JP2013060882A - Turbo compressor - Google Patents

Turbo compressor Download PDF

Info

Publication number
JP2013060882A
JP2013060882A JP2011199770A JP2011199770A JP2013060882A JP 2013060882 A JP2013060882 A JP 2013060882A JP 2011199770 A JP2011199770 A JP 2011199770A JP 2011199770 A JP2011199770 A JP 2011199770A JP 2013060882 A JP2013060882 A JP 2013060882A
Authority
JP
Japan
Prior art keywords
stage
compressor
lubricating oil
stage compressor
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011199770A
Other languages
Japanese (ja)
Other versions
JP5616866B2 (en
Inventor
Toru Yoshioka
徹 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011199770A priority Critical patent/JP5616866B2/en
Priority to KR1020120100993A priority patent/KR20130029022A/en
Priority to CN201210335844.2A priority patent/CN102996471B/en
Publication of JP2013060882A publication Critical patent/JP2013060882A/en
Application granted granted Critical
Publication of JP5616866B2 publication Critical patent/JP5616866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/028Units comprising pumps and their driving means the driving means being a planetary gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/002Details, component parts, or accessories especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Abstract

PROBLEM TO BE SOLVED: To provide a turbo compressor that can reduce an installation space of the compressor without increasing mechanical loss due to the rebounding of lubricant and facilitating the piping work for cooling water.SOLUTION: In the turbo compressor provided with: a first stage compressor 1 and a second stage compressor 2 each driven by a pinion shaft in a gear case 5 having an input shaft 6a and at least one pinion shaft to which the rotation of the input shaft 6a is transmitted through a gear 4; and gas coolers 11, 12 for cooling a gas discharged respectively from the first stage compressor 1 and a second stage compressor 2, a lubricant tank 13 is arranged in the lower part of the gear case 5, the gas coolers 11, 12 are respectively arranged below the first stage compressor 1 and the second stage compressor 2 and in both side surfaces of the lubricant tank 13 and the lubricant tank axis line C3, the gas cooler axis line C1, C2 and the input shaft 6a are arranged in parallel.

Description

本発明は、羽根車の回転軸が、駆動軸から駆動ギヤを介して駆動されるギヤ内蔵型の多段式ターボ圧縮機に関するものである。   The present invention relates to a gear built-in type multi-stage turbo compressor in which a rotating shaft of an impeller is driven from a drive shaft via a drive gear.

先ず、従来例に係る多段式ターボ圧縮機について、以下添付図6〜9を参照しながら説明する。図6は従来技術1に係る遠心圧縮機の平面図、図7は図6のIV−IV矢視図、図8は従来技術2に係るターボ圧縮機の側断面図、図9は従来技術2に係るターボ圧縮機を複数台設置した場合の冷却水配管系統図の一例である。   First, a multistage turbo compressor according to a conventional example will be described below with reference to FIGS. 6 is a plan view of a centrifugal compressor according to prior art 1, FIG. 7 is a sectional view taken along arrows IV-IV in FIG. 6, FIG. 8 is a side sectional view of a turbo compressor according to prior art 2, and FIG. It is an example of the cooling water piping system diagram at the time of installing a plurality of turbo compressors concerning.

従来技術1に係る遠心圧縮機の圧縮機本体44は、夫々中空構造の圧縮機基部45と、ギヤボックスハウジング部46と、第一段スクロール部47と、第二段スクロール部48と、モーター取付台49とを備え、これら各部を鋳造によって一体的に形成した構造を有している。   The compressor main body 44 of the centrifugal compressor according to the prior art 1 includes a compressor base 45 having a hollow structure, a gear box housing part 46, a first stage scroll part 47, a second stage scroll part 48, and a motor attachment. The base 49 is provided, and these parts are integrally formed by casting.

そして、圧縮機基部45の内部の一端A側寄りの部分には、潤滑油を貯留する潤滑油貯留室52が形成され、圧縮機基部45の内部の他端B側寄りの部分には、熱交換素子(図示せず)を内装するインタークーラー室50と、他の熱交換素子(図示せず)を内装するアフタークーラー室51が形成されている。   A lubricating oil storage chamber 52 for storing lubricating oil is formed in a portion near the one end A side inside the compressor base 45, and a portion near the other end B side inside the compressor base 45 is heated. An intercooler chamber 50 that houses an exchange element (not shown) and an aftercooler chamber 51 that houses another heat exchange element (not shown) are formed.

また、圧縮機基部45の一端A側寄りの端部には、潤滑油貯留室52の開口部56,57を夫々別箇に覆うように開口部カバー59,60が取り付けられ、圧縮機基部45の他端B側寄りの端部には、インタークーラー室50、アフタークーラー室51の開口部54,55を一体的に覆うように開口部カバー58が取り付けられている。   Opening covers 59 and 60 are attached to the end of the compressor base 45 close to one end A so as to cover the openings 56 and 57 of the lubricating oil storage chamber 52 separately. An opening cover 58 is attached to the end of the other end B side so as to integrally cover the openings 54 and 55 of the intercooler chamber 50 and the aftercooler chamber 51.

前記開口部カバー58には、両クーラー室50,51に内装された熱交換素子に対して冷却媒体の授受を行うための管路(図示せず)が設けられており、圧縮機基部45の外部から各熱交換素子に対して冷却媒体を流通させることによって、当該冷却媒体と両クーラー室50,51の内部の気体との間で熱交換を行い、前記気体を冷却するようになっている。また、前記のアフタークーラー室51には外部へ開口する気体出口(図示せず)が設けられている。   The opening cover 58 is provided with a pipe (not shown) for transferring a cooling medium to and from the heat exchange elements built in the cooler chambers 50 and 51. By circulating a cooling medium from the outside to each heat exchange element, heat is exchanged between the cooling medium and the gas inside the cooler chambers 50 and 51 to cool the gas. . The aftercooler chamber 51 is provided with a gas outlet (not shown) that opens to the outside.

ギヤボックスハウジング部46は、前記の圧縮機基部45の上側部に設けられ、内部には入力軸と出力軸とを有する増速ギヤ機構(図示せず)が内装されている。また、ギヤボックスハウジング部46の上端には、前記増速ギヤ機構を覆うギヤボックスカバー61が取り付けられる一方、ギヤボックスハウジング部46の内部には、増速ギヤの設置部分から前記の潤滑油貯留室52へ延びる潤滑油回収流路75が形成されている。   The gear box housing portion 46 is provided on the upper portion of the compressor base 45, and a speed increasing gear mechanism (not shown) having an input shaft and an output shaft is housed therein. A gear box cover 61 that covers the speed increasing gear mechanism is attached to the upper end of the gear box housing portion 46, while the lubricating oil is stored in the gear box housing portion 46 from the speed increasing gear installation portion. A lubricating oil recovery flow path 75 extending to the chamber 52 is formed.

更に、第一段スクロール部47の内部には、スクロール室62から前記の圧縮機基部45の内部のインタークーラー室50の一端A側寄り端部近傍へ延びる第一段吐出流路66が形成されており、インペラ(図示せず)が回転することにより気体入口65から第一段スクロール部47に流入して圧縮される気体は、第一段吐出流路66を経てインタークーラー室50に流入するようになっている。   Further, a first-stage discharge passage 66 extending from the scroll chamber 62 to the vicinity of the end portion near the one end A side of the intercooler chamber 50 inside the compressor base 45 is formed inside the first-stage scroll portion 47. The gas compressed by flowing into the first scroll portion 47 from the gas inlet 65 by the rotation of the impeller (not shown) flows into the intercooler chamber 50 through the first discharge channel 66. It has become.

更に、第二段スクロール部48の内部には、前記の圧縮機基部45の内部のインタークーラー室50の他端B側寄り端部近傍からスクロール室67へ延びる第二段吸入流路70と、スクロール室67から圧縮機基部45内部のアフタークーラー室51の他端B側より端部近傍へ延びる第二段吐出流路71とが形成されており、インペラが回転することにより第二段吸入流路70から第二段スクロール部48に流入して圧縮される気体は、第二段吐出流路71を経てアフタークーラー室51に流入するようになっている(例えば、特許文献1参照)。   Further, in the second stage scroll portion 48, a second stage suction passage 70 extending from the vicinity of the other end B side end portion of the intercooler chamber 50 inside the compressor base 45 to the scroll chamber 67, and the scroll A second-stage discharge flow channel 71 extending from the other end B side of the aftercooler chamber 51 inside the compressor base 45 to the vicinity of the end portion is formed from the chamber 67, and the second-stage intake flow channel is formed by rotating the impeller. The gas that flows into the second-stage scroll portion 48 from 70 and is compressed flows into the aftercooler chamber 51 through the second-stage discharge passage 71 (see, for example, Patent Document 1).

しかしながら、この従来技術1に係る遠心圧縮機は、圧縮機本体44とインタークーラー室50及びアフタークーラー室51、並びに圧縮機本体44と前記クーラー室50,51を接続する配管(図示せず)の一部が一体構造となり、増速ギヤを収納するギアボックスハウジング部61の底部に底板61aが形成されているため、このギアボックスハウジング部61内に噴射された潤滑油が、前記底板61aに当って跳ね返り、増速ギヤに衝突して機械損失を増大させる。その結果、遠心圧縮機の性能低下を招くことになる。   However, the centrifugal compressor according to the prior art 1 is a compressor main body 44, an intercooler chamber 50 and an after cooler chamber 51, and a pipe (not shown) connecting the compressor main body 44 and the cooler chambers 50, 51. Since the bottom part 61a is formed at the bottom of the gear box housing part 61 that houses the speed increasing gear, the lubricating oil injected into the gear box housing part 61 hits the bottom board 61a. Bounces and collides with the speed increasing gear, increasing the mechanical loss. As a result, the performance of the centrifugal compressor is reduced.

一方、従来技術2は、増速ギヤ(図示せず)を収納するギヤケース81、第1段圧縮機85及び第2段圧縮機86からなる圧縮機本体と、第1ガス冷却部82及び第2ガス冷却部83、並びに前記圧縮機本体と、第1ガス冷却部82及び第2ガス冷却部83を接続する配管の一部(例えば、1段圧縮空気流通路88や2段圧縮空気流通路89)を一体構造としたところは、上記従来技術1と同一であるが、図8に示す如く、ギヤケース81の底板をなくして、潤滑油タンク87に直接潤滑油が回収される構造になっている(特許文献2参照)。従って、従来技術1の如く、潤滑油が前記底板61aに当って跳ね返り機械損失を増大させて、遠心圧縮機の性能低下を招くことはない。   On the other hand, in the related art 2, a compressor body including a gear case 81 that houses a speed increasing gear (not shown), a first stage compressor 85, and a second stage compressor 86, a first gas cooling unit 82, and a second stage. The gas cooling unit 83 and a part of the pipe connecting the compressor main body to the first gas cooling unit 82 and the second gas cooling unit 83 (for example, the first-stage compressed air flow path 88 and the second-stage compressed air flow path 89 ) Is the same as the prior art 1, but as shown in FIG. 8, the bottom plate of the gear case 81 is eliminated, and the lubricating oil is directly collected in the lubricating oil tank 87. (See Patent Document 2). Therefore, unlike the prior art 1, the lubricating oil hits the bottom plate 61a and rebounds, increasing the mechanical loss and causing no deterioration in the performance of the centrifugal compressor.

しかしながら、この様な従来技術2に係るターボ圧縮機は、従来技術1に係る遠心圧縮機と同様、第1ガス冷却部82及び第2ガス冷却部83(従来技術1においては、インタークーラー室50及びアフタークーラー室51)の軸線方向(第1ガス冷却部82及び第2ガス冷却部83の長手方向)が、圧縮機のピニオン軸84と平行に配置された駆動軸(図示せず)と直交する方向に配置されている。また、前記駆動軸を駆動する駆動モータは、当然駆動軸と同軸方向に取り付けられるため、この様な圧縮機の外形寸法は駆動軸と平行な方向に比較的長く、この駆動軸と直交する方向に短いものとなる。尚、第1ガス冷却部82及び第2ガス冷却部83の冷却水の給水取合口及び排水取合口は、それら第1ガス冷却部82及び第2ガス冷却部83の軸線方向の端部に配置される。   However, the turbo compressor according to the prior art 2 is similar to the centrifugal compressor according to the prior art 1, the first gas cooling unit 82 and the second gas cooling unit 83 (in the prior art 1, the intercooler chamber 50 and The axial direction of the aftercooler chamber 51) (longitudinal direction of the first gas cooling unit 82 and the second gas cooling unit 83) is orthogonal to a drive shaft (not shown) arranged in parallel with the pinion shaft 84 of the compressor. Arranged in the direction. Also, since the drive motor for driving the drive shaft is naturally mounted in the same direction as the drive shaft, the external dimension of such a compressor is relatively long in the direction parallel to the drive shaft, and the direction perpendicular to the drive shaft. It will be short. In addition, the water supply joint and the drain joint for the cooling water of the first gas cooling section 82 and the second gas cooling section 83 are arranged at the end portions in the axial direction of the first gas cooling section 82 and the second gas cooling section 83. Is done.

従来技術2に係るターボ圧縮機を複数台設置する場合、メンテナンスの便宜上、図9に示す如く、各圧縮機の駆動軸が並列する様にその複数台のターボ圧縮機を配置する。その結果、各冷却部82,83への給水取合口91及び排水取合口92は、各圧縮機の側面(隣り合う圧縮機の面のうち、互いに対向する面)に配置される。   When a plurality of turbo compressors according to the related art 2 are installed, the plurality of turbo compressors are arranged so that the drive shafts of the compressors are arranged in parallel as shown in FIG. 9 for convenience of maintenance. As a result, the water supply inlet 91 and the drainage outlet 92 to each cooling part 82 and 83 are arrange | positioned at the side surface (surface mutually opposed among the surfaces of an adjacent compressor).

この様に配置した場合、給水取合口91及び排水取合口92へ接続される給水配管91a及び排水配管92aは、何れも給水主配管91b及び排水主配管92bに対して屈曲(即ち、給水主配管91b及び排水主配管92bから略垂直に延びた後、その給水主配管91b及び排水主配管92bと略平行に延びて各圧縮機に接続する様、略直角方向に屈曲)して配管する必要があり、配管工事が複雑で難しくなる。また、各駆動系のメンテナンスやクーラー本体の抜き取りの作業のための十分なスペースを各圧縮機間に確保する必要があるため、広い設置スペースが必要となる。   When arranged in this manner, the water supply pipe 91a and the drainage pipe 92a connected to the water supply joint 91 and the drainage joint 92 are both bent with respect to the water supply main pipe 91b and the drainage main pipe 92b (that is, the water supply main pipe). After extending substantially vertically from 91b and the drainage main pipe 92b, it is necessary to bend the pipe in a substantially perpendicular direction so as to extend substantially parallel to the water supply main pipe 91b and the drainage main pipe 92b and connect to each compressor. Yes, piping work is complicated and difficult. Moreover, since it is necessary to ensure sufficient space between each compressor for the maintenance of each drive system and the operation | work of extraction of a cooler main body, a wide installation space is needed.

特開平7−103162号公報JP-A-7-103162 特許第4048078号公報Japanese Patent No. 4048078

従って、本発明の目的は、潤滑油の跳ね返りによる機械損失を増大させず、圧縮機の設置スペースを小さくすると共に、冷却水の配管工事も容易にできるターボ圧縮機を提供することにある。   Accordingly, it is an object of the present invention to provide a turbo compressor that does not increase mechanical loss due to rebound of lubricating oil, reduces the installation space of the compressor, and facilitates piping work for cooling water.

前記目的を達成するために、本発明の請求項1に係るターボ圧縮機が採用した手段は、入力軸と、この入力軸の回転がギヤを介して伝達される少なくとも1本のピニオン軸とを有するギヤケースの一方の側面に、前記ピニオン軸で駆動される第1段圧縮機が備えられ、かつ他方の側面に前記ピニオン軸で駆動される第2段圧縮機が備えられると共に、これら第1段圧縮機と第2段圧縮機とから吐出されるガスを冷却するガスクーラが夫々備えられたターボ圧縮機において、前記ギヤケースの下部に潤滑油タンクが配設されると共に、前記第1段圧縮機と第2段圧縮機との下方で、かつ前記潤滑油タンクの両側面に前記ガスクーラが夫々配設され、前記潤滑油タンク及び前記夫々のガスクーラの各軸線と前記入力軸が平行に配置されてなることを特徴とするものである。   In order to achieve the above object, means adopted by the turbo compressor according to claim 1 of the present invention includes an input shaft and at least one pinion shaft to which rotation of the input shaft is transmitted via a gear. A first stage compressor driven by the pinion shaft is provided on one side surface of the gear case, and a second stage compressor driven by the pinion shaft is provided on the other side surface. In the turbo compressor provided with gas coolers for cooling the gas discharged from the compressor and the second stage compressor, a lubricating oil tank is disposed below the gear case, and the first stage compressor The gas coolers are disposed below the second stage compressor and on both side surfaces of the lubricating oil tank, and the axes of the lubricating oil tank and the respective gas coolers and the input shaft are disposed in parallel. about It is an feature.

本発明の請求項2に係るターボ圧縮機が採用した手段は、請求項1に記載のターボ圧縮機において、前記潤滑油タンク内に、このタンク内の油溜まり部を上下に画成する中仕切り板が設けられ、前記中仕切り板の端部と前記潤滑油タンクの内壁とによって、前記画成された上下の油溜り部を連通する開孔部が形成されてなることを特徴とするものである。   According to a second aspect of the present invention, there is provided a turbo compressor according to the first aspect of the present invention, wherein the turbo compressor according to the first aspect has a partition that defines an oil reservoir in the tank vertically in the lubricating oil tank. A plate is provided, and an opening is formed by the end of the partition plate and the inner wall of the lubricating oil tank to communicate the defined upper and lower oil reservoirs. is there.

本発明の請求項3に係るターボ圧縮機が採用した手段は、請求項1または2に記載のターボ圧縮機において、前記ガスクーラのハウジングには、このガスクーラの軸線方向に熱交換器を挿通するための貫通穴が形成されてなることを特徴とするものである。   According to a third aspect of the present invention, there is provided the turbo compressor according to the first or second aspect, wherein the heat exchanger is inserted into the housing of the gas cooler in the axial direction of the gas cooler. These through holes are formed.

本発明の請求項1に係るターボ圧縮機によれば、入力軸と、この入力軸の回転がギヤを介して伝達される少なくとも1本のピニオン軸とを有するギヤケースの一方の側面に、前記ピニオン軸で駆動される第1段圧縮機が備えられ、かつ他方の側面に前記ピニオン軸で駆動される第2段圧縮機が備えられると共に、これら第1段圧縮機と第2段圧縮機とから吐出されるガスを冷却するガスクーラが夫々備えられたターボ圧縮機において、前記ギヤケースの下部に潤滑油タンクが配設されると共に、前記第1段圧縮機と第2段圧縮機との下方で、かつ前記潤滑油タンクの両側面に前記ガスクーラが夫々配設され、前記潤滑油タンク及び前記夫々のガスクーラの各軸線と前記入力軸が平行に配置されてなる。   According to the turbo compressor according to claim 1 of the present invention, the pinion is provided on one side surface of a gear case having an input shaft and at least one pinion shaft to which rotation of the input shaft is transmitted via a gear. A first-stage compressor driven by a shaft, and a second-stage compressor driven by the pinion shaft on the other side surface, and from these first-stage compressor and second-stage compressor In each of the turbo compressors each provided with a gas cooler for cooling the discharged gas, a lubricating oil tank is disposed below the gear case, and below the first stage compressor and the second stage compressor, The gas coolers are disposed on both side surfaces of the lubricating oil tank, and the axes of the lubricating oil tank and the respective gas coolers and the input shaft are disposed in parallel.

その結果、ターボ圧縮機の機械損失を増やすことなく、かつ、ガスクーラへの給排水配管を屈曲させずに夫々の主配管に接続できる。そのため、配管工事が簡単で設置スペースも小さくできる上、これら給排水配管が前記圧縮機のメンテナンス上、邪魔になることがない。   As a result, it is possible to connect to each main pipe without increasing the mechanical loss of the turbo compressor and without bending the water supply / drain pipe to the gas cooler. Therefore, the piping work is simple and the installation space can be reduced, and these water supply and drainage pipes do not interfere with the maintenance of the compressor.

本発明の請求項2に係るターボ圧縮機によれば、前記潤滑油タンク内に、このタンク内の油溜まり部を上下に画成する中仕切り板が設けられ、前記中仕切り板の端部と前記潤滑油タンクの内壁とによって、前記画成された上下の油溜り部を連通する開孔部が形成されてなるので、潤滑油タンク内の貯留時間が長くなり、潤滑油中の気泡を消滅させ得る。その結果、前記ギヤや軸受の潤滑及び冷却能力の低下、並びに腐食を防止できる。また、潤滑油の使用量を少なくして、潤滑油タンクの容量も少量化できるので、圧縮機全体の大きさも小型化できるメリットが生じる。   According to the turbo compressor according to claim 2 of the present invention, a partition plate that vertically defines an oil reservoir in the tank is provided in the lubricating oil tank, and an end portion of the partition plate and The inner wall of the lubricating oil tank forms an opening that communicates the defined upper and lower oil reservoirs, so that the storage time in the lubricating oil tank becomes longer and the bubbles in the lubricating oil disappear. Can be. As a result, it is possible to prevent the gears and bearings from being lubricated and lowered in cooling capacity, and corrosion. Further, since the amount of lubricating oil used can be reduced and the capacity of the lubricating oil tank can be reduced, there is an advantage that the size of the entire compressor can be reduced.

本発明の請求項3に係るターボ圧縮機によれば、前記ガスクーラのハウジングには、このガスクーラの軸線方向に熱交換器を挿通するための貫通穴が形成されてなるので、当該ハウジングの鋳造時に中子を両端支持でき、ガスクーラ内部のシールが確実に行える様になる。   In the turbo compressor according to claim 3 of the present invention, the housing of the gas cooler is formed with a through hole for inserting a heat exchanger in the axial direction of the gas cooler. The core can be supported at both ends, and the gas cooler can be securely sealed.

本発明の実施の形態に係る3段式ターボ圧縮機の模式的系統図である。1 is a schematic system diagram of a three-stage turbo compressor according to an embodiment of the present invention. 本発明の実施の形態に係る3段式ターボ圧縮機の電動機を省略した模式的平面図である。FIG. 3 is a schematic plan view in which the motor of the three-stage turbo compressor according to the embodiment of the present invention is omitted. 図2のA−A矢視図である。It is an AA arrow line view of FIG. 図2のB−B矢視図である。It is a BB arrow line view of FIG. 本発明の実施の形態に係る3段式ターボ圧縮機を複数台設置した場合の冷却水配管の系統図の一例である。It is an example of the systematic diagram of the cooling water piping at the time of installing two or more units | sets of the three-stage type turbo compressor which concerns on embodiment of this invention. 従来技術1に係る遠心圧縮機の平面図である。It is a top view of the centrifugal compressor which concerns on the prior art 1. FIG. 図6のIV-IV矢視図である。It is the IV-IV arrow line view of FIG. 従来技術2に係るターボ圧縮機の側断面図である。It is a sectional side view of the turbo compressor which concerns on the prior art 2. FIG. 従来技術2に係るターボ圧縮機を複数台設置した場合の冷却水配管の系統図の一例である。It is an example of the system diagram of a cooling water piping at the time of installing the multiple turbo compressor which concerns on the prior art 2. FIG.

先ず、本発明の実施の形態に係るターボ圧縮機につき、3段式ターボ圧縮機に適用した態様例として、以下添付図1〜5を参照しながら説明する。図1は本発明の実施の形態に係る3段式ターボ圧縮機の模式的系統図、図2は本発明の実施の形態に係る3段式ターボ圧縮機の電動機を省略した模式的平面図、図3は図2のA−A矢視図、図4は図2のB−B矢視図、図5は本発明の実施の形態に係る3段式ターボ圧縮機を複数台設置した場合の冷却水配管の系統図の一例である。   First, a turbo compressor according to an embodiment of the present invention will be described as an example of an aspect applied to a three-stage turbo compressor with reference to FIGS. FIG. 1 is a schematic system diagram of a three-stage turbo compressor according to an embodiment of the present invention. FIG. 2 is a schematic plan view in which the motor of the three-stage turbo compressor according to the embodiment of the present invention is omitted. 3 is a view taken along the line AA in FIG. 2, FIG. 4 is a view taken along the line BB in FIG. 2, and FIG. 5 is a case where a plurality of three-stage turbo compressors according to the embodiment of the present invention are installed. It is an example of the systematic diagram of cooling water piping.

この3段式ターボ圧縮機は、図1に示す如く、入力歯車6に1−2段ピニオンギヤ7と3段ピニオンギヤ8とを噛み合わして形成されたツインピニオン型の増速機(ギヤ)4を備えている。その増速機4は増速機ハウジング(ギヤケース)5に収容されている。そして、前記入力歯車6は、その中央部分において、入力軸6aに接続されている。また、入力軸6aは、増速機ハウジング(ギヤケース)5に内蔵された軸受等(図示せず)により回転可能に支持されている。   As shown in FIG. 1, this three-stage turbo compressor includes a twin-pinion type speed increaser (gear) 4 formed by meshing an input gear 6 with a 1-2-stage pinion gear 7 and a 3-stage pinion gear 8. I have. The gearbox 4 is accommodated in a gearbox housing (gear case) 5. And the said input gear 6 is connected to the input shaft 6a in the center part. The input shaft 6a is rotatably supported by a bearing or the like (not shown) built in the gearbox housing (gear case) 5.

同時に、前記入力軸6aの一端が、増速機ハウジング5から突出しており、電動機Mの出力軸6bに接続されている。前記入力軸6aと出力軸6bとの接続は、軸心にずれがあった場合でも振動や騒音を発することなく回転力を伝達可能なよう、カップリング23を介して接続されている。増速機ハウジング5は、ハウジング下部の増速機下ハウジング5aと、ハウジング上部の増速機上ハウジング5bとから構成されている。そして、増速機下ハウジング5aが、後述する潤滑油タンク13の上方に接続されている。   At the same time, one end of the input shaft 6 a protrudes from the gearbox housing 5 and is connected to the output shaft 6 b of the electric motor M. The input shaft 6a and the output shaft 6b are connected via a coupling 23 so that a rotational force can be transmitted without generating vibration and noise even when the shaft center is displaced. The gearbox housing 5 includes a gearbox lower housing 5a at the lower part of the housing and a gearbox upper housing 5b at the upper part of the housing. And the gearbox lower housing 5a is connected above the lubricating oil tank 13 mentioned later.

また、前記入力歯車6には、1−2段ピニオンギヤ7と3段ピニオンギヤ8が噛み合わされており、前記1−2段ピニオンギヤ7はピニオン軸7aによって、更に、前記3段ピニオンギヤ8はピニオン軸8aによって回転可能に支持されている。即ち、換言すれば、本発明の実施の形態に係る3段式ターボ圧縮機は、入力軸6aの回転が入力歯車6、1−2段ピニオンギヤ7を介して伝達されるピニオン軸7aと、入力軸6aの回転が入力歯車6、3段ピニオンギヤ8を介して伝達されるピニオン軸8aを有していると言える。   A 1-2 stage pinion gear 7 and a 3 stage pinion gear 8 are meshed with the input gear 6. The 1-2 stage pinion gear 7 is connected to a pinion shaft 7a, and the 3rd stage pinion gear 8 is further connected to a pinion shaft 8a. Is supported rotatably. That is, in other words, the three-stage turbo compressor according to the embodiment of the present invention includes a pinion shaft 7a in which the rotation of the input shaft 6a is transmitted via the input gear 6 and the first-second pinion gear 7, and the input It can be said that the shaft 6a has a pinion shaft 8a to which the rotation of the shaft 6a is transmitted via the input gear 6 and the three-stage pinion gear 8.

そして、増速機4から見て、1−2段ピニオンギヤ7のピニオン軸7aの反電動機M側の一端に第1段インペラ1aが接続され、この第1段インペラ1aに第1段圧縮機ケーシング1bが周設されている。一方、増速機4から見て、1−2段ピニオンギヤ7のピニオン軸7aの電動機M側の他端には第2段インペラ2aが接続され、この第2段インペラ2aに第2段圧縮機ケーシング2bが周設されている。また、このターボ圧縮機は、増速機4から見て3段ピニオンギヤ8のピニオン軸8aの反電動機M側の一端に第3段インペラ3aが接続され、この第3段インペラ3aに第3段圧縮機ケーシング3bが周設されている。   The first stage impeller 1a is connected to one end on the counter-motor M side of the pinion shaft 7a of the 1-2 stage pinion gear 7 when viewed from the speed increaser 4, and the first stage impeller 1a is connected to the first stage compressor casing. 1b is provided around. On the other hand, a second stage impeller 2a is connected to the other end of the pinion shaft 7a of the 1-2 stage pinion gear 7 on the electric motor M side as viewed from the speed increaser 4, and a second stage compressor is connected to the second stage impeller 2a. A casing 2b is provided around the casing. The turbo compressor has a third-stage impeller 3a connected to one end of the pinion shaft 8a of the three-stage pinion gear 8 on the counter-motor M side as viewed from the speed increaser 4, and the third-stage impeller 3a is connected to the third-stage impeller 3a. A compressor casing 3b is provided around the compressor casing 3b.

これら第1段インペラ1a、第2段インペラ2a及び第3段インペラ3aの何れも、第1段圧縮機ケーシング1b、第2段圧縮機ケーシング2b及び第3段圧縮機ケーシング3b内の渦巻室(図示せず)に夫々収納され、第1段圧縮機1、第2段圧縮機2及び第3段圧縮機3が構成されている。   The first stage impeller 1a, the second stage impeller 2a, and the third stage impeller 3a are all swirl chambers in the first stage compressor casing 1b, the second stage compressor casing 2b, and the third stage compressor casing 3b ( 1st stage compressor 1, 2nd stage compressor 2, and 3rd stage compressor 3 are constituted, respectively.

即ち、この3段式ターボ圧縮機には、増速機ハウジング(ギヤケース)5の一方の側面にピニオン軸7aで駆動される第1段圧縮機1が備えられ、かつ、増速機ハウジング(ギヤケース)5の他方の側面に同じくピニオン軸7aで駆動される第2段圧縮機が備えられている。そして、この3段式ターボ圧縮機には、増速機ハウジング(ギヤケース)5の一方の側面に、ピニオン軸8aで駆動される第3段圧縮機3が備えられ、かつ、増速機ハウジング(ギヤケース)5の一方の側面にピニオン軸8aで駆動される第3段圧縮機3が備えられている。   That is, the three-stage turbo compressor includes a first stage compressor 1 driven by a pinion shaft 7a on one side surface of a speed increaser housing (gear case) 5, and the speed increaser housing (gear case). A second stage compressor driven by the pinion shaft 7a is also provided on the other side surface of 5). The three-stage turbo compressor is provided with a third-stage compressor 3 driven by a pinion shaft 8a on one side surface of a gearbox housing (gear case) 5, and a gearbox housing ( A third stage compressor 3 driven by a pinion shaft 8a is provided on one side surface of the gear case) 5.

図示しない吸込フィルタを介して吸い込まれた空気A0は、第1段圧縮機1によって圧縮され、第1段圧縮空気として第1段圧縮機1の吐出口と第2段圧縮機2の吸込口とを連通する第1段圧縮空気流路21に導かれる。そして、この第1段圧縮空気は、第1段圧縮空気流路21を構成する第1段圧縮機吐出配管21aと、第2段圧縮機吸込配管21bの間に介設された第1段インタクーラ(ガスクーラ)11を経て第2段圧縮機2に導入される。   Air A0 sucked in through a suction filter (not shown) is compressed by the first stage compressor 1, and as the first stage compressed air, the discharge port of the first stage compressor 1 and the suction port of the second stage compressor 2 Are guided to the first-stage compressed air flow path 21 communicating with each other. And this 1st stage compressed air is the 1st stage intercooler interposed between the 1st stage compressor discharge piping 21a which comprises the 1st stage compressed air flow path 21, and the 2nd stage compressor suction piping 21b. (Gas cooler) 11 is introduced into second stage compressor 2.

第2段圧縮機2に導入された第1段圧縮空気は、更に第2段圧縮機2によって圧縮され、第2段圧縮空気として第2段圧縮機2の吐出口と第3段圧縮機3の吸込口とを連通する第2段圧縮空気流路22に導かれる。そして、この第2段圧縮空気は、第2段圧縮空気流路22を構成する第2段圧縮機吐出配管22aと、第3段圧縮機吸込配管22bの間に介設された第2段インタクーラ(ガスクーラ)12を経て第3段圧縮機3に導入される。そして、この第3段圧縮機3によって圧縮された第3段圧縮空気A3が、圧縮空気の需要先に供給されるように構成されている。ここで、符号20は、各配管を接続する管継手である。   The first stage compressed air introduced into the second stage compressor 2 is further compressed by the second stage compressor 2, and the second stage compressor 2 discharge port and the third stage compressor 3 serve as the second stage compressed air. To the second-stage compressed air flow path 22 communicating with the suction port. The second-stage compressed air is a second-stage intercooler interposed between the second-stage compressor discharge pipe 22a constituting the second-stage compressed air flow path 22 and the third-stage compressor suction pipe 22b. (Gas cooler) 12 is introduced into the third stage compressor 3. And it is comprised so that the 3rd stage compressed air A3 compressed by this 3rd stage compressor 3 may be supplied to the demand destination of compressed air. Here, the code | symbol 20 is a pipe joint which connects each piping.

そして、本発明の実施の形態に係るターボ圧縮機は、上記の如き3段式ターボ圧縮機において、入力歯車6に1−2段ピニオンギヤ7と3段ピニオンギヤ8とを噛み合わして形成された増速機4の下方に、ひいては、増速機ハウジング(ギヤケース)5の下部に、潤滑油タンク13が配設される一方、第1段圧縮機1、第2段圧縮機2及び第3段圧縮機3の下方で、かつ潤滑油タンク13の両側面に、円筒形状を有する第1段インタクーラ11及び第2段インタクーラ12が夫々配設されている。   The turbo compressor according to the embodiment of the present invention is an increase formed by meshing the input gear 6 with the 1-2 stage pinion gear 7 and the 3 stage pinion gear 8 in the above-described 3-stage turbo compressor. A lubricating oil tank 13 is disposed below the speed machine 4 and thus below the speed increaser housing (gear case) 5, while the first stage compressor 1, the second stage compressor 2, and the third stage compression. A first-stage intercooler 11 and a second-stage intercooler 12 each having a cylindrical shape are disposed below the machine 3 and on both sides of the lubricating oil tank 13.

同時に、このターボ圧縮機を平面視したとき(図2参照)、潤滑油タンク軸線C3及び第1段インタクーラ軸線C1、第2段インタクーラ軸線C2と圧縮機の入力軸6aが平行に配置されている。ここで、第1段インタクーラ11の外殻を構成する第1段インタクーラ胴体(ハウジング)11a、第2段インタクーラ12の外殻を構成する第2段インタクーラ胴体(ハウジング)12a及びこれら両インタクーラ胴体11a,12aに挟まれた潤滑油タンク13は、鋳物により一体的に形成されている。   At the same time, when the turbo compressor is viewed in plan (see FIG. 2), the lubricating oil tank axis C3, the first stage intercooler axis C1, the second stage intercooler axis C2, and the input shaft 6a of the compressor are arranged in parallel. . Here, the first stage intercooler body (housing) 11a constituting the outer shell of the first stage intercooler 11, the second stage intercooler body (housing) 12a constituting the outer shell of the second stage intercooler 12, and both the intercooler bodies 11a. , 12a, the lubricating oil tank 13 is integrally formed of a casting.

前記第1段及び第2段インタクーラ11,12を夫々構成する第1段及び第2段インタクーラ胴体11a,12aには、各インタクーラ軸線C1,C2方向に貫通穴が形成された略円筒形状を有するものが好ましい。そして、第1段及び第2段インタクーラ胴体11a,12aの貫通穴内に、熱交換器11b,12bが各インタクーラ軸線C1,C2方向に挿通して収納されている。   The first-stage and second-stage intercooler bodies 11a, 12a constituting the first-stage and second-stage intercoolers 11, 12 respectively have substantially cylindrical shapes in which through holes are formed in the directions of the respective intercooler axes C1, C2. Those are preferred. The heat exchangers 11b and 12b are inserted in the through-holes of the first-stage and second-stage intercooler bodies 11a and 12a and stored in the directions of the respective intercooler axes C1 and C2.

更に、これら第1段及び第2段インタクーラ11,12内の熱交換器11b,12bを構成する管巣11c,12cに冷却水を供給、もしくはそれら管巣11c,12cから(圧縮空気を冷却後の)冷却水を排出して、前記第1段圧縮空気及び第2段圧縮空気を夫々冷却可能に構成されている。尚、符号13aは潤滑油タンク蓋を、符号19a,19bはインタクーラ蓋を、また符号18,18は第1段及び第2段インタクーラ11,12のシール部を示す。   Further, cooling water is supplied to the tube nests 11c and 12c constituting the heat exchangers 11b and 12b in the first and second stage intercoolers 11 and 12, or from the tube nests 11c and 12c (after the compressed air is cooled). The cooling water is discharged so that the first-stage compressed air and the second-stage compressed air can be cooled. Reference numeral 13a denotes a lubricating oil tank lid, reference numerals 19a and 19b denote intercooler lids, and reference numerals 18 and 18 denote seal portions of the first and second stage intercoolers 11 and 12, respectively.

冷却水の給排水取合口(図5に示す符号31,32)は、第1段及び第2段インタクーラ胴体11a,12aにおける各インタクーラ軸線C1,C2方向の両端側の何れか、例えば反電動機M側の第1段及び第2段インタクーラ蓋19a,19aに夫々設けるのが、後述する理由から好ましい。そして、前記給排水取合口の取り付けられていない側のインタクーラ蓋19b,19bを取り外すことによって、前記熱交換器11b,12bの第1段及び第2段インタクーラ軸線C1,C2方向への挿通が可能に構成されている。   The cooling water supply / drain joint (reference numerals 31 and 32 shown in FIG. 5) is either one of both end sides of the first and second stage intercooler bodies 11a and 12a in the direction of each intercooler axis C1 and C2, for example, on the side of the counter-motor M The first stage and the second stage intercooler lids 19a and 19a are preferably provided for the reasons described later. Then, by removing the intercooler lids 19b, 19b on the side where the water supply / drainage connection port is not attached, the heat exchangers 11b, 12b can be inserted in the first and second intercooler axis C1, C2 directions. It is configured.

この様に、第1段乃至第3段圧縮機1,2,3の下方で、かつ潤滑油タンク13の両側面の空間に、ガス冷却のための第1段及び第2段インタクーラ11,12を設けることによって、圧縮機全体のコンパクト化が可能となった。また、前記熱交換器11b,12bの第1段及び第2段インタクーラ軸線C1,C2方向への挿通が可能な構成としたので、熱交換器11b,12bの第1段及び第2段インタクーラ11,12への装脱着が簡単になり、各インタクーラ11,12のメンテナンスが容易になった。更に、潤滑油タンク13の潤滑油タンク蓋13a側の端面が、電動機に邪魔されることが無くなったので、潤滑油タンク13への給油も容易となった。   In this manner, the first and second stage intercoolers 11 and 12 for gas cooling are provided below the first to third stage compressors 1, 2 and 3 and in the spaces on both sides of the lubricating oil tank 13. By providing the compressor, the entire compressor can be made compact. Further, since the heat exchangers 11b and 12b can be inserted in the first and second stage intercooler axis C1 and C2 directions, the first and second stage intercoolers 11 of the heat exchangers 11b and 12b can be inserted. , 12 can be easily attached and detached, and maintenance of each intercooler 11, 12 is facilitated. Furthermore, since the end face of the lubricating oil tank 13 on the lubricating oil tank lid 13a side is not obstructed by the electric motor, the lubricating oil tank 13 can be supplied easily.

そしてまた、第1段及び第2段インタクーラ11,12を構成する第1段及び第2段インタクーラ胴体11a,12aは、これら第1段及び第2段インタクーラ軸線C1,C2方向に貫通穴が形成されているので、当該インタクーラ胴体11a,12aの鋳造時に、中子をその両端で強固に支持して、当該インタクーラ胴体11a,12aの鋳造時の加工精度を向上でき、第1及び第2インタクーラ11,12におけるシール部18,18のシールが確実に行える様になる。   In addition, the first and second stage intercooler bodies 11a and 12a constituting the first and second stage intercoolers 11 and 12 are formed with through holes in the direction of the first and second stage intercooler axes C1 and C2. Therefore, when casting the intercooler bodies 11a, 12a, the core is firmly supported at both ends thereof, and the processing accuracy at the time of casting the intercooler bodies 11a, 12a can be improved, and the first and second intercoolers 11 can be improved. , 12 can be reliably sealed.

更に、増速機4を収納した増速機ハウジング5は、ハウジング下部の増速機下ハウジング5aと、ハウジング上部の増速機上ハウジング5bとから構成されており、潤滑油タンク13は、増速機下ハウジング5aの下部に形成され、更に、潤滑油タンク13の両側面の空間に、第1段及び第2段インタクーラ11,12が設けられている。この様な構成とすることによって、本発明に係るターボ圧縮機のコンパクト化が図られると共に、特に、潤滑油タンク13の下方ではなく、その両側面の空間に、第1段及び第2段インタクーラ11,12が設けられていることで、増速機4を構成するギヤ6〜8と潤滑油タンク13の潤滑油面との距離を大きくすることができるので、潤滑油の跳ね返りによる機械損失を解消し得る。   Furthermore, the gearbox housing 5 in which the gearbox 4 is housed is composed of a gearbox lower housing 5a at the lower part of the housing and a gearbox upper housing 5b at the upper part of the housing. A first stage and second stage intercoolers 11 and 12 are provided in the space on both sides of the lubricating oil tank 13 formed at the lower part of the lower speed machine housing 5a. By adopting such a configuration, the turbo compressor according to the present invention can be made compact, and in particular, the first stage and second stage intercoolers are not located under the lubricating oil tank 13 but in the spaces on both sides thereof. 11 and 12 can increase the distance between the gears 6 to 8 constituting the speed increaser 4 and the lubricating oil surface of the lubricating oil tank 13, thereby reducing mechanical loss due to the rebound of the lubricating oil. It can be resolved.

即ち、図4において、潤滑油タンク13に貯留された潤滑油14は、潤滑油タンク蓋13aに設けられた図示しない給油口から油ポンプ17によって吸い上げられ、1−2段ピニオンギヤ7用のシャワノズル9と3段ピニオンギヤ8用のシャワノズル10から、入力歯車6、1−2段ピニオンギヤ7及び3段ピニオンギヤ8に向けて噴射され、これら増速機4の潤滑・冷却に利用されるが、高速で回転している増速機4の入力歯車6及び3段ピニオンギヤ8に跳ね飛ばされた潤滑油14aは、潤滑油面14bから跳ね返ったとしても増速機4までは届かず、潤滑油14aの跳ね返りによる機械損失を解消することができる。ここで、符号24は入力歯車6の回転方向である。   That is, in FIG. 4, the lubricating oil 14 stored in the lubricating oil tank 13 is sucked up by an oil pump 17 from an oil supply port (not shown) provided in the lubricating oil tank lid 13 a, and the shower nozzle 9 for the 1-2 stage pinion gear 7. Are injected from the shower nozzle 10 for the three-stage pinion gear 8 toward the input gear 6, the first-second stage pinion gear 7 and the third-stage pinion gear 8, and are used for lubrication and cooling of the speed increaser 4, but rotate at high speed. Even if the lubricating oil 14a bounced off the input gear 6 and the three-stage pinion gear 8 of the speed increasing gear 4 bounces off from the lubricating oil surface 14b, the lubricating oil 14a does not reach the speed increasing gear 4, and the lubricating oil 14a rebounds. Mechanical loss can be eliminated. Here, reference numeral 24 denotes the rotation direction of the input gear 6.

また、本発明の実施の形態に係るターボ圧縮機は、図5に示す通り、第1及び第2インタクーラ11,12の給水取合口31,31及び排水取合口32,32が、第1段及び第2段インタクーラ軸線C1,C2方向の反電動機M側のインタクーラ蓋に夫々設けられているので、前記ターボ圧縮機を複数台設置した場合の、給水取合口31及び排水取合口32へ接続される給水配管31a及び排水配管32aは、何れも給水主配管31b及び排水主配管32bに対して屈曲させることなく接続可能である。   In addition, as shown in FIG. 5, the turbo compressor according to the embodiment of the present invention includes the first and second intercoolers 11 and 12, the water supply joints 31 and 31 and the drainage joints 32 and 32, in the first stage and Since it is provided on the intercooler lid on the side of the counter-motor M in the direction of the second stage intercooler axis C1, C2, it is connected to the water supply inlet 31 and the drainage inlet 32 when a plurality of the turbo compressors are installed. Both the water supply pipe 31a and the drainage pipe 32a can be connected to the water supply main pipe 31b and the drainage main pipe 32b without being bent.

即ち、給水配管31a及び排水配管32aは、給水主配管31b及び排水主配管32bから略垂直に延びた後、屈曲することなく、その給水配管31a及び排水配管32aと略同軸上に配置された給水取合口31及び排水取合口32へ接続される。そのため、配管工事が簡単で設置スペースも小さくできる上、これらの配管が圧縮機のメンテナンスの障害となることがない。   That is, the water supply pipe 31a and the drainage pipe 32a extend substantially perpendicularly from the water supply main pipe 31b and the drainage main pipe 32b, and then are not bent, and are arranged substantially coaxially with the water supply pipe 31a and the drainage pipe 32a. Connected to the joint 31 and the drain joint 32. Therefore, the piping work is simple and the installation space can be reduced, and these pipes do not become an obstacle to the maintenance of the compressor.

更に、本発明の実施の形態に係るターボ圧縮機は、図2,4に示す如く、潤滑油タンク13内に、このタンク13内の油溜り部15を上下に画成する中仕切り板16が設けられている。尚、その中仕切り板16の端部とタンク13の内壁とによって、中仕切り板16にて画成された上下の油溜り部15を連通する開孔部16aが形成されている。   Further, as shown in FIGS. 2 and 4, the turbo compressor according to the embodiment of the present invention has a partition plate 16 that vertically defines an oil reservoir 15 in the tank 13 in the lubricating oil tank 13. Is provided. An opening 16 a that communicates with the upper and lower oil reservoirs 15 defined by the intermediate partition plate 16 is formed by the end of the intermediate partition plate 16 and the inner wall of the tank 13.

増速機4に跳ね飛ばされて油溜り部15に貯留された潤滑油14は、潤滑油タンク蓋13aに設けられた図示しない給油口から油ポンプ17に吸い上げられ、再び入力歯車6や1−2段ピニオンギヤ7及び3段ピニオンギヤ8、更には図示しない軸受の潤滑・冷却に供されるが、高速で回転している前記ギヤ6〜8に跳ね飛ばされた潤滑油14aは、空気(気泡)を巻き込んで潤滑油タンク13内の油溜り部15に戻って来る。この気泡を含んだままの潤滑油14は、前記ギヤ6〜8や軸受を潤滑・冷却する能力の低下や腐食の原因になったりする。   The lubricating oil 14 splashed off by the speed increaser 4 and stored in the oil reservoir 15 is sucked up by an oil pump 17 from an oil supply port (not shown) provided in the lubricating oil tank lid 13a, and again input gears 6 and 1- Lubricating oil 14a which is used for lubricating and cooling the second-stage pinion gear 7 and the third-stage pinion gear 8 and a bearing (not shown) but is sputtered by the gears 6 to 8 rotating at high speed is air (bubbles). Is returned to the oil reservoir 15 in the lubricating oil tank 13. The lubricating oil 14 still containing bubbles may cause a reduction in the ability to lubricate and cool the gears 6 to 8 and the bearing, and may cause corrosion.

気泡を消去する方法としては、潤滑油タンク13の容量を大きくして、戻って来た潤滑油16が再利用されるまでの時間を長くし、気泡を油面に浮き上がらせて飛散させるのが一般的であるが、それでは潤滑油14が多量に必要になってしまう。上記の如く中仕切り板16を設けることによって、潤滑油14が油ポンプ17に吸い込まれるまでに、前記ギヤ6〜8に跳ね飛ばされて油溜り部15の潤滑油面14bに落下した潤滑油14は、中仕切り板16に画成された上側の油溜り部15の潤滑油14の流れに沿って開孔部16aを経由し、次いで、中仕切り板16に画成された下側の油溜り部15の潤滑油14の流れに沿って、潤滑油タンク蓋13a方向に向かうことになる。   As a method of eliminating bubbles, the capacity of the lubricating oil tank 13 is increased, the time until the returned lubricating oil 16 is reused is lengthened, and the bubbles are floated and scattered on the oil surface. In general, a large amount of lubricating oil 14 is required. By providing the partition plate 16 as described above, the lubricating oil 14 that has been splashed by the gears 6 to 8 and dropped onto the lubricating oil surface 14 b of the oil reservoir 15 before the lubricating oil 14 is sucked into the oil pump 17. Passes through the opening 16 a along the flow of the lubricating oil 14 in the upper oil reservoir 15 defined in the partition plate 16, and then the lower oil reservoir defined in the partition plate 16. Along the flow of the lubricating oil 14 in the portion 15, the lubricating oil tank lid 13 a is directed.

そのため、潤滑油14が油ポンプ17に吸い込まれるまでに確実に長い経路を辿ることになり、再利用されるまでの時間が長くなって、潤滑油14中の気泡が油面まで浮き上がるので、気泡を増速機ハウジング5内の気相部へ飛散させることができる。   Therefore, a long path is surely taken until the lubricating oil 14 is sucked into the oil pump 17, and the time until the lubricating oil 14 is reused becomes longer, and the bubbles in the lubricating oil 14 rise to the oil surface. Can be scattered to the gas phase portion in the gearbox housing 5.

中仕切り板16が無い場合は、増速機4から潤滑油タンク13の潤滑油面14bに落下した潤滑油14は、最短経路で潤滑油タンク蓋13aへ向かうが、これと比較して中仕切り板16を設けた本発明の実施の形態の場合は、潤滑油タンク13の潤滑油面14bに落下した前記潤滑油14は、約3倍長い距離を経由して潤滑油タンク13を出て行くことになる。   When there is no intermediate partition plate 16, the lubricating oil 14 that has fallen from the speed increaser 4 to the lubricating oil surface 14b of the lubricating oil tank 13 is directed to the lubricating oil tank lid 13a through the shortest path. In the case of the embodiment of the present invention in which the plate 16 is provided, the lubricating oil 14 that has fallen on the lubricating oil surface 14b of the lubricating oil tank 13 leaves the lubricating oil tank 13 via a distance that is approximately three times longer. It will be.

以上説明した通り、本発明の実施の形態に係るターボ圧縮機によれば、増速機4や軸受の潤滑及び冷却能力の低下要因となる潤滑油14中の気泡を消滅させることができる。更には、潤滑油14の使用量を少なくし、潤滑油タンク13の容量も少量化できるので、圧縮機全体の大きさも小型化できるメリットが生じる。   As described above, according to the turbo compressor according to the embodiment of the present invention, it is possible to eliminate bubbles in the lubricating oil 14 that cause a reduction in lubrication and cooling capacity of the speed increaser 4 and the bearing. Furthermore, since the amount of the lubricating oil 14 used can be reduced and the capacity of the lubricating oil tank 13 can be reduced, there is an advantage that the overall size of the compressor can be reduced.

尚、本発明の実施の形態に係るターボ圧縮機については、3段式ターボ圧縮機に適用した態様例を説明したが、本願発明に係るターボ圧縮機は、3段式ターボ圧縮機に限定されることなく、2段式ターボ圧縮機或いは4段以上の多段式ターボ圧縮機においても当然有効である。   In addition, although the example of the aspect applied to the three-stage turbo compressor was described about the turbo compressor which concerns on embodiment of this invention, the turbo compressor which concerns on this invention is limited to a three-stage turbo compressor. Of course, this is also effective in a two-stage turbo compressor or a multistage turbo compressor having four or more stages.

A0:空気,
A3:第3段圧縮空気,
C1:第1インタクーラ軸線,
C2:第1インタクーラ軸線,
C3:潤滑油タンク軸線,
M:電動機,
1:第1段圧縮機, 1a:第1段インペラ, 1b:第1段圧縮機ケーシング,
2:第2段圧縮機, 2a:第2段インペラ, 2b:第2段圧縮機ケーシング,
3:第3段圧縮機, 3a:第3段インペラ, 3b:第3段圧縮機ケーシング,
4:増速機(ギヤ),
5:増速機ハウジング(ギヤケース),
5a:増速機下ハウジング, 5b:増速機上ハウジング,
6:入力歯車, 6a:入力軸, 6b:出力軸,
7:1−2段ピニオンギヤ, 7a:ピニオン軸,
8:3段ピニオンギヤ, 8a:ピニオン軸,
9,10:シャワノズル,
11:第1段インタクーラ(ガスクーラ), 11a:第1段インタクーラ胴体,
11b:熱交換器, 11c:管巣,
12:第2段インタクーラ(ガスクーラ), 12a:第2段インタクーラ胴体,
12b:熱交換器, 12c:管巣,
13:潤滑油タンク, 13a:潤滑油タンク蓋,
14,14a:潤滑油, 14b:潤滑油面,
15:油溜り部,
16:中仕切り板, 16a:開孔部,
17:油ポンプ,
18:シール部,
19a,19b:インタクーラ蓋,
20:管継手,
21:第1段圧縮空気流路, 21a:第1段圧縮機吐出配管,
21b:第2段圧縮機吸込配管,
22:第2段圧縮空気流路, 22a:第2段圧縮機吐出配管,
22b:第3段圧縮機吸込配管,
23:カップリング, 24:回転方向,
31:給水取合口, 31a:給水配管, 31b:給水主配管,
32:排水取合口, 32a:排水配管, 32b:排水主配管
A0: Air,
A3: Third stage compressed air,
C1: first intercooler axis,
C2: first intercooler axis,
C3: lubricating oil tank axis,
M: electric motor,
1: 1st stage compressor, 1a: 1st stage impeller, 1b: 1st stage compressor casing,
2: 2nd stage compressor, 2a: 2nd stage impeller, 2b: 2nd stage compressor casing,
3: Third stage compressor, 3a: Third stage impeller, 3b: Third stage compressor casing,
4: gearbox (gear),
5: Gearbox housing (gear case),
5a: Housing below the gearbox, 5b: Housing above the gearbox,
6: input gear, 6a: input shaft, 6b: output shaft,
7: 1-2 stage pinion gear, 7a: pinion shaft,
8: Three-stage pinion gear, 8a: Pinion shaft,
9, 10: Shower nozzle,
11: First stage intercooler (gas cooler), 11a: First stage intercooler fuselage,
11b: heat exchanger, 11c: tube nest,
12: Second stage intercooler (gas cooler), 12a: Second stage intercooler fuselage,
12b: heat exchanger, 12c: tube nest,
13: Lubricating oil tank, 13a: Lubricating oil tank lid,
14, 14a: Lubricating oil, 14b: Lubricating oil surface,
15: Oil reservoir
16: Middle partition plate, 16a: Opening part,
17: Oil pump,
18: seal part,
19a, 19b: Intercooler lid,
20: Pipe fitting,
21: First stage compressed air flow path, 21a: First stage compressor discharge pipe,
21b: second stage compressor suction pipe,
22: Second stage compressed air flow path, 22a: Second stage compressor discharge pipe,
22b: Third stage compressor suction pipe,
23: Coupling, 24: Direction of rotation,
31: Water supply joint, 31a: Water supply piping, 31b: Water supply main piping,
32: Drainage joint, 32a: Drainage pipe, 32b: Drainage main pipe

Claims (3)

入力軸と、この入力軸の回転がギヤを介して伝達される少なくとも1本のピニオン軸とを有するギヤケースの一方の側面に、前記ピニオン軸で駆動される第1段圧縮機が備えられ、
かつ他方の側面に前記ピニオン軸で駆動される第2段圧縮機が備えられると共に、
これら第1段圧縮機と第2段圧縮機とから吐出されるガスを冷却するガスクーラが夫々備えられたターボ圧縮機において、
前記ギヤケースの下部に潤滑油タンクが配設されると共に、
前記第1段圧縮機と第2段圧縮機との下方で、かつ前記潤滑油タンクの両側面に前記ガスクーラが夫々配設され、
前記潤滑油タンク及び前記夫々のガスクーラの各軸線と前記入力軸が平行に配置されてなることを特徴とするターボ圧縮機。
A first stage compressor driven by the pinion shaft is provided on one side surface of a gear case having an input shaft and at least one pinion shaft to which rotation of the input shaft is transmitted via a gear.
And a second stage compressor driven by the pinion shaft is provided on the other side surface,
In each of the turbo compressors provided with gas coolers for cooling the gas discharged from the first stage compressor and the second stage compressor,
A lubricating oil tank is disposed below the gear case,
The gas coolers are respectively disposed below the first stage compressor and the second stage compressor and on both side surfaces of the lubricating oil tank,
A turbo compressor, wherein each axis of the lubricating oil tank and each gas cooler and the input shaft are arranged in parallel.
前記潤滑油タンク内に、このタンク内の油溜まり部を上下に画成する中仕切り板が設けられ、前記中仕切り板の端部と前記潤滑油タンクの内壁とによって、前記画成された上下の油溜り部を連通する開孔部が形成されてなることを特徴とする請求項1に記載のターボ圧縮機。   An inner partition plate that vertically defines an oil reservoir in the tank is provided in the lubricating oil tank, and the upper and lower portions defined by the end portion of the inner partition plate and the inner wall of the lubricating oil tank are provided. The turbo compressor according to claim 1, wherein an opening for communicating with the oil reservoir is formed. 前記ガスクーラのハウジングには、このガスクーラの軸線方向に熱交換器を挿通するための貫通穴が形成されてなることを特徴とする請求項1または2に記載のターボ圧縮機。   The turbo compressor according to claim 1 or 2, wherein a through hole for inserting a heat exchanger in an axial direction of the gas cooler is formed in the housing of the gas cooler.
JP2011199770A 2011-09-13 2011-09-13 Turbo compressor Expired - Fee Related JP5616866B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011199770A JP5616866B2 (en) 2011-09-13 2011-09-13 Turbo compressor
KR1020120100993A KR20130029022A (en) 2011-09-13 2012-09-12 Turbo compressor
CN201210335844.2A CN102996471B (en) 2011-09-13 2012-09-12 Turbocompressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011199770A JP5616866B2 (en) 2011-09-13 2011-09-13 Turbo compressor

Publications (2)

Publication Number Publication Date
JP2013060882A true JP2013060882A (en) 2013-04-04
JP5616866B2 JP5616866B2 (en) 2014-10-29

Family

ID=47925453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011199770A Expired - Fee Related JP5616866B2 (en) 2011-09-13 2011-09-13 Turbo compressor

Country Status (3)

Country Link
JP (1) JP5616866B2 (en)
KR (1) KR20130029022A (en)
CN (1) CN102996471B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214746A (en) * 2013-04-26 2014-11-17 株式会社神戸製鋼所 Compression apparatus
WO2017212637A1 (en) * 2016-06-10 2017-12-14 三菱重工コンプレッサ株式会社 Compressor module
DE102016113067A1 (en) * 2016-07-15 2018-01-18 Man Diesel & Turbo Se Geared turbine machine
WO2018150541A1 (en) 2017-02-17 2018-08-23 三菱重工コンプレッサ株式会社 Compressor module
US10641275B2 (en) 2015-09-02 2020-05-05 Kobe Steel, Ltd. Compressor
EP4053408A2 (en) 2021-02-25 2022-09-07 Mitsubishi Heavy Industries Compressor Corporation Compressor module and compressor module designing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102558545B1 (en) * 2016-06-02 2023-07-21 한화파워시스템 주식회사 Compressor and compressor system
CN108895154A (en) * 2018-08-15 2018-11-27 吉林省京能水处理技术有限公司 A kind of gear-box for wind power generation function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103162A (en) * 1993-10-04 1995-04-18 Ishikawajima Harima Heavy Ind Co Ltd Centrifugal compressor
JP2003328998A (en) * 2002-05-17 2003-11-19 Kobe Steel Ltd Turbo compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082009B2 (en) * 2001-09-25 2008-04-30 株式会社日立プラントテクノロジー Turbo compressor
JP2007332826A (en) * 2006-06-13 2007-12-27 Kobe Steel Ltd Centrifugal compressor
JP4876868B2 (en) * 2006-11-27 2012-02-15 株式会社Ihi Turbo compressor
JP5167845B2 (en) * 2008-02-06 2013-03-21 株式会社Ihi Turbo compressor and refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103162A (en) * 1993-10-04 1995-04-18 Ishikawajima Harima Heavy Ind Co Ltd Centrifugal compressor
JP2003328998A (en) * 2002-05-17 2003-11-19 Kobe Steel Ltd Turbo compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214746A (en) * 2013-04-26 2014-11-17 株式会社神戸製鋼所 Compression apparatus
US10641275B2 (en) 2015-09-02 2020-05-05 Kobe Steel, Ltd. Compressor
WO2017212637A1 (en) * 2016-06-10 2017-12-14 三菱重工コンプレッサ株式会社 Compressor module
JPWO2017212637A1 (en) * 2016-06-10 2019-02-07 三菱重工コンプレッサ株式会社 Compressor module
US11236761B2 (en) 2016-06-10 2022-02-01 Mitsubishi Heavy Industries Compressor Corporation Compressor module
DE102016113067A1 (en) * 2016-07-15 2018-01-18 Man Diesel & Turbo Se Geared turbine machine
WO2018150541A1 (en) 2017-02-17 2018-08-23 三菱重工コンプレッサ株式会社 Compressor module
US11460019B2 (en) 2017-02-17 2022-10-04 Mitsubishi Heavy Industries Compressor Corporation Compressor module
EP4053408A2 (en) 2021-02-25 2022-09-07 Mitsubishi Heavy Industries Compressor Corporation Compressor module and compressor module designing method

Also Published As

Publication number Publication date
KR20130029022A (en) 2013-03-21
CN102996471B (en) 2015-12-02
JP5616866B2 (en) 2014-10-29
CN102996471A (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5616866B2 (en) Turbo compressor
US6679689B2 (en) Screw compressor
JP2007332826A (en) Centrifugal compressor
JP4673136B2 (en) Screw compressor
KR100487591B1 (en) Turbo compressor
JP5798331B2 (en) Water jet screw compressor
JP4876868B2 (en) Turbo compressor
KR101316975B1 (en) Multi-stage centrifugal compressor
JP5577762B2 (en) Turbo compressor and turbo refrigerator
JP4048078B2 (en) Turbo compressor
JP4685474B2 (en) Oil-free screw air compressor
WO2012029580A1 (en) Turbo compressor
CN102444618B (en) Multi-stage centrifugal compressor and maintenance method thereof
CN101963160B (en) Turbo compressor and refrigerator
JP6002485B2 (en) Multistage centrifugal compressor
JP5160609B2 (en) Compressor unit
TWI628363B (en) Screw compressor
JP5545326B2 (en) Turbo compressor and refrigerator
CN217107559U (en) Integrated centrifugal compressor casing
JP2011185249A (en) Screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140912

R150 Certificate of patent or registration of utility model

Ref document number: 5616866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees