JP2013067679A - Friction material - Google Patents

Friction material Download PDF

Info

Publication number
JP2013067679A
JP2013067679A JP2011205209A JP2011205209A JP2013067679A JP 2013067679 A JP2013067679 A JP 2013067679A JP 2011205209 A JP2011205209 A JP 2011205209A JP 2011205209 A JP2011205209 A JP 2011205209A JP 2013067679 A JP2013067679 A JP 2013067679A
Authority
JP
Japan
Prior art keywords
friction
friction material
compound
braking
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011205209A
Other languages
Japanese (ja)
Other versions
JP6026731B2 (en
Inventor
Masanori Kato
正規 加藤
Hiroshi Idei
浩 出井
Akinobu Hashimoto
顕宣 橋本
Sei Kurihara
生 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2011205209A priority Critical patent/JP6026731B2/en
Publication of JP2013067679A publication Critical patent/JP2013067679A/en
Application granted granted Critical
Publication of JP6026731B2 publication Critical patent/JP6026731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a friction material whose friction coefficient does not decrease in continuous damping at high temperatures and high loads and which can maintain a stable damping mechanism.SOLUTION: The friction material contains a compound represented by formula MAX, wherein: M is a transition metal; A is at least one selected from groups 12 to 15 elements in the periodic table; X is at least one of C and N; and n is an integer of ≥1.

Description

本発明は、自動車、二輪車、鉄道車両、産業機械等のブレーキパッド、ブレーキライニング、クラッチフェーシング等に用いられる摩擦材に関し、特に、高温及び高負荷環境下においても安定した連続制動を持続しうる摩擦材に関する。   The present invention relates to a friction material used for brake pads, brake linings, clutch facings, etc. for automobiles, motorcycles, railway vehicles, industrial machines, etc., and particularly friction capable of maintaining stable continuous braking even under high temperature and high load environments. Regarding materials.

ブレーキやクラッチ等に使用される摩擦材への性能要求は近年益々高まっており、特に、摩擦材がさらされる環境の高温及び高負荷化が進む中、安定した制動機能を発揮することが求められている。   In recent years, performance requirements for friction materials used for brakes, clutches, etc. have been increasing, and in particular, a stable braking function is required to be exhibited as the environment where the friction materials are exposed to higher temperatures and higher loads. ing.

特許文献1には、摩擦調整材として、潤滑成分を内包した研削成分、具体的には黒鉛を内包したシリカやアルミナを含有するブレーキライニングが記載されており、潤滑成分が研削性を兼ね備えているため、摩擦係数が制動開始時には大きく停止間際には小さくなる結果、鳴きの発生を抑えながらブレーキの効きを高めている。   Patent Document 1 describes a brake lining containing a grinding component containing a lubricating component, specifically, silica or alumina containing graphite as a friction modifier, and the lubricating component also has grindability. As a result, the friction coefficient is large at the start of braking and small at the stop, so that the braking effect is enhanced while suppressing the occurrence of squeal.

特開2005−9620号公報JP 2005-9620 A

しかしながら、特許文献1に記載のブレーキライニングでは、1回の制動試験における摩擦係数の変化については確認されているが、高温及び高負荷環境下における連続制動では潤滑成分が早期に露呈し消耗することが考えられ、潤滑性と研削性のバランスが崩れる結果、摩擦係数が安定しない懸念がある。   However, in the brake lining described in Patent Document 1, it has been confirmed that the coefficient of friction changes in one braking test, but in continuous braking under a high temperature and high load environment, the lubricating component is exposed and consumed early. As a result, there is a concern that the coefficient of friction is not stable as a result of the loss of the balance between lubricity and grindability.

本発明は上記課題を解決するものであり、高温及び高負荷下における連続制動でも摩擦係数が低下せず安定した制動機能を持続しうる摩擦材を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a friction material capable of maintaining a stable braking function without reducing the friction coefficient even during continuous braking under high temperature and high load.

本発明者らは、金属特性とセラミックス特性を併せ持つ特定の化合物を摩擦調整材として用いることで上記課題を解決できることを見出した。すなわち本発明は以下のとおりのものである。
〔1〕 式Mn+1AXで表される化合物を含有する摩擦材。
(式中、Mは遷移金属であり、Aは周期表第12〜15族元素から選ばれる少なくとも1種であり、XはC及びNの少なくとも一方であり、nは1以上の整数である)
〔2〕 式Mn+1AXで表される化合物が、Ti−Si−C系化合物、Ti−Al−C系化合物、Ti−Al−N系化合物、及びTi−Si−N系化合物からなる群より選ばれる1種以上である、上記〔1〕に記載の摩擦材。
〔3〕 式Mn+1AXで表される化合物がTiSiCである、上記〔1〕または〔2〕に記載の摩擦材。
〔4〕 TiSiCの平均粒径が0.1〜100μmである上記〔3〕に記載の摩擦材。
The present inventors have found that the above problem can be solved by using a specific compound having both metal characteristics and ceramic characteristics as a friction modifier. That is, the present invention is as follows.
[1] A friction material containing a compound represented by the formula M n + 1 AX n .
(In the formula, M is a transition metal, A is at least one selected from Group 12-15 elements of the periodic table, X is at least one of C and N, and n is an integer of 1 or more)
[2] A group in which the compound represented by the formula M n + 1 AX n is composed of a Ti—Si—C compound, a Ti—Al—C compound, a Ti—Al—N compound, and a Ti—Si—N compound. The friction material according to [1], which is one or more selected from the above.
[3] The friction material according to [1] or [2], wherein the compound represented by the formula M n + 1 AX n is Ti 3 SiC 2 .
[4] The friction material according to [3], wherein the average particle diameter of Ti 3 SiC 2 is 0.1 to 100 μm.

本発明によれば、金属特性とセラミックス特性を併せ持つ化合物が潤滑性と研削性を兼ね備え、さらに耐熱性を有するため、高温及び高負荷環境下における連続ブレーキ制動においても摩擦係数の低下が小さく、安定した制動を持続することができる。   According to the present invention, a compound having both metal properties and ceramic properties has both lubricity and grindability, and also has heat resistance, and therefore, the friction coefficient is hardly reduced even in continuous brake braking under high temperature and high load environment, and stable. Braking can be continued.

本発明の摩擦材に含まれる式Mn+1AXで表される化合物(以下「MAX化合物」とも称する)は、セラミックスの性質と金属の性質の両方を併せ持つ化合物として知られている(特表2009−526725号公報参照)。本発明ではかかる化合物の焼結体粉体を摩擦調整材として用いる。 The compound represented by the formula M n + 1 AX n (hereinafter, also referred to as “MAX compound”) contained in the friction material of the present invention is known as a compound having both ceramic properties and metal properties (see Japanese translation 2009). No. 526725). In the present invention, a sintered powder of such a compound is used as a friction modifier.

上記式において、Mは遷移金属であり、好ましくはSc、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、またはWである。Aは周期表第12〜15族元素から選ばれる少なくとも1種であり、好ましくはAl、Si、P、S、Ga、Ge、As、Cd、In、Sn、Tl、またはPbである。XはC及びNの少なくとも一方である。nは1以上の整数であり、好ましくは1〜3の整数である。
上記M、A及びXから組合せられるMAX化合物の好ましい例としては、Ti−Si−C系化合物、Ti−Al−C系化合物、Ti−Al−N系化合物、及びTi−Si−N系化合物が挙げられ、中でもTi−Si−C系化合物が好ましい。Ti−Si−C系化合物としてはTiSiCが好ましい。また、これらの1種を単独で又は2種以上を組み合わせて用いることができる。
In the above formula, M is a transition metal, preferably Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, or W. A is at least one selected from Group 12 to 15 elements of the periodic table, preferably Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl, or Pb. X is at least one of C and N. n is an integer greater than or equal to 1, Preferably it is an integer of 1-3.
Preferred examples of the MAX compound combined from M, A and X include Ti—Si—C based compounds, Ti—Al—C based compounds, Ti—Al—N based compounds, and Ti—Si—N based compounds. Among them, Ti-Si-C compounds are preferable. As the Ti—Si—C compound, Ti 3 SiC 2 is preferable. Moreover, these 1 type can be used individually or in combination of 2 or more types.

MAX化合物の焼結体粉末は、公知の方法により得ることができる(例えば特開2006−298762号公報参照)。すなわち、M、A及びXの前駆体となる金属粉末及び無機化合物粉末を原料として、これらを混合し、真空又は不活性ガス中で加熱焼結することにより得ることができる。
原料粉末の混合方法は特に限定されないが、例えば、原料粉末をエタノール等の分散媒中で、ボールミル等を用いて所定時間粉砕混合する方法が挙げられる。その後分散媒は乾燥除去する。
焼結は、真空又はアルゴン等の不活性ガス中において実施し、焼結温度は1200〜1400℃が好ましい。かかる温度範囲とすることで目的の焼結体粉末を得ることができる。また焼結温度での保持時間は2〜5時間が好ましい。かかる範囲とすることで目的の焼結体粉末を得ることができる。
得られた焼結体粉末を、必要に応じて、目的の粒径となるまで乳鉢等を用いて粉砕する。
このようにしてMAX化合物の焼結体粉末を得ることができる。
The sintered powder of the MAX compound can be obtained by a known method (for example, see JP-A-2006-298762). That is, it can be obtained by using metal powder and inorganic compound powder as precursors of M, A and X as raw materials, mixing them, and heating and sintering in a vacuum or an inert gas.
The mixing method of the raw material powder is not particularly limited, and examples thereof include a method in which the raw material powder is pulverized and mixed for a predetermined time using a ball mill or the like in a dispersion medium such as ethanol. Thereafter, the dispersion medium is removed by drying.
Sintering is carried out in an inert gas such as vacuum or argon, and the sintering temperature is preferably 1200 to 1400 ° C. By setting the temperature within this range, a desired sintered powder can be obtained. The holding time at the sintering temperature is preferably 2 to 5 hours. By setting it within such a range, a desired sintered powder can be obtained.
The obtained sintered powder is pulverized as necessary using a mortar or the like until a desired particle size is obtained.
In this way, a sintered powder of the MAX compound can be obtained.

また、MAX化合物の平均粒径は、0.1〜100μmであることが好ましいが、詳細にはMAX化合物の種類や摩擦材の種類に応じて設定することが好ましい。MAX化合物の粒径は、粉砕・分級によって制御することができる。なお、平均粒径はレーザー回折・散乱法による粒度分布測定に基づき規定される値(メジアン径)である。   Further, the average particle size of the MAX compound is preferably 0.1 to 100 μm, but in detail, it is preferably set according to the type of the MAX compound and the type of the friction material. The particle size of the MAX compound can be controlled by pulverization / classification. The average particle diameter is a value (median diameter) defined based on particle size distribution measurement by a laser diffraction / scattering method.

本発明のMAX化合物を含む摩擦材の種類は限定されず、例えば非アスベスト系摩擦材(Non−Asbests−Organic摩擦材、以下「NAO材」とも称する)、ロースチール摩擦材、セミメタリック摩擦材、焼結摩擦材、セラミックス摩擦材等のいずれであってもよい。したがって本発明で用いられる基材は上記摩擦材の種類に応じて通常用いられるものを適宜用いることができる。   The type of friction material containing the MAX compound of the present invention is not limited. For example, non-asbestos-based friction material (Non-Asbests-Organic friction material, hereinafter also referred to as “NAO material”), low steel friction material, semi-metallic friction material, Any of a sintered friction material, a ceramic friction material, etc. may be sufficient. Therefore, as the base material used in the present invention, those usually used in accordance with the type of the friction material can be appropriately used.

以下、本発明の摩擦材がNAO材である態様について説明するが、本発明はこれに限定されない。
NAO材としては、少なくとも基材、摩擦調整材及び結合材を含む摩擦材であることが好ましい。摩擦材には通常、摩擦材を補強する作用を有する基材、摩擦材に含まれる材料を一体化させるため必要に応じて配合される結合材とともに、摩擦性能を調整するための種々の固体粉体材料が用いられており、場合によって、摩擦調整材、固体潤滑材、充填材等の名称で呼ばれている。本発明では、これらを特に区別することなく、基材及び結合材以外の、摩擦性能を調整する固体粉体材料を総称して「摩擦調整材」と称する。NAO材において、上記MAX化合物は摩擦調整材として機能する。
Hereinafter, although the aspect whose friction material of this invention is a NAO material is demonstrated, this invention is not limited to this.
The NAO material is preferably a friction material including at least a base material, a friction adjusting material, and a binding material. The friction material usually includes a base material that has an effect of reinforcing the friction material, a binder that is blended as necessary to integrate the materials contained in the friction material, and various solid powders for adjusting the friction performance. Body materials are used and are sometimes called by names such as friction modifiers, solid lubricants, fillers, and the like. In the present invention, solid powder materials that adjust the friction performance other than the base material and the binding material are collectively referred to as “friction adjusting materials” without particularly distinguishing them. In the NAO material, the MAX compound functions as a friction modifier.

NAO材における基材としては、芳香族ポリアミド繊維、耐炎化アクリル繊維等の有機繊維;銅繊維、真鍮繊維等の金属繊維;チタン酸カリウム繊維、Al−SiO系セラミック繊維、生体溶解性セラミック繊維、ガラス繊維、炭素繊維等の無機繊維が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。繊維基材の長さは100〜2500μm、直径は3〜600μmであることが好ましい。
繊維基材の配合量は、摩擦材において、好ましくは1〜50体積%、より好ましくは5〜45体積%である。
As a base material in the NAO material, organic fibers such as aromatic polyamide fibers and flame-resistant acrylic fibers; metal fibers such as copper fibers and brass fibers; potassium titanate fibers, Al 2 O 3 —SiO 2 based ceramic fibers, biological dissolution Inorganic fibers, such as a porous ceramic fiber, a glass fiber, and a carbon fiber, can be used alone or in combination of two or more. The length of the fiber substrate is preferably 100 to 2500 μm and the diameter is preferably 3 to 600 μm.
The blending amount of the fiber base material is preferably 1 to 50% by volume, more preferably 5 to 45% by volume in the friction material.

MAX化合物の摩擦材(NAO材)における含有量は、1〜10体積%が好ましく、2〜6体積%がさらに好ましい。含有量がかかる範囲であれば潤滑性と研削性のバランスをとることができる。   The content of the MAX compound in the friction material (NAO material) is preferably 1 to 10% by volume, and more preferably 2 to 6% by volume. If the content is within this range, the lubricity and grindability can be balanced.

MAX化合物の摩擦材(NAO材)における平均粒径は、0.1〜45μmが好ましく、0.1〜30μmがより好ましい。平均粒径がかかる範囲であれば潤滑性と研削性のバランスをとることができる。   The average particle diameter of the friction material (NAO material) of the MAX compound is preferably 0.1 to 45 μm, and more preferably 0.1 to 30 μm. If the average particle diameter is within such a range, the lubricity and grindability can be balanced.

本発明の摩擦材(NAO材)は結合材を含有することが好ましく、通常摩擦材に用いられる公知のものを使用することができる。例えば、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ポリイミド樹脂、エポキシ変性フェノール樹脂、オイル変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂、カシュー変性フェノール樹脂等の各種変性フェノール樹脂、NBR等の熱硬化性樹脂が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。
結合材の配合量は特に限定的ではないが、摩擦材全体において、好ましくは10〜20体積%、より好ましくは14〜20体積%である。
The friction material (NAO material) of the present invention preferably contains a binder, and known materials generally used for friction materials can be used. Examples include phenol resins, melamine resins, epoxy resins, polyimide resins, epoxy-modified phenol resins, oil-modified phenol resins, alkylbenzene-modified phenol resins, various modified phenol resins such as cashew-modified phenol resins, and thermosetting resins such as NBR. These 1 type can be used individually or in combination of 2 or more types.
The blending amount of the binder is not particularly limited, but is preferably 10 to 20% by volume, more preferably 14 to 20% by volume in the entire friction material.

本発明では、摩擦作用を与え且つその摩擦性能を調整するための摩擦調整材として、MAX化合物以外に、種々の目的に応じて種々の摩擦調整材を用いることができ、通常摩擦材に用いられる、研削材、充填材、固体潤滑材等と呼ばれる種々の固体粉末材料を使用することができる。   In the present invention, various friction modifiers can be used according to various purposes other than the MAX compound as a friction modifier for imparting a frictional action and adjusting the friction performance, and are usually used for friction materials. Various solid powder materials called abrasives, fillers, solid lubricants and the like can be used.

例えば、炭酸カルシウム、硫酸バリウム、水酸化カルシウム、硫化鉄、硫化銅、酸化ケイ素、金属粉末(銅、アルミニウム、青銅、亜鉛等)、バーミキュライト、マイカ等の無機充填材、アルミナ、マグネシア、ジルコニア、酸化クロム、クロマイト等の研削材、各種ゴム粉末(ゴムダスト、タイヤ粉末等)、カシューダスト、メラミンダスト等の有機充填材、黒鉛、二硫化モリブデン等の固体潤滑材等を挙げることができる。これらは、製品に要求される摩擦特性、例えば、摩擦係数、耐摩耗性、振動特性、鳴き特性等に応じて、単独でまたは2種以上を組み合わせて配合することができる。
これらの摩擦調整材の配合量は、本発明の上記配合成分も含めて、摩擦材全体において、好ましくは40〜60体積%、より好ましくは45〜60体積%である。
For example, calcium carbonate, barium sulfate, calcium hydroxide, iron sulfide, copper sulfide, silicon oxide, inorganic powders such as metal powder (copper, aluminum, bronze, zinc, etc.), vermiculite, mica, alumina, magnesia, zirconia, oxidation Examples thereof include abrasives such as chromium and chromite, various rubber powders (rubber dust, tire powder, etc.), organic fillers such as cashew dust and melamine dust, and solid lubricants such as graphite and molybdenum disulfide. These can be blended singly or in combination of two or more according to the friction characteristics required for the product, for example, the coefficient of friction, wear resistance, vibration characteristics, squeal characteristics, and the like.
The blending amount of these friction modifiers is preferably 40 to 60% by volume, more preferably 45 to 60% by volume in the entire friction material including the above blending components of the present invention.

本発明の摩擦材を製造するには、例えばNAO材であれば、上記の基材、摩擦調整材および結合材の所定量を配合し、その配合物を通常の製法に従って予備成形し、熱成形、加熱、研摩等の処理を施すことにより製造することができる。   In order to manufacture the friction material of the present invention, for example, in the case of a NAO material, predetermined amounts of the above-mentioned base material, friction modifier and binding material are blended, and the blend is preformed according to a normal manufacturing method, and thermoforming is performed. It can be produced by subjecting it to a treatment such as heating and polishing.

上記摩擦材を備えたブレーキパッドは、板金プレスにより所定の形状に成形され、脱脂処理およびプライマー処理が施され、そして接着剤が塗布されたプレッシャプレートと、摩擦材の予備成形体とを、熱成形工程において成形温度140〜170℃、成形圧力30〜80MPaで2〜10分間熱成形して両部材を一体に固着し、得られた成形品を150〜300℃の温度で1〜4時間アフタキュアを行い、最終的に仕上げ処理を施す工程により製造することができる。   The brake pad provided with the friction material is molded into a predetermined shape by a sheet metal press, degreased and primed, and a pressure plate coated with an adhesive and a friction material preform are heated. In the molding process, thermoforming is performed for 2 to 10 minutes at a molding temperature of 140 to 170 ° C. and a molding pressure of 30 to 80 MPa, and both members are fixed together, and the resulting molded product is aftercured for 1 to 4 hours at a temperature of 150 to 300 ° C. It can manufacture by the process of performing and finally finishing.

以下に、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the following examples.

<チタンシリコンカーバイド(TiSiC)の作製>
出発原料として、チタン(純度99.9%、Powder 45μmPass)、ケイ素(純度98%、ca.5μm)及び炭化チタン(純度99%、Powder 2−5μm)を用いた(いずれも株式会社高純度化学研究所製)。
チタン、ケイ素及び炭化チタンを2:2:3(モル比)で混合した粉末100gとエチルアルコール100mLとを、遊星型ボールミル(フリッチュ製Polversette6)を用いて、200rpmで3時間粉砕混合した。その後真空オーブン(Advantec製DRV420DA)にて、70℃、24時間乾燥させ、無機材焼結炉(ネムス製NP−10G)にてアルゴンガス雰囲気中にて1400℃まで3時間で昇温させ、1400℃で4時間保持し、焼結した。得られた焼結体粉末を45μm以下になるまで乳鉢で粉砕し、分級し、目的とする平均粒径20μmのチタンシリコンカーバイドを得た。
作製したサンプルは、X線解析装置(島津製作所製、XRD−6000)の分析により、TiSiCが形成されていることを確認した。
また、平均粒径はレーザー回折式粒度分布測定装置(島津製作所製、SALD−2000A)により測定した。
<Production of Titanium Silicon Carbide (Ti 3 SiC 2 )>
Titanium (purity 99.9%, Powder 45 μmPass), silicon (purity 98%, ca. 5 μm) and titanium carbide (purity 99%, Powder 2-5 μm) were used as starting materials (both high purity chemical Co., Ltd.) Manufactured by Institute).
100 g of powder obtained by mixing titanium, silicon and titanium carbide in a 2: 2: 3 (molar ratio) and 100 mL of ethyl alcohol were pulverized and mixed at 200 rpm for 3 hours using a planetary ball mill (Polversette 6 manufactured by Fritsch). Then, it is dried in a vacuum oven (DRV420DA manufactured by Advantec) at 70 ° C. for 24 hours, and heated up to 1400 ° C. in an argon gas atmosphere in an inorganic material sintering furnace (NP-10G manufactured by Nemus) in 3 hours. It was kept at 4 ° C. for 4 hours and sintered. The obtained sintered body powder was pulverized in a mortar until it became 45 μm or less, and classified to obtain a target titanium silicon carbide having an average particle diameter of 20 μm.
The produced sample was confirmed to have Ti 3 SiC 2 formed by analysis with an X-ray analyzer (manufactured by Shimadzu Corporation, XRD-6000).
Moreover, the average particle diameter was measured with the laser diffraction type particle size distribution measuring apparatus (the Shimadzu Corporation make, SALD-2000A).

<摩擦材の作製>
表1に示す割合で各材料を配合し、摩擦材(NAO材)を得た。
<Production of friction material>
Each material was blended at a ratio shown in Table 1 to obtain a friction material (NAO material).

<摩耗試験>
実施例及び比較例の各摩擦材について、JASO C403に準拠し、ダイナモ試験機を用いて高温・高負荷における連続200回制動の摩擦試験を実施した。制動回数毎に得られる摩擦係数の平均値を「摩擦係数」と称し、200回制動の平均の摩擦係数をavμ、200回制動内で最小の摩擦係数をminμ、200回制動内で最大の摩擦係数をmaxμとそれぞれ称して算出した。また、試験前後の摩擦材の厚みから摩擦材摩耗量を測定した。
ダイナモ試験の条件を表2に示し、試験結果を表3に示す。
<Abrasion test>
About each friction material of an Example and a comparative example, based on JASO C403, the friction test of the continuous 200 times braking in high temperature and a high load was implemented using the dynamo testing machine. The average value of the friction coefficient obtained for each number of times of braking is referred to as “friction coefficient”, the average friction coefficient of 200 times braking is avμ, the minimum friction coefficient within 200 times braking is minμ, and the maximum friction is within 200 times braking. The coefficient was calculated as maxμ. Further, the friction material wear amount was measured from the thickness of the friction material before and after the test.
Table 2 shows the conditions of the dynamo test, and Table 3 shows the test results.

Figure 2013067679
Figure 2013067679

Figure 2013067679
Figure 2013067679

Figure 2013067679
Figure 2013067679

表3より、従来のように潤滑成分(黒鉛)と研削成分(アルミナ)を併用した比較例1の摩擦材に対し、潤滑性と研削性を併せ持つMAX化合物を使用した実施例1〜3の摩擦材は、摩擦係数の低下(avμ−minμ)が小さく、摩擦係数のばらつき(maxμ−minμ)が小さいことから、安定した制動を持続できることが分かる。   From Table 3, the friction of Examples 1 to 3 using a MAX compound having both lubricity and grindability as compared with the friction material of Comparative Example 1 in which a lubricating component (graphite) and a grinding component (alumina) are used in combination as in the past. It can be seen that the material can maintain stable braking because the friction coefficient decrease (avμ−minμ) is small and the variation in friction coefficient (maxμ−minμ) is small.

本発明の摩擦材は、高温・高負荷条件下における連続制動において摩擦係数の低下が小さく、安定した制動を持続することができ、自動車、二輪車、鉄道車両、各種産業機械等のディスクパッド、ブレーキライニング、クラッチフェーシング等に好適に用いることができる。   The friction material of the present invention has a small decrease in the coefficient of friction in continuous braking under high temperature and high load conditions, and can maintain stable braking. Disk pads and brakes for automobiles, motorcycles, railway vehicles, various industrial machines, etc. It can be suitably used for lining, clutch facing and the like.

Claims (4)

式Mn+1AXで表される化合物を含有する摩擦材。
(式中、Mは遷移金属であり、Aは周期表第12〜15族元素から選ばれる少なくとも1種であり、XはC及びNの少なくとも一方であり、nは1以上の整数である)
A friction material containing a compound represented by the formula M n + 1 AX n .
(In the formula, M is a transition metal, A is at least one selected from Group 12-15 elements of the periodic table, X is at least one of C and N, and n is an integer of 1 or more)
式Mn+1AXで表される化合物が、Ti−Si−C系化合物、Ti−Al−C系化合物、Ti−Al−N系化合物、及びTi−Si−N系化合物からなる群より選ばれる1種以上である、請求項1に記載の摩擦材。 The compound represented by the formula M n + 1 AX n is selected from the group consisting of a Ti—Si—C compound, a Ti—Al—C compound, a Ti—Al—N compound, and a Ti—Si—N compound. The friction material according to claim 1, wherein the friction material is one or more. 式Mn+1AXで表される化合物がTiSiCである、請求項1または2に記載の摩擦材。 The friction material according to claim 1 or 2, wherein the compound represented by the formula M n + 1 AX n is Ti 3 SiC 2 . TiSiCの平均粒径が0.1〜100μmである請求項3に記載の摩擦材。 The friction material according to claim 3, wherein the average particle size of Ti 3 SiC 2 is 0.1 to 100 µm.
JP2011205209A 2011-09-20 2011-09-20 Friction material Active JP6026731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205209A JP6026731B2 (en) 2011-09-20 2011-09-20 Friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205209A JP6026731B2 (en) 2011-09-20 2011-09-20 Friction material

Publications (2)

Publication Number Publication Date
JP2013067679A true JP2013067679A (en) 2013-04-18
JP6026731B2 JP6026731B2 (en) 2016-11-16

Family

ID=48473755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205209A Active JP6026731B2 (en) 2011-09-20 2011-09-20 Friction material

Country Status (1)

Country Link
JP (1) JP6026731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011404A (en) * 2014-06-30 2016-01-21 日立オートモティブシステムズ株式会社 Brake friction material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524167A (en) * 1997-05-05 2001-11-27 ザ ダウ ケミカル カンパニー Brake or crunch component with ceramic-metal composite friction material
JP2005281084A (en) * 2004-03-30 2005-10-13 Tungaloy Corp Sintered compact and manufacturing method therefor
JP2006298762A (en) * 2006-08-10 2006-11-02 National Institute Of Advanced Industrial & Technology Method for producing metallic ceramic powder
US20070172659A1 (en) * 2006-01-26 2007-07-26 Shao Richard L Anti-oxidation coating for carbon composites
JP2009073908A (en) * 2007-09-20 2009-04-09 Akebono Brake Ind Co Ltd Friction material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524167A (en) * 1997-05-05 2001-11-27 ザ ダウ ケミカル カンパニー Brake or crunch component with ceramic-metal composite friction material
JP2005281084A (en) * 2004-03-30 2005-10-13 Tungaloy Corp Sintered compact and manufacturing method therefor
US20070172659A1 (en) * 2006-01-26 2007-07-26 Shao Richard L Anti-oxidation coating for carbon composites
JP2006298762A (en) * 2006-08-10 2006-11-02 National Institute Of Advanced Industrial & Technology Method for producing metallic ceramic powder
JP2009073908A (en) * 2007-09-20 2009-04-09 Akebono Brake Ind Co Ltd Friction material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011404A (en) * 2014-06-30 2016-01-21 日立オートモティブシステムズ株式会社 Brake friction material

Also Published As

Publication number Publication date
JP6026731B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5702090B2 (en) Friction material
JP6037918B2 (en) Friction material
JP4040552B2 (en) Friction material
JP6290598B2 (en) Friction material composition and friction material
EP2937397B1 (en) Friction material
JP2007326999A (en) Friction material
JP6061592B2 (en) Friction material and friction material manufacturing method
JP6652410B2 (en) Friction material
WO2010098470A1 (en) Friction material
WO2012066964A1 (en) Non-asbestos friction-material composition, and friction material and friction member using same
JP2009155439A (en) Friction material
JP7029392B2 (en) Fibers for tribology applications
JP6026731B2 (en) Friction material
JP2009102583A (en) Brake friction material
JP2011236332A (en) Friction material
JP6596956B2 (en) Friction material composition, and friction material and friction member using the same
JP2008174705A (en) Friction material composition and friction material using the same
JP6439914B2 (en) Friction material
JP6254424B2 (en) Friction material
JP2009209288A (en) Friction material
JP6570167B2 (en) Friction material composition, and friction material and friction member using the same
JP2007113642A (en) Friction couple and friction material
WO2021125143A1 (en) Friction material
JP2009298847A (en) Friction material
JP6482294B2 (en) Friction material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161013

R150 Certificate of patent or registration of utility model

Ref document number: 6026731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250