JP2009254547A - Bone regeneration material and its manufacturing method - Google Patents

Bone regeneration material and its manufacturing method Download PDF

Info

Publication number
JP2009254547A
JP2009254547A JP2008106640A JP2008106640A JP2009254547A JP 2009254547 A JP2009254547 A JP 2009254547A JP 2008106640 A JP2008106640 A JP 2008106640A JP 2008106640 A JP2008106640 A JP 2008106640A JP 2009254547 A JP2009254547 A JP 2009254547A
Authority
JP
Japan
Prior art keywords
calcium phosphate
bone regeneration
mpa
regeneration material
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008106640A
Other languages
Japanese (ja)
Inventor
Osamu Suzuki
治 鈴木
Takahisa Anada
貴久 穴田
Yoshitomo Honda
義知 本田
Takeshi Fuji
岳志 冨士
Keiichi Sasaki
啓一 佐々木
Shinji Morimoto
慎二 森元
Kazuo Aoki
一生 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nipro Corp
Original Assignee
Tohoku University NUC
Nipro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nipro Corp filed Critical Tohoku University NUC
Priority to JP2008106640A priority Critical patent/JP2009254547A/en
Publication of JP2009254547A publication Critical patent/JP2009254547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily provide a bone regeneration material for a molding compound excellent in its bioadhesion as well as operability and shape imparting properties in respect of a complex obtained by a reaction of octacalcium phosphate (OCP) and sodium alginate. <P>SOLUTION: The complex obtained by the reaction of octacalcium phosphate (OCP) and sodium alginate is pressurized with a pressure of 4.1×10<SP>-3</SP>MPa or 3.7×10<SP>-2</SP>MPa by means of a centrifuge, whereby the molded body as a bone regeneration material is produced. The molded body has excellent bioadhesion as well as operability and shape imparting properties having porous fine pores whose average pore volume is within a range of 5.820 cm<SP>3</SP>/g to 6.160 cm<SP>3</SP>/g. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ハイドロキシアパタイトの前駆体である燐酸カルシウムを用いて生体親和性、細胞接着性に優れた骨再生材料およびその製造方法の技術分野に属するものである。   The present invention belongs to the technical field of a bone regeneration material excellent in biocompatibility and cell adhesiveness using calcium phosphate which is a precursor of hydroxyapatite and a method for producing the same.

今日、ハイドロキシアパタイト(Ca10(PO(OH):以下「HA」と略記する)の前駆体である第8燐酸カルシウム(Ca(PO・5HO:以下「OCP」と略記する)は、優れた骨伝導能を有すること(非特許文献1)、破骨細胞による吸収性を有すること(非特許文献2)、そして用量依存的に骨芽細胞の分化を促進すること(非特許文献3)が知られている。そしてOCPとコラーゲンとの複合体は、形態付与性を備えた骨再生材料(人工骨材)であることが知られている(例えば特許文献1参照)。また、HAの前駆体である非晶質燐酸カルシウム(Ca(PO・nHO:以下「ACP」と略記する)についてもOCPと同様の性質があることが報告されている(非特許文献4参照)。さらにまた、同じくHAの前駆体である第二燐酸カルシウム(第2燐酸カルシウム無水物(CaHPO:以下「DCPA」と略記する)あるいは第2燐酸カルシウム2水和物(CaHPO・2HO:以下「DCPD」と略記する))についてもOCPと同様の性質があることが報告されている(特許文献2及び非特許文献5参照)。
特開2006−167445号公報 特許第2788721号公報 Suzuki O. et al.,Tohoku J.Eng.Med.,164:37−50,1991. Imaizumi H. et al.,Calcif.Tissue Int.78:45−54,2006. Anada T. et al.,Tissue Eng.,2008 in press. Meyer JL,Eanes ED,CTI 1978 Eidelman N. et al.,Calcif Tissue Int.,41:18−26,1987
Today, hydroxyapatite (Ca 10 (PO 4) 6 (OH) 2: hereinafter abbreviated as "HA") Eighth calcium phosphate is a precursor of (Ca 8 H 2 (PO 4 ) 6 · 5H 2 O: less “OCP” (abbreviated as “OCP”) has excellent osteoconductivity (Non-patent Document 1), resorbability by osteoclasts (Non-patent Document 2), and osteoblast differentiation in a dose-dependent manner (Non-patent Document 3) is known. It is known that a complex of OCP and collagen is a bone regeneration material (artificial bone material) having a form-imparting property (see, for example, Patent Document 1). It has also been reported that amorphous calcium phosphate (Ca 3 (PO 4 ) 2 .nH 2 O: hereinafter abbreviated as “ACP”), which is a precursor of HA, has the same properties as OCP ( Non-patent document 4). Furthermore, dicalcium phosphate (secondary calcium phosphate anhydride (CaHPO 4 : hereinafter abbreviated as “DCPA”) or dicalcium phosphate dihydrate (CaHPO 4 .2H 2 O: (Hereinafter abbreviated as “DCPD”))) is reported to have the same properties as OCP (see Patent Document 2 and Non-Patent Document 5).
JP 2006-167445 A Japanese Patent No. 2788721 Suzuki O. et al. Tohoku J .; Eng. Med. 164: 37-50, 1991. Imaizumi H. et al. et al. , Calcif. Tissue Int. 78: 45-54, 2006. Anada T. et al. , Tissue Eng. , 2008 in press. Meyer JL, Eans ED, CTI 1978 Eidelman N.E. et al. , Calcif Tissue Int. , 41: 18-26, 1987

ところが前記OCPのコラーゲンとの複合体についてみたときに、前記特許文献1に記載の製造方法では、適切な強度を有し、かつ細胞の増殖に適した平均細孔容積の多孔質細孔を有するように製造するのは困難であり、実用化するにはさらに細胞接着性を高めるための検討が必要であり、ここに本発明が解決せんとする課題がある。   However, when looking at the complex of OCP with collagen, the production method described in Patent Document 1 has porous pores having an appropriate strength and an average pore volume suitable for cell growth. Thus, it is difficult to manufacture the device, and in order to put it to practical use, it is necessary to study to further improve cell adhesion, and there is a problem to be solved by the present invention.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、ハイドロキシアパタイトの前駆体である燐酸カルシウムと、水溶性高分子または多糖類のなかから選択される少なくとも一種類の化合物とからなる複合体であって、該複合体に、4.1×10−3MPaから、3.7×10−2MPaと1.0×10−1MPaとのあいだにある細胞が入りやすい径の細孔を形成する圧力の範囲で加圧して成形した成形体であることを特徴とする骨再生材料である。
請求項2の発明は、ハイドロキシアパタイトの前駆体である燐酸カルシウムと、水溶性高分子または多糖類のなかから選択される少なくとも一種類の化合物とからなる複合体であって、該複合体を、4.747cm/gと5.820cm/gとのあいだにある細胞が入りやすい径の細孔を形成する平均細孔容積から6.160cm/gの範囲の平均細孔容積の多孔質細孔を有するように加圧して成形した成形体であることを特徴とする骨再生材料である。
請求項3の発明は、加圧は遠心分離によるものであることを特徴とする請求項1または2記載の骨再生材料である。
請求項4の発明は、ハイドロキシアパタイトの前駆体である燐酸カルシウムは、第8燐酸カルシウム、非晶質燐酸カルシウム、第二燐酸カルシウムの少なくとも一種類の化合物であることを特徴とする請求項1乃至3の何れか1記載の骨再生材料である。
請求項5の発明は、ハイドロキシアパタイトの前駆体である燐酸カルシウムと、水溶性高分子または多糖類のなかから選択される少なくとも一種類の化合物とからなる複合体からなり、該複合体に、4.1×10−3MPaから、3.7×10−2MPaと1.0×10−1MPaとのあいだにある細胞が入りやすい径の細孔を形成する圧力の範囲で加圧して成形体を得ることを特徴とする骨再生材料の製造方法である。
請求項6の発明は、ハイドロキシアパタイトの前駆体である燐酸カルシウムと、水溶性高分子または多糖類のなかから選択される少なくとも一種類の化合物とからなる複合体からなり、該複合体を、4.747cm/gと5.820cm/gとのあいだにある細胞が入りやすい径の細孔を形成する平均細孔容積から6.160cm/gの範囲の平均細孔容積の多孔質細孔を有するように加圧して成型体を得ることを特徴とする骨再生材料の製造方法である。
請求項7の発明は、加圧は遠心分離によるものであることを特徴とする請求項4または5記載の骨再生材料の製造方法である。
請求項8の発明は、ハイドロキシアパタイトの前駆体である燐酸カルシウムは、第8燐酸カルシウム、非晶質燐酸カルシウム、第二燐酸カルシウムの少なくとも一種類の化合物であることを特徴とする請求項1乃至3の何れか1記載の骨再生材料の製造方法である。
The present invention has been made in view of the above circumstances and has been created for the purpose of solving these problems. The invention of claim 1 includes calcium phosphate which is a precursor of hydroxyapatite and a water-soluble polymer. Or a complex comprising at least one compound selected from among polysaccharides, wherein the complex is changed from 4.1 × 10 −3 MPa to 3.7 × 10 −2 MPa and 1.0 A bone regeneration material characterized in that it is a molded body formed by pressurizing in a range of pressure to form pores having a diameter easily entering cells between × 10 −1 MPa.
The invention of claim 2 is a complex comprising calcium phosphate which is a precursor of hydroxyapatite and at least one compound selected from water-soluble polymers or polysaccharides, Pores having an average pore volume in the range of 6.160 cm 3 / g to 4.160 cm 3 / g, forming pores having a diameter that allows easy entry of cells between 4.747 cm 3 / g and 5.820 cm 3 / g A bone regeneration material characterized in that it is a molded body formed by pressing so as to have pores.
A third aspect of the present invention is the bone regeneration material according to the first or second aspect, wherein the pressurization is performed by centrifugation.
The invention of claim 4 is characterized in that the calcium phosphate which is a precursor of hydroxyapatite is at least one compound of eighth calcium phosphate, amorphous calcium phosphate and dicalcium phosphate. 3. The bone regeneration material according to any one of 3 above.
The invention of claim 5 comprises a complex comprising calcium phosphate which is a precursor of hydroxyapatite and at least one compound selected from water-soluble polymers or polysaccharides. .1 × 10 −3 MPa to 3.7 × 10 −2 MPa and 1.0 × 10 −1 MPa in a range of pressure to form pores with diameters that allow easy entry of cells. A method for producing a bone regeneration material characterized in that a body is obtained.
The invention of claim 6 comprises a complex comprising calcium phosphate, which is a precursor of hydroxyapatite, and at least one compound selected from water-soluble polymers or polysaccharides. Porous fine particles having an average pore volume in the range of 6.160 cm 3 / g to an average pore volume that forms pores having a diameter that easily enters cells between .747 cm 3 / g and 5.820 cm 3 / g A method for producing a bone regeneration material, characterized in that a molded body is obtained by pressing so as to have a hole.
The invention according to claim 7 is the method for producing a bone regeneration material according to claim 4 or 5, wherein the pressurization is performed by centrifugation.
The invention of claim 8 is characterized in that the calcium phosphate which is a precursor of hydroxyapatite is at least one compound of eighth calcium phosphate, amorphous calcium phosphate and dicalcium phosphate. 4. The method for producing a bone regeneration material according to any one of 3 above.

請求項1、2、5または6の発明とすることにより、ハイドロキシアパタイトの前駆体である燐酸カルシウムの水溶性高分子または多糖類との複合体について、操作性、形態付与性に優れながら、細胞接着性に優れた成形体になる骨再生材料を簡単に提供することができる。
請求項3または7の発明とすることにより、遠心分離という簡単な操作で形態付与性を付与した成形体ができることになる。
請求項4または8の発明とすることにより、入手が容易なHAの前駆体である燐酸カルシウムを用いて細胞接着性に優れた成形体になる骨再生材料を提供することができる。
According to the invention of claim 1, 2, 5, or 6, the complex of calcium phosphate, which is a precursor of hydroxyapatite, with a water-soluble polymer or polysaccharide is excellent in operability and form-imparting properties. It is possible to easily provide a bone regeneration material that becomes a molded article having excellent adhesiveness.
By setting it as invention of Claim 3 or 7, the molded object which provided the form provision property by simple operation called centrifugation will be made.
By using the invention according to claim 4 or 8, a bone regeneration material that becomes a molded article having excellent cell adhesion can be provided using calcium phosphate, which is an HA precursor that is easily available.

本発明は、HAの前駆体である燐酸カルシウムについて、アルギン酸やコラーゲンに代表される水溶性高分子、多糖類の中から選択される少なくとも1種類の化合物と複合体を生成し、該複合体について加圧することで操作性、形態付与性に優れた骨再生材料を生成できるものであり、この場合に、加圧する際の圧力は、3.7×10−2MPaと1.0×10−1MPaとのあいだにある細胞が入りやすい径の細孔を形成する圧力から4.1×10−3MPaの範囲である。圧力が4.1×10−3MPaよりも小さいと、成形体はボソボソ感が強く脆いものになって形態付与性が乏しくて実用性に欠ける。また3.7×10−2MPaと1.0×10−1MPaとのあいだにある細胞が入りやすい径の細孔を形成する圧力を越えると成形体が密になりすぎて細孔の径が小さくなって細胞が入りづらく細胞接着性が低下する。 The present invention produces a complex with at least one compound selected from the group consisting of a water-soluble polymer represented by alginic acid and collagen, and a polysaccharide for calcium phosphate, which is a precursor of HA. By applying pressure, a bone regeneration material excellent in operability and form-imparting property can be generated. In this case, the pressure at the time of pressurization is 3.7 × 10 −2 MPa and 1.0 × 10 −1. The pressure is in the range of 4.1 × 10 −3 MPa from the pressure that forms pores having a diameter that is easy for cells to enter. When the pressure is less than 4.1 × 10 −3 MPa, the molded body has a strong and harsh feeling and is brittle and lacks in form-providing properties and lacks practicality. Moreover, when the pressure which forms the pore of the diameter which is easy to enter the cell between 3.7 * 10 <-2 > MPa and 1.0 * 10 < -1 > MPa is exceeded, a molded object will become too dense and the diameter of a pore will be sufficient. Becomes smaller and it becomes difficult for cells to enter, and cell adhesion decreases.

一方、前記複合材は、前記加圧することで多孔質細孔を有した成形体になるが、この場合、多孔質細孔は、4.747cm/gと5.820cm/gとのあいだにある細胞が入りやすい径の細孔を形成する平均細孔容積から6.160cm/gの範囲であり、6.160cm/gよりも大きいと、成形体はボソボソ感が強く脆いものになって形態付与性が乏しくて実用性に欠け、また4.747cm/gと5.820cm/gとのあいだにある細胞が入りやすい径の細孔を形成する平均細孔容積よりも小さいと成形体が密になりすぎて細孔の径が小さくなって細胞が入りづらく細胞接着性が低下する。 On the other hand, the composite material becomes a molded body having porous pores by pressurization. In this case, the porous pores are between 4.747 cm 3 / g and 5.820 cm 3 / g. there is a range of 6.160cm 3 / g average pore volume of cells to form pores of incoming easily diameter and greater than 6.160cm 3 / g, molded bodies in brittle strong Bosoboso feeling It is less than the average pore volume that forms pores with diameters that easily enter cells between 4.747 cm 3 / g and 5.820 cm 3 / g. The compact becomes too dense and the pore diameter becomes small, making it difficult for cells to enter and cell adhesion.

これらにおいて加圧手段としては遠心分離機やプレス機等の汎用される適宜の加圧手段を採用できるが、遠心分離機による場合、内部に至るまで均一的な加圧ができることになって好適である。
また、HAの前駆体である燐酸カルシウムは、前述したOCP、ACP、DCPAあるいはDCPDの化合物に代表され、これらHAの前駆体である燐酸カルシウムから選択される少なくとも1種類の化合物と水溶性高分子または多糖類とを反応させて複合体を生成することになるが、水溶性高分子としては、例えば、コラーゲン、ポリエチレングリコール、ポリリジン及びポリグルタミン酸等があり、また多糖類としては、例えばアルギン酸、ヒアルロン酸及びコンドロイチン硫酸等がある。そしてこれらから選択された少なくとも1種類の化合物と前述したHAの前駆体である燐酸カルシウムとの複合体を形成することになるが、取り扱い易いという観点から、水溶性高分子または多糖類は、ナトリウム塩、またはカリウム塩として反応に用いることが好ましい。
好適な複合体の生成方法は、主に、水溶性高分子または多糖類の水溶液に、カルシウム溶液及びリン酸溶液を添加し、水溶性高分子または多糖類にHAの前駆体である燐酸カルシウムを析出させる方法が挙げられる。HAの前駆体である燐酸カルシウムの析出条件は、当業者により適宜設定できるものであり、例えば、OCPの析出条件は、Y. Honda et. al. Journal of Biomedical Materials Research Part B, DOP 10.1002/jbmb, page 281−289を参考にすることができる。尚、上述の加圧が遠心分離である場合は、この方法で生成された複合体の脱水行程も兼ねることができる。
In these, as the pressurizing means, a suitable general pressurizing means such as a centrifuge or a press can be adopted. However, in the case of using a centrifuge, it is preferable because uniform pressurization can be achieved up to the inside. is there.
In addition, calcium phosphate which is a precursor of HA is represented by the above-mentioned OCP, ACP, DCPA or DCPD compound, and at least one compound selected from calcium phosphate which is a precursor of HA and a water-soluble polymer. Alternatively, a complex is produced by reacting with a polysaccharide. Examples of water-soluble polymers include collagen, polyethylene glycol, polylysine, and polyglutamic acid. Examples of polysaccharides include alginic acid and hyaluron. Acid and chondroitin sulfate. Then, a complex of at least one compound selected from these and calcium phosphate which is the precursor of HA described above is formed. From the viewpoint of easy handling, the water-soluble polymer or polysaccharide is sodium. It is preferable to use for reaction as a salt or potassium salt.
A preferred method for producing a complex is mainly to add a calcium solution and a phosphate solution to an aqueous solution of a water-soluble polymer or polysaccharide, and to add calcium phosphate, which is a precursor of HA, to the water-soluble polymer or polysaccharide. The method of making it precipitate is mentioned. Precipitation conditions for calcium phosphate, which is a precursor of HA, can be set as appropriate by those skilled in the art. Honda et. al. Journal of Biomedical Materials Research Part B, DOP 10.1002 / jbmb, page 281-289 can be referred to. In addition, when the above-mentioned pressurization is centrifugation, it can also serve as a dehydration process of the complex produced by this method.

以下、本発明を実施例により具体的に説明する。但し、本発明はこれらの実施例に限定して解釈してはならない。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention should not be interpreted as being limited to these examples.

<実施例1>
アルギン酸ナトリウム(0.2wt%)のリン酸緩衝液溶液を調製した。次いで、この溶液を70℃に保ちつつ、この溶液に0.08mol/Lの酢酸カルシウム水溶液を一定速度で滴下した。その後、析出したスラリーを純水で懸濁した後、3,000rpm、5分の条件で4回遠心分離することにより、スラリーを精製した。この精製物に純水を加えて再度懸濁させた。この懸濁物を、1,000rpm、5分の条件(4.1×10−3MPaに相当)で遠心分離(微量高速冷却遠心機MX−301S、遠心半径:8.1cm、株式会社トミー精工製)して加圧成形して成形体を得た。そして、この成形体を直径4mm、厚さ0.5mmの専用の型枠で型抜き成型した。この成型物を約12時間凍結乾燥(EYELA,FDU−1200型)した。この凍結乾燥物を、120℃、2時間で、乾熱滅菌することにより、OCP/アルギン酸複合体の目的とする成形体を製造した。
<Example 1>
A phosphate buffer solution of sodium alginate (0.2 wt%) was prepared. Next, while maintaining the solution at 70 ° C., 0.08 mol / L calcium acetate aqueous solution was dropped into the solution at a constant rate. Then, after suspending the deposited slurry with pure water, the slurry was purified by centrifuging four times under conditions of 3,000 rpm and 5 minutes. Pure water was added to the purified product and suspended again. This suspension was centrifuged at 1,000 rpm for 5 minutes (corresponding to 4.1 × 10 −3 MPa) (micro high-speed cooling centrifuge MX-301S, centrifugal radius: 8.1 cm, Tommy Seiko Co., Ltd.) To obtain a molded body. And this molded object was die-molded and molded with a dedicated mold having a diameter of 4 mm and a thickness of 0.5 mm. This molded product was freeze-dried (EYELA, FDU-1200 type) for about 12 hours. The freeze-dried product was sterilized by dry heat at 120 ° C. for 2 hours to produce a desired molded product of the OCP / alginate complex.

<実施例2>
遠心分離の条件を、1,000rpmから3,000rpm(3.7×10−2MPaに相当)としたこと以外は、実施例1と同様にOCP/アルギン酸複合体の成形体を製造した。
<Example 2>
An OCP / alginic acid composite molded body was produced in the same manner as in Example 1 except that the centrifugation conditions were changed from 1,000 rpm to 3,000 rpm (equivalent to 3.7 × 10 −2 MPa).

<比較例1>
加圧成形時の遠心分離条件を、1,000rpmから5,000rpm(1.0×10−1MPaに相当)としたこと以外は、実施例1と同様にOCP/アルギン酸複合体の成形体を製造した。
<Comparative Example 1>
The OCP / alginate composite molded body was the same as in Example 1 except that the centrifugal separation conditions during pressure molding were changed from 1,000 rpm to 5,000 rpm (corresponding to 1.0 × 10 −1 MPa). Manufactured.

<比較例2>
加圧成形時の遠心分離条件を、1,000rpmから10,000rpm(4.1×10−1MPaに相当)としたこと以外は、実施例1と同様にOCP/アルギン酸複合体の成形体を製造した。
<Comparative example 2>
The OCP / alginate composite molded body was the same as in Example 1 except that the centrifugal separation conditions during pressure molding were changed from 1,000 rpm to 10,000 rpm (corresponding to 4.1 × 10 −1 MPa). Manufactured.

<比較例3>
加圧成形時の遠心分離条件を、1,000rpmから15,000rpm(9.2×10−1MPaに相当)としたこと以外は、実施例1と同様にOCP/アルギン酸複合体の成形体を製造した。
<Comparative Example 3>
The OCP / alginate composite molded body was the same as in Example 1 except that the centrifugal separation conditions during pressure molding were changed from 1,000 rpm to 15,000 rpm (corresponding to 9.2 × 10 −1 MPa). Manufactured.

以上の実施例1並びに2、及び比較例1〜3の製造条件は、表1の通りとなる。以下、これらの実施例及び比較例を0.2系と称す。尚、実施例1並びに2、及び比較例1〜3で得られた成形体は、全てOCP/アルギン酸複合体であることを、FT−IR(FREEXACT−II,HORIBA)測定と、XRD(MiniFlex,株式会社リガク)測定により確認した。   The manufacturing conditions of Examples 1 and 2 and Comparative Examples 1 to 3 are as shown in Table 1. Hereinafter, these Examples and Comparative Examples are referred to as 0.2 series. It should be noted that the molded products obtained in Examples 1 and 2 and Comparative Examples 1 to 3 were all OCP / alginic acid composites, FT-IR (FREEXACT-II, HORIBA) measurement, and XRD (MiniFlex, (Rigaku Corporation) confirmed by measurement.

<実施例3>
アルギン酸ナトリウムの濃度を0.2wt%から、0.4wt%にした以外は実施例1と同様に行った。
<Example 3>
The same operation as in Example 1 was conducted except that the concentration of sodium alginate was changed from 0.2 wt% to 0.4 wt%.

<実施例4>
アルギン酸ナトリウムの濃度を0.2wt%から、0.4wt%にした以外は実施例2と同様に行った。
<Example 4>
The same operation as in Example 2 was conducted except that the concentration of sodium alginate was changed from 0.2 wt% to 0.4 wt%.

<比較例4>
アルギン酸ナトリウムの濃度を0.2wt%から、0.4wt%にした以外は比較例1と同様に行った。
<Comparative example 4>
The same operation as in Comparative Example 1 was conducted except that the concentration of sodium alginate was changed from 0.2 wt% to 0.4 wt%.

<比較例5>
アルギン酸ナトリウムの濃度を0.2wt%から、0.4wt%にした以外は比較例2と同様に行った。
<Comparative Example 5>
The same operation as in Comparative Example 2 was conducted except that the concentration of sodium alginate was changed from 0.2 wt% to 0.4 wt%.

<比較例6>
アルギン酸ナトリウムの濃度を0.2wt%から、0.4wt%にした以外は比較例3と同様に行った。
<Comparative Example 6>
The same procedure as in Comparative Example 3 was performed except that the concentration of sodium alginate was changed from 0.2 wt% to 0.4 wt%.

以上の実施例3並びに4、及び比較例4〜6の製造条件は、表2の通りとなる。以下、これらの実施例及び比較例を0.4系と称す。尚、実施例3並びに4、及び比較例4〜6で得られた成形体は、全てOCP/アルギン酸複合体であることを、FT−IR、(FREEXACT−II,HORIBA)測定と、XRD(MiNiFlex,株式会社リガク)測定により確認した。   The production conditions of Examples 3 and 4 and Comparative Examples 4 to 6 are as shown in Table 2. Hereinafter, these Examples and Comparative Examples are referred to as 0.4 series. It should be noted that the molded products obtained in Examples 3 and 4 and Comparative Examples 4 to 6 were all OCP / alginic acid composites, FT-IR, (FREEXACT-II, HORIBA) measurement, and XRD (MiNiFlex). , Rigaku Corporation) confirmed by measurement.

<実験例1:SEM観察>
各実施例及び比較例のOCP/アルギン酸複合体の成形体の断面の構造を評価した。具体的には、実施例2、比較例1及び比較例2のOCP/アルギン酸複合体の成形体を、技工用メスで切断した。この切断面の構造について、SEM観察(e−SEM,株式会社マルトー)により評価した。
<Experimental example 1: SEM observation>
The cross-sectional structure of the OCP / alginic acid composite molded body of each example and comparative example was evaluated. Specifically, the OCP / alginic acid composite molded bodies of Example 2, Comparative Example 1 and Comparative Example 2 were cut with a scalpel. The structure of this cut surface was evaluated by SEM observation (e-SEM, Marto).

図1は、実施例2、比較例1及び比較例2のOCP/アルギン酸複合体の成形体の切断面のSEM画像(500倍)である。高倍率の観察においては、明確な違いは確認できないが、実施例2のOCP/アルギン酸複合体の成型体は、空隙のある部位と、密で空隙のない部位が確認された。一方、比較例1及び比較例2のOCP/アルギン酸複合体の成型体は、ある程度、空隙の分布が、均等になっていることが確認された。   FIG. 1 is an SEM image (500 times) of a cut surface of a molded body of the OCP / alginic acid composite of Example 2, Comparative Example 1 and Comparative Example 2. In the observation at high magnification, a clear difference could not be confirmed, but in the molded body of OCP / alginic acid composite of Example 2, a site with voids and a site with dense voids were confirmed. On the other hand, it was confirmed that the OCP / alginic acid composite moldings of Comparative Example 1 and Comparative Example 2 had a uniform distribution of voids to some extent.

図2は、実施例2、比較例1及び比較例2のOCP/アルギン酸複合体の成形体の切断面のSEM画像(100倍)である。実施例2のOCP/アルギン酸複合体の成形体は、その構造が、密な部分と、疎な部分が混在したものであることが確認できた。一方、比較例1及び比較例2のOCP/アルギン酸複合体の成形体は、構造が全体的に密になっているのが確認できた。   FIG. 2 is a SEM image (100 times) of a cut surface of a molded body of the OCP / alginic acid composite of Example 2, Comparative Example 1 and Comparative Example 2. It was confirmed that the OCP / alginic acid composite molded body of Example 2 had a structure in which a dense portion and a sparse portion were mixed. On the other hand, it was confirmed that the OCP / alginic acid composite molded bodies of Comparative Example 1 and Comparative Example 2 were dense as a whole.

<実験例2:細胞接着性の評価>
各実施例及び比較例のOCP/アルギン酸複合体の成形体の細胞接着性を評価した。具体的には、24ウェルの細胞非接着性プレートの各ウェルに、実施例1〜4及び比較例1〜6のOCP/アルギン酸複合体の成形体をそれぞれ載置した。4.0×10cell/200μLに調製した骨芽細胞様細胞(マウス骨髄由来間質細胞株:ST−2)の細胞懸濁液(培地:Minimum Essential Medium,Eagle使用)を、各ウェルに200μLずつ播種した。37℃、5%CO環境下で、100rpmで6時間振盪させた後、3日間細胞培養を行った。そして、cell counting kit−8(同仁化学株式会社)にて細胞数を計測し、複合体の成型体の細胞接着性を評価した。
<Experimental Example 2: Evaluation of cell adhesion>
The cell adhesion of the OCP / alginic acid composites of each Example and Comparative Example was evaluated. Specifically, the OCP / alginic acid composite shaped bodies of Examples 1 to 4 and Comparative Examples 1 to 6 were placed in each well of a 24-well cell non-adhesive plate. A cell suspension of an osteoblast-like cell (mouse bone marrow-derived stromal cell line: ST-2) prepared to 4.0 × 10 4 cells / 200 μL (medium: Minimum Essential Medium, using Eagle) was added to each well. 200 μL each was seeded. After shaking at 100 rpm for 6 hours in an environment of 37 ° C. and 5% CO 2 , cell culture was performed for 3 days. Then, the number of cells was measured with cell counting kit-8 (Dojin Chemical Co., Ltd.), and the cell adhesion of the composite molded body was evaluated.

その結果を図3に示す。図3の結果によれば、細胞の接着性は、0.2系、0.4系ともに、実施例と比較例とから明らかなように、実施例2および4と比較例1および4とのあいだに差があることが認められ、これを加圧する際の圧力でみた場合には、3.7×10−2MPaと1.0×10−1MPaとのあいだに差があり、これは加圧する際の圧力が大きくなると、成形した成形体の細孔(空隙)が小さくなって密になり、この結果、細胞が入りづらくなって細胞の接着性が阻害されることによるものと推定される。このことは、細胞の入りやすい径の細孔を与えるための大きい方の加圧条件が3.7×10−2MPaと1.0×10−1MPaとのあいだにあり、この結果、加圧条件は、から4.1×10−3MPaから、3.7×10−2MPaと1.0×10−1MPaとのあいだにある細胞が入りやすい径の細孔を形成する圧力の範囲で加圧するものとなる。
るといえる。
The result is shown in FIG. According to the results shown in FIG. 3, the cell adhesiveness between Examples 2 and 4 and Comparative Examples 1 and 4 is clear for both 0.2 and 0.4 systems, as is apparent from the Examples and Comparative Examples. It is recognized that there is a difference between them, and when viewed at the pressure when pressurizing this, there is a difference between 3.7 × 10 −2 MPa and 1.0 × 10 −1 MPa, When the pressure during pressurization increases, the pores (voids) of the molded body become smaller and denser. As a result, it is estimated that cells are difficult to enter and cell adhesion is inhibited. The This is because the larger pressure condition for giving pores with a diameter that allows easy entry of cells is between 3.7 × 10 −2 MPa and 1.0 × 10 −1 MPa. The pressure condition is from 4.1 × 10 −3 MPa to 3.7 × 10 −2 MPa and 1.0 × 10 −1 MPa to form pores having diameters that allow easy entry of cells. Pressure is applied in the range.
It can be said.

<実験例3:構造評価>
実施例及び比較例のOCP/アルギン酸複合体の成形体の平均細孔容積を水銀圧入法(全自動細孔分布測定装置:PoreMaster 60 ユアサアイオニクス株式会社製)により評価した。その結果を表3に示す。
<Experimental Example 3: Structural Evaluation>
The average pore volume of the OCP / alginate composite bodies of Examples and Comparative Examples was evaluated by a mercury intrusion method (fully automatic pore distribution measuring device: PoleMaster 60 Yuasa Ionics Co., Ltd.). The results are shown in Table 3.

表3の結果から、加圧して成形される多孔質細孔は、平均細孔容積として4.747cm/gと5.820cm/gとのあいだに細胞が入りやすい径の細孔を形成するところがあり、ここから平均細孔容積が6.160cm/gの範囲までが形態安定性があって細胞の入りやすい多孔質細孔を形成するものであると言える。 The results in Table 3, the porous pores are formed by pressurizing the formation pores tends diameter contains the cells between the 4.747cm 3 / g and 5.820cm 3 / g average pore volume From this point, it can be said that the average pore volume up to the range of 6.160 cm 3 / g forms porous pores that are morphologically stable and easily enter cells.

実施例2、比較例1、2で成形した成形体の切断面の500倍の電子顕微鏡写真図である。It is an electron microscope photograph figure of 500 times the cut surface of the molded object shape | molded in Example 2 and Comparative Examples 1 and 2. FIG. 実施例2、比較例1、2で成形した成形体の切断面の100倍の電子顕微鏡写真図である。It is an electron microscope photograph figure of 100 times the cut surface of the molded object shape | molded in Example 2 and Comparative Examples 1 and 2. FIG. 各実施例、比較例で成形した成形体に骨芽細胞様細胞を培養したときの細胞数を示すグラフ図である。It is a graph which shows the cell number when an osteoblast-like cell is cultured to the molded object shape | molded by each Example and the comparative example.

Claims (8)

ハイドロキシアパタイトの前駆体である燐酸カルシウムと、水溶性高分子または多糖類のなかから選択される少なくとも一種類の化合物とからなる複合体であって、該複合体に、4.1×10−3MPaから、3.7×10−2MPaと1.0×10−1MPaとのあいだにある細胞が入りやすい径の細孔を形成する圧力の範囲で加圧して成形した成形体であることを特徴とする骨再生材料。 A complex comprising calcium phosphate, which is a precursor of hydroxyapatite, and at least one compound selected from water-soluble polymers or polysaccharides, and 4.1 × 10 −3 It is a molded body formed by pressurizing in a pressure range that forms pores having a diameter that easily enters cells between 3.7 × 10 −2 MPa and 1.0 × 10 −1 MPa. Bone regeneration material characterized by. ハイドロキシアパタイトの前駆体である燐酸カルシウムと、水溶性高分子または多糖類のなかから選択される少なくとも一種類の化合物とからなる複合体であって、該複合体を、4.747cm/gと5.820cm/gとのあいだにある細胞が入りやすい径の細孔を形成する平均細孔容積から6.160cm/gの範囲の平均細孔容積の多孔質細孔を有するように加圧して成形した成形体であることを特徴とする骨再生材料。 A complex composed of calcium phosphate, which is a precursor of hydroxyapatite, and at least one compound selected from water-soluble polymers or polysaccharides, the complex being 4.747 cm 3 / g 5.820cm 3 / g pressurized so as to have a porous pores of an average pore volume in the range from the mean pore volume of 6.160cm 3 / g to form pores in the cell is likely to be caused size in between the A bone regeneration material, which is a molded body molded by pressing. 加圧は遠心分離によるものであることを特徴とする請求項1または2記載の骨再生材料。   3. The bone regeneration material according to claim 1, wherein the pressurization is performed by centrifugation. ハイドロキシアパタイトの前駆体である燐酸カルシウムは、第8燐酸カルシウム、非晶質燐酸カルシウム、第二燐酸カルシウムの少なくとも一種類の化合物であることを特徴とする請求項1乃至3の何れか1記載の骨再生材料。   4. The calcium phosphate as a precursor of hydroxyapatite is at least one compound of eighth calcium phosphate, amorphous calcium phosphate, and dicalcium phosphate. 5. Bone regeneration material. ハイドロキシアパタイトの前駆体である燐酸カルシウムと、水溶性高分子または多糖類のなかから選択される少なくとも一種類の化合物とからなる複合体からなり、該複合体に、4.1×10−3MPaから、3.7×10−2MPaと1.0×10−1MPaとのあいだにある細胞が入りやすい径の細孔を形成する圧力の範囲で加圧して成形体を得ることを特徴とする骨再生材料の製造方法。 It consists of a complex composed of calcium phosphate, which is a precursor of hydroxyapatite, and at least one compound selected from water-soluble polymers or polysaccharides, and the complex contains 4.1 × 10 −3 MPa. From the above, it is characterized in that a molded body is obtained by pressurizing within a range of pressure that forms pores having a diameter that is easy for cells to enter between 3.7 × 10 −2 MPa and 1.0 × 10 −1 MPa. A method for producing a bone regeneration material. ハイドロキシアパタイトの前駆体である燐酸カルシウムと、水溶性高分子または多糖類のなかから選択される少なくとも一種類の化合物とからなる複合体からなり、該複合体を、4.747cm/gと5.820cm/gとのあいだにある細胞が入りやすい径の細孔を形成する平均細孔容積から6.160cm/gの範囲の平均細孔容積の多孔質細孔を有するように加圧して成形体を得ることを特徴とする骨再生材料の製造方法。 It consists of a complex composed of calcium phosphate, which is a precursor of hydroxyapatite, and at least one compound selected from water-soluble polymers or polysaccharides. The complex is 4.747 cm 3 / g and 5 pressurized so as to have a porous pores of an average pore volume in the range from the mean pore volume of 6.160cm 3 / g to form pores in the cell is likely to be caused size in between the .820cm 3 / g A method for producing a bone regeneration material, characterized in that a molded body is obtained. 加圧は遠心分離によるものであることを特徴とする請求項5または6記載の骨再生材料の製造方法。   The method for producing a bone regeneration material according to claim 5 or 6, wherein the pressurization is performed by centrifugation. ハイドロキシアパタイトの前駆体である燐酸カルシウムは、第8燐酸カルシウム、非晶質燐酸カルシウム、第二燐酸カルシウムの少なくとも一種類の化合物であることを特徴とする請求項5乃至7の何れか1記載の骨再生材料の製造方法。   8. The calcium phosphate which is a precursor of hydroxyapatite is at least one compound of eighth calcium phosphate, amorphous calcium phosphate and dicalcium phosphate, according to any one of claims 5 to 7. A method for producing a bone regeneration material.
JP2008106640A 2008-04-16 2008-04-16 Bone regeneration material and its manufacturing method Pending JP2009254547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008106640A JP2009254547A (en) 2008-04-16 2008-04-16 Bone regeneration material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008106640A JP2009254547A (en) 2008-04-16 2008-04-16 Bone regeneration material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009254547A true JP2009254547A (en) 2009-11-05

Family

ID=41382761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106640A Pending JP2009254547A (en) 2008-04-16 2008-04-16 Bone regeneration material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009254547A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093277A2 (en) 2010-10-25 2012-07-12 Vladila Bogdan Constantin Electro-magnetic cellular treatment
WO2012165987A2 (en) 2010-10-25 2012-12-06 Vladila Bogdan Constantin Dental implant and set of medical elements and devices for accelerating the osteointegration thereof
JP5924458B1 (en) * 2014-11-27 2016-05-25 東洋紡株式会社 Porous composite and bone regeneration material
WO2016084413A1 (en) * 2014-11-27 2016-06-02 東洋紡株式会社 Porous composite body, bone regeneration material, and method for producing porous composite body
FR3038896A1 (en) * 2015-07-17 2017-01-20 Centre Nat Rech Scient PROCESS FOR MANUFACTURING POROUS MONOLITHIC MATERIAL
JP2021129975A (en) * 2020-02-20 2021-09-09 国立大学法人東北大学 Bone regeneration material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338602A (en) * 2001-05-14 2002-11-27 National Institute For Materials Science Chitosan-calcium phosphate-organic acid complex and manufacturing method therefor
JP2003020284A (en) * 2001-07-04 2003-01-24 Pentax Corp Method for manufacturing sintered compact and sintered compact
JP2005330640A (en) * 2004-04-22 2005-12-02 Ngk Spark Plug Co Ltd Porous organic-inorganic composite material, method for producing fibrous organic material and method for producing the porous organic-inorganic composite material
WO2008096334A2 (en) * 2007-02-09 2008-08-14 Royal College Of Surgeons In Ireland A collagen/hydroxyapatite composite scaffold, and process for the production thereof
WO2009120513A2 (en) * 2008-03-27 2009-10-01 Warsaw Orthopedic, Inc. Malleable multi-component implants and materials therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338602A (en) * 2001-05-14 2002-11-27 National Institute For Materials Science Chitosan-calcium phosphate-organic acid complex and manufacturing method therefor
JP2003020284A (en) * 2001-07-04 2003-01-24 Pentax Corp Method for manufacturing sintered compact and sintered compact
JP2005330640A (en) * 2004-04-22 2005-12-02 Ngk Spark Plug Co Ltd Porous organic-inorganic composite material, method for producing fibrous organic material and method for producing the porous organic-inorganic composite material
WO2008096334A2 (en) * 2007-02-09 2008-08-14 Royal College Of Surgeons In Ireland A collagen/hydroxyapatite composite scaffold, and process for the production thereof
WO2009120513A2 (en) * 2008-03-27 2009-10-01 Warsaw Orthopedic, Inc. Malleable multi-component implants and materials therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013009278; 歯科材料・器械, Vol.27 No.2 p.193 (2008.03.31) *
JPN6013009282; 上原記念生命科学財団研究報告集, Vol.20 p.359-362 (2006) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093277A2 (en) 2010-10-25 2012-07-12 Vladila Bogdan Constantin Electro-magnetic cellular treatment
WO2012165987A2 (en) 2010-10-25 2012-12-06 Vladila Bogdan Constantin Dental implant and set of medical elements and devices for accelerating the osteointegration thereof
CN106999623A (en) * 2014-11-27 2017-08-01 东洋纺株式会社 The manufacture method of Porous complex, bone-regeneration material and Porous complex
WO2016084413A1 (en) * 2014-11-27 2016-06-02 東洋紡株式会社 Porous composite body, bone regeneration material, and method for producing porous composite body
JP5924458B1 (en) * 2014-11-27 2016-05-25 東洋紡株式会社 Porous composite and bone regeneration material
US10517993B2 (en) 2014-11-27 2019-12-31 Toyobo Co., Ltd. Porous composite, bone regeneration material, and method for producing porous composite
CN115887757A (en) * 2014-11-27 2023-04-04 东洋纺株式会社 Porous composite, bone regeneration material, and method for producing porous composite
FR3038896A1 (en) * 2015-07-17 2017-01-20 Centre Nat Rech Scient PROCESS FOR MANUFACTURING POROUS MONOLITHIC MATERIAL
WO2017013339A1 (en) * 2015-07-17 2017-01-26 Centre National De La Recherche Scientifique Method for producing a porous monolithic material
US20180200409A1 (en) * 2015-07-17 2018-07-19 Centre National De La Recherche Scientifique Method for producing a porous monolithic material
JP2018528888A (en) * 2015-07-17 2018-10-04 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Method for producing porous monolith material
US10500313B2 (en) 2015-07-17 2019-12-10 Centre National De La Recherche Scientifiqu Method for producing a porous monolithic material
JP2021129975A (en) * 2020-02-20 2021-09-09 国立大学法人東北大学 Bone regeneration material

Similar Documents

Publication Publication Date Title
Shuai et al. Graphene oxide reinforced poly (vinyl alcohol): nanocomposite scaffolds for tissue engineering applications
Tripathi et al. A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations
Manjubala et al. Biomimetic mineral-organic composite scaffolds with controlled internal architecture
Kawata et al. Development of porous ceramics with well-controlled porosities and pore sizes from apatite fibers and their evaluations
JP2009254547A (en) Bone regeneration material and its manufacturing method
Khan et al. Engineered regenerated bacterial cellulose scaffolds for application in in vitro tissue regeneration
Qi et al. Alginate/poly (lactic‐co‐glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering
Zhao et al. Preparation and characterization of macroporous chitosan/wollastonite composite scaffolds for tissue engineering
Zhang et al. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds
KR101278098B1 (en) Method for producing porous bioceramics for bone regeneration and porous bioceramics manufactured thereby
Sayed et al. Developing porous diopside/hydroxyapatite bio-composite scaffolds via a combination of freeze-drying and coating process
Han et al. Microstructure, mechanical properties and in vitro bioactivity of akermanite scaffolds fabricated by laser sintering
KR101481988B1 (en) Method for preparing porous ceramic scaffold
Ananth et al. Investigation of biphasic calcium phosphate (BCp)/polyvinylpyrrolidone (PVp)/graphene oxide (GO) composite for biomedical implants
CN103724657A (en) Preparation method of crosslinked chitosan/gelatin composite porous scaffold
Costa et al. Morphological, mechanical, and biocompatibility characterization of macroporous alumina scaffolds coated with calcium phosphate/PVA
Tong et al. Construction and in vitro characterization of three-dimensional silk fibroinchitosan scaffolds
Zhang et al. Highly porous ceramics based on ultralong hydroxyapatite nanowires
WO2005039544A1 (en) Porous calcium phosphate ceramic and process for producing the same
CN103705974B (en) Method for preparing crosslinked chitosan porous scaffold
Premnath et al. Direct patterning of free standing three dimensional silicon nanofibrous network to facilitate multi-dimensional growth of fibroblasts and osteoblasts
CN103705975A (en) Preparation method of silane coupling agent cross-linked hyaluronic acid porous scaffold
Feng et al. Apatite-based microcarriers for bone tissue engineering
CN108478862B (en) Hydroxyapatite ceramic/graphene composite bone tissue replacement material and preparation thereof
KR20180055960A (en) A core-shell structured scaffold for hard tissue regeneration with two crystalline phase and preparing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130627