JP2016171044A - Flash discharge tube and light irradiation device having the same - Google Patents

Flash discharge tube and light irradiation device having the same Download PDF

Info

Publication number
JP2016171044A
JP2016171044A JP2015051572A JP2015051572A JP2016171044A JP 2016171044 A JP2016171044 A JP 2016171044A JP 2015051572 A JP2015051572 A JP 2015051572A JP 2015051572 A JP2015051572 A JP 2015051572A JP 2016171044 A JP2016171044 A JP 2016171044A
Authority
JP
Japan
Prior art keywords
glass tube
tube
envelope
bead
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015051572A
Other languages
Japanese (ja)
Other versions
JP6709895B2 (en
Inventor
博志 済木
Hiroshi Saiki
博志 済木
慎二 木原
Shinji Kihara
慎二 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015051572A priority Critical patent/JP6709895B2/en
Publication of JP2016171044A publication Critical patent/JP2016171044A/en
Application granted granted Critical
Publication of JP6709895B2 publication Critical patent/JP6709895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive flash discharge tube that is excellent in light-emission lifetime durability to light emission and durability characteristic to short-time repetitive light emission, and a light irradiation device having the flash discharge tube as a light source.SOLUTION: A flash discharge tube is configured so that a pair of discharge electrodes are air-tightly sealed at both the ends of a light-transmissible envelope while xenon gas is filled in the envelope. A portion of the envelope which surrounds an arc discharge area between the pair of discharge electrodes to form an arc discharge space is formed of aluminosilicate glass which contains aluminosilicate as a main component and little alkali component.SELECTED DRAWING: Figure 1

Description

本発明は、閃光放電管及び該閃光放電管を備えた光照射装置に関する。   The present invention relates to a flash discharge tube and a light irradiation apparatus including the flash discharge tube.

従来から、閃光放電管は、例えば光照射装置として周知の写真撮影の際の被写体照明用の人工光源であるストロボ装置の光源として有用されていると共に、一方で写真撮影を行うカメラにあっては、被写体画像を形成するいわゆる感光材としてCCD等の電気光学的素子を用いるデジタル化が進み、このため、撮影ショット数が飛躍的に増大し、結果として先のストロボ装置においても発光寿命耐久特性の大幅向上が強く求められている。   Conventionally, a flash discharge tube has been useful as a light source of a strobe device, which is an artificial light source for illuminating a subject when taking a photo, for example, which is well-known as a light irradiation device. The digitization using electro-optical elements such as CCDs as so-called photosensitive materials for forming subject images has progressed, and this has led to a dramatic increase in the number of shots taken. There is a strong demand for significant improvements.

ところで、光照射装置の一つであるストロボ装置の発光寿命耐久特性を向上させるためには、閃光発光する先の閃光放電管の耐久特性を向上させることが必須であり、そのためには、以下のような構成を有する上記閃光放電管の構成材料個々の強化が必要となることは詳述するまでもない。すなわち、上記閃光放電管の構成について見てみると、閃光放電管の外囲器を構成するガラス管の両端に、その内部にキセノンガスを封入した状態で一対の放電電極を気密封着してなる構成を有することが周知であり、従来から、上記ガラス管等の構成材料の強化が強く望まれていた。   By the way, in order to improve the light emission lifetime durability characteristics of a strobe device which is one of the light irradiation devices, it is essential to improve the durability characteristics of the flash discharge tube to which the flash light is emitted. Needless to say, it is necessary to reinforce each constituent material of the flash discharge tube having such a configuration. That is, when looking at the configuration of the flash discharge tube, a pair of discharge electrodes are hermetically sealed at both ends of the glass tube constituting the envelope of the flash discharge tube with xenon gas sealed inside. It has been well known to have such a structure, and there has been a strong demand for strengthening the constituent materials such as the glass tube.

なお、上記一対の放電電極は、通常、電極ピンと焼結体とからなる陰極と電極ピン自体にて形成される陽極とから構成され、さらに電極ピンの材料としては、閃光放電管の発光はアーク放電現象であり瞬間的に大電流が発生することからかかる大電流に耐える材料を選定する必要があり、従来、約3400度の融点を有し、電極ピン状態への加工も比較的容易な高融点金属であるタングステンの採用が一般的であった。   The pair of discharge electrodes is usually composed of a cathode composed of an electrode pin and a sintered body and an anode formed by the electrode pin itself. Further, as the material of the electrode pin, the light emission of the flash discharge tube is an arc. Since it is a discharge phenomenon and a large current is generated instantaneously, it is necessary to select a material that can withstand such a large current. Conventionally, it has a melting point of about 3400 degrees and is relatively easy to process into an electrode pin state. The use of tungsten, which is a melting point metal, has been common.

また、閃光放電管の外囲器を構成するガラス管としては、上記電極ピンとの間での気密封着作業が加熱工程により実施されることから、従来、熱膨張係数をタングステンのそれと近似させると共に軟化点を下降させて加熱工程での作業温度を下げるように設計されたホウ珪酸ガラス管の採用が一般的であった。なお、ホウ珪酸ガラス管における上記軟化点を下降させるガラス設計は、アルカリ成分である酸化ナトリウムや酸化カリウム等のアルカリ酸化物を適宜量含有させることにより実現させていることも周知であり、上記ホウ珪酸ガラス管は、アルカリ成分を含有させたガラスとしてガラス分野にて認知されている。   In addition, as the glass tube constituting the envelope of the flash discharge tube, since the hermetically sealing operation with the electrode pin is performed by a heating process, conventionally, the thermal expansion coefficient is approximated to that of tungsten. It has been common to use borosilicate glass tubes designed to lower the softening point and lower the working temperature in the heating process. It is well known that the glass design for lowering the softening point in the borosilicate glass tube is realized by appropriately containing an alkali oxide such as sodium oxide or potassium oxide, which is an alkali component. Silicate glass tubes are recognized in the glass field as glass containing an alkali component.

一方で上記のようなホウ珪酸ガラス管構成を有する閃光放電管の発光寿命耐久特性における寿命末期現象について見てみるといくつかの寿命末期状態が知られている。   On the other hand, when looking at the end-of-life phenomenon in the emission life durability characteristics of the flash discharge tube having the borosilicate glass tube structure as described above, several end-of-life states are known.

ひとつは、閃光放電管の外囲器のみにおいて生じる現象である絶縁破壊現象であるアーク放電によるガラス管自体への熱衝撃印加や放電電極のガラス管内面への溶融飛散によって生じるガラス管クラックの進行によるリークの発生であり、ひとつは、先の熱衝撃印加によるガラス管内面での先のアルカリ成分の蒸発・析出や放電電極のガラス管内面への溶融飛散によるガラス管の光透過機能の劣化に基づく発光量の低下およびアルカリ成分という放電に寄与しない成分のガラス管内への放出に伴う発光不安定状態、いわゆる不発光現象が高頻度で発生する状態への移行等、が寿命末期状態を示す事例として知られている。   One is the progress of glass tube cracking caused by the application of thermal shock to the glass tube itself by arc discharge, which is a phenomenon that occurs only in the envelope of the flash discharge tube, or by melting and scattering of the discharge electrode to the inner surface of the glass tube. One is the deterioration of the light transmission function of the glass tube due to the evaporation and deposition of the previous alkali component on the inner surface of the glass tube due to the previous thermal shock application and the melting and scattering of the discharge electrode to the inner surface of the glass tube. Examples of end-of-life conditions such as a decrease in the amount of light emission based on the emission and unstable emission due to the discharge of alkali components that do not contribute to discharge into the glass tube, transition to a state in which so-called non-light emission occurs frequently Known as.

その他にも、アーク放電時の発熱によるガラス管の高温化によると思われる当該ガラス管の膨れ(膨出)や湾曲等のいわゆるガラス管変形現象の発生も知られている。   In addition, the so-called glass tube deformation phenomenon such as swelling (bulging) or bending of the glass tube, which is considered to be due to the high temperature of the glass tube due to heat generated during arc discharge, is also known.

なお、かかる変形現象は、ホウ珪酸ガラスはアルカリ成分を含有させて軟化点を下降させている点、アーク放電時の発熱によるガラス管自体の温度上昇によってガラス管内に封入されているキセノンガスが熱膨張して上記ガラス管に対するガラス管内からの変形圧力・応力が生じる点、が大きな要因である、と推定している。   This deformation phenomenon is due to the fact that borosilicate glass contains an alkali component to lower the softening point, and that the xenon gas enclosed in the glass tube is heated by the temperature rise of the glass tube itself due to heat generation during arc discharge. It is presumed that a large factor is the point of expansion and deformation pressure / stress from the inside of the glass tube to the glass tube.

すなわち、適宜のタイミングで1回ごとに発光する通常の発光動作ではなく短時間に繰り返し発光動作を行うような特殊な場合について見てみると、発光に伴う熱衝撃が短時間に繰返し印加されることから上記通常の発光動作時よりもガラス管の温度上昇が大きくなり、このため、その上昇温度が先の下降させた軟化点近傍に到達した時点でガラス管は上記変形圧力・応力に抗しきれなくなり、結果、ガラス管が膨れたり、湾曲したりするガラス管変形現象が発生していた、と本出願人は推測・推定している。   That is, when looking at a special case in which light emission operation is repeatedly performed in a short time rather than a normal light emission operation in which light is emitted every time at an appropriate timing, a thermal shock accompanying light emission is repeatedly applied in a short time. Therefore, the temperature rise of the glass tube is larger than that in the normal light emitting operation, and therefore the glass tube resists the deformation pressure and stress when the rise temperature reaches the vicinity of the softening point that has been lowered. The present applicant speculates and estimates that the glass tube deformation phenomenon that the glass tube swells and curves as a result has occurred.

上述したように、閃光放電管の耐久特性を向上させるためには閃光放電管の外囲器を構成するガラス管の耐久性強化が必要であることが周知、また明らかであり、従前、ガラス分野では、熱膨張係数が小さいと耐熱特性、耐熱衝撃特性が優れている、ということが広く認識されている状況から、ガラスの耐熱特性、耐熱衝撃特性を改善する対策としては、熱膨張係数が小さくなるようにガラスの成分設計を行う、あるいは選択を行っていた。   As described above, it is well known and obvious that it is necessary to enhance the durability of the glass tube constituting the envelope of the flash discharge tube in order to improve the durability characteristics of the flash discharge tube. However, since it is widely recognized that a small thermal expansion coefficient has excellent heat resistance and thermal shock characteristics, the thermal expansion coefficient is small as a measure to improve the thermal and thermal shock characteristics of glass. The glass component was designed or selected as such.

放電管分野においても例外ではなく、耐熱特性、耐熱衝撃特性の改善を実現するための対策としては、従来、熱膨張係数が小さくなるように設計したガラス、換言すれば熱膨張係数が小さいガラスを外囲器として用いる、ことが周知、かつ一般的であった。   There is no exception in the field of discharge tubes, and as a measure to improve the heat resistance and thermal shock resistance, conventionally designed glass with a low thermal expansion coefficient, in other words, glass with a low thermal expansion coefficient is used. It was well-known and common to use as an envelope.

具体的には、上記外囲器を構成するガラス管として、主に二酸化珪素から形成され、熱膨張係数が小さく、よって高耐熱特性、高耐熱衝撃特性を備え、かつ機械的強度も大きい石英ガラス管を採用する構成が周知、かつ一般的であった。なお、放電電極を構成する電極ピンについては、前述のタングステンが約3400℃の高融点を有すると共に電極ピンへの加工も比較的容易であることから採用されることが一般的であった。   Specifically, as a glass tube constituting the envelope, quartz glass that is mainly formed of silicon dioxide, has a low coefficient of thermal expansion, and thus has high heat resistance characteristics, high heat shock resistance characteristics, and high mechanical strength. Configurations that employ tubes are well known and common. The electrode pins constituting the discharge electrodes are generally employed because the above-mentioned tungsten has a high melting point of about 3400 ° C. and is relatively easy to process into electrode pins.

しかしながら、実際に石英ガラス管とタングステンの夫々の熱膨張係数について見てみると、石英ガラスのそれは約0.55×10−6・K−1、タングステンのそれは4.4〜4.5×10−6・K−1と著しく異なり、気密封着するために両者を、石英ガラスを加熱溶融することにより直接溶着しようとすると、先の熱膨張係数差により石英ガラスに大きな歪みが発生し、クラックが生じてしまうことになり、従来、かかるクラックの発生を防止するための種々の手段が提案、あるいは実用化されていた。 However, when actually seeing the thermal expansion coefficients of the quartz glass tube and tungsten, that of quartz glass is about 0.55 × 10 −6 · K −1 , and that of tungsten is 4.4 to 4.5 × 10 6. Unlike -6 · K -1 , when trying to weld both of them directly by fusing quartz glass for hermetic sealing, a large distortion occurs in the quartz glass due to the difference in thermal expansion coefficient, and cracks occur. Conventionally, various means for preventing the occurrence of such cracks have been proposed or put into practical use.

例えば石英ガラス管の軸方向に熱膨張係数が順次変化するように複数の熱膨張係数の異なるガラス管を配置して構成される中間ガラス体をあらかじめ準備し、この中間ガラス体を介して石英ガラス管と熱膨張係数がタングステンのそれと近似している従前のホウ珪酸ガラスから形成される端部ガラス管とをまず溶着し、次いでこの端部ガラス管とタングステンとを加熱工程を介して気密封着することにより、結果として石英ガラス管とタングステンとを間接的に気密封着する構成の採用が周知である。(特許文献1)
また、上記のように閃光放電管の外囲器であるガラス管の強度を熱膨張係数が小さい石英ガラス管の採用により向上させた場合、当然のことながら寿命耐久特性の観点での放電電極にかかる負担が増大することになり、放電電極についてもその強度(耐久性)向上が望まれ、例えば、特開2012−119205号公報には、ガラス管と、該ガラス管の一端部に設けられる陽極側電極と、前記ガラス管の他端部に設けられる陰極側電極とを備えた閃光放電管において、前記ガラス管は、第1ガラス管と、該第1ガラス管の両端部にそれぞれ接続される第2ガラス管であって、第1ガラス管の熱膨張係数と第2ガラス管の熱膨張係数との間の熱膨張係数を有する段継ぎガラス管を介して接続される第2ガラス管とで形成され、しかも、前記ガラス管の内径に対する前記陽極側電極の外径の比率が43.5%以上であることを特徴とする閃光放電管並びにこの閃光放電管を備えたストロボ装置が開示されている。(特許文献2)
なお、石英ガラス管の採用に伴う上述の中間ガラス体や段継ぎガラス管を形成する複雑な加工工程を必要としない安価、かつ耐久性にも優れた紫外線透過キセノン放電管、すなわちタングステンの熱膨張係数に近似して設計された通常のホウ珪酸ガラスより熱膨張係数を石英ガラス管に近づく方向に小さくすることにより軟化点を高くし、耐久性を向上させたホウ珪酸ガラス管を石英ガラス管に替えて採用した紫外線透過キセノン放電管ならびにこの放電管を用いた照明装置についても周知である。(特許文献3)
以上述べたように、閃光放電管の耐久特性の強化を目的としたガラス管の強化、という観点で見てみると、特許文献1、2に開示されたような石英ガラス管及び同等ガラス管、すなわち熱膨張係数が極めて小さく高耐熱衝撃特性を有することはもちろん、外部からの物理的衝撃に対する機械的強度も極めて優れているガラス管や、あるいはアルカリ成分を含有させて軟化点を下降させるように設計したホウ珪酸ガラスであっても熱膨張係数が小さくなるように設計した特許文献3に開示されたようなホウ珪酸ガラス管によって閃光放電管の外囲器を構成することが一般的であった。すなわち、先にも述べたように、ガラス分野においては、熱膨張係数を小さく設計することがガラス管の耐熱衝撃特性を改善する対策の通例であった。
For example, an intermediate glass body configured by arranging a plurality of glass tubes having different thermal expansion coefficients so that the thermal expansion coefficient sequentially changes in the axial direction of the quartz glass tube is prepared in advance, and the quartz glass is interposed through the intermediate glass body. The end glass tube formed from a conventional borosilicate glass whose thermal expansion coefficient is close to that of tungsten is first welded, and then the end glass tube and tungsten are hermetically sealed through a heating process. As a result, it is well known that the quartz glass tube and tungsten are indirectly hermetically sealed as a result. (Patent Document 1)
In addition, when the strength of the glass tube, which is the envelope of the flash discharge tube, is improved by using a quartz glass tube having a small thermal expansion coefficient as described above, it is naturally a discharge electrode in terms of life durability characteristics. This burden increases, and it is desired to improve the strength (durability) of the discharge electrode. For example, JP 2012-119205A discloses a glass tube and an anode provided at one end of the glass tube. In a flash discharge tube comprising a side electrode and a cathode side electrode provided at the other end of the glass tube, the glass tube is connected to a first glass tube and both ends of the first glass tube, respectively. A second glass tube connected through a stepped glass tube having a thermal expansion coefficient between the thermal expansion coefficient of the first glass tube and the second glass tube; Formed, and said glass Flash device is disclosed having a flash discharge tube and the flash discharge tube, wherein the ratio of the outer diameter of the anode electrode to the inside diameter of the tube is 43.5% or more. (Patent Document 2)
In addition, the UV-expanded xenon discharge tube that does not require the complicated processing steps to form the above-mentioned intermediate glass body and stepped glass tube with the adoption of the quartz glass tube, and has excellent durability, that is, thermal expansion of tungsten. The borosilicate glass tube, which has a higher softening point and improved durability, is made into a quartz glass tube by reducing the thermal expansion coefficient in the direction closer to the quartz glass tube than ordinary borosilicate glass designed to approximate the coefficient. An ultraviolet transmission xenon discharge tube adopted instead and an illumination device using the discharge tube are also well known. (Patent Document 3)
As described above, from the viewpoint of strengthening the glass tube for the purpose of enhancing the durability characteristics of the flash discharge tube, the quartz glass tube and the equivalent glass tube as disclosed in Patent Documents 1 and 2, In other words, the thermal expansion coefficient is extremely small, and it has high thermal shock resistance, as well as a glass tube with excellent mechanical strength against external physical impacts, or the softening point is lowered by containing an alkali component. It is general that the envelope of the flash discharge tube is constituted by a borosilicate glass tube as disclosed in Patent Document 3 designed so that the thermal expansion coefficient is small even in the designed borosilicate glass. . That is, as described above, in the glass field, designing a small thermal expansion coefficient is a common measure for improving the thermal shock resistance of the glass tube.

特許第5262911号公報Japanese Patent No. 5262911 特開2012−119205号公報JP 2012-119205 A 特開2013−62115号公報JP2013-62115A

上記特許文献1、2に開示された閃光放電管は、いずれも外囲器を構成するガラス管を強化するために、熱膨張係数が小さく高耐熱衝撃特性並びに大きな機械的強度を有する石英ガラス管、またはこの石英ガラス管と同等の耐久機能を備えるガラス管を用いるべく、電極ピンと外囲器を構成するガラス管の夫々の熱膨張係数の差異を考慮し、上記外囲器を構成するガラス管の両端部に中間ガラス体や段継ぎガラス管を用いる構成を備えるため、上記中間ガラス体や段継ぎガラス管を形成するための複雑な加工工程を必要とし、閃光放電管の大幅なコストアップを招くという問題点を有していた。   The flash discharge tubes disclosed in Patent Documents 1 and 2 are both quartz glass tubes having a low thermal expansion coefficient, a high thermal shock resistance and a large mechanical strength in order to strengthen the glass tube constituting the envelope. In order to use a glass tube having a durability function equivalent to that of the quartz glass tube, the difference in thermal expansion coefficient between the electrode pin and the glass tube constituting the envelope is taken into consideration, and the glass tube constituting the envelope is used. Because it has a configuration that uses an intermediate glass body and a stepped glass tube at both ends, it requires complicated processing steps to form the intermediate glass body and the stepped glass tube, greatly increasing the cost of the flash discharge tube. Had the problem of inviting.

これに対し、特許文献3には、通常のホウ珪酸ガラス管より熱膨張係数を石英ガラス管に近づく方向に小さくすることにより軟化点を高くして上記通常のホウ珪酸ガラス管よりも耐久特性を向上させたホウ珪酸ガラス管を石英ガラス管に替えて採用し、先の複雑な加工工程を不用とした紫外線透過キセノン放電管が開示されており、確かに大幅なコストアップを生じることは無いが、ホウ珪酸ガラスの一種であることは明らかであり、耐久機能については石英ガラス管には到底及ばない問題点を有していた。   On the other hand, in Patent Document 3, the thermal expansion coefficient is made smaller in the direction approaching the quartz glass tube than that of a normal borosilicate glass tube, thereby increasing the softening point and providing more durable characteristics than the normal borosilicate glass tube. An improved borosilicate glass tube is used instead of a quartz glass tube, and an ultraviolet transmission xenon discharge tube that does not require the complicated processing steps described above has been disclosed. It is clear that it is a kind of borosilicate glass, and its durability function has a problem that does not reach the quartz glass tube.

本発明は、上記問題点に鑑み、ホウ珪酸ガラス管に対して大幅な高耐熱特性、並びに高耐熱衝撃特性の向上を実現すると共に安価に形成することができる閃光放電管及びこの閃光放電管を備えた光照射装置を提供することを課題とする。   In view of the above problems, the present invention realizes a flash discharge tube capable of realizing a significant improvement in heat resistance and high heat shock resistance with respect to a borosilicate glass tube, and a flash discharge tube that can be formed at low cost. It is an object to provide a light irradiation device provided.

本発明に係る閃光放電管は、透光性の外囲器の両端に、その内部にキセノンガスを封入した状態で放電電極を気密封着してなる閃光放電管であって、前記外囲器は、少なくとも前記一対の放電電極間であるアーク放電領域を囲んで形成されるアーク放電空間を、アルミノ珪酸塩を主成分としてアルカリ成分を殆ど含まないアルミノシリケートガラス管にて構成していることを特徴とする。   A flash discharge tube according to the present invention is a flash discharge tube in which a discharge electrode is hermetically sealed at both ends of a light-transmitting envelope in a state where xenon gas is sealed inside the envelope. The arc discharge space formed surrounding at least the arc discharge region between the pair of discharge electrodes is composed of an aluminosilicate glass tube containing aluminosilicate as a main component and almost no alkali component. Features.

かかる構成によれば、本発明のアルミノシリケートガラス管の熱膨張係数を、アルカリ成分を殆ど含まない種類、あるいは設計とすることによりアルカリ成分を含有するホウ珪酸ガラス管の熱膨張係数よりも大きく設定できることになる。これにより外囲器としての軟化点をホウ珪酸ガラス管よりも高くできることになり、よって耐熱特性を向上させることができると共にホウ珪酸ガラス管において発生していたアーク放電時の熱衝撃によるガラス管内面へのアルカリ成分の溶出現象を激減させることができ、これにより耐熱衝撃特性を大幅に向上できることになる。   According to such a configuration, the coefficient of thermal expansion of the aluminosilicate glass tube of the present invention is set to be larger than the coefficient of thermal expansion of the borosilicate glass tube containing an alkali component by being of a kind or design containing almost no alkali component. It will be possible. As a result, the softening point of the envelope can be made higher than that of the borosilicate glass tube, so that the heat resistance can be improved and the inner surface of the glass tube due to the thermal shock during arc discharge generated in the borosilicate glass tube. It is possible to drastically reduce the elution phenomenon of the alkali component to the heat resistance, thereby greatly improving the thermal shock resistance.

すなわち、上記のようにアルカリ成分を殆ど含まないアルミノシリケートガラス管にてアーク放電空間を形成する外囲器を構成すれば、先に述べた熱膨張係数を小さく設計するという従来のガラス分野での認識、また実践されていたガラス管強化対策の通例とは異なるものの、アーク放電時の熱衝撃という閃光放電管の外囲器のみにおいて生じていた現象に対する耐久特性(耐熱特性、耐熱衝撃特性)について大幅に改善できることになる。   In other words, if an envelope that forms an arc discharge space with an aluminosilicate glass tube that hardly contains an alkali component as described above is configured, the above-described conventional glass field in which the coefficient of thermal expansion is designed to be small. Despite the recognition and practice of glass tube strengthening measures that have been practiced, the endurance characteristics (heat resistance characteristics and thermal shock characteristics) of the phenomenon that occurred only in the envelope of the flash discharge tube, such as thermal shock during arc discharge It will be able to greatly improve.

この結果、光照射装置の一つである例えばストロボ装置の光源として有用されている閃光放電管の発光寿命耐久特性を大きく向上できることになる。   As a result, it is possible to greatly improve the light emission life durability characteristics of a flash discharge tube that is useful as a light source of a strobe device, which is one of light irradiation devices.

また、請求項2記載の発明において、外囲器は、ホウ珪酸ガラスから形成されると共にアルミノシリケートガラス管の内外径と同一を含む略等しい内外径を有し、前記アルミノシリケートガラス管の少なくとも一端に端面を介して溶融接合される接合ガラス管を備え、放電電極は、アーク放電空間を形成する電極ピンとこの電極ピンに気密溶着され前記アルミノシリケートガラス管の外径と略等しい端部外径を有する陽極ビードとからなり、前記アルミノシリケートガラス管の一端に前記陽極ビードの端面を介して溶融接合されることにより気密封着される陽極と、前記アーク放電空間を形成する電極ピンとこの電極ピンに気密溶着され前記接合ガラス管の内径と略等しい側面部外径を有する陰極ビードと前記電極ピンの先端部に固着される焼結体とからなり、前記接合ガラス管内に側面部を介して溶融接合されることにより気密封着される陰極とを有することを特徴としている。   According to a second aspect of the present invention, the envelope is formed of borosilicate glass and has an inner and outer diameter substantially equal to the inner and outer diameters of the aluminosilicate glass tube, and at least one end of the aluminosilicate glass tube The discharge electrode has an electrode pin forming an arc discharge space and an end outer diameter that is hermetically welded to the electrode pin and substantially equal to the outer diameter of the aluminosilicate glass tube. An anode bead having an anode bead hermetically sealed by being melt bonded to one end of the aluminosilicate glass tube through an end face of the anode bead, an electrode pin forming the arc discharge space, and the electrode pin A cathode bead that is hermetically welded and has a side portion outer diameter substantially equal to the inner diameter of the bonded glass tube, and is fixed to the tip of the electrode pin. Consists of a sintered body, is characterized by having a cathode that is hermetically sealed by being melted bonded through a side surface portion on the bonding glass tube.

かかる構成によれば、陽極ビード並びに接合ガラス管の両者共に、アルミノシリケートガラス管の端面の厚み部分と溶着され、これによりアルミノシリケートガラス管の径方向ではなく軸方向での溶着を実現していることから、熱膨張係数差に起因して生じる恐れのある例えば剥離現象によるリーク、等の不都合の発生を大きく抑制できることになる。   According to such a configuration, both the anode bead and the bonded glass tube are welded to the thickness portion of the end surface of the aluminosilicate glass tube, thereby realizing the welding in the axial direction instead of the radial direction of the aluminosilicate glass tube. Therefore, it is possible to greatly suppress the occurrence of inconveniences such as leakage due to a peeling phenomenon that may occur due to a difference in thermal expansion coefficient.

さらに、陰極の気密封着作業を、従来と同様に周知のホウ珪酸ガラスからなる接合ガラス管を介して実施できることになり、気密封着作業工程における設備・作業条件等を複雑化することなく従前と近似した状況に設定できることになる。   Furthermore, the hermetic sealing operation of the cathode can be performed through a well-known bonded glass tube made of borosilicate glass in the same manner as in the past, and the conventional equipment and operating conditions in the hermetic sealing process are not complicated. It can be set to a situation that approximates.

すなわち、アルミノシリケートガラス管はホウ珪酸ガラス管より軟化点が高いガラス管であることからその加工作業温度が高くなるものの、石英ガラス管の加工温度よりははるかに低く、したがって、上述したように、陽極及び陰極の気密封着工程については、中間ガラス体等を必要とする石英ガラス管を用いる場合に比して容易に形成できることになることはもちろんである。   That is, the aluminosilicate glass tube is a glass tube having a higher softening point than the borosilicate glass tube, but its processing temperature is high, but it is much lower than the processing temperature of the quartz glass tube. It goes without saying that the hermetically sealing process of the anode and the cathode can be easily formed as compared with the case where a quartz glass tube that requires an intermediate glass body or the like is used.

また、請求項3記載の発明において、陽極ビードは、アルミノシリケートガラス管の内径未満の外径となるように電極ピンに直接巻き付けられて形成された第1ビードと、前記アルミノシリケートガラス管の外径と略等しい外径となるように、前記第1ビードの周囲に前記第1ビードの軸方向長さより短い長さにて巻き付けられて形成された第2ビードとから構成されることを特徴とする。   Further, in the invention according to claim 3, the anode bead is formed by winding the electrode bead directly around the electrode pin so as to have an outer diameter smaller than the inner diameter of the aluminosilicate glass tube, and the outer surface of the aluminosilicate glass tube. And a second bead formed by being wound around the first bead with a length shorter than the axial length of the first bead so as to have an outer diameter substantially equal to the diameter. To do.

かかる構成によれば、アルミノシリケートガラス管と陽極との前記アルミノシリケートガラス管の軸方向での加熱溶着が第2ビードの端面を介して実現され、第1ビードと電極ピンの溶着部への影響を小さくできることになる。   According to this configuration, the heat welding in the axial direction of the aluminosilicate glass tube and the anode in the axial direction of the aluminosilicate glass tube is realized through the end face of the second bead, and the influence on the welded portion between the first bead and the electrode pin. Can be reduced.

また請求項4記載の発明において、接合ガラス管は、アルミノシリケートガラス管の内外径と同一を含む略等しい内外径を有し、前記アルミノシリケートガラス管の両端にその端面を介して溶融接合され、陽極ビードは前記接合ガラス管の内径と略等しい側面部外径を有して形成され、前記接合ガラス管内に側面部を介して溶融接合されることにより気密封着されることを特徴とする。   Further, in the invention according to claim 4, the bonded glass tube has substantially the same inner and outer diameters including the same inner and outer diameters of the aluminosilicate glass tube, and is melt-bonded to both ends of the aluminosilicate glass tube through its end faces, The anode bead is formed to have a side surface outer diameter substantially equal to the inner diameter of the bonded glass tube, and is hermetically sealed by being melt bonded to the bonded glass tube through the side surface portion.

かかる構成によれば、陽極と陰極夫々の気密封着作業を、従来と同様に周知のホウ珪酸ガラスからなる接合ガラス管を介して実施できることになり、気密封着作業工程における設備・作業条件等を複雑化することなく従前と近似した状況に設定できることになる。   According to such a configuration, the airtight attachment work of each of the anode and the cathode can be carried out via a bonded glass tube made of a well-known borosilicate glass, as in the past. It is possible to set a situation that is similar to the conventional situation without complicating.

また請求項5記載の発明において外囲器の外表面に、トリガ電圧が印加される透明導電性被膜を備えて形成されることを特徴とする。   Further, the invention according to claim 5 is characterized in that the outer surface of the envelope is provided with a transparent conductive film to which a trigger voltage is applied.

かかる構成によれば、従前と同様のトリガ電圧印加構成を実現できることになる。   According to such a configuration, the same trigger voltage application configuration as before can be realized.

また請求項6記載の発明おいて、請求項1〜5のいずれか1項に記載の閃光放電管を光源として備えたストロボ装置を提供することを特徴とする。   According to a sixth aspect of the present invention, there is provided a strobe device including the flash discharge tube according to any one of the first to fifth aspects as a light source.

かかる構成によれば、アルカリ成分を殆ど含まないアルミノシリケートガラス管を、アーク放電空間を構成する外囲器として用いて耐熱特性、耐熱衝撃特性を大幅に向上させた閃光放電管を光源として用いることから、発光寿命耐久特性、短時間の繰り返し発光耐久特性に優れたストロボ装置を提供することができる。   According to such a configuration, an aluminosilicate glass tube containing almost no alkali component is used as an envelope constituting an arc discharge space, and a flash discharge tube having greatly improved heat resistance and thermal shock characteristics is used as a light source. Therefore, it is possible to provide a strobe device that is excellent in the light emission life durability characteristics and the short-time repeated light emission durability characteristics.

本発明の閃光放電管によれば、アーク放電空間を構成する外囲器を、アルカリ成分を殆ど含まないアルミノシリケートガラス管にて構成していることから、アルカリ成分の溶出現象を激減でき、これによって高耐熱特性並びに高耐熱衝撃特性を実現でき、この結果、発光に対する寿命耐久特性並びに短時間の繰返し発光耐久特性に優れ、かつ安価な閃光放電管を提供することができる。   According to the flash discharge tube of the present invention, since the envelope constituting the arc discharge space is composed of an aluminosilicate glass tube containing almost no alkali component, the elution phenomenon of the alkali component can be drastically reduced. As a result, high heat resistance characteristics and high thermal shock resistance characteristics can be realized. As a result, it is possible to provide a flash discharge tube which is excellent in lifetime durability characteristics for light emission and repeated light emission durability characteristics for a short time and is inexpensive.

本発明の光照射装置によれば、耐熱特性、耐熱衝撃特性を大幅に向上させた本発明による閃光放電管を光源として用いることから、発光寿命耐久特性並びに短時間の繰り返し発光耐久特性に優れた光照射装置を提供することができる。   According to the light irradiation apparatus of the present invention, since the flash discharge tube according to the present invention having greatly improved heat resistance and thermal shock characteristics is used as a light source, the light emission life durability characteristics and the short-time repeated light emission durability characteristics are excellent. A light irradiation apparatus can be provided.

本発明にかかる閃光放電管の一実施形態を示す概略図1 is a schematic view showing an embodiment of a flash discharge tube according to the present invention. 同実施形態にかかる閃光放電管の陽極の製造工程例を示す概略図Schematic showing an example of the manufacturing process of the anode of the flash discharge tube according to the embodiment 同実施形態にかかる閃光放電管の陰極の製造工程例を示す概略図Schematic showing a manufacturing process example of the cathode of the flash discharge tube according to the embodiment 同実施形態にかかる閃光放電管の外囲器の製造工程例を示す概略図Schematic showing an example of the manufacturing process of the envelope of the flash discharge tube according to the embodiment 同実施形態にかかる閃光放電管の製造工程例を示す概略図Schematic showing a manufacturing process example of a flash discharge tube according to the embodiment 本発明にかかる閃光放電管を用いた光照射装置の一例であるストロボ装置の一実施形態を示す概略構成図The schematic block diagram which shows one Embodiment of the strobe device which is an example of the light irradiation apparatus using the flash discharge tube concerning this invention

以下、本発明にかかる閃光放電管について、図面を参酌しつつ説明する。   Hereinafter, a flash discharge tube according to the present invention will be described with reference to the drawings.

図1は、本発明にかかる閃光放電管の一実施形態を示す概略図であり、図示のように、閃光放電管1は、外囲器2の両端に、この外囲器2の内部にキセノンガス3を封入した状態で陽極ビード4を介して放電電極A(陽極)の一部を形成する電極ピン6と、陰極ビード5を介して放電電極C(陰極)の一部を形成する電極ピン7を気密封着することにより構成されている。   FIG. 1 is a schematic view showing an embodiment of a flash discharge tube according to the present invention. As shown in the drawing, the flash discharge tube 1 has xenon at both ends of the envelope 2 and inside the envelope 2. An electrode pin 6 that forms part of the discharge electrode A (anode) via the anode bead 4 in a state in which the gas 3 is sealed, and an electrode pin that forms part of the discharge electrode C (cathode) via the cathode bead 5 7 is hermetically sealed.

本発明にかかる閃光放電管1の外囲器2は、上記放電電極A,C間において形成されるアーク放電領域を囲んで形成されるアーク放電空間を含む適宜の空間を構成する第1外囲器部8と、この第1外囲器部8の少なくとも一端に連接される接合ガラス管である第2外囲器部9(本実施形態では一端)とから構成されており、さらに第1外囲器部8はアルカリ成分を殆ど含まないアルミノシリケートガラス管(例えば、SCHOTT社Glass8253等)にて構成され、またこのアルミノシリケートガラス管に連接される接合ガラス管である第2外囲器部9は、軟化点が低くなるように設計されたホウ珪酸ガラス管にて構成されている。(例えば、SCHOTT社Glass8487等)
ところで、アルミノシリケートガラス管自体は従来周知のガラス管ではあるが、本発明においては、先にも述べたようにアルカリ成分を殆ど含まないアルミノシリケートガラス管を、アーク放電空間を形成する外囲器2として採用している。
The envelope 2 of the flash discharge tube 1 according to the present invention includes a first envelope that constitutes an appropriate space including an arc discharge space formed surrounding an arc discharge region formed between the discharge electrodes A and C. And a second envelope portion 9 (one end in the present embodiment) which is a bonded glass tube connected to at least one end of the first envelope portion 8. The enclosure portion 8 is composed of an aluminosilicate glass tube (for example, Glass 8253 manufactured by SCHOTT, etc.) containing almost no alkali component, and the second envelope portion 9 is a bonded glass tube connected to the aluminosilicate glass tube. Is composed of a borosilicate glass tube designed to have a low softening point. (For example, SCHOTT Glass 8487)
By the way, although the aluminosilicate glass tube itself is a conventionally well-known glass tube, in the present invention, as described above, the aluminosilicate glass tube containing almost no alkali component is used as an envelope for forming an arc discharge space. 2 is adopted.

すなわち、本発明において採用しているアルカリ成分を殆ど含まない、アルカリ酸化物フリーのアルミノシリケートガラス管であり、その成分組成については、約20w%の酸化アルミニウム、約60w%の二酸化珪素、そして残部の殆どを占めるアルカリ土類金属を主組成として含み、アルカリ成分である上記アルカリ酸化物については0.03w%未満となるように構成されているガラスである。   That is, it is an alkali oxide-free aluminosilicate glass tube that contains almost no alkali component used in the present invention, and its component composition is about 20 w% aluminum oxide, about 60 w% silicon dioxide, and the balance. It is glass comprised so that it may become less than 0.03 w% about the said alkali oxide which is an alkaline earth metal which occupies most of it as a main composition, and is an alkali component.

具体例として先のSCHOTT社Glass8253の組成を見てみると、16.5w%の酸化アルミニウム、61w%の二酸化珪素、アルカリ土類金属の酸化物として13w%の酸化カリウム、8w%の酸化バリウム、アルカリ酸化物である0.02w%未満の酸化ナトリウム等を含んで構成され、かつアルカリ酸化物については合計でも0.03w%未満となるように設定されている。なお、上記ガラス8253の特性については、軟化点は約1000度とアルカリ成分を含有しているホウ珪酸ガラスの約700〜830度より高く、また熱膨張係数は4.7×10−6・K−1であり、ホウ珪酸ガラスの3.2〜4.1×10−6・K−1並びに石英ガラスの0.55×10−6・K−1よりも大きい特性を備えている。 As a specific example, looking at the composition of the previous SCHOTT Glass 8253, 16.5 w% aluminum oxide, 61 w% silicon dioxide, 13 w% potassium oxide as an alkaline earth metal oxide, 8 w% barium oxide, The alkali oxide is configured to contain less than 0.02 w% sodium oxide and the like, and the alkali oxide is set to be less than 0.03 w% in total. Regarding the characteristics of the glass 8253, the softening point is about 1000 degrees, which is higher than about 700 to 830 degrees of the borosilicate glass containing an alkali component, and the thermal expansion coefficient is 4.7 × 10 −6 · K. -1 , which is larger than 3.2 to 4.1 × 10 −6 · K −1 of borosilicate glass and 0.55 × 10 −6 · K −1 of quartz glass.

陽極である放電電極Aは、図示のように陽極ビード4が溶着される電極ピン6とこの電極ピン6に溶接された外部ピン10で構成しており、さらにこの電極ピン6は熱膨張係数が4.4〜4.5×10−6・K−1であり融点が約3400℃と極めて高いタングステンにて構成している。また、陽極ビード4は従来から周知のホウ珪酸ガラスにて構成(例えば、SCHOTT社Glass8487等)し、外部ピン10としては例えばニッケルであるニッケル系金属を採用している。 The discharge electrode A which is an anode is composed of an electrode pin 6 to which an anode bead 4 is welded and an external pin 10 welded to the electrode pin 6 as shown in the figure, and the electrode pin 6 has a thermal expansion coefficient. It is 4.4 to 4.5 × 10 −6 · K −1 , and is composed of tungsten having a very high melting point of about 3400 ° C. The anode bead 4 is made of a conventionally known borosilicate glass (for example, Glass 8487 manufactured by SCHOTT), and a nickel-based metal such as nickel is adopted as the external pin 10.

さらに、上記陽極ビード4は、電極ピン6に対して直接溶着される第1陽極ビード4aとこの第1陽極ビード4aの外側に溶着される第2陽極ビード4bとから形成している。なお、第2陽極ビード4bは、その端部外径が外囲器2を構成するアルミノシリケートガラス管からなる第1外囲器部8の外径と同一を含む略等しい値となるように構成しており、後述するように、その端面を介して第1外囲器部8の端面の厚み部分と溶融接合されることにより、第1外囲器部8と電極ピン6との気密封着を間接的に実現している。   Further, the anode bead 4 is formed of a first anode bead 4a welded directly to the electrode pin 6 and a second anode bead 4b welded outside the first anode bead 4a. The second anode bead 4b is configured such that the outer diameter of the end thereof is substantially equal to the same as the outer diameter of the first envelope part 8 made of an aluminosilicate glass tube constituting the envelope 2. As will be described later, the first envelope portion 8 and the electrode pin 6 are hermetically sealed by being melt bonded to the thickness portion of the end surface of the first envelope portion 8 via the end surface. Is realized indirectly.

陰極である放電電極Cは、図示のように陰極ビード5が気密溶着される電極ピン7とこの電極ピン7にカシメ等の工法にて取り付けられた焼結電極11と電極ピン7に溶接された外部ピン12とで構成しており、これらの陰極ビード5と電極ピン7と外部ピン12も、先の放電電極Aと同様に、夫々、ホウ珪酸ガラス、タングステン、ニッケル系金属にて構成している。なお、陰極ビード5は、第2外囲器部9の内径と略等しい側面部外径を有し、後述するように、第2外囲器部9内に側面部を介して溶融接合されることにより、第2外囲器部9と電極ピン7との気密封着を間接的に実現している。   The discharge electrode C, which is a cathode, was welded to an electrode pin 7 to which a cathode bead 5 is hermetically welded as shown in the figure, and a sintered electrode 11 attached to the electrode pin 7 by a method such as caulking, and the electrode pin 7. The cathode bead 5, the electrode pin 7 and the external pin 12 are made of borosilicate glass, tungsten, and nickel-based metal, respectively, like the discharge electrode A. Yes. The cathode bead 5 has a side part outer diameter that is substantially equal to the inner diameter of the second envelope part 9 and is melt-bonded to the second envelope part 9 via the side part as will be described later. This indirectly realizes hermetic sealing between the second envelope portion 9 and the electrode pin 7.

次に、本発明の第1の実施形態にかかる閃光放電管を製造する工程の概略例について図2〜図5を参照しつつ簡単に説明する。   Next, a schematic example of a process for manufacturing the flash discharge tube according to the first embodiment of the present invention will be briefly described with reference to FIGS.

図2(a)、(b)は陽極である放電電極Aを製造する工程概略図を示し、図3(a)、(b)は陰極である放電電極Cを製造する工程概略図を示し、図4(a)、(b)は外囲器2を製造する工程概略図を示し、図5は図2ないし図4にて製造した各工程部材を用いて本発明の第1実施形態にかかる閃光放電管を製造する工程概略図を示している。   2 (a) and 2 (b) show a process schematic diagram for manufacturing the discharge electrode A as an anode, and FIGS. 3 (a) and 3 (b) show a process schematic diagram for manufacturing a discharge electrode C as a cathode. 4 (a) and 4 (b) show a process schematic diagram for manufacturing the envelope 2, and FIG. 5 shows a first embodiment of the present invention using each process member manufactured in FIGS. The process schematic diagram which manufactures a flash discharge tube is shown.

図2、図3に示した放電電極AおよびC共に、電極ピン6,7である熱膨張係数が4.4〜4.5×10−6・K−1のタングステンに、中空円筒形状を備え熱膨張係数が3.2〜4.1×10−6・K−1のホウ珪酸ガラスからなる陽極ビード4(第1ビード4aと第2ビード4b)、陰極ビード5を、図2(a)、図3(a)中に矢印で示した方向に移動させて挿通し、その後、例えば図2(b)、図3(b)に示したようにビード加熱用のバーナーB1、B2にて加熱することにより先の電極ピン6,7に溶融接合している。この時、電極ピン6,7と陽極ビード4、陰極ビード5の夫々の熱膨張係数の差は小さく、具体的には1×10−6・K−1以下になるように設定していることから、上記直接の加熱による溶融接着時における熱膨張係数差に基づく不都合の発生を防止できることになる。 Both the discharge electrodes A and C shown in FIGS. 2 and 3 have a hollow cylindrical shape on tungsten having a thermal expansion coefficient of 4.4 to 4.5 × 10 −6 · K −1 as the electrode pins 6 and 7. An anode bead 4 (first bead 4a and second bead 4b) and cathode bead 5 made of borosilicate glass having a thermal expansion coefficient of 3.2 to 4.1 × 10 −6 · K −1 are shown in FIG. , Moved in the direction indicated by the arrow in FIG. 3 (a), and then inserted, and then heated by bead heating burners B1 and B2 as shown in FIG. 2 (b) and FIG. 3 (b), for example. By doing so, it is melt-bonded to the previous electrode pins 6 and 7. At this time, the difference in thermal expansion coefficient between the electrode pins 6 and 7 and the anode bead 4 and the cathode bead 5 is small, specifically, set to be 1 × 10 −6 · K −1 or less. Therefore, it is possible to prevent the occurrence of inconvenience based on the difference in thermal expansion coefficient at the time of melt bonding by direct heating.

放電電極Cは、図3(b)に示したように、さらに焼結電極11を、例えばカシメ工程を経て電極ピン7に取り付けている。   As shown in FIG. 3B, the discharge electrode C further has the sintered electrode 11 attached to the electrode pin 7 through a caulking process, for example.

図4(a)、(b)は、本発明による閃光放電管の外囲器2を製造する工程の概略図であり、アルミナ成分を殆ど含まないアルミノシリケートガラス管からなる第1外囲器部8と、融点を下げるためにアルミナ成分を含んで構成されるホウ珪酸ガラス管からなり上記第1外囲器部8の内外径と同一を含む略等しい内外径を有する第2外囲器部9とを、図4(a)中に矢印で示した方向に移動させてその端部同士を突き合わせた状態で、例えば図4(b)中に示したようにバーナーB3にて加熱することにより溶融接合している。   4 (a) and 4 (b) are schematic views of a process for manufacturing the envelope 2 of the flash discharge tube according to the present invention, and a first envelope portion made of an aluminosilicate glass tube containing almost no alumina component. 8 and a second envelope part 9 comprising a borosilicate glass tube configured to contain an alumina component in order to lower the melting point and having a substantially equal inner / outer diameter including the same as the inner / outer diameter of the first envelope part 8. Is moved in the direction indicated by the arrow in FIG. 4 (a) and the ends thereof are butted together, for example, by heating with a burner B3 as shown in FIG. 4 (b). It is joined.

すなわち、第1外囲器部8を形成するアルミノシリケートガラス管の熱膨張係数4.6×10−6・K−1と、第2外囲器部9を形成するホウ珪酸ガラス管の熱膨張係数3.2〜4.1×10−6・K−1とを比較してみると、その差は概ね1×10−6・K−1前後であり、第1外囲器部8と第2外囲器部9とを両者の径方向に溶融接合した場合、ともすれば上記熱膨張係数差による不具合、例えばクラック等を生じる恐れがあるが、本発明においては、第1外囲器部8及び第2外囲器部9の両者を、夫々の厚みを介して両者の軸方向に溶融接合していることから上記熱膨張係数差による不具合の発生の恐れをなくすことができることになる。 That is, the thermal expansion coefficient of the aluminosilicate glass tube forming the first envelope portion 8 is 4.6 × 10 −6 · K −1 and the thermal expansion of the borosilicate glass tube forming the second envelope portion 9. When the coefficients of 3.2 to 4.1 × 10 −6 · K −1 are compared, the difference is about 1 × 10 −6 · K −1 , and the first envelope portion 8 and the first envelope 2 If the envelope part 9 is melt-bonded in the radial direction of the both, there is a risk of causing a defect due to the difference in thermal expansion coefficient, for example, a crack, but in the present invention, the first envelope part Since both the 8 and the second envelope part 9 are melt-bonded in the axial direction of each through the respective thicknesses, it is possible to eliminate the possibility of occurrence of problems due to the difference in thermal expansion coefficient.

なお、第1外囲器部8と第2外囲器部9とを上記のように溶融接合してなる外囲器2に対し、必要に応じてトリガ電圧が印加されるトリガ電極として機能する透明導電性被膜を、その外表面の所定領域に周知の方法により形成しても良いことは詳述するまでもない。   The first envelope portion 8 and the second envelope portion 9 function as a trigger electrode to which a trigger voltage is applied as necessary to the envelope 2 formed by fusion bonding as described above. It goes without saying that the transparent conductive film may be formed in a predetermined region on the outer surface by a known method.

次に図5に示したように、図2ないし図4にて製造した放電電極A、C等の各工程部材が以下のように組み合わされることになる。   Next, as shown in FIG. 5, the process members such as the discharge electrodes A and C manufactured in FIGS. 2 to 4 are combined as follows.

まず、陽極である放電電極Aを図5中の矢印方向に移動させ、その陽極ビード4を形成する第2陽極ビード4bの端面を外囲器2の第1外囲器部8の端部に当接させ、その後、例えばバーナーB4により加熱することによって上記第2陽極ビード4bの端面と第1外囲器部8の端部を、第1外囲器部8の端部の厚み(端面)を介して溶融接合し、これにより陽極である放電電極Aを、第1外囲器部8を介して外囲器2に気密封着する。   First, the discharge electrode A as an anode is moved in the direction of the arrow in FIG. 5, and the end surface of the second anode bead 4 b forming the anode bead 4 is moved to the end of the first envelope portion 8 of the envelope 2. The end face of the second envelope bead 4b and the end part of the first envelope part 8 are then brought into contact with each other by, for example, heating with a burner B4, and the thickness (end face) of the end part of the first envelope part 8 is made. The discharge electrode A, which is an anode, is hermetically sealed to the envelope 2 via the first envelope portion 8.

次に、放電電極Bを図5中の矢印方向に移動させ、その陰極ビード5を外囲器2の第2外囲器部9の内部に挿入し、その状態で外囲器2の内部に所望量のキセノンガス3を充填しつつ例えばバーナーB5により第2外囲器部9を加熱することによって上記陰極ビード5の側面と第2外囲器部9の内面とを溶融接合し、これにより陰極である放電電極Cを外囲器2に第2外囲器部9を介して気密封着する。   Next, the discharge electrode B is moved in the direction of the arrow in FIG. 5, and the cathode bead 5 is inserted into the second envelope portion 9 of the envelope 2, and in that state, inside the envelope 2. The side surface of the cathode bead 5 and the inner surface of the second envelope part 9 are melt-bonded by heating the second envelope part 9 with, for example, the burner B5 while filling the desired amount of xenon gas 3, thereby The discharge electrode C as a cathode is hermetically sealed to the envelope 2 via the second envelope portion 9.

その後、図示はしないが、外部ピン10、12の長さを所望の長さに設定する工程や同外部ピン10、12に対して予備半田を施す工程等を必要に応じて行うことにより図1に示した本発明にかかる閃光放電管1が完成することになる。   Thereafter, although not shown in the drawings, the steps of setting the length of the external pins 10 and 12 to a desired length, the step of applying preliminary solder to the external pins 10 and 12 and the like are performed as necessary. The flash discharge tube 1 according to the present invention shown in FIG.

以上述べたように、本発明にかかる閃光放電管1の実施形態においては、複雑な加工工程を必要とする中間ガラス体や段継ぎガラス管を用いることなく構成されることになることから、図4等にて説明した製造工程を簡素化できることは明らかであり、結果として、本発明にかかる閃光放電管1は安価に提供できることになる。   As described above, the embodiment of the flash discharge tube 1 according to the present invention is configured without using an intermediate glass body or a stepped glass tube that requires a complicated processing step. It is clear that the manufacturing process described in 4 etc. can be simplified, and as a result, the flash discharge tube 1 according to the present invention can be provided at low cost.

なお、本発明にかかる閃光放電管は、上記した実施形態に限定されること無く、例えば放電電極Aの気密封着工法やキセノンガスの封入工法等については、以下のように種々変更することができることはいうまでもない。   The flash discharge tube according to the present invention is not limited to the above-described embodiment. For example, the hermetically sealing discharge electrode A and the xenon gas sealing method can be variously changed as follows. Needless to say, it can be done.

すなわち、上述した実施形態では第1外囲器部8の一端にのみ陰極である放電電極Cを気密封着するための第2外囲器部9を溶融接合し、放電電極Aについては第1外囲器部8の一端にその厚みを介して陽極ビード4を直接溶融接合するようにしていたが、第1外囲器部8の両端に第2外囲器部9を形成し、放電電極Aについてもかかる第2外囲器部9を介して溶融接合しても良いことはもちろんである。ただしこの場合、放電電極Aの陽極ビード4は、その外径を陰極ビード5と同様に第2外囲器部9の内径未満に形成する必要があり、かかる構成により、陽極ビード4は対応する第2外囲器部9内にその側面部を介して溶融接合されることになる。   That is, in the above-described embodiment, the second envelope part 9 for hermetically sealing the discharge electrode C, which is a cathode, is melt bonded to only one end of the first envelope part 8, and the discharge electrode A is the first The anode bead 4 was directly melt-bonded to one end of the envelope portion 8 through its thickness, but the second envelope portion 9 was formed at both ends of the first envelope portion 8 to discharge the electrode. Of course, A may be melt-bonded via the second envelope portion 9. However, in this case, the anode bead 4 of the discharge electrode A needs to be formed to have an outer diameter smaller than the inner diameter of the second envelope portion 9 like the cathode bead 5, and the anode bead 4 corresponds to this configuration. It will be melt-bonded in the second envelope part 9 via its side face part.

また、外囲器2を、接合ガラス管である第2外囲器部9を接合せずに第1外囲器部8のみで構成し、かつ放電電極A、C夫々の陽極ビード4、陰極ビード5の外径を上記第1外囲器部8の内径未満に形成すると共に第1外囲器部8の軸方向に長尺化、例えば内径の2倍以上の寸法を有するように形成することにより、陽極ビード4と陰極ビード5の夫々を対応する第1外囲器部8の端部内にその側面部を介して溶融接合しても良いことはもちろんである。   Further, the envelope 2 is constituted by only the first envelope portion 8 without joining the second envelope portion 9 which is a bonded glass tube, and the anode beads 4 and the cathodes of the discharge electrodes A and C, respectively. The outer diameter of the bead 5 is formed to be smaller than the inner diameter of the first envelope portion 8 and is elongated in the axial direction of the first envelope portion 8, for example, to have a dimension more than twice the inner diameter. Thus, it goes without saying that the anode bead 4 and the cathode bead 5 may be melt-bonded to the corresponding end portions of the first envelope portions 8 via the side surfaces thereof.

さらに、外囲器2を、接合ガラス管である第2外囲器部9を接合せずに第1外囲器部8のみで構成し、かつ放電電極A、C夫々の陽極ビード4、陰極ビード5を用いずに夫々の電極ピン6.7の一部に溶接により設けられる周知の箔電極を形成し、第1外囲器部8の端部にて上記箔電極を圧着するいわゆるピンチシール方式によって上記放電電極A、Cと第1外囲器部8間の気密封着を実現しても良いことはもちろんである。   Further, the envelope 2 is constituted by only the first envelope portion 8 without joining the second envelope portion 9 which is a bonded glass tube, and the anode beads 4 of the discharge electrodes A and C, the cathode A so-called pinch seal is formed in which a well-known foil electrode is formed by welding on a part of each electrode pin 6.7 without using the bead 5 and the foil electrode is pressure-bonded at the end of the first envelope portion 8. Of course, the airtight sealing between the discharge electrodes A and C and the first envelope part 8 may be realized by a method.

また、上記した放電電極Cの外囲器2の内部にキセノンガス3を封入しつつの気密封着工程を実現する他の工法例としては、バーナーB5に換えて例えばカーボンヒーターを用い、具体的にはバーナーB5を除く図5に示した放電電極Aが封着された外囲器2と放電電極C及びカーボンヒーターを、内部を真空にできると共に所定圧力のキセノンガスを充填できる作業空間を備えた真空容器内に配置し、この真空容器内にてキセノンガスの充填並びにカーボンヒーターによる放電電極Cの陰極ビード5と外囲器2の第2外囲器部9間の溶融接合を実施する工法を採用できることはもちろんである。   Another example of a method for realizing the hermetic sealing process while enclosing the xenon gas 3 in the envelope 2 of the discharge electrode C is, for example, using a carbon heater instead of the burner B5. 5 includes the envelope 2 with the discharge electrode A sealed as shown in FIG. 5 excluding the burner B5, the discharge electrode C and the carbon heater, and a working space in which the inside can be evacuated and filled with xenon gas at a predetermined pressure. A method of filling the xenon gas in this vacuum vessel and performing melt bonding between the cathode bead 5 of the discharge electrode C and the second envelope portion 9 of the envelope 2 by a carbon heater. Of course, can be adopted.

さらに、外囲器2の内部にキセノンガス3を封入する他の工法例としては、外囲器2に連接して設けた排気管を介して外囲器2内の排気及びキセノンガス封入を行った後に当該排気管をチップオフする周知の工法を採用することもできる。   Furthermore, as another example of a method for enclosing the xenon gas 3 inside the envelope 2, the inside of the envelope 2 and the xenon gas are sealed through an exhaust pipe connected to the envelope 2. It is also possible to adopt a well-known method for tipping off the exhaust pipe afterwards.

次に、本発明にかかる光照射装置の一実施形態について説明する。   Next, an embodiment of a light irradiation apparatus according to the present invention will be described.

図6は、本発明にかかる閃光放電管1を用いた光照射装置の一例であるストロボ装置Sの一実施形態を示す概略構成図である。   FIG. 6 is a schematic configuration diagram showing an embodiment of a strobe device S which is an example of a light irradiation device using the flash discharge tube 1 according to the present invention.

図示のように、本発明による光照射装置の一実施形態例であるストロボ装置Sは、本体13内に、被写体14の照明用光源となる本発明にかかる閃光放電管1、この閃光放電管1の発光光を被写体14方向に向けて導く反射傘15、閃光放電管1と被写体14の間に配置され短波長領域の光、例えば400nm以下の光を遮断する光学部材16、光学部材16を介して入射する光の射出方向、射出角度等を制御する光学制御手段17、閃光放電管1の発光動作を制御する発光動作制御手段18等を備えて構成されている。   As shown in the figure, a strobe device S, which is an embodiment of a light irradiation device according to the present invention, includes a flash discharge tube 1 according to the present invention, which serves as a light source for illuminating a subject 14, and a flash discharge tube 1 according to the present invention. Through the reflector 15 that guides the emitted light toward the subject 14, the optical member 16 that is disposed between the flash discharge tube 1 and the subject 14, and blocks light in a short wavelength region, for example, light of 400 nm or less, and the optical member 16. The optical control means 17 for controlling the emission direction and the emission angle of the incident light, the light emission operation control means 18 for controlling the light emission operation of the flash discharge tube 1, and the like are provided.

このため、発光動作制御手段18により閃光放電管1が発光動作を行った場合、閃光放電管1が射出する発光光は、直接及び反射傘15によって反射されて光学部材16に到達して短波長領域の光が遮断された光(例えば400nm以下の波長の光を含まない光)に制御され、さらに光学制御手段17によって照射角度等が制御されて被写体14に照射されることになる。   For this reason, when the flash discharge tube 1 performs the light emission operation by the light emission operation control means 18, the emitted light emitted from the flash discharge tube 1 is reflected directly and by the reflector 15 and reaches the optical member 16 and reaches a short wavelength. The light in the region is controlled to light that is blocked (for example, light that does not include light having a wavelength of 400 nm or less), and the irradiation angle is controlled by the optical control unit 17 so that the subject 14 is irradiated.

この時、本発明にかかる光照射装置の一例であるストロボ装置の光源として本発明にかかる閃光放電管、すなわち外囲器のアーク放電空間をアルミノシリケートガラス管にて構成し、アルカリ成分の溶出現象を激減することによって高耐熱特性並びに高耐熱衝撃特性を実現でき、この結果、発光に対する寿命耐久特性並びに短時間の繰返し発光耐久特性に優れ、かつ安価な閃光放電管を用いていることから、ストロボ装置としての発光寿命耐久特性並びに短時間の繰り返し発光耐久特性の大幅向上を実現できることになる。   At this time, the flash discharge tube according to the present invention as a light source of the strobe device as an example of the light irradiation device according to the present invention, that is, the arc discharge space of the envelope is constituted by an aluminosilicate glass tube, and the elution phenomenon of alkali components As a result, it is possible to realize high heat resistance and high thermal shock resistance by drastically reducing the lamp. As a result, it is possible to achieve significant improvements in the light emission lifetime durability characteristics as a device and the repeated light emission durability characteristics in a short time.

なお、本発明にかかる光照射装置は、上述したストロボ装置に限定されないことはいうまでもなく、例えば橋梁・高層ビル等の高所に設置されている航空機障害灯、航空機やパトカー等の緊急自動車に搭載される警光灯など、閃光放電管を光源として用いている、あるいは用いることができる各種の光照射装置に適用できることはもちろんである。   Needless to say, the light irradiation device according to the present invention is not limited to the above-described strobe device, but may be an aircraft obstacle light, an emergency vehicle such as an aircraft or a patrol car installed at a high place such as a bridge or a high-rise building. Needless to say, the present invention can be applied to various light irradiation devices that use or can use a flash discharge tube as a light source, such as a warning light mounted on the camera.

本発明の閃光放電管は、外囲器のアーク放電空間を、アルカリ成分を殆ど含まないアルミノシリケートガラス管にて構成し、アルカリ成分の溶出現象を激減することによって高耐熱特性並びに高耐熱衝撃特性を実現できることから、発光寿命耐久特性並びに短時間の繰返し発光耐久特性に優れ、かつ安価な閃光放電管を得ることに適用することができる。   The flash discharge tube of the present invention comprises an aluminosilicate glass tube containing almost no alkali component in the arc discharge space of the envelope, and greatly reduces the elution phenomenon of the alkali component, thereby providing high heat resistance characteristics and high heat shock resistance characteristics. Therefore, the present invention can be applied to obtaining an inexpensive flash discharge tube that has excellent emission lifetime durability characteristics and short-time repeated emission durability characteristics.

また、本発明の光照射装置は、上記閃光放電管を光源として用いていることから、発光寿命耐久特性並びに短時間の繰り返し発光耐久特性の大幅向上を実現できた光照射装置を得ることに適用することができる。   In addition, since the light irradiation device of the present invention uses the above-mentioned flash discharge tube as a light source, it is applicable to obtaining a light irradiation device that can realize significant improvement in the light emission life durability characteristics and the short-time repeated light emission durability characteristics. can do.

1 閃光放電管
2 外囲器
3 キセノンガス
4 陽極ビード
4a 第1陽極ビード
4b 第2陽極ビード
5 陰極ビード
6 電極ピン
7 電極ピン
8 第1外囲器部
9 第2外囲器部
10 外部ピン
11 焼結体(焼結電極)
12 外部ピン
13 本体
14 被写体
15 反射傘
16 光学部材
17 光学制御手段
18 発光動作制御手段
DESCRIPTION OF SYMBOLS 1 Flash discharge tube 2 Envelope 3 Xenon gas 4 Anode bead 4a 1st anode bead 4b 2nd anode bead 5 Cathode bead 6 Electrode pin 7 Electrode pin 8 1st envelope part 9 2nd envelope part 10 External pin 11 Sintered body (sintered electrode)
12 External pin 13 Main body 14 Subject 15 Reflector 16 Optical member 17 Optical control means 18 Light emission operation control means

また、閃光放電管の外囲器を構成するガラス管としては、上記電極ピンとの間での気密封着作業が加熱工程により実施されることから、従来、熱膨張係数をタングステンのそれと近似させると共に軟化点を下降させて加熱工程での作業温度を下げるように設計されたホウ珪酸ガラス管の採用が一般的であった。なお、ホウ珪酸ガラス管における上記軟化点を下降させるガラス設計は、アルカリ成分である酸化ナトリウムや酸化カリウム等のアルカリ酸化物を適宜量含有させることにより実現させていることも周知であり、上記ホウ珪酸ガラス管は、アルカリ成分を含有させたガラスとしてガラス分野にて認知されている。(なお、本発明における「アルカリ成分」とは、ナトリウム、カリウム等のアルカリ金属成分のことを意味し、アルカリ土類金属成分のことを意味しない) In addition, as the glass tube constituting the envelope of the flash discharge tube, since the hermetically sealing operation with the electrode pin is performed by a heating process, conventionally, the thermal expansion coefficient is approximated to that of tungsten. It has been common to use borosilicate glass tubes designed to lower the softening point and lower the working temperature in the heating process. It is well known that the glass design for lowering the softening point in the borosilicate glass tube is realized by appropriately containing an alkali oxide such as sodium oxide or potassium oxide, which is an alkali component. Silicate glass tubes are recognized in the glass field as glass containing an alkali component. ("Alkali component" in the present invention means an alkali metal component such as sodium or potassium, and does not mean an alkaline earth metal component)

具体例として先のSCHOTT社Glass8253の組成を見てみると、16.5w%の酸化アルミニウム、61w%の二酸化珪素、アルカリ土類金属の酸化物として13w%の酸化カルシウム、8w%の酸化バリウム、アルカリ酸化物である0.02w%未満の酸化ナトリウム等を含んで構成され、かつアルカリ酸化物については合計でも0.03w%未満となるように設定されている。なお、上記ガラス8253の特性については、軟化点は約1000度とアルカリ成分を含有しているホウ珪酸ガラスの約700〜830度より高く、また熱膨張係数は4.7×10−6・K−1であり、ホウ珪酸ガラスの3.2〜4.1×10−6・K−1並びに石英ガラスの0.55×10−6・K−1よりも大きい特性を備えている。 Looking at the composition of the previous SCHOTT Co. Glass8253 Examples, 16.5 W t% of aluminum oxide, 61w t% of silicon dioxide, 13w t% of calcium oxide as an oxide of an alkaline earth metal, 8w t% barium oxide, is configured to include a sodium oxide of less than 0.02 w t% alkali oxides, and is set to be less than 0.03 w t% in total for the alkali oxides. Regarding the characteristics of the glass 8253, the softening point is about 1000 degrees, which is higher than about 700 to 830 degrees of the borosilicate glass containing an alkali component, and the thermal expansion coefficient is 4.7 × 10 −6 · K. -1 , which is larger than 3.2 to 4.1 × 10 −6 · K −1 of borosilicate glass and 0.55 × 10 −6 · K −1 of quartz glass.

Claims (6)

透光性の外囲器の両端に、その内部にキセノンガスを封入した状態で放電電極を気密封着してなる閃光放電管であって、前記外囲器は、少なくとも前記一対の放電電極間であるアーク放電領域を囲んで形成されるアーク放電空間を、アルミノ珪酸塩を主成分としてアルカリ成分を殆ど含まないアルミノシリケートガラス管にて構成している閃光放電管。 A flash discharge tube in which a discharge electrode is hermetically sealed at both ends of a translucent envelope with xenon gas sealed therein, wherein the envelope is at least between the pair of discharge electrodes. A flash discharge tube in which an arc discharge space formed by surrounding an arc discharge region is composed of an aluminosilicate glass tube containing aluminosilicate as a main component and almost no alkali component. 前記外囲器は、ホウ珪酸ガラスから形成されると共に前記アルミノシリケートガラス管の内外径と同一を含む略等しい内外径を有し、前記アルミノシリケートガラス管の少なくとも一端に端面を介して溶融接合される接合ガラス管を備え、前記放電電極は、前記アーク放電領域の空間内に位置する電極ピンとこの電極ピンに気密溶着され前記アルミノシリケートガラス管の外径と略等しい端部外径を有する陽極ビードとからなり、前記アルミノシリケートガラス管の一端に前記陽極ビードの端面を介して溶融接合されることにより気密封着される陽極と、前記アーク放電空間内に位置する電極ピンとこの電極ピンに気密溶着され前記接合ガラス管の内径と略等しい側面部外径を有する陰極ビードと前記電極ピンの先端部に固着される焼結体とからなり、前記接合ガラス管内に側面部を介して溶融接合されることにより気密封着される陰極とを有することを特徴とする請求項1に記載の閃光放電管。 The envelope is formed of borosilicate glass and has substantially the same inner and outer diameters including the same inner and outer diameters of the aluminosilicate glass tube, and is melt-bonded to at least one end of the aluminosilicate glass tube through an end surface. An anode bead having an outer diameter that is substantially equal to the outer diameter of the aluminosilicate glass tube, and the discharge electrode is hermetically welded to the electrode pin. An anode that is hermetically sealed by being melt-bonded to one end of the aluminosilicate glass tube through an end face of the anode bead, an electrode pin located in the arc discharge space, and an air-tight weld to the electrode pin A cathode bead having a side part outer diameter substantially equal to the inner diameter of the bonded glass tube, and a sintered body fixed to the tip part of the electrode pin; Rannahli, flash discharge tube according to claim 1, characterized in that it comprises a cathode which is hermetically sealed by being melted bonded through a side surface portion on the bonding glass tube. 前記陽極ビードは、前記アルミノシリケートガラス管の内径未満の外径となるように前記電極ピンに直接巻き付けられて形成された第1ビードと、前記アルミノシリケートガラス管の外径と略等しい外径となるように前記第1ビードの周囲に、前記第1ビードの軸方向長さより短い長さにて巻き付けられて形成された第2ビードとからなる請求項1〜2のいずれかに記載の閃光放電管。 The anode bead has a first bead formed by being directly wound around the electrode pin so as to have an outer diameter less than an inner diameter of the aluminosilicate glass tube, and an outer diameter substantially equal to the outer diameter of the aluminosilicate glass tube. 3. The flash discharge according to claim 1, further comprising: a second bead formed around the first bead so as to have a length shorter than an axial length of the first bead. tube. 前記接合ガラス管は、前記アルミノシリケートガラス管の内外径と同一を含む略等しい内外径を有し、前記アルミノシリケートガラス管の両端にその端面を介して溶融接合され、前記陽極ビードは前記接合ガラス管の内径と略等しい側面部外径を有して形成され、前記接合ガラス管内に側面部を介して溶融接合されることにより気密封着されることを特徴とする請求項2に記載の閃光放電管。 The bonded glass tube has substantially the same inner and outer diameters as the inner and outer diameters of the aluminosilicate glass tube, and is melt-bonded to both ends of the aluminosilicate glass tube via its end faces, and the anode bead is the bonded glass 3. The flash according to claim 2, wherein the flash is formed to have an outer diameter that is substantially equal to an inner diameter of the tube, and is hermetically sealed by being melt-bonded into the bonded glass tube via the side surface. Discharge tube. 前記外囲器の外表面に形成されてトリガ電圧が印加される透明導電性被膜を備えてなる請求項1〜4のいずれかに記載の閃光放電管。 The flash discharge tube according to any one of claims 1 to 4, further comprising a transparent conductive film formed on an outer surface of the envelope and to which a trigger voltage is applied. 請求項1〜5のいずれかに記載の閃光放電管を光源として備えた光照射装置。

The light irradiation apparatus provided with the flash discharge tube in any one of Claims 1-5 as a light source.

JP2015051572A 2015-03-16 2015-03-16 Flash discharge tube and light irradiation device including the flash discharge tube Active JP6709895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051572A JP6709895B2 (en) 2015-03-16 2015-03-16 Flash discharge tube and light irradiation device including the flash discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051572A JP6709895B2 (en) 2015-03-16 2015-03-16 Flash discharge tube and light irradiation device including the flash discharge tube

Publications (2)

Publication Number Publication Date
JP2016171044A true JP2016171044A (en) 2016-09-23
JP6709895B2 JP6709895B2 (en) 2020-06-17

Family

ID=56984112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051572A Active JP6709895B2 (en) 2015-03-16 2015-03-16 Flash discharge tube and light irradiation device including the flash discharge tube

Country Status (1)

Country Link
JP (1) JP6709895B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162548A (en) * 2016-03-07 2017-09-14 パナソニックIpマネジメント株式会社 Flashing discharge tube and method for manufacturing the same, and strobe device with flashing discharge tube
JP7442519B2 (en) 2018-10-29 2024-03-04 ビタ ツァーンファブリク ハー.ラウター ゲーエムベーハー ウント コー カーゲー Heating elements for dental ceramic furnaces and dental sintering furnaces

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824366Y1 (en) * 1968-02-08 1973-07-16
US4310773A (en) * 1979-05-16 1982-01-12 General Electric Company Glass flash tube
JPS5885754U (en) * 1981-12-07 1983-06-10 株式会社日立製作所 UV light source
JP2004507039A (en) * 2000-08-11 2004-03-04 ペルキンエルメル オプトエレクトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Flash Lamp and Flash Lamp Design
JP2006012481A (en) * 2004-06-23 2006-01-12 Ushio Inc Flash lamp
JP2006306721A (en) * 2005-04-29 2006-11-09 Schott Ag Flash lamp glass
JP2008059764A (en) * 2006-08-29 2008-03-13 Shin Kowa Kk Discharge lamp, and its forming method
JP2012119205A (en) * 2010-12-02 2012-06-21 Panasonic Corp Flash discharge tube and strobe device
JP2014127326A (en) * 2012-12-26 2014-07-07 Shinto Holdings Co Ltd Sintered body for flash discharge tube, flash discharge tube, and method of manufacturing sintered body for flash discharge tube

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4824366Y1 (en) * 1968-02-08 1973-07-16
US4310773A (en) * 1979-05-16 1982-01-12 General Electric Company Glass flash tube
JPS5885754U (en) * 1981-12-07 1983-06-10 株式会社日立製作所 UV light source
JP2004507039A (en) * 2000-08-11 2004-03-04 ペルキンエルメル オプトエレクトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Flash Lamp and Flash Lamp Design
JP2006012481A (en) * 2004-06-23 2006-01-12 Ushio Inc Flash lamp
JP2006306721A (en) * 2005-04-29 2006-11-09 Schott Ag Flash lamp glass
JP2008059764A (en) * 2006-08-29 2008-03-13 Shin Kowa Kk Discharge lamp, and its forming method
JP2012119205A (en) * 2010-12-02 2012-06-21 Panasonic Corp Flash discharge tube and strobe device
JP2014127326A (en) * 2012-12-26 2014-07-07 Shinto Holdings Co Ltd Sintered body for flash discharge tube, flash discharge tube, and method of manufacturing sintered body for flash discharge tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017162548A (en) * 2016-03-07 2017-09-14 パナソニックIpマネジメント株式会社 Flashing discharge tube and method for manufacturing the same, and strobe device with flashing discharge tube
JP7442519B2 (en) 2018-10-29 2024-03-04 ビタ ツァーンファブリク ハー.ラウター ゲーエムベーハー ウント コー カーゲー Heating elements for dental ceramic furnaces and dental sintering furnaces

Also Published As

Publication number Publication date
JP6709895B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
EP1289001A2 (en) High pressure discharge lamps and method for producing a high pressure discharge lamp
JP2004356098A (en) Cold-cathode fluorescent lamp equipped with molybdenum electrode
JPH01236570A (en) Light
EP1065698A1 (en) Mount for lamp and lamp seal structure employing the mount
JP4972172B2 (en) Discharge lamp
JP4494224B2 (en) Seal for lamp and discharge lamp
JP2016171044A (en) Flash discharge tube and light irradiation device having the same
US7438620B2 (en) Arc tube of discharge lamp having electrode assemblies receiving vacuum heat treatment and method of manufacturing of arc tube
WO2012073515A1 (en) Flashtube and strobe apparatus
JP6799745B2 (en) A flash discharge tube, a method for manufacturing the same, and a strobe device provided with the flash discharge tube.
JP2015076306A (en) Short arc type discharge lamp
JP6634597B2 (en) Tempered glass tube for discharge tube, method for manufacturing the same, flash discharge tube using the tempered glass tube, and light irradiation device provided with the flash discharge tube
JP4178961B2 (en) Discharge tube manufacturing method and discharge tube
JP3464994B2 (en) High pressure discharge lamp and method of manufacturing the same
JP4498940B2 (en) Metal halide lamp
JP6803524B2 (en) Light emitting device including a flash discharge tube and a flash discharge tube
KR100537571B1 (en) Discharge tube
JP2004006198A (en) High pressure discharge lamp, lighting system, headlamp for automobile, and arc tube for high pressure discharge lamp
JP2009140846A (en) Discharge lamp for vehicle
JP2008059764A (en) Discharge lamp, and its forming method
JP2019061817A (en) Discharge lamp
KR20170011992A (en) Short arc type flash lamp with both ends sealed
JP2006344579A (en) Dual tubular type metal-halide lamp
JP6295776B2 (en) Discharge lamp and discharge lamp manufacturing method
JP2005183267A (en) Lamp

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R151 Written notification of patent or utility model registration

Ref document number: 6709895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151