JP2013060353A - Glass for covering semiconductor element - Google Patents

Glass for covering semiconductor element Download PDF

Info

Publication number
JP2013060353A
JP2013060353A JP2012132531A JP2012132531A JP2013060353A JP 2013060353 A JP2013060353 A JP 2013060353A JP 2012132531 A JP2012132531 A JP 2012132531A JP 2012132531 A JP2012132531 A JP 2012132531A JP 2013060353 A JP2013060353 A JP 2013060353A
Authority
JP
Japan
Prior art keywords
glass
semiconductor element
coating
content
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012132531A
Other languages
Japanese (ja)
Other versions
JP6064298B2 (en
Inventor
Yoshikatsu Nishikawa
欣克 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012132531A priority Critical patent/JP6064298B2/en
Priority to CN201280040871.5A priority patent/CN103748049A/en
Priority to PCT/JP2012/070702 priority patent/WO2013027636A1/en
Priority to TW101130709A priority patent/TWI615370B/en
Publication of JP2013060353A publication Critical patent/JP2013060353A/en
Application granted granted Critical
Publication of JP6064298B2 publication Critical patent/JP6064298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide glass which has a low environmental load, excellent chemical durability and low surface charge density and which is especially suitable for covering a semiconductor element for low withstanding voltage.SOLUTION: The glass for covering the semiconductor element is characterized by including, in mass% as glass composition, 52-65% ZnO, 5-20% BO, 15-35% SiOand 3-6% AlOand not substantially containing lead. It is preferable that the glass composition additionally contains 0-5% TaO, 0-5% MnO, 0-5% NbO, 0-3% CeOand SbO.

Description

本発明はP−N接合を含む半導体素子の被覆用として用いられるガラスに関するものである。   The present invention relates to glass used for coating a semiconductor element including a PN junction.

一般に、シリコンダイオードやトランジスタ等の半導体素子は、外気による汚染を防止する観点から半導体素子のP−N接合部を含む表面がガラスにより被覆される。これにより半導体素子表面の安定化を図り、経時的な特性劣化を抑制することができる。   In general, a semiconductor element such as a silicon diode or a transistor is covered with glass on the surface including the PN junction of the semiconductor element from the viewpoint of preventing contamination by outside air. As a result, the surface of the semiconductor element can be stabilized and deterioration of characteristics over time can be suppressed.

半導体素子被覆用ガラスに要求される特性として、(1)半導体素子との熱膨張係数差が原因となってクラック等が発生しないように、熱膨張係数が半導体素子の熱膨張係数に適合すること、(2)半導体素子の特性劣化を防止するため、低温(例えば900℃以下)で被覆できること、(3)半導体素子表面に悪影響を与えるアルカリ成分等の不純物を含まないこと等が挙げられる。   The characteristics required for glass for covering semiconductor elements are as follows: (1) The thermal expansion coefficient matches the thermal expansion coefficient of the semiconductor element so that cracks and the like do not occur due to the difference in thermal expansion coefficient from the semiconductor element. (2) In order to prevent deterioration of the characteristics of the semiconductor element, it can be coated at a low temperature (for example, 900 ° C. or less), and (3) it does not contain impurities such as alkali components that adversely affect the surface of the semiconductor element.

従来、半導体素子被覆用ガラスとしては、ZnO−B−SiO系等の亜鉛系ガラスや、PbO−SiO−Al系あるいはPbO−SiO−Al−B系等の鉛系ガラスが知られているが、作業性の観点からPbO−SiO−Al系およびPbO−SiO−Al−B系等の鉛系ガラスが主流となっている(例えば、特許文献1〜4参照)。 Conventionally, as a glass for semiconductor element coating, zinc-based glass such as ZnO—B 2 O 3 —SiO 2 , PbO—SiO 2 —Al 2 O 3 or PbO—SiO 2 —Al 2 O 3 —B 2 is used. Lead glass such as O 3 system is known, but lead system such as PbO—SiO 2 —Al 2 O 3 system and PbO—SiO 2 —Al 2 O 3 —B 2 O 3 system from the viewpoint of workability. Glass has become mainstream (see, for example, Patent Documents 1 to 4).

特公平1−49653号公報Japanese Examined Patent Publication No. 1-49653 特開昭50−129181号公報JP 50-129181 A 特開昭48−43275号公報JP-A-48-43275 特開2008−162881号公報JP 2008-162881 A

PbO等の鉛成分は環境に対して有害な成分であることから、近年、電気および電子機器での使用が禁止されつつあり、各種材料の無鉛化が進んでいる。既述のZnO−B−SiO系等の亜鉛系ガラスも、少量の鉛成分を含有しており環境の面から使用できないものもある。また、亜鉛系ガラスは鉛系ガラスと比較して化学耐久性に劣り、ガラス焼成後の後工程での酸に対する耐性が比較的弱い。そのため、被覆ガラス表面にさらに保護膜を形成して後工程を行う必要があった。 Since lead components such as PbO are harmful to the environment, their use in electric and electronic equipment is being prohibited in recent years, and lead-free materials are being developed. Some zinc-based glasses such as the ZnO—B 2 O 3 —SiO 2 system described above contain a small amount of lead components and cannot be used from the viewpoint of the environment. In addition, zinc-based glass is inferior in chemical durability as compared with lead-based glass, and its resistance to acid in a post-process after glass firing is relatively weak. Therefore, it was necessary to form a protective film on the surface of the coated glass and perform a subsequent process.

なお、化学耐久性を向上させるため、ガラス組成をSiOリッチにすると、半導体素子被覆ガラス層の表面電荷密度は大きくなり、半導体素子の逆耐圧が向上するが、一方で、半導体素子の逆漏れ電流が大きくなるという不具合が生じる。従って、逆耐圧をそれほど必要としない低耐圧用の半導体素子に用いる半導体素子被覆ガラスでは、逆漏れ電流を抑制するため表面電荷密度を低減する必要がある。 If the glass composition is made SiO 2 rich in order to improve chemical durability, the surface charge density of the semiconductor element-coated glass layer increases and the reverse breakdown voltage of the semiconductor element improves. There is a problem that the current increases. Therefore, it is necessary to reduce the surface charge density in order to suppress the reverse leakage current in the semiconductor element-coated glass used for the low breakdown voltage semiconductor element that does not require the reverse breakdown voltage so much.

そこで、本発明は、環境への負荷が小さくて化学耐久性に優れ、かつ、表面電荷密度が低く、特に低耐圧用の半導体素子を被覆するために好適なガラスを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a glass that has a low environmental load, is excellent in chemical durability, has a low surface charge density, and is particularly suitable for coating a semiconductor device for low withstand voltage. .

本発明者は、鋭意検討した結果、特定の組成を有するZnO−B−SiO系ガラスにより前記課題を解決できることを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventor has found that the above problems can be solved by using a ZnO—B 2 O 3 —SiO 2 glass having a specific composition, and proposes the present invention.

すなわち、本発明は、ガラス組成として、質量%で、ZnO 52〜65%、B 5〜20%、SiO 15〜35%およびAl 3〜6%を含有し、かつ、鉛成分を実質的に含有しないことを特徴とする半導体素子被覆用ガラスに関する。 That is, the present invention contains, as a glass composition, by mass%, ZnO 52 to 65%, B 2 O 3 5 to 20%, SiO 2 15 to 35%, and Al 2 O 3 3 to 6%, and The present invention relates to a glass for covering a semiconductor element, which is substantially free of a lead component.

本発明の半導体素子被覆用ガラスは、ZnO−B−SiO系ガラスに対して、各成分の含有量を厳密に制限することにより、表面電荷密度を抑え、特に低耐圧用の半導体素子の被覆に適したものであり、かつ、化学的耐久性が高いという特徴を有する。また、鉛成分を実質的に含有しないため、環境への負荷が小さい。 The glass for covering a semiconductor element of the present invention suppresses the surface charge density by strictly limiting the content of each component with respect to ZnO—B 2 O 3 —SiO 2 glass, and particularly a semiconductor for low withstand voltage. It is suitable for covering the device and has a high chemical durability. Moreover, since the lead component is not substantially contained, the load on the environment is small.

なお、本発明において、「実質的に含有しない」とは、ガラス成分として該当成分を意図的に添加しないことを意味し、不可避的に混入する不純物まで完全に排除することを意味するものではない。客観的には、不純物を含めた該当成分の含有量が0.1質量%未満であることを意味する。   In the present invention, “substantially does not contain” means that the corresponding component is not intentionally added as a glass component, and does not mean that impurities inevitably mixed are completely excluded. . Objectively, it means that the content of the relevant components including impurities is less than 0.1% by mass.

第二に、本発明の半導体素子被覆用ガラスは、さらに、組成として、Ta 0〜5%、MnO 0〜5%、Nb 0〜5%、CeO 0〜3%およびSb 0〜3%を含有することが好ましい。 Second, the glass for covering a semiconductor element of the present invention is further composed of Ta 2 O 5 0 to 5%, MnO 2 0 to 5%, Nb 2 O 5 0 to 5%, CeO 2 0 to 3%. And Sb 2 O 3 is preferably contained in an amount of 0 to 3%.

第三に、本発明は、前記半導体素子被覆用ガラスからなるガラス粉末を含むことを特徴とする半導体素子被覆用材料に関する。   Thirdly, the present invention relates to a semiconductor element coating material comprising glass powder made of the semiconductor element coating glass.

当該半導体素子被覆用材料を用いることにより、半導体素子表面の被覆を容易に行うことができる。   By using the semiconductor element coating material, the surface of the semiconductor element can be easily coated.

第四に、本発明の半導体素子被覆用材料は、ガラス粉末100質量部に対して、TiO、ZrO、ZnO、ZnO・Bおよび2ZnO・SiOから選択される少なくとも1種類の無機粉末を0.01〜5質量部含有してなることが好ましい。 Fourth, the semiconductor element coating material of the present invention is at least one selected from TiO 2 , ZrO 2 , ZnO, ZnO · B 2 O 3 and 2ZnO · SiO 2 with respect to 100 parts by mass of the glass powder. It is preferable to contain 0.01-5 mass parts inorganic powder.

特に、Si等からなる半導体素子とガラスの接触面積が大きい場合には、ガラスとSiの熱膨張係数が近いことが望ましい。それにより、半導体素子とガラスの熱膨張係数差による被覆ガラス表面のクラックの発生を抑制することができる。ガラスの熱膨張係数は、ガラス中に含まれる結晶成分により調整することができるが、ガラス中から析出する結晶の量を適切に制御することは困難である。そこで、半導体素子被覆用ガラスに対して、上記の無機粉末を適宜添加すれば、これらの無機粉末が核形成剤の役割を果たすため、析出する結晶量を比較的容易に制御することができる。結果として、所望の熱膨張係数に容易に調整することが可能となる。   In particular, when the contact area between a semiconductor element made of Si or the like and glass is large, it is desirable that the thermal expansion coefficients of glass and Si are close. Thereby, generation | occurrence | production of the crack of the coating glass surface by the thermal expansion coefficient difference of a semiconductor element and glass can be suppressed. Although the thermal expansion coefficient of glass can be adjusted with the crystal component contained in glass, it is difficult to control appropriately the quantity of the crystal which precipitates out of glass. Therefore, if the above-mentioned inorganic powder is appropriately added to the glass for covering a semiconductor element, these inorganic powders serve as a nucleating agent, so that the amount of precipitated crystals can be controlled relatively easily. As a result, it is possible to easily adjust to a desired thermal expansion coefficient.

本発明の半導体素子被覆用ガラスは、表面電荷密度が低いため、特に低耐圧用の半導体素子の被覆に適しており、かつ、化学的耐久性が高いため経時劣化を低減することができる。また、鉛成分を実質的に含有しないため、環境への負荷が小さい。   Since the glass for semiconductor element coating of the present invention has a low surface charge density, it is particularly suitable for coating a semiconductor element for low withstand voltage, and since it has high chemical durability, deterioration with time can be reduced. Moreover, since the lead component is not substantially contained, the load on the environment is small.

以下、本発明の半導体素子被覆用ガラスにおいて、各成分を上記の通り規定した理由を説明する。なお、以下の各成分の含有量の説明において、「%」は特に断りのない限り「質量%」を意味する。   Hereinafter, the reason for defining each component as described above in the glass for coating a semiconductor element of the present invention will be described. In the following description of the content of each component, “%” means “% by mass” unless otherwise specified.

ZnOはガラスを安定化する成分である。ZnOの含有量は52〜65%、特に55〜60%であることが好ましい。ZnOの含有量が少なすぎると、溶融時の失透性が強くなり、均質なガラスが得られにくくなる。一方、ZnOの含有量が多すぎると、耐酸性が弱くなる傾向がある。   ZnO is a component that stabilizes the glass. The content of ZnO is preferably 52 to 65%, particularly 55 to 60%. When there is too little content of ZnO, the devitrification at the time of a fusion | melting will become strong, and it will become difficult to obtain a homogeneous glass. On the other hand, when there is too much content of ZnO, there exists a tendency for acid resistance to become weak.

はガラスの網目形成成分であり、かつ、流動性を高める成分である。Bの含有量は5〜20%、特に7〜15%であることが好ましい。Bの含有量が少なすぎると、結晶性が強くなって被覆時に流動性が損なわれ、半導体素子表面への均一な被覆が困難になる傾向がある。一方、Bの含有量が多すぎると、熱膨張係数が大きくなったり、化学耐久性が低下する傾向がある。 B 2 O 3 is a glass network-forming component and a component that improves fluidity. The content of B 2 O 3 is preferably 5 to 20%, particularly preferably 7 to 15%. If the content of B 2 O 3 is too small, the fluidity at the time of coating becomes crystalline strongly is impaired, uniform coating on the semiconductor device surface tends to become difficult. On the other hand, when the content of B 2 O 3 is too large, or the thermal expansion coefficient increases, the chemical durability tends to decrease.

SiOはガラスの網目形成成分であり、かつ、耐酸性を高める成分である。SiOの含有量は15〜35%、特に20〜33%であることが好ましい。SiOの含有量が少なすぎると、化学耐久性に劣る傾向がある。一方、SiOの含有量が多すぎると、溶融時の失透性が強くなり、均質なガラスが得られにくくなる。 SiO 2 is a glass network-forming component and a component that increases acid resistance. The content of SiO 2 is preferably 15 to 35%, particularly preferably 20 to 33%. When the content of SiO 2 is too small, there tends to be inferior in chemical durability. On the other hand, if the content of SiO 2 is too much, devitrification becomes stronger at the time of melting, homogeneous glass is hardly obtained.

Alはガラスを安定化するとともに、表面電荷密度を調整する成分である。Alの含有量は3〜6%、特に4〜5.5%であることが好ましい。Alの含有量が少なすぎると、失透しやすくなる。一方、Alの含有量が多すぎると、表面電荷密度が大きくなりすぎる傾向がある。 Al 2 O 3 is a component that stabilizes the glass and adjusts the surface charge density. The content of Al 2 O 3 is preferably 3 to 6%, particularly preferably 4 to 5.5%. When the content of Al 2 O 3 is too small, it tends to be devitrified. On the other hand, when the content of Al 2 O 3 is too large, the surface charge density tends to be too large.

本発明の半導体素子被覆用ガラスは、ガラスの表面電荷密度を低減して漏れ電流の発生を抑制する成分として、さらにTa5、MnO、Nb、CeOまたはSbを含有することができる。 The glass for covering a semiconductor element of the present invention is further used as a component that reduces the surface charge density of the glass and suppresses the occurrence of leakage current, and is further Ta 2 O 5, MnO 2 , Nb 2 O 5 , CeO 2 or Sb 2 O 3. Can be contained.

Taは上記効果が特に大きい成分である。Taの含有量は0〜5%、特に0.1〜3%であることが好ましい。Taの含有量が多すぎると、溶融性が低下する傾向がある。 Ta 2 O 5 is a component that has a particularly large effect. The content of Ta 2 O 5 is preferably 0 to 5%, particularly preferably 0.1 to 3%. When the content of Ta 2 O 5 is too large, there is a tendency that the melting is lowered.

MnOの含有量は0〜5%、特に0.1〜3%であることが好ましい。MnOの含有量が多すぎると、溶融性が低下する傾向がある。 The content of MnO 2 is preferably 0 to 5%, particularly preferably 0.1 to 3%. When the content of MnO 2 is too large, there is a tendency that the melting is lowered.

Nbの含有量は0〜5%、特に0.1〜3%であることが好ましい。Nbの含有量が多すぎると、溶融性が低下する傾向がある。 The content of Nb 2 O 5 is preferably 0 to 5%, particularly preferably 0.1 to 3%. When the content of Nb 2 O 5 is too large, there is a tendency that the melting is lowered.

CeOの含有量は0〜3%、特に0.1〜2%であることが好ましい。CeOの含有量が多すぎると、結晶性が強くなりすぎて被覆時に流動性が低下する傾向がある。
Sbの含有量は0〜3%、特に0.1〜2%であることが好ましい。Sbの含有量が多すぎると、溶融性が低下する傾向がある。
The CeO 2 content is preferably 0 to 3%, particularly preferably 0.1 to 2%. When the content of CeO 2 is too large, fluidity during coating crystallinity becomes too strong tends to decrease.
The content of Sb 2 O 3 is preferably 0 to 3%, particularly preferably 0.1 to 2%. When the content of Sb 2 O 3 is too large, there is a tendency that the melting is lowered.

本発明の半導体素子被覆用ガラスは、環境面の観点から実質的に鉛成分(PbO等)を実質的に含有しない。また、半導体素子表面に悪影響を与えるアルカリ成分(LiO、NaOおよびKO)も実質的に含有しないことが好ましい。 The glass for covering a semiconductor element of the present invention substantially does not contain a lead component (PbO or the like) from the viewpoint of the environment. Further, alkaline components (Li 2 O, Na 2 O and K 2 O) which adversely affect the semiconductor device surface is also preferably substantially free.

本発明の半導体素子被覆用ガラスは粉末状であることが好ましい。これにより、例えばペースト法や電気泳動塗布法等を用いて半導体素子表面の被覆を容易に行うことができる。この場合、ガラス粉末の平均粒子径D50は25μm以下、特に15μm以下であることが好ましい。ガラス粉末の平均粒子径D50が大きすぎると、ペースト化が困難になる傾向がある。また、電気泳動塗布も困難になる。なお、ガラス粉末の平均粒子径D50の下限は特に限定されないが、現実的には0.1μm以上である。 The semiconductor element coating glass of the present invention is preferably in the form of powder. Accordingly, the surface of the semiconductor element can be easily coated using, for example, a paste method or an electrophoretic coating method. In this case, the average particle diameter D 50 of the glass powder is 25μm or less, and particularly preferably 15μm or less. When the average particle diameter D 50 of the glass powder is too large, there is a tendency that paste becomes difficult. Also, electrophoretic coating becomes difficult. The lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, in practice it is 0.1μm or more.

本発明の半導体素子被覆用材料は前記半導体素子被覆用ガラスからなるガラス粉末(以下、「半導体素子被覆用ガラス粉末」ともいう)を含んでなるものである。本発明の半導体素子被覆用材料は、半導体素子被覆用ガラス粉末に対し、TiO、ZrO、ZnO、ZnO・Bおよび2ZnO・SiOから選択された少なくとも1種類の無機粉末を核形成剤として含有してなるものであってもよい。これらの無機粉末を添加することにより、析出結晶量を比較的容易に制御することができる。結果として、所望の熱膨張係数に容易に調整することが可能となる。 The material for coating a semiconductor element of the present invention comprises glass powder made of the glass for coating a semiconductor element (hereinafter also referred to as “glass powder for coating a semiconductor element”). The semiconductor element coating material of the present invention has at least one kind of inorganic powder selected from TiO 2 , ZrO 2 , ZnO, ZnO · B 2 O 3 and 2ZnO · SiO 2 as a core with respect to the glass powder for semiconductor element coating. It may be contained as a forming agent. By adding these inorganic powders, the amount of precipitated crystals can be controlled relatively easily. As a result, it is possible to easily adjust to a desired thermal expansion coefficient.

これらの無機粉末の含有量は、半導体素子被覆用ガラス粉末100質量部に対して0.01〜5質量部、特に0.1〜3質量部であることが好ましい。無機粉末の含有量が少なすぎると、析出結晶量が少なく、所望の熱膨張係数を達成することが困難となる傾向がある。無機粉末の含有量が多すぎると、析出結晶量が多くなりすぎて被覆時に流動性が損なわれ、半導体素子表面の被覆が困難となる傾向がある。   The content of these inorganic powders is preferably 0.01 to 5 parts by mass, particularly 0.1 to 3 parts by mass with respect to 100 parts by mass of the semiconductor element coating glass powder. When the content of the inorganic powder is too small, the amount of precipitated crystals is small, and it tends to be difficult to achieve a desired thermal expansion coefficient. When the content of the inorganic powder is too large, the amount of precipitated crystals increases so that the fluidity is impaired at the time of coating, and the semiconductor element surface tends to be difficult to coat.

なお、上記無機粉末の粒子径が小さいほど、析出結晶の粒子径が小さくなり機械的強度が大きくなる傾向がある。したがって、無機粉末の平均粒子径D50は5μm以下、特に3μm以下であることが好ましい。無機粉末の平均粒子径D50の下限は特に限定されないが、現実的には0.1μm以上である。 In addition, there exists a tendency for the particle diameter of a precipitation crystal | crystallization to become small and the mechanical strength to become large, so that the particle diameter of the said inorganic powder is small. Therefore, the average particle diameter D 50 of the inorganic powder is 5μm or less, and particularly preferably 3μm or less. The lower limit of the average particle diameter D 50 of the inorganic powder is not particularly limited, but realistically is 0.1μm or more.

本発明の半導体素子被覆用ガラスの熱膨張係数(30〜300℃)は、半導体素子の熱膨張係数に応じて、例えば20〜60×10−7/℃、さらには30〜50×10−7/℃の範囲で適宜調整される。 The thermal expansion coefficient (30 to 300 ° C.) of the glass for coating a semiconductor element of the present invention is, for example, 20 to 60 × 10 −7 / ° C., and further 30 to 50 × 10 −7 depending on the thermal expansion coefficient of the semiconductor element. It adjusts suitably in the range of / degreeC.

半導体素子被覆用材料の表面電荷密度は、例えば1000V以下の半導体素子に対して使用する場合には、6×1011/cm以下、特に5×1011/cm以下であることが好ましい。なお、表面電荷密度は後述する実施例に記載の方法によって測定した値を指す。 The surface charge density of the semiconductor element coating material is, for example, 6 × 10 11 / cm 2 or less, particularly 5 × 10 11 / cm 2 or less when used for a semiconductor element of 1000 V or less. The surface charge density is a value measured by the method described in Examples described later.

本発明の半導体素子被覆用ガラスは、例えば、各酸化物成分の原料粉末を調合してバッチとし、1500℃程度で約1時間溶融してガラス化した後、成形(その後、必要に応じて粉砕、分級)することによって得ることができる。   The glass for coating a semiconductor element of the present invention is prepared, for example, by preparing raw material powders of respective oxide components to form a batch, melting at about 1500 ° C. for about 1 hour, and vitrifying, and then molding (and then pulverizing as necessary) , Classification) can be obtained.

以下、実施例に基づいて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

表1は本発明の実施例1〜6および比較例1〜3を示している。   Table 1 shows Examples 1 to 6 and Comparative Examples 1 to 3 of the present invention.

各試料は以下のようにして作製した。まず表中のガラス組成となるように原料粉末を調合してバッチとし、1500℃で1時間溶融してガラス化した。続いて、溶融ガラスをフィルム状に成形した後、ボールミルにて粉砕し、350メッシュの篩を用いて分級し、平均粒子径D50が12μmのガラス粉末(半導体素子被覆用材料)を得た。なお、実施例4については、得られたガラス粉末に対し、ZnO粉末を添加して半導体素子被覆用材料とした。 Each sample was produced as follows. First, raw material powders were prepared so as to have the glass composition shown in the table, and batchwise melted at 1500 ° C. for 1 hour to be vitrified. Subsequently, after forming the molten glass into a film and then pulverized by a ball mill, and classified with a 350 mesh sieve, the mean particle diameter D 50 was obtained 12μm glass powder (semiconductor element coating material). In Example 4, ZnO powder was added to the obtained glass powder to obtain a semiconductor element coating material.

半導体素子被覆用材料の熱膨張係数、表面電荷密度および耐酸性を、以下の方法により測定または評価した。結果を表1に示す。   The thermal expansion coefficient, surface charge density, and acid resistance of the semiconductor element coating material were measured or evaluated by the following methods. The results are shown in Table 1.

熱膨張係数はディラトメーターを用いて30〜300℃の温度範囲にて測定した値を示す。   A thermal expansion coefficient shows the value measured in the temperature range of 30-300 degreeC using the dilatometer.

表面電荷密度は次のようにして測定した。まず、半導体素子被覆用材料を有機溶媒中に分散し、電気泳動によってシリコン基板表面に一定の膜厚になるように付着させ、焼成して焼結層を形成した。焼結層の表面にアルミニウム電極を形成後、焼結層中の電気容量の変化をC−Vメータを用いて測定し、表面電荷密度を算出した。   The surface charge density was measured as follows. First, the semiconductor element coating material was dispersed in an organic solvent, adhered to the silicon substrate surface by electrophoresis so as to have a constant film thickness, and baked to form a sintered layer. After forming the aluminum electrode on the surface of the sintered layer, the change in electric capacity in the sintered layer was measured using a CV meter, and the surface charge density was calculated.

耐酸性は次のようにして評価した。まず、半導体素子被覆用材料を直径20mm、厚み4mm程度の大きさにプレス成型し、焼成してペレット状試料を作製し、この試料を30%硝酸中に25℃、1分浸漬した後の質量減から単位面積当たりの質量変化を算出し、耐酸性の指標とした。なお、当該質量変化量が小さいほど、耐酸性に優れている。   The acid resistance was evaluated as follows. First, a semiconductor element coating material is press-molded to a size of about 20 mm in diameter and about 4 mm in thickness, fired to produce a pellet-like sample, and the mass after dipping this sample in 30% nitric acid at 25 ° C. for 1 minute. The mass change per unit area was calculated from the decrease and used as an index of acid resistance. In addition, it is excellent in acid resistance, so that the said mass change amount is small.

表1から明らかなように、実施例1〜6の半導体素子被覆用材料は表面電荷密度が6×1011/cm以下と低くなり、かつ、耐酸性試験による質量減は1.0mg/cm以下であり、耐酸性に優れていることがわかる。したがって、実施例1〜6の半導体素子被覆用材料は低耐圧用半導体素子の被覆に適しており、かつ、化学耐久性にも優れていることがわかる。 As is apparent from Table 1, the semiconductor element coating materials of Examples 1 to 6 have a surface charge density as low as 6 × 10 11 / cm 2 or less, and the mass loss by the acid resistance test is 1.0 mg / cm 2. It is 2 or less and it turns out that it is excellent in acid resistance. Therefore, it can be seen that the semiconductor element coating materials of Examples 1 to 6 are suitable for coating a low breakdown voltage semiconductor element and are excellent in chemical durability.

一方、比較例1および2の試料は表面電荷密度が6×1011/cm以下と低いが、耐酸性試験による質量減は3.5mg/cm以上であり、耐酸性に劣っていた。また、比較例3の試料は耐酸性試験による質量減は0.4mg/cmと小さいが、表面電荷密度は15×1011/cmと大きかった。 On the other hand, the samples of Comparative Examples 1 and 2 had a surface charge density as low as 6 × 10 11 / cm 2 or less, but the mass loss by the acid resistance test was 3.5 mg / cm 2 or more, which was inferior in acid resistance. Moreover, although the mass loss by the acid resistance test of the sample of Comparative Example 3 was as small as 0.4 mg / cm 2 , the surface charge density was as large as 15 × 10 11 / cm 2 .

Claims (4)

ガラス組成として、質量%で、ZnO 52〜65%、B 5〜20%、SiO 15〜35%およびAl 3〜6%を含有し、かつ、鉛成分を実質的に含有しないことを特徴とする半導体素子被覆用ガラス。 As a glass composition, in wt%, ZnO 52~65%, B 2 O 3 5~20%, containing SiO 2 15 to 35% and Al 2 O 3 3~6%, and substantially the lead component A glass for covering a semiconductor element, which is not contained. さらに、組成として、Ta 0〜5%、MnO 0〜5%、Nb 0〜5%、CeO 0〜3%およびSb 0〜3%を含有することを特徴とする請求項1に記載の半導体素子被覆用ガラス。 Furthermore, a composition, Ta 2 O 5 0~5%, MnO 2 0~5%, Nb 2 O 5 0~5%, in that it contains CeO 2 0 to 3% and Sb 2 O 3 0~3% The glass for coating a semiconductor element according to claim 1, wherein the glass is used for coating a semiconductor element. 請求項1または2に記載の半導体素子被覆用ガラスからなるガラス粉末を含むことを特徴とする半導体素子被覆用材料。   A semiconductor element coating material comprising glass powder made of the semiconductor element coating glass according to claim 1. ガラス粉末100質量部に対して、TiO、ZrO、ZnO、ZnO・Bおよび2ZnO・SiOから選択される少なくとも1種類の無機粉末を0.01〜5質量部含有してなることを特徴とする請求項3に記載の半導体素子被覆用材料。 The glass powder 100 parts by weight, comprising TiO 2, ZrO 2, ZnO, at least one inorganic powder selected from ZnO · B 2 O 3, and 2ZnO · SiO 2 containing 0.01 to 5 parts by weight The semiconductor element coating material according to claim 3.
JP2012132531A 2011-08-25 2012-06-12 Glass for semiconductor element coating Active JP6064298B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012132531A JP6064298B2 (en) 2011-08-25 2012-06-12 Glass for semiconductor element coating
CN201280040871.5A CN103748049A (en) 2011-08-25 2012-08-14 Glass for covering semiconductor element
PCT/JP2012/070702 WO2013027636A1 (en) 2011-08-25 2012-08-14 Glass for covering semiconductor element
TW101130709A TWI615370B (en) 2011-08-25 2012-08-23 Semiconductor component coated glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011183703 2011-08-25
JP2011183703 2011-08-25
JP2012132531A JP6064298B2 (en) 2011-08-25 2012-06-12 Glass for semiconductor element coating

Publications (2)

Publication Number Publication Date
JP2013060353A true JP2013060353A (en) 2013-04-04
JP6064298B2 JP6064298B2 (en) 2017-01-25

Family

ID=47746383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132531A Active JP6064298B2 (en) 2011-08-25 2012-06-12 Glass for semiconductor element coating

Country Status (4)

Country Link
JP (1) JP6064298B2 (en)
CN (1) CN103748049A (en)
TW (1) TWI615370B (en)
WO (1) WO2013027636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071093A1 (en) * 2018-10-04 2020-04-09 日本電気硝子株式会社 Semiconductor element coating glass and semiconductor coating material using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631497B1 (en) * 2013-03-29 2014-11-26 新電元工業株式会社 Semiconductor junction protecting glass composition, semiconductor device manufacturing method, and semiconductor device
JP6410089B2 (en) * 2014-09-09 2018-10-24 日本電気硝子株式会社 Glass for semiconductor element coating
CN110642519B (en) * 2019-09-25 2022-06-14 湖南利德电子浆料股份有限公司 Encapsulation slurry for aluminum nitride substrate and preparation method and application thereof
WO2022080096A1 (en) * 2020-10-13 2022-04-21 日本電気硝子株式会社 Semiconductor element coating glass and semiconductor element coating material using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843275A (en) * 1971-10-04 1973-06-22
JPS50129181A (en) * 1974-03-30 1975-10-13
JPS5117027B1 (en) * 1970-06-15 1976-05-29
JPS57202742A (en) * 1981-06-09 1982-12-11 Toshiba Corp Glass for semiconductor coating
JPS623039A (en) * 1985-06-29 1987-01-09 Toshiba Corp Material for insulation layer
JPS6231903A (en) * 1985-08-01 1987-02-10 株式会社東芝 Material for insulation layer
JPH05301738A (en) * 1992-04-27 1993-11-16 Nippon Electric Glass Co Ltd Glass for coating semiconductor
WO2011093177A1 (en) * 2010-01-28 2011-08-04 日本電気硝子株式会社 Glass for semiconductor coating and material for semiconductor coating using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012445A (en) * 2000-01-18 2002-01-15 Central Glass Co Ltd Low fusing point glass
EP1361199B1 (en) * 2002-04-24 2008-01-09 Central Glass Company, Limited Lead-free low-melting glass
JP2005162600A (en) * 2003-11-11 2005-06-23 Nippon Electric Glass Co Ltd Cover glass plate for semiconductor package

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117027B1 (en) * 1970-06-15 1976-05-29
JPS4843275A (en) * 1971-10-04 1973-06-22
JPS50129181A (en) * 1974-03-30 1975-10-13
JPS57202742A (en) * 1981-06-09 1982-12-11 Toshiba Corp Glass for semiconductor coating
JPS623039A (en) * 1985-06-29 1987-01-09 Toshiba Corp Material for insulation layer
JPS6231903A (en) * 1985-08-01 1987-02-10 株式会社東芝 Material for insulation layer
JPH05301738A (en) * 1992-04-27 1993-11-16 Nippon Electric Glass Co Ltd Glass for coating semiconductor
WO2011093177A1 (en) * 2010-01-28 2011-08-04 日本電気硝子株式会社 Glass for semiconductor coating and material for semiconductor coating using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071093A1 (en) * 2018-10-04 2020-04-09 日本電気硝子株式会社 Semiconductor element coating glass and semiconductor coating material using same

Also Published As

Publication number Publication date
TWI615370B (en) 2018-02-21
CN103748049A (en) 2014-04-23
TW201309612A (en) 2013-03-01
JP6064298B2 (en) 2017-01-25
WO2013027636A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
TWI501933B (en) A semiconductor coated glass, and a semiconductor coated material using the same
JP6064298B2 (en) Glass for semiconductor element coating
JP2007332018A (en) Bismuth-based sealing material and bismuth-based paste material
CN112512983B (en) Glass for coating semiconductor element and material for coating semiconductor using same
JP5773327B2 (en) Glass for semiconductor coating
JP6852961B2 (en) Glass for coating semiconductor devices
JP5565747B2 (en) Semiconductor coating glass and semiconductor coating material using the same
TWI819109B (en) Glass for covering semiconductor elements and materials for semiconductor covering using the same
JP7216323B2 (en) Semiconductor device coating glass and semiconductor coating material using the same
JP6410089B2 (en) Glass for semiconductor element coating
US20230365454A1 (en) Semiconductor element coating glass and semiconductor element coating material using same
TWI830068B (en) Glass for covering semiconductor elements and semiconductor covering materials using the same
WO2024004711A1 (en) Glass for covering semiconductor element, material for covering semiconductor element, and sintered body for covering semiconductor element
US20220319942A1 (en) Glass for covering semiconductor element and material for covering semiconductor element using same
WO2022264853A1 (en) Semiconductor element coating glass, and semiconductor element coating material using same
TW202411171A (en) Glass for semiconductor element covering, material for semiconductor element covering, and sintered body for semiconductor element covering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161204

R150 Certificate of patent or registration of utility model

Ref document number: 6064298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150