substantially coincident with the exhaust valve closing timing, the closing timing is advanced by the conversion angle of the opening timing. Then, it approaches the bottom dead center, the effective compression ratio increases, and the compression temperature rises. Here, if the opening timing of the intake valve is advanced more than the closing timing of the exhaust valve, the closing timing of the intake valve will be closer to the bottom dead center, but it will be filled by expanding the valve overlap. Since the efficiency is lowered and the compression temperature is lowered, the compression temperature becomes a peak value at the closing timing when the opening timing of the intake valve is substantially the same as the closing timing of the exhaust valve, and the combustion chamber ( Piston crown surface) Temperature drop can be effectively suppressed.

(リ)請求項1又は2記載の内燃機関の制御装置において、
前記内燃機関が、前記可変動弁機構として、クランクシャフトに対する吸気カムシャフトの回転位相を可変とする可変バルブタイミング機構を備え、遅閉じミラーサイクル運転が行われ、
燃料カット開始前よりも吸気バルブの閉時期を下死点に近づける制御において、
前記吸気バルブの開時期が、略吸気上死点になるように、吸気カムシャフトの回転位相を進角変化させることで、前記吸気バルブの閉時期を遅閉じミラーサイクル運転での閉時期よりも下死点に近づける、内燃機関の制御装置。
(I) In the control apparatus for an internal combustion engine according to claim 1 or 2,
The internal combustion engine includes a variable valve timing mechanism that varies a rotational phase of an intake camshaft with respect to a crankshaft as the variable valve mechanism, and a slow closing mirror cycle operation is performed.
In the control to bring the closing timing of the intake valve closer to the bottom dead center than before the start of fuel cut,
By changing the rotational phase of the intake camshaft so that the opening timing of the intake valve is substantially the intake top dead center, the closing timing of the intake valve is set to be slower than the closing timing in the mirror cycle operation. A control device for an internal combustion engine that approaches the bottom dead center.

上記発明によると、吸気バルブの開時期が略吸気上死点になるように、吸気カムシャフトの回転位相を進角変化させると、開時期の変換角度だけ閉時期が進角して下死点に近づき、有効圧縮比が高くなって圧縮温度が上昇する。ここで、吸気バルブの開時期が略吸気上死点とすれば、バルブオーバーラップ量を十分に小さくして充填効率の低下を抑制できるので、ピーク値に近い圧縮温度を得て、燃焼室(ピストン冠面)温度の低下を効果的に抑制できる。   According to the above invention, when the rotational phase of the intake camshaft is advanced so that the intake valve opening timing is substantially at the intake top dead center, the closing timing is advanced by the conversion angle of the open timing, and the bottom dead center is reached. The effective compression ratio increases and the compression temperature rises. Here, if the opening timing of the intake valve is substantially the intake top dead center, the valve overlap amount can be made sufficiently small to suppress a decrease in charging efficiency, so that a compression temperature close to the peak value is obtained and the combustion chamber ( Piston crown surface) Temperature drop can be effectively suppressed.

1…エンジン(内燃機関)、2…吸気通路、3…燃料噴射弁、4…吸気バルブ、5…燃焼室、7…排気バルブ、18…ピストン冠面、20…可変バルブタイミング機構、31…ECM(エンジン・コントロール・モジュール)、33…ブレーキスイッチ   DESCRIPTION OF SYMBOLS 1 ... Engine (internal combustion engine), 2 ... Intake passage, 3 ... Fuel injection valve, 4 ... Intake valve, 5 ... Combustion chamber, 7 ... Exhaust valve, 18 ... Piston crown, 20 ... Variable valve timing mechanism, 31 ... ECM (Engine control module), 33 ... Brake switch

Claims (2)

吸気バルブの閉時期を可変とする可変動弁機構を備えた内燃機関に適用される制御装置であって、
減速運転における燃料カット時に、前記可変動弁機構を制御して、燃料カット開始前よりも吸気バルブの閉時期を下死点に近づける、内燃機関の制御装置。
A control device applied to an internal combustion engine having a variable valve mechanism that makes the closing timing of an intake valve variable,
A control apparatus for an internal combustion engine, which controls the variable valve mechanism at the time of fuel cut in a deceleration operation so that the closing timing of the intake valve is closer to bottom dead center than before the start of fuel cut.
前記内燃機関の温度が低いほど、前記吸気バルブの閉時期をより下死点に近づける、請求項1記載の内燃機関の制御装置。   The control device for an internal combustion engine according to claim 1, wherein the closing timing of the intake valve is made closer to bottom dead center as the temperature of the internal combustion engine is lower.
JP2011205341A 2011-09-20 2011-09-20 Control device for internal combustion engine Active JP5784436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205341A JP5784436B2 (en) 2011-09-20 2011-09-20 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205341A JP5784436B2 (en) 2011-09-20 2011-09-20 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013068099A true JP2013068099A (en) 2013-04-18
JP5784436B2 JP5784436B2 (en) 2015-09-24

Family

ID=48474068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205341A Active JP5784436B2 (en) 2011-09-20 2011-09-20 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5784436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568189B1 (en) * 2015-08-27 2015-11-11 강석진 Method for actuating valve for improving fuel efficiency in coasting and apparatus for controlling valve
JP2017106355A (en) * 2015-12-08 2017-06-15 トヨタ自動車株式会社 Internal combustion engine control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147957A (en) * 1986-12-11 1988-06-20 Mazda Motor Corp Intake-air device for engine
JP2002089302A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Valve control device for internal combustion engine
JP2007303390A (en) * 2006-05-11 2007-11-22 Hitachi Ltd Device for control during deceleration of internal combustion engine
JP2009287482A (en) * 2008-05-30 2009-12-10 Hitachi Ltd Control device for spark-ignition internal combustion engine
JP2010174757A (en) * 2009-01-30 2010-08-12 Nissan Motor Co Ltd Control device for variable compression ratio internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147957A (en) * 1986-12-11 1988-06-20 Mazda Motor Corp Intake-air device for engine
JP2002089302A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Valve control device for internal combustion engine
JP2007303390A (en) * 2006-05-11 2007-11-22 Hitachi Ltd Device for control during deceleration of internal combustion engine
JP2009287482A (en) * 2008-05-30 2009-12-10 Hitachi Ltd Control device for spark-ignition internal combustion engine
JP2010174757A (en) * 2009-01-30 2010-08-12 Nissan Motor Co Ltd Control device for variable compression ratio internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568189B1 (en) * 2015-08-27 2015-11-11 강석진 Method for actuating valve for improving fuel efficiency in coasting and apparatus for controlling valve
JP2017106355A (en) * 2015-12-08 2017-06-15 トヨタ自動車株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP5784436B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
US9181879B2 (en) Control apparatus for internal combustion engine and control apparatus for vehicle equipped with internal combustion engine
US9945297B2 (en) Engine controller and engine control method
US10385791B2 (en) Engine control device
JP5825432B2 (en) Control device for internal combustion engine
JP4172319B2 (en) Variable valve timing controller for engine
JP2011064093A (en) Control device of internal combustion engine
JP2008291686A (en) Control device of internal combustion engine
JP4677844B2 (en) Engine valve timing control device
JP4872932B2 (en) Control device for internal combustion engine
JP2005201113A (en) Controlling device of internal combustion engine
JP5784436B2 (en) Control device for internal combustion engine
JP5029517B2 (en) Control device for internal combustion engine
JP4736947B2 (en) Start control device and start control method for internal combustion engine
JP2009293477A (en) Fuel injection control device and fuel injection control method for cylinder direct injection type spark ignition engine
WO2009063289A1 (en) Control device for internal combustion engine
US10119486B2 (en) Engine control device and engine control method
JP2010168939A (en) High expansion ratio internal combustion engine
US10428785B2 (en) Engine controller and engine control method
JP7272285B2 (en) Engine control method and engine control device
JP7359221B2 (en) Catalyst warm-up operation control method and catalyst warm-up operation control device for vehicle internal combustion engine
JP2005344646A (en) Engine starter
WO2019069443A1 (en) Method for controlling internal combustion engine and device for controlling internal combustion engine
JP5549136B2 (en) Control device for internal combustion engine
JP2003314222A (en) Controller of internal combustion engine
JP2006307784A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150722

R150 Certificate of patent or registration of utility model

Ref document number: 5784436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250