JP2013067875A - Polytetrafluoroethylene porous body and method for producing the same - Google Patents
Polytetrafluoroethylene porous body and method for producing the same Download PDFInfo
- Publication number
- JP2013067875A JP2013067875A JP2011205553A JP2011205553A JP2013067875A JP 2013067875 A JP2013067875 A JP 2013067875A JP 2011205553 A JP2011205553 A JP 2011205553A JP 2011205553 A JP2011205553 A JP 2011205553A JP 2013067875 A JP2013067875 A JP 2013067875A
- Authority
- JP
- Japan
- Prior art keywords
- polytetrafluoroethylene
- porous body
- fine particles
- polytetrafluoroethylene porous
- aqueous dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
本発明は、ポリテトラフルオロエチレン多孔質体及びその製造方法に関する。 The present invention relates to a polytetrafluoroethylene porous body and a method for producing the same.
従来、ポリテトラフルオロエチレン繊維の製法としては、マトリックス紡糸法(例えば、特許文献1〜3参照)、スプリット剥離法、ペースト押出法(例えば、特許文献3、4参照)などがある。マトリックス紡糸法とは、ビスコース、ポリビニルアルコール、アルギン酸ナトリウムなどをマトリックスとしてポリテトラフルオロエチレン系樹脂の水分散液との混合液を凝固液中に吐出して繊維化し、次いで洗浄、精練した後、焼成する。スプリット剥離法とは、ポリテトラフルオロエチレンの粉末をシリンダ圧縮した後、焼結し、スプリット剥離させた後、延伸する。ペースト押出法とは、ポリテトラフルオロエチレンの粉末をワックス状潤滑剤と混練してペースト状にし、これを口金から押出して棒状やフィルム状に成形した後、潤滑剤を除去して延伸し、必要に応じて焼成する。これらの方法では、直径1μm以下程度の微細繊維を作製することは困難であり、従って微細繊維を含有する多孔質体を作製することも困難であった。 Conventionally, polytetrafluoroethylene fiber production methods include a matrix spinning method (for example, see Patent Documents 1 to 3), a split peeling method, a paste extrusion method (for example, see Patent Documents 3 and 4), and the like. With the matrix spinning method, viscose, polyvinyl alcohol, sodium alginate and the like are used as a matrix and discharged into a coagulating liquid with a mixed liquid of an aqueous dispersion of a polytetrafluoroethylene resin, and then washed and refined. Bake. In the split peeling method, polytetrafluoroethylene powder is compressed by a cylinder, sintered, split peeled, and stretched. The paste extrusion method is a method of kneading polytetrafluoroethylene powder with a wax-like lubricant to form a paste, extruding it from a die and forming it into a rod or film, then removing the lubricant and stretching it. Baking according to In these methods, it is difficult to produce fine fibers having a diameter of about 1 μm or less, and therefore it is also difficult to produce a porous body containing fine fibers.
ポリテトラフルオロエチレン多孔質体としては、ポリテトラフルオロエチレン粉末と造孔剤との混合物を押出成型又は圧縮成型した後、造孔剤を除去する製造方法が開示されている(例えば、特許文献5、6参照)。これらの多孔質体は、肉厚品として好適なものであり、直径1μm以下程度の微細な繊維を含有する多孔質体を作製することはできなかった。 As a polytetrafluoroethylene porous body, a production method is disclosed in which a mixture of polytetrafluoroethylene powder and a pore-forming agent is extruded or compression-molded and then the pore-forming agent is removed (for example, Patent Document 5). , 6). These porous bodies are suitable as thick products, and a porous body containing fine fibers having a diameter of about 1 μm or less could not be produced.
本発明の課題は、ポリテトラフルオロエチレン多孔質体及びその製造方法を提供することにある。 The subject of this invention is providing the polytetrafluoroethylene porous body and its manufacturing method.
本発明者は、上記課題を解決するために鋭意研究した結果、ポリテトラフルオロエチレンの微粒子と極細繊維が一体化してなるポリテトラフルオロエチレン多孔質体及びその製造方法を見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a polytetrafluoroethylene porous body in which polytetrafluoroethylene fine particles and ultrafine fibers are integrated and a method for producing the same.
本発明によれば、ポリテトラフルオロエチレンの微粒子と極細繊維が一体化してなる特異的な多孔質体を作製することができる。 According to the present invention, a specific porous body formed by integrating polytetrafluoroethylene fine particles and ultrafine fibers can be produced.
本発明におけるポリテトラフルオロエチレン多孔質体は、ポリテトラフルオロエチレンの微粒子と極細繊維が一体化してなる多孔質体を意味する。即ち、ポリテトラフルオロエチレンの微粒子間に、ポリテトラフルオロエチレンの極細繊維が存在し、微粒子と極細繊維が3次元的なネットワークを形成している。必ずしも微粒子1つ1つが極細繊維とつながっていなくても良い。微粒子同士が直線的に連なっていても良く、2個以上の巾を持って凝集していても良い。極細繊維は2つの微粒子間に1本だけ形成されていても良く、複数形成されていても良い。極細繊維は、分岐していても良い。微粒子の大きさは、直径1〜1000nmが好ましく、10〜500nmがより好ましく、50〜500nmがさらに好ましい。1nm未満だと、多孔質体の製造効率が悪くなる場合がある。1000nmより大きいと、微粒子の凝集面積が必要以上に大きくなる場合があり、凝集した部分が圧着されると膜になる場合がある。極細繊維は、直径が0.1〜800nmであることが好ましく、1〜500nmであることがより好ましく、10〜200nmであることがさらに好ましい。0.1nm未満だと、繊維が細く弱いため、切れやすくなる。800nmより太いと、多孔質体の孔径が必要以上に大きくなる場合がある。 The polytetrafluoroethylene porous body in the present invention means a porous body formed by integrating polytetrafluoroethylene fine particles and ultrafine fibers. That is, polytetrafluoroethylene ultrafine fibers exist between the polytetrafluoroethylene fine particles, and the fine particles and the ultrafine fibers form a three-dimensional network. It is not always necessary for each fine particle to be connected to an ultrafine fiber. The fine particles may be linearly connected or may be aggregated with two or more widths. Only one ultrafine fiber may be formed between two fine particles, or a plurality of ultrafine fibers may be formed. The ultrafine fiber may be branched. The size of the fine particles is preferably 1 to 1000 nm in diameter, more preferably 10 to 500 nm, and even more preferably 50 to 500 nm. If the thickness is less than 1 nm, the production efficiency of the porous body may deteriorate. If it is larger than 1000 nm, the aggregate area of the fine particles may be larger than necessary, and if the aggregated portion is pressure-bonded, a film may be formed. The ultrafine fiber preferably has a diameter of 0.1 to 800 nm, more preferably 1 to 500 nm, and still more preferably 10 to 200 nm. If the thickness is less than 0.1 nm, the fibers are thin and weak, so that they are easily cut. If the thickness is larger than 800 nm, the pore size of the porous body may be larger than necessary.
本発明のポリテトラフルオロエチレン多孔質体は、ポリテトラフルオロエチレン微粒子の水分散液に機械的せん断力を付加することにより作製することができる。ポリテトラフルオロエチレン微粒子は、乳化重合により作製されたものが好ましい。水分散液は、界面活性剤を含有しても良い。界面活性剤は、非イオン性のものが好ましい。水分散液中のポリテトラフルオロエチレンの固形分濃度は、0.1〜70質量%が好ましく、1〜60質量%がより好ましく、10〜50質量%がさらに好ましい。0.1質量%未満だと、機械的せん断力の付加効率が悪くなる場合がある。70質量%より多いと乾燥後の自己結合力が強く、硬くなりすぎる場合がある。 The polytetrafluoroethylene porous body of the present invention can be produced by applying a mechanical shearing force to an aqueous dispersion of polytetrafluoroethylene fine particles. The polytetrafluoroethylene fine particles are preferably prepared by emulsion polymerization. The aqueous dispersion may contain a surfactant. The surfactant is preferably nonionic. The solid content concentration of polytetrafluoroethylene in the aqueous dispersion is preferably 0.1 to 70% by mass, more preferably 1 to 60% by mass, and still more preferably 10 to 50% by mass. If it is less than 0.1% by mass, the addition efficiency of the mechanical shearing force may deteriorate. When it is more than 70% by mass, the self-bonding force after drying is strong and may become too hard.
機械的せん断力を発生する装置としては、ペイントコンディショナー、ペイントシェーカー、高圧ホモジナイザー、高速ホモジナイザー、石臼、摩砕装置、ミルが挙げられる。本発明の多孔質体が形成される機構について詳細はわかっていないが、ポリテトラフルオロエチレン微粒子の水分散液に機械的せん断力を与えることにより、予め水分散液中で凝集、接着していた微粒子同士が引き裂かれて、微粒子間に極細繊維が形成され、微粒子と極細繊維が一体化した多孔質体が形成されると考えられる。本発明のポリテトラフルオロエチレン多孔質体は、乾燥状態で保存しても良く、湿潤状態で保存しても良い。 Examples of the device that generates the mechanical shear force include a paint conditioner, a paint shaker, a high-pressure homogenizer, a high-speed homogenizer, a stone mortar, a grinding device, and a mill. Although the details of the mechanism of the formation of the porous body of the present invention are not known, it was previously aggregated and adhered in the aqueous dispersion by applying a mechanical shearing force to the aqueous dispersion of the polytetrafluoroethylene fine particles. It is considered that the fine particles are torn apart to form ultrafine fibers between the fine particles, and a porous body in which the fine particles and the ultrafine fibers are integrated is formed. The polytetrafluoroethylene porous material of the present invention may be stored in a dry state or in a wet state.
本発明のポリテトラフルオロエチレン多孔質体は、単独で使用しても良く、他の材料と混合や、他の成型物と複合化して使用しても良い。単独で使用する場合は、繊維状やシート状、その他の成型物に加工しても良い。他の成型物との複合化は、他の成型物にポリテトラフルオロエチレン多孔質体を添加、混入、封入、埋め込み、漉きこみ、塗工、含浸することや、ポリテトラフルオロエチレン多孔質体を繊維状やシート状、その他の形状に成型し、これらを他の成型物と積層、貼り合わせ、所定の枠にはめることなどを指す。ポリテトラフルオロエチレン多孔質体は、単独、混合物、単独の成型物、複合の成型物にかかわらず、必要に応じて焼成処理しても良い。単独で使用しない場合の焼成の時期としては、他の材料と混合する前後、単独の成型物にする前後、複合の成型物にする前後のどちらでも良い。焼成温度は280〜450℃が好ましく、300〜420℃がより好ましく、320〜400℃がさらに好ましい。焼成は、所定温度の雰囲気中で行えば良い。 The polytetrafluoroethylene porous material of the present invention may be used alone, mixed with other materials, or combined with other molded products. When used alone, it may be processed into a fiber shape, a sheet shape, or other molded products. For compounding with other moldings, polytetrafluoroethylene porous material can be added, mixed, encapsulated, embedded, encased, coated, impregnated into other molded products, or polytetrafluoroethylene porous material can be It refers to molding into a fiber shape, a sheet shape, or other shapes, and laminating and bonding these with other molded products and fitting them into a predetermined frame. The polytetrafluoroethylene porous body may be fired as necessary regardless of whether it is a single, a mixture, a single molded product, or a composite molded product. The firing time when not used alone may be before or after mixing with other materials, before or after making a single molded product, or before or after making a composite molded product. The firing temperature is preferably 280 to 450 ° C, more preferably 300 to 420 ° C, and further preferably 320 to 400 ° C. Firing may be performed in an atmosphere at a predetermined temperature.
図1〜4は、本発明の実施例で作製したポリテトラフルオロエチレン多孔質体の電子顕微鏡写真の一例である。ポリテトラフルオロエチレンの微粒子と極細繊維が一体化してなる多孔質体が形成されていることが確認できる。図1〜4の多孔質体を形成している微粒子の直径は200nm前後であり、極細繊維の径は40〜100nm程度である。 FIGS. 1-4 is an example of the electron micrograph of the polytetrafluoroethylene porous body produced in the Example of this invention. It can be confirmed that a porous body formed by integrating fine particles of polytetrafluoroethylene and ultrafine fibers is formed. The diameter of the fine particles forming the porous body of FIGS. 1 to 4 is about 200 nm, and the diameter of the ultrafine fiber is about 40 to 100 nm.
図5は、本発明で用いたポリテトラフルオロエチレン微粒子の電子顕微鏡写真の一例である。機械的せん断力が付加されなかったため、微粒子が凝集した状態になっており、微粒子間に極細繊維が存在せず、微粒子と極細繊維が一体化した多孔質体は形成されていないことがわかる。 FIG. 5 is an example of an electron micrograph of the polytetrafluoroethylene fine particles used in the present invention. Since no mechanical shearing force was applied, the fine particles were in an aggregated state, and no ultrafine fibers were present between the fine particles, indicating that a porous body in which the fine particles and the ultrafine fibers were integrated was not formed.
以下、本発明を実施例によりさらに詳細に説明するが、本発明は本実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a present Example.
(実施例1)
ポリテトラフルオロエチレンの水分散液(ダイキン工業製、ポリフロン(登録商標) PTFE D−210C、固形分濃度60質量%)をペイントコンディショナーで5時間処理した。直径4mmのアルミナボールを用いた。処理後、アルミナボールを除去して湿潤状態のポリテトラフルオロエチレン多孔質体を得た。
Example 1
An aqueous dispersion of polytetrafluoroethylene (manufactured by Daikin Industries, Polyflon (registered trademark) PTFE D-210C, solid content concentration 60% by mass) was treated with a paint conditioner for 5 hours. Alumina balls having a diameter of 4 mm were used. After the treatment, the alumina balls were removed to obtain a wet polytetrafluoroethylene porous body.
(実施例2)
実施例1で用いたポリテトラフルオロエチレンの水分散液にイオン交換水を加えて、固形分濃度を30質量%に変更した以外は実施例1と同様にして、ペイントコンディショナーで処理した。処理後、アルミナボールと上澄み液を除去して、湿潤状態のポリテトラフルオロエチレン多孔質体を回収した。
(Example 2)
It processed with the paint conditioner like Example 1 except having added ion-exchange water to the polytetrafluoroethylene aqueous dispersion used in Example 1, and having changed solid content concentration into 30 mass%. After the treatment, the alumina balls and the supernatant were removed, and a wet polytetrafluoroethylene porous body was recovered.
(実施例3)
実施例1で用いたポリテトラフルオロエチレンの水分散液にイオン交換水を加えて、固形分濃度を10質量%に変更した以外は実施例1と同様にして、ペイントコンディショナーで処理した。処理後、アルミナボールと上澄み液を除去して、湿潤状態のポリテトラフルオロエチレン多孔質体を回収した。
(Example 3)
It processed with the paint conditioner like Example 1 except having added ion-exchange water to the polytetrafluoroethylene aqueous dispersion used in Example 1, and having changed solid content concentration into 10 mass%. After the treatment, the alumina balls and the supernatant were removed, and a wet polytetrafluoroethylene porous body was recovered.
(実施例4)
実施例1で用いたポリテトラフルオロエチレンの水分散液にイオン交換水を加えて、固形分濃度を1質量%に変更した以外は実施例1と同様にして、ペイントコンディショナーで処理した。処理後、アルミナボールと上澄み液を除去し、さらに遠心分離機にかけて固形物を沈殿させ、上澄み液を除去して湿潤状態のポリテトラフルオロエチレン多孔質体を回収した。
Example 4
It processed with the paint conditioner like Example 1 except having added ion-exchange water to the polytetrafluoroethylene aqueous dispersion used in Example 1, and having changed solid content concentration into 1 mass%. After the treatment, the alumina balls and the supernatant were removed, and further centrifuged to precipitate a solid, and the supernatant was removed to collect a wet polytetrafluoroethylene porous material.
(実施例5)
実施例1で用いたポリテトラフルオロエチレンの水分散液にイオン交換水を加えて、固形分濃度を0.6質量%に変更した以外は実施例1と同様にして、ペイントコンディショナーで処理した。処理後、アルミナボールと上澄み液を除去し、さらに遠心分離機にかけて固形物を沈殿させ、上澄み液を除去して湿潤状態のポリテトラフルオロエチレン多孔質体を回収した。
(Example 5)
It processed with the paint conditioner like Example 1 except having added ion-exchange water to the polytetrafluoroethylene aqueous dispersion used in Example 1, and having changed solid content concentration into 0.6 mass%. After the treatment, the alumina balls and the supernatant were removed, and further centrifuged to precipitate a solid, and the supernatant was removed to collect a wet polytetrafluoroethylene porous material.
(実施例6)
実施例1で用いたポリテトラフルオロエチレンの水分散液にイオン交換水を加えて、固形分濃度を0.1質量%に変更した以外は実施例1と同様にして、ペイントコンディショナーで処理した。処理後、アルミナボールと上澄み液を除去し、さらに遠心分離機にかけて固形物を沈殿させ、上澄み液を除去して湿潤状態のポリテトラフルオロエチレン多孔質体を回収した。
(Example 6)
It processed with the paint conditioner like Example 1 except having added ion-exchange water to the polytetrafluoroethylene aqueous dispersion used in Example 1, and having changed solid content concentration into 0.1 mass%. After the treatment, the alumina balls and the supernatant were removed, and further centrifuged to precipitate a solid, and the supernatant was removed to collect a wet polytetrafluoroethylene porous material.
(実施例7)
実施例1で用いたポリテトラフルオロエチレンの水分散液にイオン交換水を加えて、固形分濃度を0.06質量%に変更した以外は実施例1と同様にして、ペイントコンディショナーで処理した。処理後、アルミナボールと上澄み液を除去し、さらに遠心分離機にかけて固形物を沈殿させ、上澄み液を除去して湿潤状態のポリテトラフルオロエチレン多孔質体を回収した。
(Example 7)
The sample was treated with a paint conditioner in the same manner as in Example 1 except that ion-exchanged water was added to the polytetrafluoroethylene aqueous dispersion used in Example 1 to change the solid content concentration to 0.06% by mass. After the treatment, the alumina balls and the supernatant were removed, and further centrifuged to precipitate a solid, and the supernatant was removed to collect a wet polytetrafluoroethylene porous material.
(実施例8)
実施例2で用いたポリテトラフルオロエチレンの水分散液を高速ホモジナイザーで、6400rpmで60分間処理した。処理後、遠心分離機にかけて固形物を沈殿させ、上澄み液を除去して湿潤状態のポリテトラフルオロエチレン多孔質体を回収した。
(Example 8)
The polytetrafluoroethylene aqueous dispersion used in Example 2 was treated with a high-speed homogenizer at 6400 rpm for 60 minutes. After the treatment, a solid was precipitated by centrifuging, and the supernatant was removed to recover a wet polytetrafluoroethylene porous material.
(比較例1)
実施例1で用いたポリテトラフルオロエチレンの水分散液を遠心分離機にかけて固形物を沈殿させた。上澄み液を除去して、沈殿物を乾燥させ、ポリテトラフルオロエチレンを回収した。
(Comparative Example 1)
The aqueous dispersion of polytetrafluoroethylene used in Example 1 was centrifuged to precipitate a solid. The supernatant was removed, the precipitate was dried, and polytetrafluoroethylene was recovered.
[評価]
本発明の実施例で作製したポリテトラフルオロエチレン多孔質体及び比較例で回収したポリテトラフルオロエチレンを電子顕微鏡で観察した結果、実施例1〜8で作製したポリテトラフルオロエチレン多孔質体は、ポリテトラフルオロエチレンの微粒子と極細繊維が一体化してなることを確認した。一方、比較例1のポリテトラフルオロエチレンは、微粒子のみで構成されており、微粒子と極細繊維が一体化してなる多孔質体は形成されていなかった。
[Evaluation]
As a result of observing the polytetrafluoroethylene porous body produced in the examples of the present invention and the polytetrafluoroethylene collected in the comparative example with an electron microscope, the polytetrafluoroethylene porous bodies produced in Examples 1 to 8, It was confirmed that the polytetrafluoroethylene fine particles and the ultrafine fibers were integrated. On the other hand, the polytetrafluoroethylene of Comparative Example 1 was composed only of fine particles, and a porous body in which the fine particles and ultrafine fibers were integrated was not formed.
本発明のポリテトラフルオロエチレン多孔質体の用途としては、フィルター、セパレータ、人工血管、断熱材などが挙げられる。 Applications of the polytetrafluoroethylene porous material of the present invention include filters, separators, artificial blood vessels, and heat insulating materials.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011205553A JP2013067875A (en) | 2011-09-21 | 2011-09-21 | Polytetrafluoroethylene porous body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011205553A JP2013067875A (en) | 2011-09-21 | 2011-09-21 | Polytetrafluoroethylene porous body and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013067875A true JP2013067875A (en) | 2013-04-18 |
Family
ID=48473886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011205553A Withdrawn JP2013067875A (en) | 2011-09-21 | 2011-09-21 | Polytetrafluoroethylene porous body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013067875A (en) |
-
2011
- 2011-09-21 JP JP2011205553A patent/JP2013067875A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI130513B (en) | An electrode material and components therefrom for use in an electrochemical device and processes for the manufacture thereof | |
CN106299213B (en) | A kind of bacteria cellulose-base microporous compound film and its preparation method and application | |
CN108699259A (en) | Gel containing ANF and nanocomposite | |
CN104715937B (en) | A kind of preparation method of stacking type electrode, carbon membrane and preparation method thereof | |
JPH10512620A (en) | Co-continuous blend of fluoropolymer and thermoplastic polymer and method of manufacture | |
JP2013520840A5 (en) | ||
WO2020090313A1 (en) | Method for producing porous film, and porous film | |
JP2008119662A (en) | Filter and its manufacturing method | |
DE102011106834B3 (en) | Process for producing a porous ceramic and a porous polymeric material, and ceramics and materials obtainable therewith | |
WO2008094698A1 (en) | Methods for continuous processing polytetrafluoroethylene (ptfe) resin | |
JP6338054B2 (en) | Method for producing porous filter | |
JP2007191381A (en) | Ceramic raw material and method for producing ceramic molding | |
JP2014511900A (en) | Filled polymer microporous membrane based on surface free energy | |
JP2018083998A (en) | Method for producing ceramic nanofiber | |
JP2013067875A (en) | Polytetrafluoroethylene porous body and method for producing the same | |
JP2009254547A (en) | Bone regeneration material and its manufacturing method | |
Ferreira et al. | Coagulation bath in the production of membranes of nanocomposites polyamide 6/Clay | |
EP2982492B1 (en) | Sintering method, sintered product, filtration module and use | |
US10625213B2 (en) | Production system for composite porous solid articles | |
CN109316828B (en) | A kind of high-temperature filter cloth material | |
AT504168B1 (en) | METHOD FOR PRODUCING AN IN PARTICULAR POROUS CERAMIC FORM BODY AND FORM BODY MANUFACTURED THEREWITH | |
JP3456284B2 (en) | Porous tetrafluoroethylene resin laminate and method for producing the same | |
JP2006305762A (en) | Manufacturing method of filler-containing polytetrafluoroethylene sheet and extrusion molding die | |
Rezanova et al. | Morphology and rheology of nanofilled PP/PVA blends | |
CN110947033A (en) | Artificial bone scaffold material, material preparation method and preparation method of artificial bone scaffold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141202 |