JP6709895B2 - Flash discharge tube and light irradiation device including the flash discharge tube - Google Patents
Flash discharge tube and light irradiation device including the flash discharge tube Download PDFInfo
- Publication number
- JP6709895B2 JP6709895B2 JP2015051572A JP2015051572A JP6709895B2 JP 6709895 B2 JP6709895 B2 JP 6709895B2 JP 2015051572 A JP2015051572 A JP 2015051572A JP 2015051572 A JP2015051572 A JP 2015051572A JP 6709895 B2 JP6709895 B2 JP 6709895B2
- Authority
- JP
- Japan
- Prior art keywords
- glass tube
- bead
- tube
- bonded
- envelope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Discharge Lamps And Accessories Thereof (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Description
本発明は、閃光放電管及び該閃光放電管を備えた光照射装置に関する。 The present invention relates to a flash discharge tube and a light irradiation device including the flash discharge tube.
従来から、閃光放電管は、例えば光照射装置として周知の写真撮影の際の被写体照明用の人工光源であるストロボ装置の光源として有用されていると共に、一方で写真撮影を行うカメラにあっては、被写体画像を形成するいわゆる感光材としてCCD等の電気光学的素子を用いるデジタル化が進み、このため、撮影ショット数が飛躍的に増大し、結果として先のストロボ装置においても発光寿命耐久特性の大幅向上が強く求められている。 Conventionally, a flash discharge tube has been used as a light source of a strobe device which is an artificial light source for illuminating a subject when taking a photograph, which is well known as a light irradiation device, and on the other hand, in a camera for taking a photograph, However, digitization using electro-optical elements such as CCD as a so-called photosensitive material for forming a subject image has progressed, and the number of shooting shots has increased dramatically. There is a strong demand for significant improvements.
ところで、光照射装置の一つであるストロボ装置の発光寿命耐久特性を向上させるためには、閃光発光する先の閃光放電管の耐久特性を向上させることが必須であり、そのためには、以下のような構成を有する上記閃光放電管の構成材料個々の強化が必要となることは詳述するまでもない。すなわち、上記閃光放電管の構成について見てみると、閃光放電管の外囲器を構成するガラス管の両端に、その内部にキセノンガスを封入した状態で一対の放電電極を気密封着してなる構成を有することが周知であり、従来から、上記ガラス管等の構成材料の強化が強く望まれていた。 By the way, in order to improve the light emission life endurance property of a strobe device which is one of the light irradiation devices, it is essential to improve the endurance property of a flash discharge tube to which a flash light is emitted. It goes without saying that it is necessary to reinforce each of the constituent materials of the flash discharge tube having such a configuration. That is, looking at the structure of the flash discharge tube, a pair of discharge electrodes are hermetically sealed at both ends of the glass tube forming the envelope of the flash discharge tube, with xenon gas sealed inside. It is well known that the above-mentioned constitution is provided, and conventionally, it has been strongly desired to strengthen the constituent materials such as the glass tube.
なお、上記一対の放電電極は、通常、電極ピンと焼結体とからなる陰極と電極ピン自体にて形成される陽極とから構成され、さらに電極ピンの材料としては、閃光放電管の発光はアーク放電現象であり瞬間的に大電流が発生することからかかる大電流に耐える材料を選定する必要があり、従来、約3400度の融点を有し、電極ピン状態への加工も比較的容易な高融点金属であるタングステンの採用が一般的であった。 The pair of discharge electrodes is usually composed of a cathode composed of an electrode pin and a sintered body and an anode formed of the electrode pin itself.Furthermore, as the material of the electrode pin, light emission of a flash discharge tube is an arc. Since it is a discharge phenomenon and a large current is instantaneously generated, it is necessary to select a material that can withstand such a large current. Conventionally, it has a melting point of about 3400 degrees and is relatively easy to process into an electrode pin state. It was common to use tungsten, which is a melting point metal.
また、閃光放電管の外囲器を構成するガラス管としては、上記電極ピンとの間での気密封着作業が加熱工程により実施されることから、従来、熱膨張係数をタングステンのそれと近似させると共に軟化点を下降させて加熱工程での作業温度を下げるように設計されたホウ珪酸ガラス管の採用が一般的であった。なお、ホウ珪酸ガラス管における上記軟化点を下降させるガラス設計は、アルカリ成分である酸化ナトリウムや酸化カリウム等のアルカリ酸化物を適宜量含有させることにより実現させていることも周知であり、上記ホウ珪酸ガラス管は、アルカリ成分を含有させたガラスとしてガラス分野にて認知されている。(なお、本発明における「アルカリ成分」とは、ナトリウム、カリウム等のアルカリ金属成分のことを意味し、アルカリ土類金属成分のことを意味しない) Further, as the glass tube constituting the envelope of the flash discharge tube, since the work of hermetically sealing with the electrode pin is carried out by the heating step, conventionally, the thermal expansion coefficient is approximated to that of tungsten. It was common to employ borosilicate glass tubes designed to lower the softening point to lower the working temperature in the heating process. It is also well known that the glass design for lowering the softening point in the borosilicate glass tube is realized by adding an appropriate amount of an alkali oxide such as sodium oxide or potassium oxide which is an alkali component. The silicate glass tube is recognized in the glass field as a glass containing an alkaline component. (Note that the "alkali component" in the present invention means an alkali metal component such as sodium and potassium, and does not mean an alkaline earth metal component.)
一方で上記のようなホウ珪酸ガラス管構成を有する閃光放電管の発光寿命耐久特性における寿命末期現象について見てみるといくつかの寿命末期状態が知られている。 On the other hand, looking at the end-of-life phenomenon in the emission life endurance characteristics of the flash discharge tube having the above borosilicate glass tube structure, several end-of-life states are known.
ひとつは、閃光放電管の外囲器のみにおいて生じる現象である絶縁破壊現象であるアーク放電によるガラス管自体への熱衝撃印加や放電電極のガラス管内面への溶融飛散によって生じるガラス管クラックの進行によるリークの発生であり、ひとつは、先の熱衝撃印加によるガラス管内面での先のアルカリ成分の蒸発・析出や放電電極のガラス管内面への溶融飛散によるガラス管の光透過機能の劣化に基づく発光量の低下およびアルカリ成分という放電に寄与しない成分のガラス管内への放出に伴う発光不安定状態、いわゆる不発光現象が高頻度で発生する状態への移行等、が寿命末期状態を示す事例として知られている。 One is the progress of glass tube cracks caused by the application of thermal shock to the glass tube itself by arc discharge, which is a phenomenon of dielectric breakdown that is a phenomenon that occurs only in the envelope of the flash discharge tube, and the melting and scattering of the discharge electrode on the inner surface of the glass tube. One of the causes is the deterioration of the light transmission function of the glass tube due to the evaporation/precipitation of the alkali component on the inner surface of the glass tube due to the application of thermal shock and the melting and scattering of the discharge electrode on the inner surface of the glass tube. A case in which the end of life state is indicated by a decrease in the amount of emitted light due to a decrease in the amount of emitted light and an unstable emission state due to the release of an alkaline component that does not contribute to discharge into the glass tube, such as a transition to a state in which a so-called non-emission phenomenon frequently occurs. Known as.
その他にも、アーク放電時の発熱によるガラス管の高温化によると思われる当該ガラス管の膨れ(膨出)や湾曲等のいわゆるガラス管変形現象の発生も知られている。 In addition, it is also known that a so-called glass tube deformation phenomenon such as swelling (bulging) or bending of the glass tube, which is considered to be caused by the temperature increase of the glass tube due to heat generation during arc discharge, is known.
なお、かかる変形現象は、ホウ珪酸ガラスはアルカリ成分を含有させて軟化点を下降させている点、アーク放電時の発熱によるガラス管自体の温度上昇によってガラス管内に封入されているキセノンガスが熱膨張して上記ガラス管に対するガラス管内からの変形圧力・応力が生じる点、が大きな要因である、と推定している。 The deformation phenomenon is that borosilicate glass contains an alkaline component to lower the softening point, and the xenon gas enclosed in the glass tube is heated by the temperature rise of the glass tube itself due to heat generation during arc discharge. It is presumed that a major factor is that the glass tube expands to generate a deformation pressure/stress from the inside of the glass tube.
すなわち、適宜のタイミングで1回ごとに発光する通常の発光動作ではなく短時間に繰り返し発光動作を行うような特殊な場合について見てみると、発光に伴う熱衝撃が短時間に繰返し印加されることから上記通常の発光動作時よりもガラス管の温度上昇が大きくなり、このため、その上昇温度が先の下降させた軟化点近傍に到達した時点でガラス管は上記変形圧力・応力に抗しきれなくなり、結果、ガラス管が膨れたり、湾曲したりするガラス管変形現象が発生していた、と本出願人は推測・推定している。 That is, looking at a special case where a light emitting operation is repeatedly performed in a short time instead of a normal light emitting operation in which light is emitted once at an appropriate timing, thermal shock due to light emission is repeatedly applied in a short time. Therefore, the temperature rise of the glass tube becomes larger than that during the normal light emission operation.Therefore, when the temperature rise reaches the vicinity of the previously lowered softening point, the glass tube resists the above deformation pressure and stress. The present applicant presumes/estimates that a glass tube deformation phenomenon in which the glass tube is swelled or curved as a result of being unable to be cut off is generated.
上述したように、閃光放電管の耐久特性を向上させるためには閃光放電管の外囲器を構成するガラス管の耐久性強化が必要であることが周知、また明らかであり、従前、ガラス分野では、熱膨張係数が小さいと耐熱特性、耐熱衝撃特性が優れている、ということが広く認識されている状況から、ガラスの耐熱特性、耐熱衝撃特性を改善する対策としては、熱膨張係数が小さくなるようにガラスの成分設計を行う、あるいは選択を行っていた。 As described above, it is well known and clear that it is necessary to strengthen the durability of the glass tube forming the envelope of the flash discharge tube in order to improve the durability characteristics of the flash discharge tube. It is widely recognized that heat resistance and thermal shock resistance are excellent when the coefficient of thermal expansion is small. Therefore, as a measure to improve the heat resistance and thermal shock resistance of glass, the coefficient of thermal expansion is small. The glass components were designed or selected so that
放電管分野においても例外ではなく、耐熱特性、耐熱衝撃特性の改善を実現するための対策としては、従来、熱膨張係数が小さくなるように設計したガラス、換言すれば熱膨張係数が小さいガラスを外囲器として用いる、ことが周知、かつ一般的であった。 Even in the field of discharge tubes, as a measure to improve heat resistance and thermal shock resistance, glass designed to have a small coefficient of thermal expansion, in other words, glass having a small coefficient of thermal expansion, has been used as a measure to realize improved heat resistance and thermal shock resistance. It was well known and common to use it as an envelope.
具体的には、上記外囲器を構成するガラス管として、主に二酸化珪素から形成され、熱膨張係数が小さく、よって高耐熱特性、高耐熱衝撃特性を備え、かつ機械的強度も大きい石英ガラス管を採用する構成が周知、かつ一般的であった。なお、放電電極を構成する電極ピンについては、前述のタングステンが約3400℃の高融点を有すると共に電極ピンへの加工も比較的容易であることから採用されることが一般的であった。 Specifically, as the glass tube forming the envelope, quartz glass formed mainly of silicon dioxide has a small coefficient of thermal expansion, and thus has high heat resistance characteristics and high thermal shock resistance characteristics, and also has high mechanical strength. The configuration employing tubes was well known and common. Incidentally, the electrode pin that constitutes the discharge electrode is generally adopted because the above-mentioned tungsten has a high melting point of about 3400° C. and is relatively easy to process into an electrode pin.
しかしながら、実際に石英ガラス管とタングステンの夫々の熱膨張係数について見てみると、石英ガラスのそれは約0.55×10−6・K−1、タングステンのそれは4.4〜4.5×10−6・K−1と著しく異なり、気密封着するために両者を、石英ガラスを加熱溶融することにより直接溶着しようとすると、先の熱膨張係数差により石英ガラスに大きな歪みが発生し、クラックが生じてしまうことになり、従来、かかるクラックの発生を防止するための種々の手段が提案、あるいは実用化されていた。 However, when actually looking at the respective thermal expansion coefficients of the quartz glass tube and tungsten, that of quartz glass is about 0.55×10 −6 ·K −1 , and that of tungsten is 4.4 to 4.5×10. Unlike -6 ·K -1 , when the two are directly fused by heating and melting the quartz glass for air-tight sealing, a large strain occurs in the quartz glass due to the difference in the thermal expansion coefficient, and cracks occur. In the past, various means for preventing the occurrence of such cracks have been proposed or put into practical use.
例えば石英ガラス管の軸方向に熱膨張係数が順次変化するように複数の熱膨張係数の異なるガラス管を配置して構成される中間ガラス体をあらかじめ準備し、この中間ガラス体を介して石英ガラス管と熱膨張係数がタングステンのそれと近似している従前のホウ珪酸ガラスから形成される端部ガラス管とをまず溶着し、次いでこの端部ガラス管とタングステンとを加熱工程を介して気密封着することにより、結果として石英ガラス管とタングステンとを間接的に気密封着する構成の採用が周知である。(特許文献1)
また、上記のように閃光放電管の外囲器であるガラス管の強度を熱膨張係数が小さい石英ガラス管の採用により向上させた場合、当然のことながら寿命耐久特性の観点での放電電極にかかる負担が増大することになり、放電電極についてもその強度(耐久性)向上が望まれ、例えば、特開2012−119205号公報には、ガラス管と、該ガラス管の一端部に設けられる陽極側電極と、前記ガラス管の他端部に設けられる陰極側電極とを備えた閃光放電管において、前記ガラス管は、第1ガラス管と、該第1ガラス管の両端部にそれぞれ接続される第2ガラス管であって、第1ガラス管の熱膨張係数と第2ガラス管の熱膨張係数との間の熱膨張係数を有する段継ぎガラス管を介して接続される第2ガラス管とで形成され、しかも、前記ガラス管の内径に対する前記陽極側電極の外径の比率が43.5%以上であることを特徴とする閃光放電管並びにこの閃光放電管を備えたストロボ装置が開示されている。(特許文献2)
なお、石英ガラス管の採用に伴う上述の中間ガラス体や段継ぎガラス管を形成する複雑な加工工程を必要としない安価、かつ耐久性にも優れた紫外線透過キセノン放電管、すなわちタングステンの熱膨張係数に近似して設計された通常のホウ珪酸ガラスより熱膨張係数を石英ガラス管に近づく方向に小さくすることにより軟化点を高くし、耐久性を向上させたホウ珪酸ガラス管を石英ガラス管に替えて採用した紫外線透過キセノン放電管ならびにこの放電管を用いた照明装置についても周知である。(特許文献3)
以上述べたように、閃光放電管の耐久特性の強化を目的としたガラス管の強化、という観点で見てみると、特許文献1、2に開示されたような石英ガラス管及び同等ガラス管、すなわち熱膨張係数が極めて小さく高耐熱衝撃特性を有することはもちろん、外部からの物理的衝撃に対する機械的強度も極めて優れているガラス管や、あるいはアルカリ成分を含有させて軟化点を下降させるように設計したホウ珪酸ガラスであっても熱膨張係数が小さくなるように設計した特許文献3に開示されたようなホウ珪酸ガラス管によって閃光放電管の外囲器を構成することが一般的であった。すなわち、先にも述べたように、ガラス分野においては、熱膨張係数を小さく設計することがガラス管の耐熱衝撃特性を改善する対策の通例であった。
For example, an intermediate glass body is prepared in advance by arranging a plurality of glass tubes having different thermal expansion coefficients so that the thermal expansion coefficient is sequentially changed in the axial direction of the quartz glass tube. The tube and the end glass tube formed from a conventional borosilicate glass, which has a thermal expansion coefficient similar to that of tungsten, are first welded, and then this end glass tube and tungsten are hermetically sealed via a heating process. As a result, it is well known that the quartz glass tube and the tungsten are indirectly hermetically sealed. (Patent Document 1)
Further, when the strength of the glass tube which is the envelope of the flash discharge tube is improved by adopting the quartz glass tube having a small coefficient of thermal expansion as described above, it is natural that the discharge electrode in terms of life and durability characteristics is used. Such a burden is increased, and it is desired to improve the strength (durability) of the discharge electrode. For example, in JP 2012-119205 A, a glass tube and an anode provided at one end of the glass tube are disclosed. In a flash discharge tube including a side electrode and a cathode side electrode provided at the other end of the glass tube, the glass tube is connected to a first glass tube and both ends of the first glass tube, respectively. A second glass tube, the second glass tube being connected via a stepped glass tube having a coefficient of thermal expansion between the coefficient of thermal expansion of the first glass tube and the coefficient of thermal expansion of the second glass tube. Disclosed is a flashlight discharge tube characterized in that the ratio of the outer diameter of the anode-side electrode to the inner diameter of the glass tube is 43.5% or more, and a strobe device equipped with this flashlight discharge tube. There is. (Patent Document 2)
It should be noted that the UV transmission xenon discharge tube, which is inexpensive and has excellent durability, does not require the complicated processing steps of forming the above-mentioned intermediate glass body and stepped glass tube due to the adoption of the quartz glass tube, that is, the thermal expansion of tungsten. A borosilicate glass tube with improved thermal resistance and a higher durability than that of ordinary borosilicate glass, which is designed to approximate the coefficient, is made closer to the quartz glass tube. The ultraviolet-transparent xenon discharge tube adopted instead and an illuminating device using this discharge tube are also well known. (Patent Document 3)
As described above, from the viewpoint of strengthening the glass tube for the purpose of strengthening the durability characteristics of the flash discharge tube, the quartz glass tube and the equivalent glass tube as disclosed in
上記特許文献1、2に開示された閃光放電管は、いずれも外囲器を構成するガラス管を強化するために、熱膨張係数が小さく高耐熱衝撃特性並びに大きな機械的強度を有する石英ガラス管、またはこの石英ガラス管と同等の耐久機能を備えるガラス管を用いるべく、電極ピンと外囲器を構成するガラス管の夫々の熱膨張係数の差異を考慮し、上記外囲器を構成するガラス管の両端部に中間ガラス体や段継ぎガラス管を用いる構成を備えるため、上記中間ガラス体や段継ぎガラス管を形成するための複雑な加工工程を必要とし、閃光放電管の大幅なコストアップを招くという問題点を有していた。
The flash discharge tubes disclosed in
これに対し、特許文献3には、通常のホウ珪酸ガラス管より熱膨張係数を石英ガラス管に近づく方向に小さくすることにより軟化点を高くして上記通常のホウ珪酸ガラス管よりも耐久特性を向上させたホウ珪酸ガラス管を石英ガラス管に替えて採用し、先の複雑な加工工程を不用とした紫外線透過キセノン放電管が開示されており、確かに大幅なコストアップを生じることは無いが、ホウ珪酸ガラスの一種であることは明らかであり、耐久機能については石英ガラス管には到底及ばない問題点を有していた。
On the other hand, in
本発明は、上記問題点に鑑み、ホウ珪酸ガラス管に対して大幅な高耐熱特性、並びに高耐熱衝撃特性の向上を実現すると共に安価に形成することができる閃光放電管及びこの閃光放電管を備えた光照射装置を提供することを課題とする。 In view of the above problems, the present invention provides a flash discharge tube that can be formed at low cost while realizing a significantly high heat resistance property and a high heat shock resistance property for a borosilicate glass tube, and a flash discharge tube thereof. It is an object to provide a light irradiation device provided with the light irradiation device.
本発明にかかる閃光放電管は、透光性の外囲器の両端に、その内部にキセノンガスを封入した状態で放電電極を気密封着してなる閃光放電管であって、前記外囲器は、少なくとも一対の前記放電電極間であるアーク放電領域を囲んで形成されるアーク放電空間を、アルミノ珪酸塩を主成分としてアルカリ成分が0.03wt%未満であるアルミノシリケートガラス管にて構成しており、かつ、ホウ珪酸ガラスから形成されると共に前記アルミノシリケートガラス管の内外径と同一を含む略等しい内外径を有し、前記アルミノシリケートガラス管の少なくとも一端に端面を介して溶融接合される接合ガラス管を備えていることを特徴とする。 A flash discharge tube according to the present invention is a flash discharge tube in which a discharge electrode is hermetically sealed at both ends of a light-transmissive envelope with xenon gas sealed therein. Is configured by an aluminosilicate glass tube containing an aluminosilicate as a main component and having an alkali component of less than 0.03 wt% as an arc discharge space formed around at least a pair of the discharge electrodes. And has a substantially equal inner and outer diameter including the same as the inner and outer diameters of the aluminosilicate glass tube and is formed of borosilicate glass and melt-bonded to at least one end of the aluminosilicate glass tube through an end surface. It is characterized by having a joined glass tube.
かかる構成によれば、本発明のアルミノシリケートガラス管の熱膨張係数を、アルカリ成分を殆ど含まない種類、あるいは設計とすることによりアルカリ成分を含有するホウ珪酸ガラス管の熱膨張係数よりも大きく設定できることになる。これにより外囲器としての軟化点をホウ珪酸ガラス管よりも高くできることになり、よって耐熱特性を向上させることができると共にホウ珪酸ガラス管において発生していたアーク放電時の熱衝撃によるガラス管内面へのアルカリ成分の溶出現象を激減させることができ、これにより耐熱衝撃特性を大幅に向上できることになる。 According to such a configuration, the coefficient of thermal expansion of the aluminosilicate glass tube of the present invention is set to be larger than the coefficient of thermal expansion of the borosilicate glass tube containing an alkali component by designing a type containing almost no alkali component or by designing. You can do it. As a result, the softening point of the envelope can be made higher than that of the borosilicate glass tube, and therefore the heat resistance characteristics can be improved and the inner surface of the glass tube due to the thermal shock during arc discharge generated in the borosilicate glass tube. It is possible to drastically reduce the elution phenomenon of the alkaline component into the, and thereby to significantly improve the thermal shock resistance property.
すなわち、上記のようにアルカリ成分を殆ど含まないアルミノシリケートガラス管にてアーク放電空間を形成する外囲器を構成すれば、先に述べた熱膨張係数を小さく設計するという従来のガラス分野での認識、また実践されていたガラス管強化対策の通例とは異なるものの、アーク放電時の熱衝撃という閃光放電管の外囲器のみにおいて生じていた現象に対する耐久特性(耐熱特性、耐熱衝撃特性)について大幅に改善できることになる。 That is, if the envelope that forms the arc discharge space is formed of an aluminosilicate glass tube containing almost no alkali component as described above, in the conventional glass field that the thermal expansion coefficient is designed to be small as described above. Although it is different from the conventional method of strengthening glass tubes, which is recognized and practiced, the durability characteristics (heat resistance characteristics and thermal shock resistance characteristics) against the thermal shock at the time of arc discharge that occurred only in the envelope of the flash discharge tube It can be greatly improved.
この結果、光照射装置の一つである例えばストロボ装置の光源として有用されている閃光放電管の発光寿命耐久特性を大きく向上できることになる。 As a result, it is possible to greatly improve the light emission life endurance characteristic of the flash discharge tube which is useful as a light source of, for example, a strobe device which is one of the light irradiation devices.
また、請求項2記載の発明において、放電電極は、前記アーク放電領域の空間内に位置する電極ピンとこの電極ピンに気密溶着され前記アルミノシリケートガラス管の外径と略等しい端部外径を有する陽極ビードからなり、前記アルミノシリケートガラス管の一端に前記陽極ビードの端面を介して溶着接合されることにより気密封着される陽極と、前記アーク放電空間内に位置する電極ピンとこの電極ピンに気密溶着され前記接合ガラス管の内径未満かつ気密封着可能な側面部外径を有する陰極ビードと前記電極ピンの先端部に固着される焼結体とからなり、前記接合ガラス管内に側面部を介して溶融接合されることにより気密封着される陰極とを有することを特徴としている。 In the invention according to claim 2, the discharge electrode has an electrode pin located in the space of the arc discharge region and an end outer diameter that is airtightly welded to the electrode pin and is substantially equal to the outer diameter of the aluminosilicate glass tube. An anode bead, which is welded to one end of the aluminosilicate glass tube through an end face of the anode bead to be hermetically sealed, an electrode pin located in the arc discharge space, and an airtight seal to the electrode pin. It consists of a cathode bead that is welded and has a side surface outer diameter that is less than the inner diameter of the bonded glass tube and that can be hermetically sealed, and a sintered body that is fixed to the tip of the electrode pin. And a cathode which is hermetically sealed by being melt-bonded.
かかる構成によれば、陽極ビード並びに接合ガラス管の両者共に、アルミノシリケートガラス管の端面の厚み部分と溶着され、これによりアルミノシリケートガラス管の径方向ではなく軸方向での溶着を実現していることから、熱膨張係数差に起因して生じる恐れのある例えば剥離現象によるリーク、等の不都合の発生を大きく抑制できることになる。 According to such a configuration, both the anode bead and the bonded glass tube are welded to the thickness portion of the end surface of the aluminosilicate glass tube, whereby the aluminosilicate glass tube is welded not in the radial direction but in the axial direction. Therefore, it is possible to greatly suppress the occurrence of inconveniences such as leakage due to a peeling phenomenon that may occur due to the difference in thermal expansion coefficient.
さらに、陰極の気密封着作業を、従来と同様に周知のホウ珪酸ガラスからなる接合ガラス管を介して実施できることになり、気密封着作業工程における設備・作業条件等を複雑化することなく従前と近似した状況に設定できることになる。 Further, the airtight sealing work of the cathode can be carried out through the well-known bonded glass tube made of borosilicate glass as in the conventional case, so that the equipment and working conditions in the airtight sealing work process are not complicated. It can be set to a situation similar to.
すなわち、アルミノシリケートガラス管はホウ珪酸ガラス管より軟化点が高いガラス管であることからその加工作業温度が高くなるものの、石英ガラス管の加工温度よりははるかに低く、したがって、上述したように、陽極及び陰極の気密封着工程については、中間ガラス体等を必要とする石英ガラス管を用いる場合に比して容易に形成できることになることはもちろんである。 That is, the aluminosilicate glass tube is a glass tube having a higher softening point than the borosilicate glass tube, so the processing temperature is high, but it is much lower than the processing temperature of the quartz glass tube, and thus, as described above, It is needless to say that the step of hermetically sealing the anode and the cathode can be easily formed as compared with the case of using a quartz glass tube which requires an intermediate glass body or the like.
また、請求項3記載の発明において、陽極ビードは、アルミノシリケートガラス管の内径未満の外径となるように電極ピンに直接巻き付けられて形成された第1ビードと、前記アルミノシリケートガラス管の外径と略等しい外径となるように、前記第1ビードの周囲に前記第1ビードの軸方向長さより短い長さにて巻き付けられて形成された第2ビードとから構成されることを特徴とする。
Further, in the invention according to
かかる構成によれば、アルミノシリケートガラス管と陽極との前記アルミノシリケートガラス管の軸方向での加熱溶着が第2ビードの端面を介して実現され、第1ビードと電極ピンの溶着部への影響を小さくできることになる。 According to this structure, the heat welding of the aluminosilicate glass tube and the anode in the axial direction of the aluminosilicate glass tube is realized through the end face of the second bead, and the influence on the welded portion of the first bead and the electrode pin. Can be made smaller.
また、請求項4記載の発明において、放電電極は、前記接合ガラス管が前記アルミノシリケートガラス管の内外径と同一を含む略等しい内外径を有し、前記アルミノシリケートガラス管の両端にその端面を介して溶融接合され、前記アーク放電領域の空間内に位置する電極ピンとこの電極ピンに気密溶着され前記接合ガラス管の内径未満かつ気密封着可能な側面部外径を有する陽極ビードからなり、前記接合ガラス管内に側面部を介して溶融接合されることにより気密封着される陽極と、前記アーク放電空間内に位置する電極ピンとこの電極ピンに気密溶着され前記接合ガラス管の内径未満かつ気密封着可能な側面部外径を有する陰極ビードと前記電極ピンの先端部に固着される焼結体とからなり、前記接合ガラス管内に側面部を介して溶融接合されることにより気密封着される陰極とを有することを特徴とする。
Further, in the invention according to
かかる構成によれば、陽極と陰極夫々の気密封着作業を、従来と同様に周知のホウ珪酸ガラスからなる接合ガラス管を介して実施できることになり、気密封着作業工程における設備・作業条件等を複雑化することなく従前と近似した状況に設定できることになる。 According to such a configuration, the work of hermetically sealing each of the anode and the cathode can be carried out through the well-known bonded glass tube made of borosilicate glass as in the conventional case. It will be possible to set the situation similar to the previous one without complicating.
また請求項5記載の発明において外囲器の外表面に、トリガ電圧が印加される透明導電性被膜を備えて形成されることを特徴とする。
Further, the invention according to
かかる構成によれば、従前と同様のトリガ電圧印加構成を実現できることになる。 According to such a configuration, the same trigger voltage application configuration as before can be realized.
また請求項6記載の発明おいて、請求項1〜5のいずれか1項に記載の閃光放電管を光源として備えたストロボ装置を提供することを特徴とする。
Further, the invention according to
かかる構成によれば、アルカリ成分を殆ど含まないアルミノシリケートガラス管を、アーク放電空間を構成する外囲器として用いて耐熱特性、耐熱衝撃特性を大幅に向上させた閃光放電管を光源として用いることから、発光寿命耐久特性、短時間の繰り返し発光耐久特性に優れたストロボ装置を提供することができる。 According to this configuration, the aluminosilicate glass tube containing almost no alkali component is used as the envelope forming the arc discharge space, and the flash discharge tube having significantly improved heat resistance and thermal shock resistance is used as the light source. Therefore, it is possible to provide a strobe device having excellent emission life durability characteristics and excellent repeated emission durability characteristics in a short time.
本発明の閃光放電管によれば、アーク放電空間を構成する外囲器を、アルカリ成分を殆ど含まないアルミノシリケートガラス管にて構成していることから、アルカリ成分の溶出現象を激減でき、これによって高耐熱特性並びに高耐熱衝撃特性を実現でき、この結果、発光に対する寿命耐久特性並びに短時間の繰返し発光耐久特性に優れ、かつ安価な閃光放電管を提供することができる。 According to the flash discharge tube of the present invention, since the envelope forming the arc discharge space is made of an aluminosilicate glass tube containing almost no alkali component, the elution phenomenon of the alkali component can be drastically reduced. Thus, it is possible to realize high heat resistance characteristics and high thermal shock resistance characteristics, and as a result, it is possible to provide an inexpensive flash discharge tube which is excellent in life endurance characteristics against light emission and repeated light emission durability characteristics in a short time.
本発明の光照射装置によれば、耐熱特性、耐熱衝撃特性を大幅に向上させた本発明による閃光放電管を光源として用いることから、発光寿命耐久特性並びに短時間の繰り返し発光耐久特性に優れた光照射装置を提供することができる。 According to the light irradiation device of the present invention, since the flash discharge tube according to the present invention, which has significantly improved heat resistance and heat shock resistance, is used as a light source, it has excellent emission life durability and short-time repeated emission durability. A light irradiation device can be provided.
以下、本発明にかかる閃光放電管について、図面を参酌しつつ説明する。 Hereinafter, a flash discharge tube according to the present invention will be described with reference to the drawings.
図1は、本発明にかかる閃光放電管の一実施形態を示す概略図であり、図示のように、閃光放電管1は、外囲器2の両端に、この外囲器2の内部にキセノンガス3を封入した状態で陽極ビード4を介して放電電極A(陽極)の一部を形成する電極ピン6と、陰極ビード5を介して放電電極C(陰極)の一部を形成する電極ピン7を気密封着することにより構成されている。
FIG. 1 is a schematic view showing an embodiment of a flash discharge tube according to the present invention. As shown in the figure, the
本発明にかかる閃光放電管1の外囲器2は、上記放電電極A,C間において形成されるアーク放電領域を囲んで形成されるアーク放電空間を含む適宜の空間を構成する第1外囲器部8と、この第1外囲器部8の少なくとも一端に連接される接合ガラス管である第2外囲器部9(本実施形態では一端)とから構成されており、さらに第1外囲器部8はアルカリ成分を殆ど含まないアルミノシリケートガラス管(例えば、SCHOTT社Glass8253等)にて構成され、またこのアルミノシリケートガラス管に連接される接合ガラス管である第2外囲器部9は、軟化点が低くなるように設計されたホウ珪酸ガラス管にて構成されている。(例えば、SCHOTT社Glass8487等)
ところで、アルミノシリケートガラス管自体は従来周知のガラス管ではあるが、本発明においては、先にも述べたようにアルカリ成分を殆ど含まないアルミノシリケートガラス管を、アーク放電空間を形成する外囲器2として採用している。
The envelope 2 of the
By the way, although the aluminosilicate glass tube itself is a conventionally known glass tube, in the present invention, as described above, the aluminosilicate glass tube containing almost no alkali component is used as an envelope for forming an arc discharge space. It is adopted as 2.
すなわち、本発明において採用しているアルカリ成分を殆ど含まない、アルカリ酸化物フリーのアルミノシリケートガラス管であり、その成分組成については、約20wt%の酸化アルミニウム、約60wt%の二酸化珪素、そして残部の殆どを占めるアルカリ土類金属を主組成として含み、アルカリ成分である上記アルカリ酸化物については0.03wt%未満となるように構成されているガラスである。 That is, contains little alkaline ingredients that are employed in the present invention, an aluminosilicate glass tube alkali oxide free, its chemical composition, from about 20 w t% aluminum oxide, about 60 w t% of silicon dioxide, and wherein an alkaline earth metal occupying most of the balance as main composition, for the alkali oxide is an alkali component is a glass that is configured to be less than 0.03 w t%.
具体例として先のSCHOTT社Glass8253の組成を見てみると、16.5wt%の酸化アルミニウム、61wt%の二酸化珪素、アルカリ土類金属の酸化物として13wt%の酸化カルシウム、8wt%の酸化バリウム、アルカリ酸化物である0.02wt%未満の酸化ナトリウム等を含んで構成され、かつアルカリ酸化物については合計でも0.03wt%未満となるように設定されている。なお、上記ガラス8253の特性については、軟化点は約1000度とアルカリ成分を含有しているホウ珪酸ガラスの約700〜830度より高く、また熱膨張係数は4.7×10−6・K−1であり、ホウ珪酸ガラスの3.2〜4.1×10−6・K−1並びに石英ガラスの0.55×10−6・K−1よりも大きい特性を備えている。 Looking at the composition of the previous SCHOTT Co. Glass8253 Examples, 16.5 W t% of aluminum oxide, 61w t% of silicon dioxide, 13w t% of calcium oxide as an oxide of an alkaline earth metal, 8w t% barium oxide, is configured to include a sodium oxide of less than 0.02 w t% alkali oxides, and is set to be less than 0.03 w t% in total for the alkali oxides. Regarding the characteristics of the glass 8253, the softening point is about 1000° C., which is higher than about 700 to 830° C. of borosilicate glass containing an alkali component, and the thermal expansion coefficient is 4.7×10 −6 ·K. -1 , which is larger than 3.2 to 4.1×10 −6 ·K −1 of borosilicate glass and 0.55×10 −6 ·K −1 of quartz glass.
陽極である放電電極Aは、図示のように陽極ビード4が溶着される電極ピン6とこの電極ピン6に溶接された外部ピン10で構成しており、さらにこの電極ピン6は熱膨張係数が4.4〜4.5×10−6・K−1であり融点が約3400℃と極めて高いタングステンにて構成している。また、陽極ビード4は従来から周知のホウ珪酸ガラスにて構成(例えば、SCHOTT社Glass8487等)し、外部ピン10としては例えばニッケルであるニッケル系金属を採用している。
The discharge electrode A, which is an anode, is composed of an
さらに、上記陽極ビード4は、電極ピン6に対して直接溶着される第1陽極ビード4aとこの第1陽極ビード4aの外側に溶着される第2陽極ビード4bとから形成している。なお、第2陽極ビード4bは、その端部外径が外囲器2を構成するアルミノシリケートガラス管からなる第1外囲器部8の外径と同一を含む略等しい値となるように構成しており、後述するように、その端面を介して第1外囲器部8の端面の厚み部分と溶融接合されることにより、第1外囲器部8と電極ピン6との気密封着を間接的に実現している。
Further, the
陰極である放電電極Cは、図示のように陰極ビード5が気密溶着される電極ピン7とこの電極ピン7にカシメ等の工法にて取り付けられた焼結電極11と電極ピン7に溶接された外部ピン12とで構成しており、これらの陰極ビード5と電極ピン7と外部ピン12も、先の放電電極Aと同様に、夫々、ホウ珪酸ガラス、タングステン、ニッケル系金属にて構成している。なお、陰極ビード5は、第2外囲器部9の内径と略等しい側面部外径を有し、後述するように、第2外囲器部9内に側面部を介して溶融接合されることにより、第2外囲器部9と電極ピン7との気密封着を間接的に実現している。
The discharge electrode C, which is the cathode, is welded to the
次に、本発明の第1の実施形態にかかる閃光放電管を製造する工程の概略例について図2〜図5を参照しつつ簡単に説明する。 Next, a schematic example of a process of manufacturing the flash discharge tube according to the first embodiment of the present invention will be briefly described with reference to FIGS.
図2(a)、(b)は陽極である放電電極Aを製造する工程概略図を示し、図3(a)、(b)は陰極である放電電極Cを製造する工程概略図を示し、図4(a)、(b)は外囲器2を製造する工程概略図を示し、図5は図2ないし図4にて製造した各工程部材を用いて本発明の第1実施形態にかかる閃光放電管を製造する工程概略図を示している。 2(a) and 2(b) show schematic steps of manufacturing the discharge electrode A that is an anode, and FIGS. 3(a) and 3(b) show schematic steps of manufacturing the discharge electrode C that is a cathode, FIGS. 4A and 4B are schematic views of steps for manufacturing the envelope 2, and FIG. 5 shows a first embodiment of the present invention using the process members manufactured in FIGS. 2 to 4. The schematic diagram of the process of manufacturing the flash discharge tube is shown.
図2、図3に示した放電電極AおよびC共に、電極ピン6,7である熱膨張係数が4.4〜4.5×10−6・K−1のタングステンに、中空円筒形状を備え熱膨張係数が3.2〜4.1×10−6・K−1のホウ珪酸ガラスからなる陽極ビード4(第1ビード4aと第2ビード4b)、陰極ビード5を、図2(a)、図3(a)中に矢印で示した方向に移動させて挿通し、その後、例えば図2(b)、図3(b)に示したようにビード加熱用のバーナーB1、B2にて加熱することにより先の電極ピン6,7に溶融接合している。この時、電極ピン6,7と陽極ビード4、陰極ビード5の夫々の熱膨張係数の差は小さく、具体的には1×10−6・K−1以下になるように設定していることから、上記直接の加熱による溶融接着時における熱膨張係数差に基づく不都合の発生を防止できることになる。
In both discharge electrodes A and C shown in FIGS. 2 and 3, the electrode pins 6 and 7 having a coefficient of thermal expansion of 4.4 to 4.5×10 −6 K −1 are provided in a hollow cylindrical shape. An anode bead 4 (
放電電極Cは、図3(b)に示したように、さらに焼結電極11を、例えばカシメ工程を経て電極ピン7に取り付けている。
As for the discharge electrode C, as shown in FIG. 3B, the
図4(a)、(b)は、本発明による閃光放電管の外囲器2を製造する工程の概略図であり、アルミナ成分を殆ど含まないアルミノシリケートガラス管からなる第1外囲器部8と、融点を下げるためにアルミナ成分を含んで構成されるホウ珪酸ガラス管からなり上記第1外囲器部8の内外径と同一を含む略等しい内外径を有する第2外囲器部9とを、図4(a)中に矢印で示した方向に移動させてその端部同士を突き合わせた状態で、例えば図4(b)中に示したようにバーナーB3にて加熱することにより溶融接合している。
4(a) and 4(b) are schematic views of a process of manufacturing the envelope 2 for a flash discharge tube according to the present invention, which is a first envelope part made of an aluminosilicate glass tube containing almost no alumina component. 8 and a
すなわち、第1外囲器部8を形成するアルミノシリケートガラス管の熱膨張係数4.6×10−6・K−1と、第2外囲器部9を形成するホウ珪酸ガラス管の熱膨張係数3.2〜4.1×10−6・K−1とを比較してみると、その差は概ね1×10−6・K−1前後であり、第1外囲器部8と第2外囲器部9とを両者の径方向に溶融接合した場合、ともすれば上記熱膨張係数差による不具合、例えばクラック等を生じる恐れがあるが、本発明においては、第1外囲器部8及び第2外囲器部9の両者を、夫々の厚みを介して両者の軸方向に溶融接合していることから上記熱膨張係数差による不具合の発生の恐れをなくすことができることになる。
That is, the thermal expansion coefficient of the aluminosilicate glass tube forming the
なお、第1外囲器部8と第2外囲器部9とを上記のように溶融接合してなる外囲器2に対し、必要に応じてトリガ電圧が印加されるトリガ電極として機能する透明導電性被膜を、その外表面の所定領域に周知の方法により形成しても良いことは詳述するまでもない。
It should be noted that the
次に図5に示したように、図2ないし図4にて製造した放電電極A、C等の各工程部材が以下のように組み合わされることになる。 Next, as shown in FIG. 5, the respective process members such as the discharge electrodes A and C manufactured in FIGS. 2 to 4 are combined as follows.
まず、陽極である放電電極Aを図5中の矢印方向に移動させ、その陽極ビード4を形成する第2陽極ビード4bの端面を外囲器2の第1外囲器部8の端部に当接させ、その後、例えばバーナーB4により加熱することによって上記第2陽極ビード4bの端面と第1外囲器部8の端部を、第1外囲器部8の端部の厚み(端面)を介して溶融接合し、これにより陽極である放電電極Aを、第1外囲器部8を介して外囲器2に気密封着する。
First, the discharge electrode A, which is the anode, is moved in the direction of the arrow in FIG. 5, and the end face of the
次に、放電電極Bを図5中の矢印方向に移動させ、その陰極ビード5を外囲器2の第2外囲器部9の内部に挿入し、その状態で外囲器2の内部に所望量のキセノンガス3を充填しつつ例えばバーナーB5により第2外囲器部9を加熱することによって上記陰極ビード5の側面と第2外囲器部9の内面とを溶融接合し、これにより陰極である放電電極Cを外囲器2に第2外囲器部9を介して気密封着する。
Next, the discharge electrode B is moved in the direction of the arrow in FIG. 5, the
その後、図示はしないが、外部ピン10、12の長さを所望の長さに設定する工程や同外部ピン10、12に対して予備半田を施す工程等を必要に応じて行うことにより図1に示した本発明にかかる閃光放電管1が完成することになる。
After that, although not shown in the drawings, a step of setting the length of the
以上述べたように、本発明にかかる閃光放電管1の実施形態においては、複雑な加工工程を必要とする中間ガラス体や段継ぎガラス管を用いることなく構成されることになることから、図4等にて説明した製造工程を簡素化できることは明らかであり、結果として、本発明にかかる閃光放電管1は安価に提供できることになる。
As described above, in the embodiment of the
なお、本発明にかかる閃光放電管は、上記した実施形態に限定されること無く、例えば放電電極Aの気密封着工法やキセノンガスの封入工法等については、以下のように種々変更することができることはいうまでもない。 The flash discharge tube according to the present invention is not limited to the above-described embodiment, and for example, the hermetically sealed construction method of the discharge electrode A, the xenon gas filling construction method, and the like may be variously changed as follows. It goes without saying that you can do it.
すなわち、上述した実施形態では第1外囲器部8の一端にのみ陰極である放電電極Cを気密封着するための第2外囲器部9を溶融接合し、放電電極Aについては第1外囲器部8の一端にその厚みを介して陽極ビード4を直接溶融接合するようにしていたが、第1外囲器部8の両端に第2外囲器部9を形成し、放電電極Aについてもかかる第2外囲器部9を介して溶融接合しても良いことはもちろんである。ただしこの場合、放電電極Aの陽極ビード4は、その外径を陰極ビード5と同様に第2外囲器部9の内径未満に形成する必要があり、かかる構成により、陽極ビード4は対応する第2外囲器部9内にその側面部を介して溶融接合されることになる。
That is, in the above-described embodiment, the
また、外囲器2を、接合ガラス管である第2外囲器部9を接合せずに第1外囲器部8のみで構成し、かつ放電電極A、C夫々の陽極ビード4、陰極ビード5の外径を上記第1外囲器部8の内径未満に形成すると共に第1外囲器部8の軸方向に長尺化、例えば内径の2倍以上の寸法を有するように形成することにより、陽極ビード4と陰極ビード5の夫々を対応する第1外囲器部8の端部内にその側面部を介して溶融接合しても良いことはもちろんである。
Further, the envelope 2 is configured by only the
さらに、外囲器2を、接合ガラス管である第2外囲器部9を接合せずに第1外囲器部8のみで構成し、かつ放電電極A、C夫々の陽極ビード4、陰極ビード5を用いずに夫々の電極ピン6.7の一部に溶接により設けられる周知の箔電極を形成し、第1外囲器部8の端部にて上記箔電極を圧着するいわゆるピンチシール方式によって上記放電電極A、Cと第1外囲器部8間の気密封着を実現しても良いことはもちろんである。
Further, the envelope 2 is constituted only by the
また、上記した放電電極Cの外囲器2の内部にキセノンガス3を封入しつつの気密封着工程を実現する他の工法例としては、バーナーB5に換えて例えばカーボンヒーターを用い、具体的にはバーナーB5を除く図5に示した放電電極Aが封着された外囲器2と放電電極C及びカーボンヒーターを、内部を真空にできると共に所定圧力のキセノンガスを充填できる作業空間を備えた真空容器内に配置し、この真空容器内にてキセノンガスの充填並びにカーボンヒーターによる放電電極Cの陰極ビード5と外囲器2の第2外囲器部9間の溶融接合を実施する工法を採用できることはもちろんである。
Further, as another example of the method for realizing the airtight adhesion process while enclosing the
さらに、外囲器2の内部にキセノンガス3を封入する他の工法例としては、外囲器2に連接して設けた排気管を介して外囲器2内の排気及びキセノンガス封入を行った後に当該排気管をチップオフする周知の工法を採用することもできる。
Further, as another example of the method of enclosing the
次に、本発明にかかる光照射装置の一実施形態について説明する。 Next, an embodiment of the light irradiation device according to the present invention will be described.
図6は、本発明にかかる閃光放電管1を用いた光照射装置の一例であるストロボ装置Sの一実施形態を示す概略構成図である。
FIG. 6 is a schematic configuration diagram showing an embodiment of a strobe device S which is an example of a light irradiation device using the
図示のように、本発明による光照射装置の一実施形態例であるストロボ装置Sは、本体13内に、被写体14の照明用光源となる本発明にかかる閃光放電管1、この閃光放電管1の発光光を被写体14方向に向けて導く反射傘15、閃光放電管1と被写体14の間に配置され短波長領域の光、例えば400nm以下の光を遮断する光学部材16、光学部材16を介して入射する光の射出方向、射出角度等を制御する光学制御手段17、閃光放電管1の発光動作を制御する発光動作制御手段18等を備えて構成されている。
As shown in the figure, a flash device S, which is an embodiment of a light irradiation device according to the present invention, has a
このため、発光動作制御手段18により閃光放電管1が発光動作を行った場合、閃光放電管1が射出する発光光は、直接及び反射傘15によって反射されて光学部材16に到達して短波長領域の光が遮断された光(例えば400nm以下の波長の光を含まない光)に制御され、さらに光学制御手段17によって照射角度等が制御されて被写体14に照射されることになる。
Therefore, when the
この時、本発明にかかる光照射装置の一例であるストロボ装置の光源として本発明にかかる閃光放電管、すなわち外囲器のアーク放電空間をアルミノシリケートガラス管にて構成し、アルカリ成分の溶出現象を激減することによって高耐熱特性並びに高耐熱衝撃特性を実現でき、この結果、発光に対する寿命耐久特性並びに短時間の繰返し発光耐久特性に優れ、かつ安価な閃光放電管を用いていることから、ストロボ装置としての発光寿命耐久特性並びに短時間の繰り返し発光耐久特性の大幅向上を実現できることになる。 At this time, a flash discharge tube according to the present invention as a light source of a strobe device which is an example of a light irradiation apparatus according to the present invention, that is, an arc discharge space of an envelope is configured by an aluminosilicate glass tube, and an elution phenomenon of an alkaline component is performed. It is possible to realize high heat resistance characteristics and high heat shock resistance characteristics by drastically reducing the light emission, and as a result, it is possible to use strobe lamps that are excellent in life endurance characteristics against light emission and short-term repeated light emission endurance characteristics and are inexpensive. It is possible to realize a significant improvement in the light emission life durability property of the device and the repeated light emission durability property in a short time.
なお、本発明にかかる光照射装置は、上述したストロボ装置に限定されないことはいうまでもなく、例えば橋梁・高層ビル等の高所に設置されている航空機障害灯、航空機やパトカー等の緊急自動車に搭載される警光灯など、閃光放電管を光源として用いている、あるいは用いることができる各種の光照射装置に適用できることはもちろんである。 Needless to say, the light irradiation device according to the present invention is not limited to the strobe device described above, and for example, an aircraft obstacle light installed in a high place such as a bridge or a high-rise building, an emergency vehicle such as an aircraft or a police car. It is needless to say that the present invention can be applied to various light irradiating devices that use or can use a flash discharge tube as a light source, such as a warning light mounted on the.
本発明の閃光放電管は、外囲器のアーク放電空間を、アルカリ成分を殆ど含まないアルミノシリケートガラス管にて構成し、アルカリ成分の溶出現象を激減することによって高耐熱特性並びに高耐熱衝撃特性を実現できることから、発光寿命耐久特性並びに短時間の繰返し発光耐久特性に優れ、かつ安価な閃光放電管を得ることに適用することができる。 The flash discharge tube of the present invention comprises an arc discharge space of an envelope with an aluminosilicate glass tube containing almost no alkali component, and by highly reducing the elution phenomenon of the alkali component, high heat resistance characteristics and high thermal shock resistance characteristics. Therefore, the present invention can be applied to obtain an inexpensive flash discharge tube which is excellent in the light emission life endurance property and the short-term repeated light emission endurance property.
また、本発明の光照射装置は、上記閃光放電管を光源として用いていることから、発光寿命耐久特性並びに短時間の繰り返し発光耐久特性の大幅向上を実現できた光照射装置を得ることに適用することができる。 Further, since the light irradiation device of the present invention uses the above-mentioned flash discharge tube as a light source, it is applied to obtain a light irradiation device capable of significantly improving the light emission life endurance property and the repeated light emission endurance property in a short time. can do.
1 閃光放電管
2 外囲器
3 キセノンガス
4 陽極ビード
4a 第1陽極ビード
4b 第2陽極ビード
5 陰極ビード
6 電極ピン
7 電極ピン
8 第1外囲器部
9 第2外囲器部
10 外部ピン
11 焼結体(焼結電極)
12 外部ピン
13 本体
14 被写体
15 反射傘
16 光学部材
17 光学制御手段
18 発光動作制御手段
1 flash discharge tube 2
12
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015051572A JP6709895B2 (en) | 2015-03-16 | 2015-03-16 | Flash discharge tube and light irradiation device including the flash discharge tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015051572A JP6709895B2 (en) | 2015-03-16 | 2015-03-16 | Flash discharge tube and light irradiation device including the flash discharge tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016171044A JP2016171044A (en) | 2016-09-23 |
JP6709895B2 true JP6709895B2 (en) | 2020-06-17 |
Family
ID=56984112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015051572A Active JP6709895B2 (en) | 2015-03-16 | 2015-03-16 | Flash discharge tube and light irradiation device including the flash discharge tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6709895B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6799745B2 (en) * | 2016-03-07 | 2020-12-16 | パナソニックIpマネジメント株式会社 | A flash discharge tube, a method for manufacturing the same, and a strobe device provided with the flash discharge tube. |
US11589966B2 (en) * | 2018-10-29 | 2023-02-28 | Vita Zahnfabrik H. Rauter Gmbh & Co. Kg | Heating element for a dental-ceramic furnace and dental sintering furnace |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4824366Y1 (en) * | 1968-02-08 | 1973-07-16 | ||
US4310773A (en) * | 1979-05-16 | 1982-01-12 | General Electric Company | Glass flash tube |
JPS5885754U (en) * | 1981-12-07 | 1983-06-10 | 株式会社日立製作所 | UV light source |
DE10039383A1 (en) * | 2000-08-11 | 2002-02-28 | Perkinelmer Optoelectronics | Flash lamp and flash lamp construction |
JP4293067B2 (en) * | 2004-06-23 | 2009-07-08 | ウシオ電機株式会社 | Flash lamp |
DE102005019958B4 (en) * | 2005-04-29 | 2010-02-18 | Schott Ag | Flash light source with glass envelope |
JP2008059764A (en) * | 2006-08-29 | 2008-03-13 | Shin Kowa Kk | Discharge lamp, and its forming method |
JP2012119205A (en) * | 2010-12-02 | 2012-06-21 | Panasonic Corp | Flash discharge tube and strobe device |
JP2014127326A (en) * | 2012-12-26 | 2014-07-07 | Shinto Holdings Co Ltd | Sintered body for flash discharge tube, flash discharge tube, and method of manufacturing sintered body for flash discharge tube |
-
2015
- 2015-03-16 JP JP2015051572A patent/JP6709895B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016171044A (en) | 2016-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20030019167A (en) | High pressure discharge lamp and method for producing the same | |
JPH01236570A (en) | Light | |
JP3665510B2 (en) | Arc tube for discharge lamp equipment | |
JP6709895B2 (en) | Flash discharge tube and light irradiation device including the flash discharge tube | |
JP4972172B2 (en) | Discharge lamp | |
JP4494224B2 (en) | Seal for lamp and discharge lamp | |
US7438620B2 (en) | Arc tube of discharge lamp having electrode assemblies receiving vacuum heat treatment and method of manufacturing of arc tube | |
WO2012073515A1 (en) | Flashtube and strobe apparatus | |
JP4922078B2 (en) | Metal halide lamp | |
JP6799745B2 (en) | A flash discharge tube, a method for manufacturing the same, and a strobe device provided with the flash discharge tube. | |
JP4709011B2 (en) | Automotive discharge lamp | |
JP2015076306A (en) | Short arc type discharge lamp | |
JP4498940B2 (en) | Metal halide lamp | |
JP6634597B2 (en) | Tempered glass tube for discharge tube, method for manufacturing the same, flash discharge tube using the tempered glass tube, and light irradiation device provided with the flash discharge tube | |
JP2009140846A (en) | Discharge lamp for vehicle | |
JP6803524B2 (en) | Light emitting device including a flash discharge tube and a flash discharge tube | |
JP2008059764A (en) | Discharge lamp, and its forming method | |
JP2019061817A (en) | Discharge lamp | |
JP6020619B2 (en) | Both ends sealed short arc flash lamp | |
JP2003151497A (en) | High pressure discharge lamp and its manufacturing method | |
KR20170011992A (en) | Short arc type flash lamp with both ends sealed | |
JP2006344579A (en) | Dual tubular type metal-halide lamp | |
JP6295776B2 (en) | Discharge lamp and discharge lamp manufacturing method | |
JP2008059783A (en) | Light source device | |
KR20220045890A (en) | Lamp sealing structure, lamp, and method of lamp sealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160712 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180309 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20190116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190723 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200420 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6709895 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |