JP2013062115A - Ultraviolet ray transmitting xenon discharge tube and luminaire using the same - Google Patents

Ultraviolet ray transmitting xenon discharge tube and luminaire using the same Download PDF

Info

Publication number
JP2013062115A
JP2013062115A JP2011199305A JP2011199305A JP2013062115A JP 2013062115 A JP2013062115 A JP 2013062115A JP 2011199305 A JP2011199305 A JP 2011199305A JP 2011199305 A JP2011199305 A JP 2011199305A JP 2013062115 A JP2013062115 A JP 2013062115A
Authority
JP
Japan
Prior art keywords
thermal expansion
expansion coefficient
discharge tube
ultraviolet
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011199305A
Other languages
Japanese (ja)
Other versions
JP5895120B2 (en
Inventor
Tatsuro Ishii
達朗 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011199305A priority Critical patent/JP5895120B2/en
Publication of JP2013062115A publication Critical patent/JP2013062115A/en
Application granted granted Critical
Publication of JP5895120B2 publication Critical patent/JP5895120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an ultraviolet ray transmitting xenon discharge tube which is inexpensive and excels in durability as an ultraviolet ray source capable of generating ultraviolet rays.SOLUTION: An ultraviolet ray transmitting xenon discharge tube 1 of the present invention has at opposite ends of a package 2 hermetically sealed electrode pins 4 constituting discharge electrodes A and C via bead glass 3 while the inside of the package is filled with xenon gas 5. The discharge tube is composed using borosilicate glass whose thermal expansion coefficient is 3 to 3.3 (10K) for the package, tungsten whose thermal expansion coefficient is 4.4(10K) for the electrode pins 4, and borosilicate glass whose thermal expansion coefficient is 3.8 to 4.1 (10K), or midway between the thermal expansion coefficient of the package and that of the tungsten, for the bead glass. It is preferable that the thermal expansion coefficient of the bead glass be set in a such a way that a difference in thermal expansion coefficient between the bead glass and the package is larger than a difference in thermal expansion coefficient between the bead glass and a metal electrode.

Description

本発明は、主として、両端に放電電極が気密封着された外囲器内にキセノンガスを封入し、この封入キセノンガスを閃光発光させることにより発生する紫外線を外部に射出できる紫外線透過キセノン放電管および前記紫外線透過キセノン放電管を用いた照明装置に関する。   The present invention mainly includes an ultraviolet transmission xenon discharge tube in which xenon gas is enclosed in an envelope having discharge electrodes hermetically sealed at both ends, and ultraviolet rays generated by flashing the enclosed xenon gas can be emitted to the outside. The present invention also relates to an illuminating device using the ultraviolet transmitting xenon discharge tube.

紫外線は、多種多様な分野・業界で利用され、例えば紫外線硬化樹脂と組合された印刷分野や各種の殺菌・除菌分野、あるいは治療分野等で利用されていることは周知である。
また、紫外線を発生する紫外線源についても同様に周知であり、紫外線を連続して出力できる水銀ランプや蛍光灯、あるいは閃光発光動作により少ない消費エネルギーで瞬間的に強力な紫外線を出力できる紫外線透過キセノン放電管などが一般的である。
ところで上記の水銀ランプや紫外線透過キセノン放電管の構成についてみてみると、連続、瞬間の違いはあるもののいわゆる放電発光により発生する紫外線をランプや放電管の外部に導出する必要があり、このため放電発光の空間を形成するランプや放電管の器となる外囲器としては紫外線透過機能に優れた石英ガラスが採用されている。
この石英ガラスは、周知のように主に二酸化ケイ素から形成されるガラスであり、上記のように紫外線透過機能に優れている他、熱膨張係数が極めて小さく高耐熱衝撃性を有している。
It is well known that ultraviolet rays are used in a wide variety of fields and industries, for example, in printing fields combined with ultraviolet curable resins, various sterilization / disinfection fields, and therapeutic fields.
Similarly, ultraviolet sources that generate ultraviolet rays are also well known, and mercury-transmitted lamps and fluorescent lamps that can continuously output ultraviolet rays, or ultraviolet-transmissive xenon that can instantaneously output powerful ultraviolet rays with less energy consumption by flashing operation. A discharge tube or the like is common.
By the way, when we look at the configuration of the above mercury lamp and ultraviolet transmission xenon discharge tube, it is necessary to derive ultraviolet rays generated by so-called discharge light emission outside the lamp or discharge tube, although there is a difference between continuous and instantaneous. Quartz glass having an excellent ultraviolet transmission function is used as an envelope serving as a lamp or a discharge tube for forming a light emission space.
This quartz glass is a glass mainly formed of silicon dioxide as is well known, and has an excellent ultraviolet ray transmission function as described above, and has a very low thermal expansion coefficient and high thermal shock resistance.

また、外囲器である石英ガラスの両端に気密封着される放電電極は、例えば紫外線透過キセノン放電管の場合、電極ピンと焼結電極とからなるカソード電極と電極ピン自体にて形成されるアノード電極とから構成され、さらに気密封着作業が通常は加熱工程にて実現されることから、電極ピンとしては石英ガラスの融点約2000℃より十分に高い融点約3200℃を有するタングステンが採用されている。   In addition, for example, in the case of an ultraviolet transmitting xenon discharge tube, the discharge electrode hermetically sealed at both ends of the quartz glass as the envelope is an anode formed by a cathode electrode composed of an electrode pin and a sintered electrode, and the electrode pin itself. As the electrode pins are made of tungsten having a melting point of about 3200 ° C., which is sufficiently higher than the melting point of quartz glass, about 2000 ° C. Yes.

しかしながら、上記石英ガラスとタングステンの熱膨張係数を見てみると、石英ガラスのそれは約0.55(10−6−1)、タングステンのそれは4.4〜4.5(10−6−1)と著しく異なり、両者を、石英ガラスを加熱溶融することにより直接溶着しようとすると先の熱膨張係数の差により石英ガラスに大きな歪が発生し、クラックが生じてしまうことが知られており、このため例えば石英ガラス管の軸方向もしくは径方向に熱膨張係数が順次変化するように複数の熱膨張係数の異なるガラスを配置して構成される中間ガラス体を予め準備し、この中間ガラス体を介して石英ガラスとタングステンを間接的に気密封着する方法などが採用されている。
具体例を述べると、石英ガラスとの熱膨張係数の差が1(10−6−1)未満に制御された第1のガラス材料と、タングステンからなる電極ピンとの熱膨張係数の差が1(10−6−1)未満に制御された第2のガラス材料との間に、さらにこの第1、第2のガラス材料の夫々との熱膨張係数差が1(10−6−1)未満に制御された第3のガラス材料を設けて中間ガラス体を形成し、石英ガラス及び電極ピンを、この中間ガラス体を形成する第1、第2のガラス材料の夫々と加熱溶着することにより石英ガラスと電極ピンの両者の気密封着を間接的に実現している。(例えば、特開2010−232126号公報)
さらに、例えば特開2011−49094号公報に開示されているような電極ピンの一部と溶接した金属箔を、その溶接部を含んで石英ガラスにて直接圧着するピンチシール方法も周知である。
However, looking at the thermal expansion coefficients of the quartz glass and tungsten, it is about 0.55 (10 −6 K −1 ) for quartz glass and 4.4 to 4.5 (10 −6 K ) for tungsten. It is known that, unlike 1 ), if the two are directly welded by heating and melting the quartz glass, a large strain is generated in the quartz glass due to the difference in thermal expansion coefficient, and cracks are generated. Therefore, for example, an intermediate glass body constituted by arranging a plurality of glasses having different thermal expansion coefficients in advance so that the thermal expansion coefficient sequentially changes in the axial direction or radial direction of the quartz glass tube is prepared in advance. For example, a method of indirectly sealingly sealing quartz glass and tungsten through a metal is employed.
To describe a specific example, the difference in thermal expansion coefficient between the first glass material in which the difference in thermal expansion coefficient from quartz glass is controlled to be less than 1 (10 −6 K −1 ) and the electrode pin made of tungsten is 1 Between the second glass material controlled to be less than (10 −6 K −1 ), the difference in thermal expansion coefficient between each of the first and second glass materials is 1 (10 −6 K −1). ) A third glass material controlled to be less than is provided to form an intermediate glass body, and the quartz glass and the electrode pins are heat-welded to each of the first and second glass materials forming the intermediate glass body. As a result, both the quartz glass and the electrode pin are indirectly hermetically sealed. (For example, JP 2010-232126 A)
Further, for example, a pinch seal method in which a metal foil welded to a part of an electrode pin as disclosed in Japanese Patent Application Laid-Open No. 2011-49094 is directly pressure-bonded with quartz glass including the welded portion is also well known.

一方で、紫外線透過率の高い、かつタングステンに近い熱膨張係数を備えたガラスも例えば特開2011−32162号公報に提案されている。
特開2011−32162号公報には、低減されたホウ素含有量を有し、熱膨張係数が特に好ましくは3.8〜4.5(10−6−1)の範囲にある紫外線透過ランプへの使用が特に好ましい高紫外線透過性ホウケイ酸ガラスが開示されている。
On the other hand, a glass having a high ultraviolet transmittance and a thermal expansion coefficient close to that of tungsten has been proposed in, for example, Japanese Patent Application Laid-Open No. 2011-32162.
Japanese Patent Application Laid-Open No. 2011-32162 discloses an ultraviolet transmissive lamp having a reduced boron content and a thermal expansion coefficient particularly preferably in the range of 3.8 to 4.5 (10 −6 K −1 ). High UV transmissive borosilicate glass is disclosed which is particularly preferred for use in

特開2010−232126号公報JP 2010-232126 A 特開2011−49094号公報JP 2011-49094 A 特開2011−32162号公報JP 2011-32162 A

上記のように、紫外線透過キセノン放電管を得る場合、通常は、放電発光の空間を形成するランプや放電管の器となる外囲器には紫外線透過機能に優れた石英ガラスが採用されることから、放電電極との気密封着を実現するために中間ガラス体もしくは金属箔等を用いる複雑な工程を必要とし、紫外線透過キセノン放電管のコストアップを招いていた。   As described above, when obtaining an ultraviolet transmissive xenon discharge tube, usually, quartz glass having an excellent ultraviolet transmissive function is adopted for the envelope forming the lamp and discharge tube forming the discharge light emission space. Therefore, in order to achieve hermetic sealing with the discharge electrode, a complicated process using an intermediate glass body or a metal foil is required, resulting in an increase in the cost of the ultraviolet transmission xenon discharge tube.

また、紫外線透過率の高い、かつ放電電極の熱膨張係数に近い熱膨張係数を有するガラスを用いる場合、石英ガラス採用時のような気密封着のための工程の複雑化は防止できることになるが、熱膨張係数を放電電極のそれに近似させるために石英ガラスのそれに比して大きくなるようにガラス組成が設計されることから、石英ガラスの他の大きな特徴である高耐熱衝撃性についてはどうしても劣ってしまい、結果として石英ガラス採用時に比して紫外線透過キセノン放電管としての耐久性低下を招いていた。   In addition, when using a glass having a high ultraviolet transmittance and a thermal expansion coefficient close to the thermal expansion coefficient of the discharge electrode, it is possible to prevent the complexity of the process for hermetic sealing as in the case of using quartz glass. In order to approximate the thermal expansion coefficient to that of the discharge electrode, the glass composition is designed to be larger than that of quartz glass, so the high thermal shock resistance, which is another major feature of quartz glass, is inevitably inferior. As a result, the durability as an ultraviolet transmitting xenon discharge tube is lowered as compared with the case of using quartz glass.

本発明は、かかる事情に鑑み、外囲器と放電電極との気密封着に複雑な加工工程を必要としない安価な、かつ放電管としての耐久性にも優れた紫外線透過キセノン放電管を提供することを目的とする。
また、本発明は、上記した耐久性にも優れた紫外線透過キセノン放電管を光源として用いることにより、上記放電管の特性を装置に導入して耐久性を向上させた照明装置を提供することを目的とする。
In view of such circumstances, the present invention provides an inexpensive and UV-transmissive xenon discharge tube that does not require a complicated processing step for hermetic sealing between the envelope and the discharge electrode, and also has excellent durability as a discharge tube. The purpose is to do.
In addition, the present invention provides an illuminating device having improved durability by introducing the characteristics of the discharge tube into the apparatus by using the ultraviolet transmission xenon discharge tube having excellent durability as a light source. Objective.

本発明の紫外線透過キセノン放電管は、外囲器の両端に外囲器内部にキセノンガスを封入した状態でビードを介して放電電極を気密封着してなる紫外線透過キセノン放電管であって、外囲器として、タングステンの熱膨張係数に近似している3.8〜4.1(10−6−1)の熱膨張係数を有するホウケイ酸ガラスであるタングステンガラスの上記熱膨張係数に比して小さい3.0〜3.3(10−6−1)の熱膨張係数を有し、高い紫外線透過機能並びに高耐熱衝撃性を備えたホウケイ酸ガラスを用い、放電電極を構成する電極ピンとして、熱膨張係数が4.4〜4.5(10−6−1)のタングステンを用い、ビードとして、熱膨張係数が外囲器の熱膨張係数とタングステンの熱膨張係数の間となる3.8〜4.1(10−6−1)のホウケイ酸ガラスである上記タングステンガラスを用いて構成したことを特徴としている。 The ultraviolet transmissive xenon discharge tube of the present invention is an ultraviolet transmissive xenon discharge tube in which a discharge electrode is hermetically sealed through a bead in a state where xenon gas is sealed inside the envelope at both ends of the envelope. Compared to the thermal expansion coefficient of tungsten glass, which is a borosilicate glass having a thermal expansion coefficient of 3.8 to 4.1 (10 −6 K −1 ) that approximates the thermal expansion coefficient of tungsten as an envelope. Electrode constituting a discharge electrode using borosilicate glass having a small thermal expansion coefficient of 3.0 to 3.3 (10 −6 K −1 ) and having a high ultraviolet light transmission function and high thermal shock resistance As the pin, tungsten having a thermal expansion coefficient of 4.4 to 4.5 (10 −6 K −1 ) is used, and as the bead, the thermal expansion coefficient is between the thermal expansion coefficient of the envelope and that of tungsten. 3.8-4.1 (10 -6 borosilicate glass K -1) is characterized by being configured using the tungsten glass.

かかる構成によれば、電極ピンであるタングステンの熱膨張係数に対してビードの熱膨張係数が近似していることから、ビードはバーナー、カーボンヒータ等の周知の加熱源を用いる加工方法にてタングステンに直接加熱溶着することができる。   According to such a configuration, since the thermal expansion coefficient of the bead is close to the thermal expansion coefficient of tungsten which is an electrode pin, the bead is processed by a processing method using a known heating source such as a burner or a carbon heater. It can be heat-welded directly.

さらに、ビードの熱膨張係数が外囲器となるホウケイ酸ガラスの比較的小さい熱膨張係数に近似していることから、ビードと外囲器との加熱溶着もカーボンヒータ等の周知の加熱源を用いた通常の気密封着工法にて外囲器に大きな歪を生じることなく直接加熱溶着できることになる。
この結果、夫々の熱膨張係数の差が1.0(10−6−1)以上有り、直接の加熱溶着では大きな歪発生によるクラック発生が懸念される外囲器(熱膨張係数が比較的小さく高耐熱衝撃性を有するホウケイ酸ガラス)と電極ピンであるタングステンの両者を、一種類のビードを介して気密封着できることになる。
Furthermore, since the thermal expansion coefficient of the bead approximates that of the relatively small thermal expansion coefficient of the borosilicate glass that serves as the envelope, the heat welding between the bead and the envelope can be performed using a known heating source such as a carbon heater. The normal hermetic sealing method used allows direct heating and welding without causing large distortion in the envelope.
As a result, the difference between the respective thermal expansion coefficients is 1.0 (10 −6 K −1 ) or more, and the envelope (the thermal expansion coefficient is relatively low) in which direct thermal welding is liable to generate cracks due to large strains. Both borosilicate glass having a small and high thermal shock resistance) and tungsten as an electrode pin can be hermetically sealed through one kind of bead.

また、請求項2記載の発明において、ビードの熱膨張係数は、外囲器との間の熱膨張係数の差が電極ピンとの間の熱膨張系の数の差より大きくなるように設定されている。   In the invention of claim 2, the thermal expansion coefficient of the bead is set so that the difference in thermal expansion coefficient with the envelope is larger than the difference in the number of thermal expansion systems with the electrode pins. Yes.

かかる構成によれば、気密封着工程の条件を、電極ピンであるタングステンの熱膨張係数に合せたいわゆるタングステンガラスを外囲器及びビードに採用している通常のキセノン放電管製造工程における加熱条件に極めて近似した条件に設定することができる。
また、請求項3記載の発明において、請求項1〜請求項2のいずれか1項に記載の紫外線透過キセノン放電管を照明用光源とし、さらにこの紫外線透過キセノン放電管と被写体との間に配置され400nm以下の短波長領域の光を遮断する光学部材を備え、先の被写体を必ず光学部材を介した光にて照明することを特徴とする照明装置が構成される。
According to such a configuration, the heating conditions in the normal xenon discharge tube manufacturing process in which the so-called tungsten glass that matches the thermal expansion coefficient of tungsten, which is the electrode pin, is adopted for the envelope and the bead. It is possible to set the conditions very close to.
In the invention according to claim 3, the ultraviolet transmissive xenon discharge tube according to any one of claims 1 to 2 is used as a light source for illumination, and is further disposed between the ultraviolet transmissive xenon discharge tube and the subject. The illumination device is configured to include an optical member that blocks light in a short wavelength region of 400 nm or less, and always illuminates the subject with light through the optical member.

かかる構成によれば、熱膨張係数が比較的小さく高耐熱衝撃性を有する紫外線透過キセノン放電管における外囲器の性能を、被写体を照明する照明装置としての耐久性の向上に適用することができる。   According to such a configuration, the performance of the envelope in the ultraviolet transmission xenon discharge tube having a relatively small thermal expansion coefficient and high thermal shock resistance can be applied to improve the durability as an illumination device that illuminates the subject. .

本発明の紫外線透過キセノン放電管によれば、一種類のビードを介して放電電極を構成するタングステンである電極ピンと、比較的小さい熱膨張係数を有し高耐熱衝撃性を有するホウケイ酸ガラスである外囲器とを直接加熱溶着できる。すなわち、中間ガラス体や金属箔を用いる複雑な工程を実施しなくても良いことから、安価、かつ高耐熱衝撃性を備えた紫外線透過キセノン放電管を得ることができる。
また、本発明の照射装置によれば、耐久性に優れた照射装置を得ることができる。
According to the ultraviolet transmission xenon discharge tube of the present invention, an electrode pin that is tungsten constituting a discharge electrode through one kind of bead, and a borosilicate glass having a relatively small thermal expansion coefficient and high thermal shock resistance. Directly heat-welded to the envelope. That is, since it is not necessary to carry out a complicated process using an intermediate glass body or a metal foil, an ultraviolet transmissive xenon discharge tube having low cost and high thermal shock resistance can be obtained.
Moreover, according to the irradiation apparatus of this invention, the irradiation apparatus excellent in durability can be obtained.

本発明に係る紫外線透過キセノン放電管の一実施形態を示す概略正面図The schematic front view which shows one Embodiment of the ultraviolet transmission xenon discharge tube which concerns on this invention 同実施形態に係る紫外線透過キセノン放電管の製造工程例を示す概略図Schematic showing an example of a manufacturing process of an ultraviolet transmission xenon discharge tube according to the same embodiment 本発明に係る紫外線透過キセノン放電管を用いた照明装置の一実施形態を示す概略構成図The schematic block diagram which shows one Embodiment of the illuminating device using the ultraviolet transmission xenon discharge tube which concerns on this invention.

本発明に係る紫外線透過キセノン放電管について、図面を参酌しつつ説明する。
図1は、本発明に係る紫外線透過キセノン放電管の一実施形態を示す概略正面図であり、図示のように、紫外線透過キセノン放電管1は、外囲器2の両端に、この外囲器2の内部にキセノンガス5を封入した状態でビード3を介して放電電極A(アノード電極)並びにC(カソード電極)の一部を構成する電極ピン4、4を気密封着して構成されている。
本発明に係る紫外線透過キセノン放電管の外囲器2は、紫外線透過率が高く、かつ熱膨張係数が先に述べたタングステンガラスの熱膨張係数に比して小さい3〜3.3(10−6−1)のホウケイ酸ガラスにて構成している。(例えば、SCHOTT社Glass8347等)
放電電極Aはアノード電極を示し、図示のようにビード3が溶着される電極ピン4とこの電極ピン4に溶接された接続ピン7で構成されており、さらにこの電極ピン4は熱膨張係数が4.4〜4.5(10−6−1)であり融点が極めて高いタングステンから構成している。なお、接続ピン7としては例えばニッケルであるニッケル系金属を採用している。
放電電極Cはカソード電極を示し、図示のようにビード3が溶着される電極ピン4とこの電極ピン4にカシメ等の工法にて取付けられた焼結電極6と電極ピン4に溶接された接続ピン7とで構成している。なお、この電極ピン4並びに接続ピン7も、夫々タングステン、ニッケル系金属にて構成している。
本発明に係る紫外線透過キセノン放電管のビード3は、熱膨張係数が外囲器2の熱膨張係数と電極ピン4(タングステン)の熱膨張係数の間となる3.8〜4.1(10−6−1)のホウケイ酸ガラスを用いて構成している。(例えば、日本電気硝子社キセノンランプ用ガラス管BX−38、SCHOTT社Glass8487、等)
なお、この時、ビード3の熱膨張係数は、外囲器2との間の熱膨張係数の差が電極ピン4との間の熱膨張係数の差より大きくなるように設定されることが、加熱加工条件を、タングステンガラスを用いている通常のキセノン放電管の製造条件に比して大きく変更することなく設定できることになり、好ましい。
The ultraviolet transmitting xenon discharge tube according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic front view showing an embodiment of an ultraviolet transmissive xenon discharge tube according to the present invention. As shown in the drawing, an ultraviolet transmissive xenon discharge tube 1 is provided at both ends of an envelope 2. The electrode pins 4 and 4 constituting a part of the discharge electrode A (anode electrode) and C (cathode electrode) are hermetically sealed through the bead 3 in a state where the xenon gas 5 is sealed inside 2. Yes.
Envelope 2 of ultraviolet transmitting xenon discharge tube according to the present invention has high ultraviolet transmittance and thermal expansion coefficient smaller than the thermal expansion coefficient of the tungsten glass described above from 3 to 3.3 (10 - 6 K −1 ) borosilicate glass. (For example, SCHOTT Glass 8347)
The discharge electrode A is an anode electrode, and is composed of an electrode pin 4 to which a bead 3 is welded and a connection pin 7 welded to the electrode pin 4 as shown in the figure. Further, the electrode pin 4 has a thermal expansion coefficient. It is 4.4 to 4.5 (10 −6 K −1 ) and is made of tungsten having a very high melting point. The connection pin 7 is made of nickel-based metal such as nickel.
The discharge electrode C indicates a cathode electrode, and an electrode pin 4 to which a bead 3 is welded as shown in the figure, a sintered electrode 6 attached to the electrode pin 4 by a method such as caulking, and a connection welded to the electrode pin 4 It consists of pins 7. The electrode pins 4 and the connection pins 7 are also made of tungsten or nickel metal.
The bead 3 of the ultraviolet light transmission xenon discharge tube according to the present invention has a thermal expansion coefficient between 3.8 to 4.1 (10) that is between the thermal expansion coefficient of the envelope 2 and the thermal expansion coefficient of the electrode pin 4 (tungsten). −6 K −1 ) borosilicate glass. (For example, Nippon Electric Glass Xenon lamp glass tube BX-38, SCHOTT Glass 8487, etc.)
At this time, the thermal expansion coefficient of the bead 3 is set so that the difference in thermal expansion coefficient with the envelope 2 is larger than the difference in thermal expansion coefficient with the electrode pin 4. It is preferable because the heat processing conditions can be set without largely changing as compared with the manufacturing conditions of a normal xenon discharge tube using tungsten glass.

次に、本発明の第1実施形態に係る紫外線透過キセノン放電管を製造する工程例について、図2(a)〜(f)を参酌しつつ説明する。   Next, an example of a process for manufacturing the ultraviolet transmission xenon discharge tube according to the first embodiment of the present invention will be described with reference to FIGS.

図2(a)、(b)はアノード電極である放電電極Aの、また図2(c)、(d)はカソード電極である放電電極Cの製造工程例を示す概略図である。
放電電極A及びC共に、接続ピン7が溶接された電極ピン4である熱膨張係数が4.4〜4.5(10−6−1)であるタングステンに、中空円筒形状を呈し熱膨張係数が3.8〜4.1(10−6−1)のホウケイ酸ガラスからなるビード3を、図2(a)、図2(c)中に矢印で示した方向に移動させて破線で示したように挿通させ、その後、例えば図2(b)、図2(d)に示したようにビード加熱用の第1バーナー8にて加熱することにより電極ピン4に直接加熱溶着している。
この時、電極ピン4とビード3の夫々の熱膨張係数の差を小さく、具体的には両者の熱膨張係数差が1(10−6−1)以下になるように設定していることから、上記直接の加熱溶着による不都合の発生を防止できることになる。
放電電極Cは、図2(d)に示したようにさらに焼結電極6を電極ピン4にカシメ工程を経て取付けている。
2A and 2B are schematic views showing an example of the manufacturing process of the discharge electrode A which is an anode electrode, and FIGS. 2C and 2D are examples of the manufacturing process of the discharge electrode C which is a cathode electrode.
Both the discharge electrodes A and C have a hollow cylindrical shape in tungsten having a thermal expansion coefficient of 4.4 to 4.5 (10 −6 K −1 ), which is the electrode pin 4 to which the connection pin 7 is welded, and exhibit thermal expansion. A bead 3 made of borosilicate glass having a coefficient of 3.8 to 4.1 (10 −6 K −1 ) is moved in the direction indicated by an arrow in FIGS. 2 (a) and 2 (c) to show a broken line. And then heated and welded directly to the electrode pins 4 by heating with a first burner 8 for bead heating as shown in FIGS. 2 (b) and 2 (d), for example. Yes.
At this time, the difference between the thermal expansion coefficients of the electrode pins 4 and the beads 3 is set to be small, specifically, the thermal expansion coefficient difference between the two is set to 1 (10 −6 K −1 ) or less. Therefore, the occurrence of inconvenience due to the direct heat welding can be prevented.
In the discharge electrode C, as shown in FIG. 2D, the sintered electrode 6 is further attached to the electrode pin 4 through a caulking process.

次に、図2(e)に示したように、上記のようにして構成された放電電極Aのビード3を、外囲器2である膨張係数が3〜3.3(10−6−1)のホウケイ酸ガラスの端部2aに挿入し、その状態で例えば外囲器加熱用の第2バーナー9にて外囲器2の端部2aを加熱して外囲器2の端部2aとビード3とを溶融することにより両者2,3を加熱溶着する。この時、ビード3の熱膨張係数は先にも述べたように3.8〜4.1(10−6−1)であることから、外囲器2の熱膨張係数との差が小さく、結果、外囲器2の一端2aに放電電極Aを直接封着できることになる。 Next, as shown in FIG. 2 (e), the bead 3 of the discharge electrode A configured as described above has an expansion coefficient of 3 to 3.3 (10 −6 K − 1 ) is inserted into the end portion 2a of the borosilicate glass, and in this state, the end portion 2a of the envelope 2 is heated by heating the end portion 2a of the envelope 2 with the second burner 9 for heating the envelope. 2 and 3 are heated and welded by melting the beads 3. At this time, since the thermal expansion coefficient of the bead 3 is 3.8 to 4.1 (10 −6 K −1 ) as described above, the difference from the thermal expansion coefficient of the envelope 2 is small. As a result, the discharge electrode A can be directly sealed to the one end 2a of the envelope 2.

次に、図2(f)に示したように、放電電極Aが封着された端部2aとは反対側の外囲器2の他方の端部2bに放電電極Cのビード3を挿入する。
その状態で外囲器2の内部に所望量のキセノンガス5を充填しつつ例えば封着バーナー10にて外囲器2の端部2bを加熱して外囲器2の端部2bとビード3とを溶融することにより両者2,3を加熱溶着する。これにより、上記した放電電極Aの場合と同様に外囲器2の一端2bに放電電極Cが封着され、以降、図示はしないが接続ピン7の長さを所望長さにカットする工程や同接続ピン7に予備半田を施す工程等を経て図1に示した本発明に係る紫外線透過キセノン放電管1が完成することになる。
なお、上記した放電電極Cの外囲器2の内部にキセノンガス5を封入しつつの気密封着工程の他例としては、封着バーナー10に代えて例えばカーボンヒータを用い、具体的には封着バーナー10を除く図2(f)に示した放電電極Aが封着された外囲器2と放電電極C及びカーボンヒータとを、内部を真空にできると共に所定圧力のキセノンガスを充填できる作業空間を備えた真空容器内に配置し、この真空容器内にてキセノンガスの充填並びにカーボンヒータによる放電電極Cのビード3と外囲器2の一端2bとの溶着を行う工法を採用することもできる。
Next, as shown in FIG. 2 (f), the bead 3 of the discharge electrode C is inserted into the other end 2b of the envelope 2 opposite to the end 2a to which the discharge electrode A is sealed. .
In this state, while the envelope 2 is filled with a desired amount of xenon gas 5, the end 2 b of the envelope 2 is heated by the sealing burner 10, for example, and the end 2 b of the envelope 2 and the beads 3 2 and 3 are heated and welded. As a result, the discharge electrode C is sealed to the one end 2b of the envelope 2 as in the case of the discharge electrode A described above. Thereafter, although not shown, the length of the connection pin 7 is cut to a desired length. The ultraviolet transmitting xenon discharge tube 1 according to the present invention shown in FIG. 1 is completed through a process of applying preliminary solder to the connection pins 7 and the like.
In addition, as another example of the hermetic sealing process in which the xenon gas 5 is sealed inside the envelope 2 of the discharge electrode C described above, for example, a carbon heater is used instead of the sealing burner 10, specifically, The envelope 2, the discharge electrode C, and the carbon heater sealed with the discharge electrode A shown in FIG. 2 (f) excluding the sealing burner 10 can be evacuated and filled with xenon gas at a predetermined pressure. It is arranged in a vacuum vessel provided with a work space, and a method of filling the xenon gas in this vacuum vessel and welding the bead 3 of the discharge electrode C and the one end 2b of the envelope 2 with a carbon heater is adopted. You can also.

次に、本発明の実施形態に係る照明装置11について説明する。   Next, the illuminating device 11 which concerns on embodiment of this invention is demonstrated.

図3は本発明に係る紫外線透過キセノン放電管1を用いた照明装置11の一実施形態であるストロボ装置を示す概略構成図である。なお、ストロボ装置は、写真撮影の際に被写体を照明するための人工光源として有用されている照明装置である。   FIG. 3 is a schematic configuration diagram showing a strobe device which is an embodiment of the illumination device 11 using the ultraviolet transmission xenon discharge tube 1 according to the present invention. The strobe device is an illumination device that is useful as an artificial light source for illuminating a subject at the time of taking a photograph.

図示したように、本発明による照明装置11の一実施形態であるストロボ装置は、本体12内に、照明用の光源となる本発明に係る紫外線透過キセノン放電管1、この紫外線透過キセノン放電管1が発光により射出する光を被写体17方向に向けて導く反射傘13、紫外線透過キセノン放電管1と被写体17との間に配置され短波長領域の光、例えば400nm以下の波長の光を遮断する光学部材14、光学部材14を介して入射する光の射出方向、射出角度等を制御する光学制御手段15、紫外線透過キセノン放電管1の発光動作を制御する発光制御手段16等を備えて構成されている。   As shown in the drawing, a strobe device, which is an embodiment of a lighting device 11 according to the present invention, includes an ultraviolet transmission xenon discharge tube 1 according to the present invention as a light source for illumination in a main body 12, and the ultraviolet transmission xenon discharge tube 1. Is arranged between the reflector 13 that guides the light emitted by the light emission toward the subject 17, the ultraviolet transmission xenon discharge tube 1, and the subject 17, and is an optical that blocks light in a short wavelength region, for example, light having a wavelength of 400 nm or less. The optical control means 15 which controls the emission direction of the light which injects through the member 14, the optical member 14, an emission angle, etc., the light emission control means 16 which controls the light emission operation | movement of the ultraviolet transmission xenon discharge tube 1, etc. are comprised. Yes.

このため、発光制御手段16により紫外線透過キセノン放電管1が発光動作を行った場合、紫外線透過キセノン放電管1が射出する発光光は、直接及び反射傘13によって反射されて光学部材14に到達して短波長領域が遮断された光(例えば400nm以下の波長の光を含まない光)に制御され、さらに光学制御手段15によって照射角度等が制御された後に被写体17に照射されることになる。すなわち、被写体17は必ず光学部材14を介することにより、短波長領域の光が遮断された光にて照明されることになる。   Therefore, when the ultraviolet transmission xenon discharge tube 1 performs a light emission operation by the light emission control means 16, the emitted light emitted from the ultraviolet transmission xenon discharge tube 1 is reflected directly and by the reflector 13 and reaches the optical member 14. Thus, the object 17 is irradiated after the irradiation angle is controlled by the optical control means 15 and is controlled by light (for example, light that does not include light having a wavelength of 400 nm or less). That is, the subject 17 is always illuminated by the light from which light in the short wavelength region is blocked by passing through the optical member 14.

この時、本発明に係る紫外線透過キセノン放電管1は、先にも述べたように外囲器2としてその熱膨張係数が3〜3.3(10−6−1)であり、熱膨張係数が3.8〜4.1(10−6−1)のタングステンガラスより小さいホウケイ酸ガラスを使用しており、したがって外囲器2は上記タングステンガラスに比して高耐熱衝撃性を有している。
この結果、被写体を照明する照明装置11としての耐久性が、紫外線透過キセノン放電管1の外囲器2における上記高耐熱衝撃性を有する特徴により向上することになる。
At this time, the ultraviolet transmission xenon discharge tube 1 according to the present invention has the thermal expansion coefficient of 3 to 3.3 (10 −6 K −1 ) as the envelope 2 as described above, and the thermal expansion. A borosilicate glass smaller than tungsten glass having a coefficient of 3.8 to 4.1 (10 −6 K −1 ) is used. Therefore, the envelope 2 has higher thermal shock resistance than the above tungsten glass. doing.
As a result, the durability of the illuminating device 11 that illuminates the subject is improved by the characteristics having the high thermal shock resistance in the envelope 2 of the ultraviolet transmission xenon discharge tube 1.

本発明に係る紫外線透過キセノン放電管は、一種類のビードを介して放電電極を構成するタングステンである電極ピンと、比較的小さい熱膨張係数を有し高耐熱衝撃性を有するホウケイ酸ガラスである外囲器とを直接加熱溶着することから、中間ガラス体や金属箔を用いる複雑な工程を実施する必要は無く、このため、安価、かつ高耐熱衝撃性を備えた紫外線透過キセノン放電管を得ることができる。
また、本発明の照射装置は、上記紫外線透過キセノン放電管と被写体との間に短波長領域の光を遮断する光学部材を配置して被写体が必ず光学部材を介した光により照明されるように構成して上記紫外線透過キセノン放電管を照明装置の光源として使用できるようにしたことから、耐久性に優れた照明装置を得ることができる。
The ultraviolet transmission xenon discharge tube according to the present invention is an electrode pin made of tungsten constituting a discharge electrode through one kind of bead, and a borosilicate glass having a relatively small thermal expansion coefficient and high thermal shock resistance. Since the envelope is directly heated and welded, there is no need to carry out a complicated process using an intermediate glass body or a metal foil, and therefore, an ultraviolet ray transmission xenon discharge tube having low cost and high thermal shock resistance can be obtained. Can do.
In the irradiation apparatus of the present invention, an optical member that blocks light in a short wavelength region is disposed between the ultraviolet transmission xenon discharge tube and the subject so that the subject is always illuminated with light through the optical member. Since the ultraviolet ray transmitting xenon discharge tube is configured and can be used as a light source of the lighting device, a lighting device having excellent durability can be obtained.

1 紫外線透過キセノン放電管
2 外囲器
3 ビード
4 電極ピン
5 キセノンガス
6 焼結電極
7 接続ピン
8 第1バーナー
9 第2バーナー
10 封着バーナー
11 照明装置
12 本体
13 反射傘
14 光学部材
15 光学制御手段
16 発光制御手段
17 被写体
DESCRIPTION OF SYMBOLS 1 Ultraviolet light transmission xenon discharge tube 2 Envelope 3 Bead 4 Electrode pin 5 Xenon gas 6 Sintered electrode 7 Connection pin 8 1st burner 9 2nd burner 10 Sealing burner 11 Illuminating device 12 Main body 13 Reflector umbrella 14 Optical member 15 Optical Control means 16 Light emission control means 17 Subject

Claims (4)

透光性の外囲器の両端に、その内部にキセノンガスを封入した状態でビードを介して放電電極を構成する電極ピンを気密封着してなる紫外線透過キセノン放電管であって、外囲器として熱膨張係数が3〜3.3(10−6−1)のホウケイ酸ガラスを用い、電極ピンとして熱膨張係数が4.4〜4.5(10−6−1)のタングステンを用い、ビードとして熱膨張係数が外囲器の熱膨張係数とタングステンの熱膨張係数の間となる3.8〜4.1(10−6−1)のホウケイ酸ガラスを用いて構成したことを特徴とする紫外線透過キセノン放電管。 An ultraviolet transmissive xenon discharge tube in which electrode pins constituting a discharge electrode are hermetically sealed at both ends of a translucent envelope with a xenon gas sealed inside the envelope. Borosilicate glass having a thermal expansion coefficient of 3 to 3.3 (10 −6 K −1 ) is used as a vessel, and tungsten having a thermal expansion coefficient of 4.4 to 4.5 (10 −6 K −1 ) is used as an electrode pin. And 3.8 to 4.1 (10 −6 K −1 ) borosilicate glass whose thermal expansion coefficient is between the thermal expansion coefficient of the envelope and that of tungsten as a bead. Ultraviolet light transmission xenon discharge tube characterized by that. ビードの熱膨張係数は、外囲器との間の熱膨張係数の差が電極ピンとの間の熱膨張係数の差より大きくなるように設定される請求項1に記載の紫外線透過キセノン放電管。 The ultraviolet transmission xenon discharge tube according to claim 1, wherein the thermal expansion coefficient of the bead is set so that a difference in thermal expansion coefficient with the envelope is larger than a difference in thermal expansion coefficient with the electrode pin. 請求項1〜請求項2のいずれか1項に記載の紫外線透過キセノン放電管から発生・射出される光を被写体に照射する照射装置であって、紫外線透過キセノン放電管と被写体との間に配置されて短波長領域の光を遮断する光学部材を備え、必ず光学部材を介した短波長領域の光が遮断された光にて被写体を照明することを特徴とする照明装置。 An irradiation device for irradiating a subject with light generated and emitted from the ultraviolet transmission xenon discharge tube according to claim 1, wherein the irradiation device is disposed between the ultraviolet transmission xenon discharge tube and the subject. And an optical member that blocks light in the short wavelength region, and illuminates the subject with light that is blocked from light in the short wavelength region via the optical member. 短波長領域の光は、400nm以下の波長を有する光である請求項3に記載の照明装置。 The lighting device according to claim 3, wherein the light in the short wavelength region is light having a wavelength of 400 nm or less.
JP2011199305A 2011-09-13 2011-09-13 Ultraviolet transmission xenon discharge tube and lighting device using the ultraviolet transmission xenon discharge tube Expired - Fee Related JP5895120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011199305A JP5895120B2 (en) 2011-09-13 2011-09-13 Ultraviolet transmission xenon discharge tube and lighting device using the ultraviolet transmission xenon discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011199305A JP5895120B2 (en) 2011-09-13 2011-09-13 Ultraviolet transmission xenon discharge tube and lighting device using the ultraviolet transmission xenon discharge tube

Publications (2)

Publication Number Publication Date
JP2013062115A true JP2013062115A (en) 2013-04-04
JP5895120B2 JP5895120B2 (en) 2016-03-30

Family

ID=48186616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011199305A Expired - Fee Related JP5895120B2 (en) 2011-09-13 2011-09-13 Ultraviolet transmission xenon discharge tube and lighting device using the ultraviolet transmission xenon discharge tube

Country Status (1)

Country Link
JP (1) JP5895120B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160122724A (en) 2014-02-13 2016-10-24 닛산 가가쿠 고교 가부시키 가이샤 Novel liquid crystal orientation agent, diamine, and polyimide precursor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203800A (en) * 1992-12-25 1994-07-22 Ushio Inc Small sized fluorescent lamp
JPH11238489A (en) * 1998-02-20 1999-08-31 Harison Electric Co Ltd Lamp and lighting system
JP2008059764A (en) * 2006-08-29 2008-03-13 Shin Kowa Kk Discharge lamp, and its forming method
JP2008181716A (en) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd Discharge lamp and lighting system
JP2011090054A (en) * 2009-10-20 2011-05-06 Sony Corp Variable optical element, liquid lens array element, variable illuminator, and two-dimensional/three-dimensional image switching display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203800A (en) * 1992-12-25 1994-07-22 Ushio Inc Small sized fluorescent lamp
JPH11238489A (en) * 1998-02-20 1999-08-31 Harison Electric Co Ltd Lamp and lighting system
JP2008059764A (en) * 2006-08-29 2008-03-13 Shin Kowa Kk Discharge lamp, and its forming method
JP2008181716A (en) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd Discharge lamp and lighting system
JP2011090054A (en) * 2009-10-20 2011-05-06 Sony Corp Variable optical element, liquid lens array element, variable illuminator, and two-dimensional/three-dimensional image switching display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160122724A (en) 2014-02-13 2016-10-24 닛산 가가쿠 고교 가부시키 가이샤 Novel liquid crystal orientation agent, diamine, and polyimide precursor

Also Published As

Publication number Publication date
JP5895120B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
US20150262808A1 (en) Light Source Driven by Laser
EP0043114B1 (en) Projection lamp comprising single ended arc discharge lamp and an interference filter
KR101379737B1 (en) Uv sterilization lamp and system for waste water disposal
JP4587130B2 (en) High pressure discharge lamp, manufacturing method thereof, and light irradiation device
JP5895120B2 (en) Ultraviolet transmission xenon discharge tube and lighting device using the ultraviolet transmission xenon discharge tube
JP4494224B2 (en) Seal for lamp and discharge lamp
KR102602644B1 (en) Discharge lamp and method for producing electrode for discharge lamp
US3636398A (en) Subminiature electric lamp having a composite envelope
CN102315080A (en) The location of Auxiliary amalgam
JP5800189B2 (en) Short arc type discharge lamp
JP6709895B2 (en) Flash discharge tube and light irradiation device including the flash discharge tube
JP4678059B2 (en) Short arc type discharge lamp
CN1209789C (en) Discharge lamp and its lamp assembling unit
US10297437B2 (en) Sulfur plasma lamp
TWI399785B (en) Discharge lamp
JP2008059764A (en) Discharge lamp, and its forming method
JP2007213976A (en) High pressure discharge lamp and image projector
JP2004006198A (en) High pressure discharge lamp, lighting system, headlamp for automobile, and arc tube for high pressure discharge lamp
JP3866369B2 (en) Multi-tube fluorescent lamp and lighting device
JP2010067585A (en) Method of manufacturing flash lamp
CN101645390B (en) Short arc discharge lamp and manufacturing method thereof
CN106373860A (en) Medium-voltage discharge lamp and manufacturing process thereof, and water treatment disinfection method
TWI474370B (en) Ultraviolet radiation method and metal halogen lamp
JP3950821B2 (en) Manufacturing method of single-end discharge lamp
CN105374659B (en) Short arc discharge lamp and light supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140912

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R151 Written notification of patent or utility model registration

Ref document number: 5895120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees