JP2013057484A - Falling film type heat exchanger, absorption refrigeration system, ship, offshore structure and underwater structure - Google Patents

Falling film type heat exchanger, absorption refrigeration system, ship, offshore structure and underwater structure Download PDF

Info

Publication number
JP2013057484A
JP2013057484A JP2011197227A JP2011197227A JP2013057484A JP 2013057484 A JP2013057484 A JP 2013057484A JP 2011197227 A JP2011197227 A JP 2011197227A JP 2011197227 A JP2011197227 A JP 2011197227A JP 2013057484 A JP2013057484 A JP 2013057484A
Authority
JP
Japan
Prior art keywords
liquid
heat transfer
heat exchanger
distribution
falling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011197227A
Other languages
Japanese (ja)
Inventor
Takuki Nakamura
拓樹 中村
Masaki Kawase
雅樹 川瀬
Akira Itojima
章 糸島
Hirotake Jitsukawa
博武 實川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modec Inc
Original Assignee
Modec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modec Inc filed Critical Modec Inc
Priority to JP2011197227A priority Critical patent/JP2013057484A/en
Priority to PCT/JP2012/070803 priority patent/WO2013035508A1/en
Publication of JP2013057484A publication Critical patent/JP2013057484A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/36Adaptations of ventilation, e.g. schnorkels, cooling, heating, or air-conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • B63H21/383Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like for handling cooling-water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To provide a falling film type heat exchanger that substantially uniformly distributes liquid such as a refrigerant or an absorption liquid and drops the liquid on apexes of heat exchanger tubes in the falling film type heat exchanger, can make the liquid dropped from the heat exchanger tubes located in an upper row surely fall on surfaces of the heat exchanger tubes located in a lower row, and can avoid the lowering of heat exchanging performance even if being mounted to a ship, an offshore structure, an underwater structure or the like and applied with the inclination and the oscillation of the ship or the like, and to provide an absorption refrigeration system, the ship, the offshore structure, the underwater structure.SOLUTION: In the falling film type heat exchanger 20, a liquid distribution device 10 which distributes the liquid D on the external surfaces of the heat exchanger tubes 21 which are distributed in a wide area is constituted of: a distribution tank 11; a plurality of discharge devices 12 which discharge the liquid D from the distribution tank 11; and a first distribution passage 13 which receives the liquid D from the discharge devices 12. The liquid D is introduced into a region assigned by the first distribution passage 13, and the liquid D is dropped to the heat transfer pipes 21.

Description

本発明は、揺動する船舶や洋上構造物や水柱機器等で使用できる流下液膜式熱交換器、吸収式冷凍機システム、及び、それを搭載した船舶、洋上構造物、水中構造物に関するものである。   The present invention relates to a falling film heat exchanger, an absorption refrigeration system that can be used in an oscillating ship, an offshore structure, a water column apparatus, etc., and a ship, an offshore structure, and an underwater structure equipped with the same. It is.

冷房用のチルド水冷却等に広く利用されている技術の中に、流下液膜式熱交換器、及び、この熱交換器を利用した吸収式冷凍システムがある。この流下液膜式熱交換器は、第1流体(液体又は気体)が流通する伝熱管を水平方向だけでなく、上下方向に多数配列して管群を形成し、最上列の伝熱管の外表面に、第2流体(液体)を滴下又はスプレー等で流下させて伝熱管の外表面を第2流体で覆い、第1流体と第2流体の間で熱交換させると共に、この列の伝熱管の外表面を覆った第2流体を、この伝熱管より下の列に配置された伝熱管に流下させて、この列の伝熱管で第1流体と第2流体の間で熱交換させ、順次下の列の伝熱管で第1流体と第2流体の間で熱交換させていく熱交換器である。   Among technologies widely used for cooling chilled water for cooling, etc., there are a falling liquid film type heat exchanger and an absorption refrigeration system using this heat exchanger. This falling liquid film type heat exchanger forms a tube group by arranging a number of heat transfer tubes through which the first fluid (liquid or gas) flows not only in the horizontal direction but also in the vertical direction. A second fluid (liquid) is dropped on the surface by dropping or spraying to cover the outer surface of the heat transfer tube with the second fluid, and heat is exchanged between the first fluid and the second fluid. The second fluid covering the outer surface of the heat transfer tubes is caused to flow down to the heat transfer tubes arranged in a row below the heat transfer tubes, and heat is exchanged between the first fluid and the second fluid in the heat transfer tubes in the rows, It is a heat exchanger in which heat is exchanged between the first fluid and the second fluid in the lower row of heat transfer tubes.

この流下液膜式熱交換器では、第2流体の気化熱を利用すると熱交換量を飛躍的に増大できるので、効率良く熱交換することができる。そのため、吸収式冷凍システムの蒸発器、吸収器、再生器等に多く利用されている。   In this falling liquid film type heat exchanger, the amount of heat exchange can be dramatically increased when the heat of vaporization of the second fluid is used, so that heat can be exchanged efficiently. For this reason, it is widely used in evaporators, absorbers, regenerators, etc. of absorption refrigeration systems.

また、吸収式冷凍システムは、蒸発器において第2流体を冷媒とし、この冷媒を密閉容器内の伝熱管の外表面に流下させ、流下する過程で伝熱管内の第1流体と熱交換させ、冷媒の気体を発生させて、この気体を密閉容器に連通する吸収器の吸収液で吸収し、冷媒の気化を促進する(例えば、特許文献1参照)。この冷媒の気化を促進させるためには、流下液膜を形成する冷媒を各伝熱管の全長にわたって均一に分配することと、冷媒を確実に伝熱管群上に分配することが重要である。   Further, the absorption refrigeration system uses the second fluid as a refrigerant in the evaporator, causes the refrigerant to flow down to the outer surface of the heat transfer tube in the sealed container, and exchanges heat with the first fluid in the heat transfer tube in the process of flowing down, A refrigerant gas is generated, and the gas is absorbed by an absorption liquid in an absorber communicating with the hermetic container to promote vaporization of the refrigerant (see, for example, Patent Document 1). In order to promote the vaporization of the refrigerant, it is important to uniformly distribute the refrigerant forming the falling liquid film over the entire length of each heat transfer tube and to reliably distribute the refrigerant on the heat transfer tube group.

そのため、最上列の伝熱管に対して、冷媒や吸収液ができる限り均等に分配・滴下されるよう工夫をすると共に、伝熱管間隔をある程度あける必要がある一方で、特に、水平に配置した伝熱管を利用する場合には、上に位置する伝熱管から滴下した液体が確実に下に位置する伝熱管に滴下するようにする必要があり、液体分配装置の構成が重要になっている。この液体分配装置としては、例えば、一枚板からなり、吸収式冷凍機用の滴下装置として使用できる滴下装置が提案されている(例えば、特文献2参照)。   For this reason, it is necessary to devise a way to distribute and drip refrigerant and absorption liquid as evenly as possible with respect to the heat transfer tubes in the uppermost row. When using a heat tube, it is necessary to ensure that the liquid dropped from the heat transfer tube located above drops to the heat transfer tube located below, and the configuration of the liquid distributor is important. As this liquid distribution device, for example, a dripping device which is made of a single plate and can be used as a dripping device for an absorption refrigerator has been proposed (see, for example, Patent Document 2).

また、伝熱管表面を流下する冷媒液の乾き部分が拡大することを防止し、伝熱性能を向上させるために、上下方向に所定の間隔で、隣接する上下伝熱管の間にその伝熱管の長手方向に沿ってスペーサーを付設し、該スペーサーと下段伝熱管との接合部近傍に冷媒液の液溜まりができるように構成した吸収式冷凍機の蒸発器が提案されている(例えば、特許文献3参照)。   In addition, in order to prevent the dried portion of the refrigerant liquid flowing down the heat transfer tube surface from expanding and improve the heat transfer performance, the heat transfer tubes are arranged between adjacent upper and lower heat transfer tubes at predetermined intervals in the vertical direction. There has been proposed an evaporator of an absorption refrigerating machine in which a spacer is provided along the longitudinal direction and a refrigerant liquid is pooled in the vicinity of the joint between the spacer and the lower heat transfer tube (for example, Patent Literature 3).

しかしながら、この流下液膜式熱交換器、及び、この熱交換器を利用した吸収式冷凍システムでは、冷媒や吸収液が最上列の伝熱管に均等に分配されて滴下されなかったり、上に位置する伝熱管から滴下した液体が確実に下に位置する伝熱管の表面に落下して液膜で表面全体を覆わなかったりすると著しく性能が低下するため、水平面からの傾斜や揺動をほとんど許容することができないという欠点がある。この欠点は流下液膜式熱交換器が傾斜すると大きくなるため、船舶や洋上構造物や水中構造物などの揺れや傾斜を伴うものには、この流下液膜式熱交換器、及び、この熱交換器を利用した吸収式冷凍システムを設置することはできないという問題がある。   However, in this falling liquid film heat exchanger and an absorption refrigeration system using this heat exchanger, the refrigerant and the absorption liquid are evenly distributed to the uppermost heat transfer tubes and are not dripped, or positioned above If the liquid dropped from the heat transfer tube surely falls to the surface of the heat transfer tube located below and does not cover the entire surface with a liquid film, the performance will be significantly reduced, so tilting or swinging from the horizontal plane is almost allowed. There is a drawback that you can not. This disadvantage increases when the falling liquid film heat exchanger is tilted. Therefore, the falling liquid film heat exchanger and this heat can be used for ships, offshore structures, underwater structures, etc. There is a problem that an absorption refrigeration system using an exchanger cannot be installed.

つまり、流下液膜式熱交換器の傾斜に関しては、通り抜け問題と非流下領域拡大問題と液膜減少問題とがある。この通り抜け問題とは、第2流体が次の下の列の伝熱管の間を通り抜けて、もう一段下の列の伝熱管に流下するという問題である。   In other words, regarding the inclination of the falling liquid film heat exchanger, there are a through-through problem, a non-flowing area expansion problem, and a liquid film reduction problem. The passing-through problem is a problem that the second fluid passes between the heat transfer tubes in the next lower row and flows down to the heat transfer tubes in the lower row.

図13に示すように、流下液膜式熱交換器の伝熱管21を千鳥配置にした構造を採用して、伝熱管21の横断面内で流下液膜式熱交換器が傾斜していない状態では、第2流体Dが最上列の伝熱管21の中心線(管軸)を目指して滴下されるが、滴下する第2流体Dは、上から偶数段数の列の伝熱管21に触れることなく通過して通り抜けてしまう可能性が生じる。   As shown in FIG. 13, a structure in which the heat transfer tubes 21 of the falling liquid film type heat exchanger are arranged in a staggered manner and the falling liquid film type heat exchanger is not inclined in the cross section of the heat transfer tube 21. Then, although the 2nd fluid D is dripped aiming at the centerline (tube axis) of the heat exchanger tube 21 of the uppermost row, the 2nd fluid D dripped does not touch the heat exchanger tube 21 of the even number of rows from the top. There is a possibility of passing through.

水の場合20滴で1cc程度と言われており、第2流体Dの自然滴の直径は2mm程度しかないため、伝熱管21の横間隔Sをこの2mm以下にしないとこの問題を避けることができない。しかし、チューブシート(管壁)の加工や強度を考えると2mm以下にすることは難しい。   In the case of water, 20 drops are said to be about 1 cc, and since the diameter of the natural drop of the second fluid D is only about 2 mm, this problem can be avoided if the lateral distance S of the heat transfer tubes 21 is not less than 2 mm. Can not. However, considering the processing and strength of the tube sheet (tube wall), it is difficult to make it 2 mm or less.

また、図14に示すように、千鳥配置にしなかった場合、20度程度の傾斜が起きない限り、この通り抜け問題は発生しないが、図15に示すように傾斜角が20度程度の傾斜を超えて一度発生すると、千鳥配置の場合と同様に、通り抜けの問題が発生し、この通り抜けによる分だけで伝熱面積が50%も減少する場合が生じる。   Further, as shown in FIG. 14, if the staggered arrangement is not used, this through problem does not occur unless an inclination of about 20 degrees occurs, but the inclination angle exceeds an inclination of about 20 degrees as shown in FIG. Once generated, the problem of passing through occurs as in the case of the staggered arrangement, and the heat transfer area may be reduced by 50% only by this passing through.

また、非流下領域拡大問題とは、装置の横傾斜に伴い、第2流体Dが流下していかない伝熱管21の領域、つまり、非流下領域が発生するという問題である。図16に示すように、大きく傾斜した場合に、第2流体Dが流下してこない伝熱管21(ハッチングのある伝熱管)が発生する。図16に示すように、千鳥配置にしない場合は、装置の傾斜が20度程度の傾斜になるまでこの現象は発生しないが、一度発生すると、図16に示すように伝熱面積の減少が生じ、図16の場合では全体の50%程度が非流下領域になってしまう。一方、図17に示すように、千鳥配置にした場合は、わずかな傾斜でも、図17の場合で伝熱面積の20%程度に影響が生じるが、さらに、傾斜角が増加していっても40度程度に達しない限りこれ以上の影響がでることはない。なお、図16及び図17においては、伝熱管群の伝熱管の上下本数と横本数が同数の場合を示しているが、上下本数が横本数に比して多い場合は、この非流下域拡大問題は、より顕著に発生することになる。   Further, the non-flowing region expansion problem is a problem that a region of the heat transfer tube 21 where the second fluid D does not flow down, that is, a non-flowing region occurs with the lateral inclination of the apparatus. As shown in FIG. 16, a heat transfer tube 21 (a heat transfer tube with hatching) is generated in which the second fluid D does not flow down when it is largely inclined. As shown in FIG. 16, when the staggered arrangement is not used, this phenomenon does not occur until the inclination of the apparatus reaches about 20 degrees, but once it occurs, the heat transfer area decreases as shown in FIG. In the case of FIG. 16, about 50% of the entire area is the non-flowing region. On the other hand, as shown in FIG. 17, in the case of the staggered arrangement, even a slight inclination affects about 20% of the heat transfer area in the case of FIG. 17, but even if the inclination angle increases. As long as the temperature does not reach about 40 degrees, there is no further influence. 16 and 17 show a case where the number of heat transfer tubes in the heat transfer tube group is the same as the number of heat transfer tubes, but when the number of heat transfer tubes is larger than the number of heat transfer tubes, this non-downflow area expansion is shown. The problem will be more noticeable.

また、液膜減少問題は、伝熱管21の表面全体を液膜が覆わずに、表面の一部のみを覆うという問題である。図18に示すように、各伝熱管21において、その鉛直線上(真上)で滴下を受ければ、液膜Dsは伝熱管21の左右両側にできるが、図19に示すように、少しはずれると片側だけになる。図19に示すような場合には液膜Dsが35%程度に減少し、全体の65%程度に液膜Dsが無くなる。特に、伝熱管12をぎりぎり掠めるような場合には、液膜Dsは全体の25%程度に減少し、全体の75%程度に液膜Dsが無くなる。特に、千鳥配置の場合には、大きく傾斜しなくてもこの問題が発生する。   The liquid film reduction problem is a problem that the entire surface of the heat transfer tube 21 is not covered by the liquid film but only a part of the surface is covered. As shown in FIG. 18, if each heat transfer tube 21 is dropped on the vertical line (directly above), the liquid film Ds can be formed on the left and right sides of the heat transfer tube 21, but as shown in FIG. Only on one side. In the case shown in FIG. 19, the liquid film Ds decreases to about 35%, and the liquid film Ds disappears in about 65% of the whole. In particular, when the heat transfer tube 12 is squeezed, the liquid film Ds decreases to about 25% of the whole, and the liquid film Ds disappears in about 75% of the whole. In particular, in the case of the staggered arrangement, this problem occurs even if the inclination is not large.

従って、装置の傾斜が20度程度以内であれば、伝熱管21の間隔がある程度の距離を有しているならば、千鳥配置しない方が、通り抜け問題、非流下領域拡大問題を回避しやすいといえる。ただし、千鳥配置しない場合には、液膜減少問題により、ある程度大きな傾斜があれば、50%以下、20度程度の傾斜になると35%程度の能力しか発揮できないと考えられる。   Therefore, if the inclination of the apparatus is within about 20 degrees, and if the interval between the heat transfer tubes 21 has a certain distance, it is easier to avoid the problem of passing through and the problem of expansion of the non-flowing area if the arrangement is not staggered. I can say that. However, in the case where the staggered arrangement is not used, it is considered that if there is a certain degree of inclination due to the liquid film reduction problem, only an ability of about 35% can be exhibited when the inclination is about 50% or less and about 20 degrees.

また、一方、千鳥配置の場合は、大きな傾斜がない場合でも偶数層の通り抜け問題が起こることが無いように伝熱管の水平間隔を2mm程度以下にすることが重要となるが、それを実現できたとしても、非流下領域拡大問題による伝熱面積の減少と液膜減少問題による伝熱面積の減少で、伝熱管群の伝熱間の上下本数と横本数が同数の場合でも、30%程度の能力しか発揮できず、上下本数が横本数に比して多い場合、更に低い能力しか発揮できないことになると考えられる。   On the other hand, in the case of the staggered arrangement, it is important that the horizontal interval of the heat transfer tubes is about 2 mm or less so that there is no problem of passing through even layers even when there is no large inclination. Even if the heat transfer area is reduced due to the non-flowing area expansion problem and the heat transfer area is reduced due to the liquid film reduction problem, even if the number of upper and lower and horizontal lines between the heat transfer tubes is the same, about 30% If the number of upper and lower lines is larger than the number of horizontal lines, it is considered that only a lower capacity can be exhibited.

特表98−41798号公報Special table 98-41798 gazette 特開2005−207620号公報JP 2005-207620 A 特開平11−108501号公報JP-A-11-108501

本発明は、上記の状況を鑑みてなされたものであり、その目的は、船舶、洋上構造物、水中構造物等に搭載されて、これらの船舶等の傾斜や揺動があった場合であっても、流下液膜式熱交換器において、冷媒や吸収液等の液体を略均等に分配して伝熱管の頂上に滴下して、上の列に位置する伝熱管から滴下した液体を確実に下の列に位置する伝熱管の表面に落下させることができて、熱交換性能の低下を回避できる、流下液膜式熱交換器、吸収式冷凍システム、及び船舶、洋上構造物、水中構造物を提供することにある。   The present invention has been made in view of the above-described situation, and the object thereof is a case where the ship is mounted on a ship, an offshore structure, an underwater structure or the like, and the ship is inclined or rocked. However, in the falling film heat exchanger, liquid such as refrigerant and absorption liquid is distributed almost evenly and dropped onto the top of the heat transfer tube to ensure that the liquid dropped from the heat transfer tube located in the upper row A falling liquid film heat exchanger, an absorption refrigeration system, and a ship, an offshore structure, an underwater structure that can be dropped on the surface of a heat transfer tube located in the lower row and avoid a decrease in heat exchange performance Is to provide.

つまり、船舶、洋上構造物、水中構造物等に設置可能な流下液膜式熱交換器、吸収式冷凍システムと、これらを搭載した船舶、洋上構造物、水中構造物を提供することにある。   That is, it is to provide a falling film type heat exchanger and an absorption refrigeration system that can be installed in a ship, an offshore structure, an underwater structure, etc., and a ship, an offshore structure, and an underwater structure equipped with these.

また、更なる目的は、通常の陸上設置用のものと比して、大型化したり、メンテナンスが要求される高機能部品などを増やすことのない流下液膜式熱交換器、吸収式冷凍システムを提供することにある。   A further purpose is to provide a falling film heat exchanger and absorption refrigeration system that do not increase in size or increase the number of high-function parts that require maintenance compared to those for ordinary land-based installation. It is to provide.

上記の目的を達成するための本発明の流下液膜式熱交換器は、流下液膜式熱交換器において、上から見て広いエリアに分布する伝熱管の外表面に液体を分配する液体分配装置を、前記液体を受けて一時的に貯蔵する分配タンクと、該分配タンクから前記液体を排出するための複数の排出装置と、前記排出装置からは排出される前記液体を受ける第1分配流路を備えて構成し、前記液体を前記第1分配流路が受け持つ領域に導き、前記液体を伝熱管に滴下するように構成する。この構成によれば、流下液膜式熱交換器において、上記の構成の液体分配装置により、液体を均等に分配して伝熱管に液体を滴下することができる。   In order to achieve the above object, a falling liquid film heat exchanger according to the present invention is a falling liquid film heat exchanger that distributes liquid to the outer surface of heat transfer tubes distributed over a wide area as viewed from above. A distribution tank for receiving and temporarily storing the liquid; a plurality of discharge devices for discharging the liquid from the distribution tank; and a first distribution flow for receiving the liquid discharged from the discharge apparatus. A path is provided, and the liquid is guided to a region that the first distribution flow path takes, and the liquid is dropped onto a heat transfer tube. According to this configuration, in the falling liquid film heat exchanger, the liquid can be evenly distributed and dropped onto the heat transfer tube by the liquid distribution device having the above configuration.

上記の流下液膜式熱交換器において、前記第1分配流路のうち少なくとも主要部分を前記伝熱管の分布するエリアの上から見て長手方向に、または正方形のエリアの場合は該正方形の一辺の方向に配置するとともに、前記分布エリアの長手方向または前記正方形の一辺の方向をいくつかに分けた区画を前記第1分配流路が受け持つ領域とするように構成する。この構成によれば、流下液膜式熱交換器において、上記の構成の液体分配装置により、液体をより広範な領域に亘って均等に分配して、伝熱管に液体を滴下することができる。   In the above falling film heat exchanger, at least a main portion of the first distribution flow channel is seen in the longitudinal direction when viewed from above the area where the heat transfer tubes are distributed, or in the case of a square area, one side of the square And a section in which the longitudinal direction of the distribution area or the direction of one side of the square is divided into a plurality of areas is used as the region that the first distribution flow path takes. According to this configuration, in the falling liquid film heat exchanger, the liquid can be evenly distributed over a wider area and dropped onto the heat transfer tube by the liquid distributor having the above-described configuration.

上記の流下液膜式熱交換器において、前記第1分配流路の端部から排出される前記液体を受けるトレイか、または上から見たときに前記第1分配流路の主要部分に対して交差する第2分配流路を備えて構成するとともに、前記トレイまたは前記第2分配流路に分配孔を設けて、該分配孔から前記液体を前記第1分配流路が受け持つ領域内で分配し、前記液体を前記伝熱管に滴下するように構成される。この構成により、より広い水平面に液体を分配できる。   In the falling liquid film heat exchanger, the tray that receives the liquid discharged from the end of the first distribution flow path, or the main portion of the first distribution flow path when viewed from above The second distribution flow path is configured to intersect, and a distribution hole is provided in the tray or the second distribution flow path, and the liquid is distributed from the distribution hole in an area that the first distribution flow path takes. The liquid is dropped onto the heat transfer tube. With this configuration, the liquid can be distributed over a wider horizontal plane.

また、上記の流下液膜式熱交換器において、前記第1分配流路に先端側が下方となる5度以上且つ45度以下の下り勾配を持たせて形成する。この構成により、伝熱管の長手方向に45度傾斜しても、液体を伝熱管に供給し続けることが出来るようになる。その結果、船舶、洋上構造物、水中構造物などにも搭載できるようになる。   Further, in the above-described falling liquid film heat exchanger, the first distribution flow path is formed with a downward gradient of 5 degrees or more and 45 degrees or less where the tip side is downward. With this configuration, the liquid can continue to be supplied to the heat transfer tube even when inclined 45 degrees in the longitudinal direction of the heat transfer tube. As a result, it can be mounted on ships, offshore structures, underwater structures and the like.

また、上記の流下液膜式熱交換器において、前記分配タンクを前記伝熱管の長手方向の中央付近に配置する。この構成によれば、第1分配流路と第2分配流路に下り勾配を設けた場合に、下り勾配の長さを最も短くできるので、装置全体として高さを低くすることができる。   Further, in the falling liquid film heat exchanger, the distribution tank is disposed near the center in the longitudinal direction of the heat transfer tube. According to this configuration, when the downward gradient is provided in the first distribution channel and the second distribution channel, the length of the downward gradient can be minimized, so that the height of the entire apparatus can be reduced.

また、上記の流下液膜式熱交換器において、前記分布エリアの短手方向、または正方形のエリアの場合は他辺の方向も複数に分けた区画を前記第1分配流路が受け持つ領域とするように構成される。この構成により、広い水平面に液体を分配できる。
また、上記の流下液膜式熱交換器において、前記排出装置を同一形状のスタブパイプで形成する。この構成によれば、排出の際の流体抵抗が同じになるので、各スタブパイプの出口から排出される液体の量を均一にすることが容易にできる。
Moreover, in the falling liquid film heat exchanger described above, the first distribution flow path serves as a section in which the distribution area is divided into a plurality of sections in the short direction of the distribution area or in the case of a square area. Configured as follows. With this configuration, the liquid can be distributed over a wide horizontal plane.
Further, in the falling liquid film heat exchanger, the discharge device is formed of a stub pipe having the same shape. According to this configuration, since the fluid resistance at the time of discharging is the same, the amount of liquid discharged from the outlet of each stub pipe can be easily made uniform.

また、上記の流下液膜式熱交換器において、略水平に配置する伝熱管を備えた流下液膜式熱交換器において、上下方向に間隔を有する列をなして複数の前記伝熱管を配置し、水平方向に並んだ前記伝熱管の列と、その下の水平方向に並んだ前記伝熱管の列との間に、下側のそれぞれの前記伝熱管の頂上部分の近傍に凹部の最下位部分が配置されるように、前記凹部を有するガイドプレートを配置するとともに、該ガイドプレートの前記凹部の最下位部分に前記伝熱管の頂上に液滴を流下するための流下孔を設けて、前記伝熱管の管軸に垂直な面内で予め設定した所定の角度範囲内において傾斜した状態になっても、上側のそれぞれの前記伝熱管の外表面を流下した液体が、上側のそれぞれの伝熱管に1対1対応に対応する下側の前記伝熱管に伝わるように構成する。この構成によれば、確実に液体を下の次の列の伝熱管の頂上に滴下することができる。   Further, in the falling liquid film type heat exchanger described above, in the falling liquid film type heat exchanger provided with the heat transfer tubes arranged substantially horizontally, a plurality of the heat transfer tubes are arranged in a row having an interval in the vertical direction. A lowermost portion of the recess between the row of the heat transfer tubes arranged in the horizontal direction and the row of the heat transfer tubes arranged in the horizontal direction below the top portion of the lower heat transfer tubes. The guide plate having the recess is disposed so that a drop hole is provided in the lowest part of the recess of the guide plate to allow the liquid droplet to flow down to the top of the heat transfer tube. Even when it is inclined within a predetermined angle range set in advance in a plane perpendicular to the tube axis of the heat tube, the liquid flowing down the outer surface of each heat transfer tube on the upper side is transferred to each heat transfer tube on the upper side. To the lower heat transfer tube corresponding to one-to-one correspondence Configured to Waru. According to this configuration, the liquid can be surely dropped onto the top of the heat transfer tubes in the next row below.

そして、上記の目的を達成するための本発明の吸収式冷凍システムは、上記の流下液膜式熱交換器を用いて構成される。この構成によれば、上記の流下液膜式熱交換器と同様な効果を奏することができる。   And the absorption refrigeration system of this invention for achieving said objective is comprised using said falling liquid film type heat exchanger. According to this configuration, the same effects as those of the falling liquid film heat exchanger can be obtained.

また、上記の目的を達成するための本発明の船舶は、上記の流下液膜式熱交換器、又は、上記の吸収式冷凍システムを搭載して構成される。また、この構成によれば、上記の流下液膜式熱交換器及び吸収式冷凍システムと同様な効果を奏することができる。更に、上記の流下液膜式熱交換器、又は、上記の吸収式冷凍システムを、前記伝熱管分布エリアの長手方向、または正方形のエリアの場合該正方形の一辺の方向と、船長方向を一致させて搭載すると、横傾斜(ヒール)や横揺れ(ロール)による影響を少なくすることができる。   Moreover, the ship of this invention for achieving said objective mounts said falling film type heat exchanger or said absorption refrigeration system, and is comprised. Moreover, according to this structure, there can exist an effect similar to said falling film type heat exchanger and absorption refrigeration system. Further, the falling liquid film heat exchanger or the absorption refrigeration system described above is arranged such that the longitudinal direction of the heat transfer tube distribution area or the direction of one side of the square in the case of a square area coincides with the ship length direction. If installed, the effects of lateral tilt (heel) and roll (roll) can be reduced.

また、上記の目的を達成するための本発明の洋上構造物、水中構造物は、上記の流下液膜式熱交換器、又は、上記の吸収式冷凍システムを搭載して構成される。なお、これらの洋上構造物、水中構造物が略船舶形状をしている場合には、その伝熱管分布エリアの長手方向、または正方形のエリアの場合該正方形の一辺の方向と、船長方向を一致させて搭載することが好ましい。この構成によれば、上記の流下液膜式熱交換器、吸収式冷凍システム、及び船舶と同様な効果を奏することができる。   Moreover, the offshore structure and the underwater structure of the present invention for achieving the above object are configured by mounting the falling liquid film heat exchanger or the absorption refrigeration system. In addition, when these offshore structures and underwater structures are substantially ship-shaped, the longitudinal direction of the heat transfer tube distribution area, or in the case of a square area, the direction of one side of the square matches the ship length direction. It is preferable to mount them. According to this structure, there can exist an effect similar to said falling film type heat exchanger, an absorption refrigeration system, and a ship.

なお、船舶は推進手段を持って洋上を航行する構造物のことをいい、洋上構造物は推進手段を持たない洋上の構造物のことをいう。また、水中構造物には、水中航走体、潜水艦、水中基地などの水中に潜航可能な構造物や水中で使用される構造物のことをいう。   Ships refer to structures that travel on the ocean with propulsion means, and offshore structures refer to offshore structures that do not have propulsion means. The underwater structure refers to a structure that can be submerged underwater such as an underwater vehicle, a submarine, an underwater base, or a structure that is used underwater.

以上に説明したように、本発明の流下液膜式熱交換器、吸収式冷凍機システム、及び船舶、洋上構造物、水中構造物によれば、これらの船舶等の傾斜や揺動があった場合であっても、流下液膜式熱交換器において、液体分配装置により冷媒や吸収液等の液体を均等に分配して、伝熱管の頂上に滴下して、上の列に位置する伝熱管から滴下した液体を確実に下の列に位置する伝熱管の表面に落下させることができて、熱交換性能の低下を回避できる。   As described above, according to the falling liquid film heat exchanger, the absorption refrigeration system of the present invention, the ship, the offshore structure, and the underwater structure, these ships and the like were inclined and oscillated. Even in this case, in the falling liquid film type heat exchanger, the liquid distribution device distributes the liquid such as the refrigerant and the absorption liquid evenly and drops them on the top of the heat transfer tubes, and the heat transfer tubes located in the upper row The liquid dripped from can be reliably dropped onto the surface of the heat transfer tube located in the lower row, and a decrease in heat exchange performance can be avoided.

本発明に係る実施の形態の流下液膜式熱交換器の液体分配装置の構成を模式的に示す斜視図である。It is a perspective view showing typically composition of a liquid distribution device of a falling film type heat exchanger of an embodiment concerning the present invention. 本発明に係る実施の形態の流下液膜式熱交換器の液体分配装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the liquid distribution apparatus of the falling film type heat exchanger of embodiment which concerns on this invention. 本発明に係る実施の形態の流下液膜式熱交換器の伝熱管群の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the heat exchanger tube group of the falling film type heat exchanger of embodiment which concerns on this invention. 本発明に係る実施の形態の吸収式冷凍システムの蒸発器(左半分)及び吸収器(右半分)の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the evaporator (left half) and absorber (right half) of the absorption refrigeration system of embodiment which concerns on this invention. 千鳥配置でない場合の伝熱管とガイドプレートの構成を模式的に示す図である。It is a figure which shows typically the structure of the heat exchanger tube and guide plate in the case of not having a staggered arrangement. 千鳥配置の場合の伝熱管とガイドプレートの構成を模式的に示す図である。It is a figure which shows typically the structure of the heat exchanger tube in the case of staggered arrangement | positioning, and a guide plate. 図6のガイドプレートの凹部の拡大図である。It is an enlarged view of the recessed part of the guide plate of FIG. ガイドプレートの製造途中の板材を示す平面図である。It is a top view which shows the board | plate material in the middle of manufacture of a guide plate. 図8のガイドプレートの板材を折り曲げた様子を示す斜視図である。It is a perspective view which shows a mode that the board | plate material of the guide plate of FIG. 8 was bent. 図9のガイドプレートの突起と伝熱管との位置関係を示す図で、傾斜していない場合を示す図である。It is a figure which shows the positional relationship of the processus | protrusion of the guide plate of FIG. 9, and a heat exchanger tube, and is a figure which shows the case where it is not inclined. 図10のガイドプレートの突起と伝熱管との位置関係を示す図で、傾斜した場合を示す図である。It is a figure which shows the positional relationship of the protrusion of the guide plate of FIG. 10, and a heat exchanger tube, and is a figure which shows the case where it inclines. グレーチングでガイドプレートを形成した場合の伝熱管とガイドプレートの関係を示す斜視図である。It is a perspective view which shows the relationship between a heat exchanger tube and a guide plate at the time of forming a guide plate by grating. 流下液膜式熱交換器における千鳥配置の伝熱管群に対する、通り抜け問題を説明するための図である。It is a figure for demonstrating the passage problem with respect to the heat exchanger tube group of a staggered arrangement | positioning in a falling liquid film type heat exchanger. 流下液膜式熱交換器における千鳥配置でない伝熱管群に対する、通り抜け問題を説明するための図で、傾斜無しの場合の図である。It is a figure for demonstrating the passage problem with respect to the heat exchanger tube group which is not staggered arrangement | positioning in a falling liquid film type heat exchanger, and is a figure in the case of no inclination. 流下液膜式熱交換器における千鳥配置の伝熱管群に対する、通り抜け問題を説明するための図で、傾斜有りの場合の図である。It is a figure for demonstrating the passage problem with respect to the heat-transfer tube group of a staggered arrangement in a falling film type heat exchanger, and is a figure in the case of inclination. 流下液膜式熱交換器における千鳥配置でない伝熱管群に対する、非流下領域拡大問題を説明するための図で、傾斜有りの場合の図である。It is a figure for demonstrating the non-falling area expansion problem with respect to the heat exchanger tube group which is not staggered arrangement in a flowing-down liquid film type heat exchanger, and is a figure in case there exists an inclination. 流下液膜式熱交換器における千鳥配置の伝熱管群に対する、非流下領域拡大問題を説明するための図で、傾斜有りの場合の図である。It is a figure for demonstrating the non-falling area expansion problem with respect to the heat transfer tube group of a staggered arrangement in a falling liquid film type heat exchanger, and is a figure in case there exists an inclination. 流下液膜式熱交換器における伝熱管に対する、液膜減少問題を説明するための図で、頂上に滴下した場合の図である。It is a figure for demonstrating the liquid film reduction | decrease problem with respect to the heat exchanger tube in a falling liquid film type heat exchanger, and is a figure at the time of dripping at the top. 流下液膜式熱交換器における伝熱管に対する、液膜減少問題を説明するための図で、頂上から外れた部分に滴下した場合の図である。It is a figure for demonstrating the liquid film reduction | decrease problem with respect to the heat exchanger tube in a flowing-down liquid film type heat exchanger, and is a figure at the time of dripping at the part remove | deviated from the top.

以下、本発明に係る実施の形態の流下液膜式熱交換器、吸収式冷凍機システム、及び船舶、洋上構造物、水中構造物について説明する。この実施の形態の説明では、船舶、洋上構造物、及び水中構造物(以下船舶等という)に搭載することができる流下液膜式熱交換器、及び吸収式冷凍機システムとして説明するが、必ずしも、船舶等に搭載する流下液膜式熱交換器、及び吸収式冷凍機システムに限定する必要はなく、その他の陸上設備に据え付ける流下液膜式熱交換器、及び吸収式冷凍機システムであってもよい。   Hereinafter, a falling film type heat exchanger, an absorption refrigeration system, a ship, an offshore structure, and an underwater structure according to embodiments of the present invention will be described. In the description of this embodiment, it will be described as a falling liquid film heat exchanger that can be mounted on a ship, an offshore structure, and an underwater structure (hereinafter referred to as a ship or the like), and an absorption refrigeration system. It is not necessary to limit to a falling liquid film heat exchanger and an absorption refrigeration system mounted on a ship, etc., and is a falling liquid film heat exchanger and an absorption refrigeration system installed on other onshore equipment. Also good.

なお、本発明に係る実施の形態の吸収式冷凍システムは、以下に説明する本発明に係る実施の形態の流下液膜式熱交換器20を用いるものとして構成され、本発明に係る実施の形態の船舶、洋上構造物、水中構造物は、以下に説明する本発明に係る実施の形態の流下液膜式熱交換器20、又は、本発明に係る実施の形態の吸収式冷凍機を用いるものとして構成される。なお、この実施の形態の吸収式冷凍システムでは、吸収液に臭化リチウムを、冷媒に水を用いる吸収式冷凍機を例にして説明する。   The absorption refrigeration system according to the embodiment of the present invention is configured to use the falling liquid film heat exchanger 20 of the embodiment according to the present invention described below, and the embodiment according to the present invention. Ships, offshore structures and underwater structures using the falling film heat exchanger 20 of the embodiment according to the present invention described below or the absorption refrigerator of the embodiment according to the present invention Configured as In the absorption refrigeration system of this embodiment, an absorption chiller using lithium bromide as an absorbing liquid and water as a refrigerant will be described as an example.

本発明に係る実施の形態の流下液膜式熱交換器は、船舶等に搭載することができるように、伝熱管の管軸方向の揺動にも、管軸に垂直な面内における揺動にも耐えることができる流下液膜式熱交換器であり、図1及び図2に示すように、上から見て広いエリアに分布する伝熱管21の外表面に液体Dを分配する液体分配装置10を備えて構成される。   The falling film heat exchanger according to the embodiment of the present invention can be mounted on a ship or the like so that the heat transfer tube swings in a direction perpendicular to the tube axis. , A falling film type heat exchanger that can withstand liquids, and, as shown in FIGS. 1 and 2, distributes liquid D to the outer surface of heat transfer tubes 21 distributed over a wide area when viewed from above. 10 is comprised.

この流下液膜式熱交換器を船舶等に搭載する場合は、一般に縦揺れ(船の前後が上下に動くピッチ)の方が横揺れ(船の左右舷が上下するロール)の方が揺れ角が小さいので、伝熱管21の軸方向を船舶等の船長方向(前後方向)に配置するように構成する。つまり、伝熱管21の管軸回りが船舶、洋上構造物、及び水中構造物のロールと一致するように配置する。   When this falling film heat exchanger is mounted on a ship, etc., generally the pitching (pitch where the front and rear of the ship moves up and down) is more lateral (the roll where the left and right side of the ship moves up and down). Therefore, the axial direction of the heat transfer tube 21 is arranged in the ship length direction (front-rear direction) of a ship or the like. That is, it arrange | positions so that the pipe shaft periphery of the heat exchanger tube 21 may correspond with the roll of a ship, an offshore structure, and an underwater structure.

この液体分配装置10は、分配タンク11、排出装置12、第1分配流路13、及び第2分配流路14A、14Bを備えて構成する。この分配タンク11は伝熱管21の表面に供給する液体Dを受けて一時的に貯蔵する。また、排出装置12は、分配タンク11から液体Dを均等に排出するためものであり、同じ流体抵抗になるように形成され、複数設けられる。その中を流れる液体Dは排出装置12の出口で熱交換器内の環境圧力下に晒される。第1分配流路13は、排出装置12から排出される液体Dを受け取り、その端部から第2分配流路14A、14Bに排出する。この第1分配流路13のうち少なくとも主要部分を伝熱管21の分布する上から見て長手方向に、または正方形のエリアの場合はこの正方形の一辺の方向に配置するとともに、この分布エリアの長手方向をいくつかに分けた区画を第1分配流路13が受け持つ領域とする。また、この分布エリアの短手方向、または正方形のエリアの場合は他辺の方向も複数に分けた区画を第1分配流路13が受け持つ領域としてもよい。なお、第1分配流路13から第2分配流路14A、14Bにあふれることなく流し込むために第1分配流路13の先を例えばL字型に曲げておいてもよい。   The liquid distribution apparatus 10 includes a distribution tank 11, a discharge device 12, a first distribution flow path 13, and second distribution flow paths 14A and 14B. The distribution tank 11 receives the liquid D supplied to the surface of the heat transfer tube 21 and temporarily stores it. Moreover, the discharge device 12 is for discharging the liquid D from the distribution tank 11 uniformly, and is formed so as to have the same fluid resistance, and a plurality of the discharge devices 12 are provided. The liquid D flowing therein is exposed to the environmental pressure in the heat exchanger at the outlet of the discharge device 12. The first distribution channel 13 receives the liquid D discharged from the discharge device 12, and discharges the liquid D from the end portion to the second distribution channels 14A and 14B. At least a main portion of the first distribution flow path 13 is arranged in the longitudinal direction as viewed from above where the heat transfer tubes 21 are distributed, or in the case of a square area, in the direction of one side of the square. A section divided into several directions is defined as a region that the first distribution flow path 13 handles. In addition, in the case of a short area of the distribution area or a square area, the first distribution flow path 13 may have a section divided into a plurality of directions on the other side. Note that the tip of the first distribution channel 13 may be bent, for example, in an L shape so as to flow from the first distribution channel 13 to the second distribution channels 14A and 14B without overflowing.

第2分配流路14A、14Bは第1分配流路13から液体Dを受け取り、その底部に設けられた多数の分配孔14aから液体Dを第2分配流路14A、14Bが受け持つエリアAiのトレイ15に導くように構成される。この第1分配流路13と第2分配流路14A、14Bは上が開放された断面が凹部形状の長尺もので形成される。   The second distribution channels 14A and 14B receive the liquid D from the first distribution channel 13, and the trays in the area Ai where the second distribution channels 14A and 14B receive the liquid D from a number of distribution holes 14a provided at the bottom thereof. 15 is configured to lead to 15. The first distribution flow path 13 and the second distribution flow paths 14A and 14B are formed in a long shape having a concave shape in the cross section with the top opened.

この第2分配流路14A、14Bは、第1分配流路13の端部から排出される液体Dを受けるトレイ15か、または上から見たときに第1分配流路13の主要部分に対して交差するように(この実施の形態では直交するように)設ける。さらに、トレイ15または第2分配流路14A、14Bに分配孔14bを設けて、この分配孔14bから液体Dを第1分配流路13が受け持つ領域内で分配し、液体Dを伝熱管21に滴下する。   The second distribution flow paths 14A and 14B are provided for the tray 15 that receives the liquid D discharged from the end of the first distribution flow path 13 or the main portion of the first distribution flow path 13 when viewed from above. Are provided so as to intersect with each other (in this embodiment, so as to be orthogonal). Further, a distribution hole 14b is provided in the tray 15 or the second distribution flow path 14A, 14B, and the liquid D is distributed from the distribution hole 14b within an area that the first distribution flow path 13 is responsible for, and the liquid D is transferred to the heat transfer tube 21. Dripping.

例えば、第1分配流路13を伝熱管12の長手方向に向きを揃えて配置するとともに、第2分配流路14A、14Bを伝熱管21の長手方向と直交する方向に向きを揃えて配置する。つまり、第1分配流路13を船舶等の前後方向に、第2分配流路14A、14Bを船舶等の左右方向に配置する。さらに、第1分配流路13に先端側が下方となる5度以上且つ45度以下の下り勾配を持たせて形成する。また第2分配流路14A、14Bにも先端側が下方となる下り勾配を持たせて形成してもよい。   For example, the first distribution channel 13 is arranged in the longitudinal direction of the heat transfer tube 12 and the second distribution channels 14A and 14B are arranged in the direction perpendicular to the longitudinal direction of the heat transfer tube 21. . That is, the first distribution flow path 13 is arranged in the front-rear direction of the ship or the like, and the second distribution flow paths 14A and 14B are arranged in the left-right direction of the ship or the like. Further, the first distribution channel 13 is formed with a downward gradient of 5 degrees or more and 45 degrees or less with the tip side being downward. Further, the second distribution channels 14A and 14B may also be formed with a downward gradient with the tip side downward.

流下液膜式熱交換器を船舶等に搭載する場合には、流下液膜式熱交換器は伝熱管長手方向を船体前後方向と揃えて設置する。この場合、第1分配流路13を伝熱管21の長手方向に揃えて設置すれば、その勾配については船体の前後運動にのみ対応すればよい。例えば、2度の船体トリム(前後方向の静的傾き)と3度のピッチング(前後方向の動的な回転運動)の合計5度の前後傾斜に対応するためには、それより大きな角度、例えば、8度程度の下り勾配を流路に設けておく。これにより必要な下り勾配を常に確保することができる。またその流路をチャンネル型の桶で構成する場合は、20度程度の船体ロール(横方向の動的な回転運動)でも液体Dがこぼれないようにチャンネルの壁を十分な高さに設けておく必要がある。   When the falling liquid film heat exchanger is mounted on a ship or the like, the falling liquid film heat exchanger is installed with the longitudinal direction of the heat transfer tube aligned with the longitudinal direction of the hull. In this case, if the first distribution flow path 13 is installed in the longitudinal direction of the heat transfer tube 21, the gradient may correspond only to the longitudinal movement of the hull. For example, to accommodate a total of 5 degrees of front and back tilt of 2 degrees hull trim (front and back static tilt) and 3 degrees pitching (back and forth dynamic rotational movement), a larger angle, eg A downward gradient of about 8 degrees is provided in the flow path. As a result, the necessary downward gradient can always be ensured. If the channel is made up of a channel-type dredger, the channel wall should be high enough to prevent liquid D from spilling even with a hull roll of about 20 degrees (dynamic rotation in the horizontal direction). It is necessary to keep.

第1分配流路13に下り勾配を設けて、流下液膜式熱交換器の稼働時の船舶等の船体トリムと縦揺れ(ピッチ)の和の傾斜角よりも大きな下り勾配とすることで、船舶等が縦揺れ(ピッチ)する場合でも、第1分配流路13を流れる液体Dが逆流することなく、第2分配流路14A、14Bに排出できるようになる。   By providing a downward slope in the first distribution flow path 13 and making the downward slope larger than the inclination angle of the sum of the hull trim and pitching (pitch) of a ship or the like during operation of the falling film heat exchanger, Even when a ship or the like shakes (pitch), the liquid D flowing through the first distribution channel 13 can be discharged to the second distribution channels 14A and 14B without backflow.

また、分配タンク11を伝熱管21の長手方向の中央付近に配置する。この構成により、第1分配流路13の下り勾配のために必要な高さを低くすることができる。   Further, the distribution tank 11 is arranged near the center of the heat transfer tube 21 in the longitudinal direction. With this configuration, the height required for the downward gradient of the first distribution channel 13 can be reduced.

また、排出装置12を同一形状のスタブパイプで形成する。分配タンク11からの排出部分の構造は、単なる開口孔でもよいが、各排出装置12にある程度の排出抵抗を持たせることにより常に、分配タンク11においてはどの排出装置12よりも高い液面位置を保ち、かつ各排出装置12から等量の液体Dが排出されるように、各排出装置12の排出抵抗をある程度持つように、しかも各排出抵抗が同じになるように精度よく揃えることが好ましい。そのため、排出装置12を径と長さが等しいスタブパイプで形成することが好ましい。   Moreover, the discharge device 12 is formed of a stub pipe having the same shape. The structure of the discharge portion from the distribution tank 11 may be a simple opening hole, but by providing each discharge device 12 with a certain amount of discharge resistance, the distribution tank 11 always has a higher liquid level position than any discharge device 12. It is preferable to keep the discharge resistance of each discharge device 12 to some extent so that each discharge device 12 has the same discharge resistance so that the same amount of liquid D is discharged from each discharge device 12. Therefore, it is preferable to form the discharge device 12 with a stub pipe having a diameter and a length equal to each other.

また、液体分配装置10及びこれを備えた流下液膜式熱交換器が傾斜した際に、傾斜時の各排出装置12に加わる液圧にバラツキが生じて、各排出装置12からの排出量にバラツキが生じないようにするために、各排出装置12の配置高さを同じとすると共に、各排出装置12の間の離間水平距離をできるだけ小さくする。   In addition, when the liquid distributor 10 and the falling liquid film heat exchanger equipped with this tilt, the fluid pressure applied to each discharge device 12 at the time of tilting varies, and the discharge amount from each discharge device 12 is reduced. In order to prevent variation, the heights of the discharge devices 12 are made the same, and the horizontal distance between the discharge devices 12 is made as small as possible.

また、排出装置12をスタブパイプで形成した場合には、その後の第1分配流路13や第2分配流路14A、14Bなどの流路の長さの違いによる流通抵抗の差等が、スタブパイプから排出される液体Dの量に影響することがないよう、スタブパイプと連通する閉鎖された流路とせずに、このスタブパイプから排出された後の液体Dを第1分配流路13に入れる前に熱交換器内の環境圧力に解放しておくことが好ましい。   Further, when the discharge device 12 is formed of a stub pipe, the difference in flow resistance due to the difference in the length of the subsequent first distribution flow path 13 and the second distribution flow paths 14A, 14B, etc. In order not to affect the amount of the liquid D discharged from the pipe, the liquid D discharged from the stub pipe is not supplied to the first distribution flow path 13 without being a closed flow path communicating with the stub pipe. It is preferred to release to ambient pressure in the heat exchanger before entering.

第1分配流路13には、それぞれ、例えば、伝熱管の前端近辺の領域(エリア)A1、少し後ろのエリアA2、というように、長手方向をいくつかの区画に分割した領域Aiを担当させるように構成する。   Each of the first distribution channels 13 is responsible for a region Ai whose longitudinal direction is divided into several sections, for example, a region (area) A1 near the front end of the heat transfer tube and an area A2 slightly behind. Configure as follows.

伝熱管21が、船体横断方向にも広く分布している場合には、横断方向に関しても担当区画Aijを分割し、例えば、図1の左側に最も長く延びている第1分配流路13の内の手前の第1分配通路13は伝熱管21の前端近辺の右半分を、その奥側の隣の第1分配流路13は伝熱管21の前端近辺の左半分を担当させる。この場合、第1分配流路13から液体Dを受けてそれを横方向に分配する横樋である第2分配流路14A、14Bに、左半分と右半分を区分けする仕切り板14bを設けておき、第1分配流路13は第2分配通路14A、14Bのそれぞれ右区画、左区画のみに液体Dを流入させる。   In the case where the heat transfer tubes 21 are widely distributed also in the transverse direction of the hull, the assigned section Aij is divided also in the transverse direction, and, for example, in the first distribution channel 13 that extends the longest to the left in FIG. The first distribution passage 13 in front of the heat transfer tube 21 is responsible for the right half near the front end of the heat transfer tube 21, and the adjacent first distribution flow path 13 on the back side is responsible for the left half near the front end of the heat transfer tube 21. In this case, a partition plate 14b that separates the left half and the right half is provided in the second distribution flow paths 14A and 14B that are horizontal ribs that receive the liquid D from the first distribution flow path 13 and distribute it in the horizontal direction. The first distribution channel 13 allows the liquid D to flow only into the right and left sections of the second distribution passages 14A and 14B, respectively.

図3及び図4は、流下液膜式熱交換器20における伝熱管21の配置を示す図であり、液体分配装置10のトレイ15の下側に伝熱管21が配列されており、液体分配装置第2分配流路14A、14B10の第1分配流路13の長手方向と伝熱管21の長手方向が平行になるように、また、の長手方向が伝熱管21の左右方向になるように構成される。   3 and 4 are diagrams showing the arrangement of the heat transfer tubes 21 in the falling film heat exchanger 20, and the heat transfer tubes 21 are arranged below the tray 15 of the liquid distribution device 10, and the liquid distribution device The longitudinal direction of the first distribution flow path 13 of the second distribution flow paths 14A, 14B10 and the longitudinal direction of the heat transfer tube 21 are parallel, and the longitudinal direction of the second distribution flow path 14A, 14B10 is configured to be the left-right direction of the heat transfer tube 21. The

図3に示すように、流下液膜式熱交換器20において、伝熱管21はチューブシート(管板)23、24に保持されて、水平方向及び上下方向に、互いに平行状態で配置される。また、伝熱管21の列の上下方向に関して、上側の列の伝熱管21と下側の列の伝熱管21との間にガイドプレート22A(又は22B)が配設される。   As shown in FIG. 3, in the falling liquid film heat exchanger 20, the heat transfer tubes 21 are held by tube sheets (tube plates) 23 and 24 and are arranged in parallel with each other in the horizontal direction and the vertical direction. Further, a guide plate 22A (or 22B) is disposed between the heat transfer tubes 21 in the upper row and the heat transfer tubes 21 in the lower row in the vertical direction of the heat transfer tubes 21.

また、図3及び図4に示すように、流下液膜式熱交換器20の底部では、液体Dを回収するが、スロッシングが起きることがないように、液面の暴れを防止するための図3に示す仕切り板25を設ける。また揺動下でも液切れなく液体Dを回収できるよう、底部26には想定される傾斜角度以上の傾斜を設けておき、その最下部に排出口(図示しない)を設けることが望ましい。この傾斜角度としては、図3では、前後傾斜(トリム)と前後揺れ(ピッチ)の和が考慮され、図4では、横傾斜(ヒール)と横揺れ(ロール)の和が考慮される。   Further, as shown in FIGS. 3 and 4, the bottom of the falling liquid film heat exchanger 20 collects the liquid D, but is a diagram for preventing the liquid level from being disturbed so that sloshing does not occur. 3 is provided. Further, it is desirable that the bottom portion 26 is provided with an inclination greater than an assumed inclination angle so that the liquid D can be recovered without running out of liquid even under rocking, and a discharge port (not shown) is provided at the lowermost portion. As the inclination angle, the sum of front and rear inclination (trim) and front and rear shaking (pitch) is considered in FIG. 3, and the sum of side inclination (heel) and side shaking (roll) is considered in FIG.

また、例えば、吸収式冷凍機30においては、図4に示すように、蒸発器として機能する流下液膜式熱交換器20Aと、吸収器として機能する流下液膜式熱交換器20Bを一体に設けることが考えられるが、その場合に底部26A、26Bの異なる2つ液体Daと液体Dbが混合してしまうことを回避するため、各々の液溜め27A、27Bには波返し28を設け、また蒸発器と吸収器の境界上部には、冷媒・吸収液分離ルーバー29を設けておくことが望ましい。   For example, in the absorption refrigerator 30, as shown in FIG. 4, a falling liquid film heat exchanger 20A functioning as an evaporator and a falling liquid film heat exchanger 20B functioning as an absorber are integrated. In order to avoid mixing two different liquids Da and Db in the bottom portions 26A and 26B in that case, each liquid reservoir 27A and 27B is provided with a wave return 28. It is desirable to provide a refrigerant / absorbing liquid separating louver 29 at the upper boundary between the evaporator and the absorber.

次に、図3〜図11を参照しながら、本発明の特徴の一つである上下の伝熱管21の列の間に配設するガイドプレート22A、22Bと、このガイドプレート22A、22Bと上下の伝熱管21の関係について説明する。   Next, referring to FIG. 3 to FIG. 11, guide plates 22 </ b> A and 22 </ b> B disposed between the upper and lower heat transfer tubes 21, which is one of the features of the present invention, and the guide plates 22 </ b> A and 22 </ b> B The relationship of the heat transfer tube 21 will be described.

この伝熱管21に関しては、どの伝熱管21にも偏りなく均等な量の液体Dが流下するようにすることが、熱交換効率の向上の面から重要であり、上側の列の1本の伝熱管21から下側の列の2本の伝熱管21に滴下したり、逆に上側の列の2本の伝熱管21からの液体Dが下側の列の1本の伝熱管21に集まるようなことは回避する必要がある。   Regarding this heat transfer tube 21, it is important from the viewpoint of improving heat exchange efficiency that an equal amount of liquid D flows down to any heat transfer tube 21, and one heat transfer tube in the upper row. Dropping from the heat tubes 21 to the two heat transfer tubes 21 in the lower row, or conversely, the liquid D from the two heat transfer tubes 21 in the upper row gathers in one heat transfer tube 21 in the lower row. It is necessary to avoid this.

そのためには、流下液膜式熱交換器が搭載された船舶など左右に横傾斜(ヒール)及び横揺れ(ロール)しても常に同じ伝熱管21に滴下されていくように、液体Dが流下していく上下の伝熱管21が1対1対応となるように構成することが重要となる。これは、以下のような、液体Dに対する適度な透過性を持つガイドプレート22A、22Bを伝熱管21の上下間の列の間に配置することで実現できる。   For this purpose, the liquid D flows down so that it is always dropped onto the same heat transfer tube 21 even if it is laterally inclined (heel) and swayed (rolled), such as a ship equipped with a falling liquid film heat exchanger. It is important to configure the upper and lower heat transfer tubes 21 to be in a one-to-one correspondence. This can be realized by arranging guide plates 22 </ b> A and 22 </ b> B having moderate permeability to the liquid D as described below between the upper and lower rows of the heat transfer tubes 21.

この伝熱管21は、図3及び図4に示すように、略水平に配置され、同じ水平面内で一列を形成し、この水平面内の伝熱管21の列を上下方向に重ねて構成される。そして、図5及び図6に示すように、上下方向に間隔を有する列をなして複数の伝熱管21を配置し、水平方向に並んだ伝熱管21の列と、その下の水平方向に並んだ伝熱管21の列との間に、下側のそれぞれの伝熱管21の頂上部分の近傍に凹部(谷部)22aの最下位部分が配置されるように、凹部22aを有するガイドプレート22A、22Bを配置する。なお、図5は伝熱管21の配置が千鳥配置ではない場合を、図6は伝熱管21の配置が千鳥配置である場合を示す。   As shown in FIGS. 3 and 4, the heat transfer tubes 21 are arranged substantially horizontally, form a single row in the same horizontal plane, and are configured by overlapping the rows of the heat transfer tubes 21 in the horizontal plane in the vertical direction. And as shown in FIG.5 and FIG.6, the some heat exchanger tube 21 is arrange | positioned in the row | line | column which has a space | interval in the up-down direction, and the row | line | column of the heat exchanger tube 21 located in a line with the horizontal direction is located in the horizontal direction under it. Guide plates 22A having recesses 22a so that the lowest part of the recesses (valleys) 22a is disposed between the rows of the heat transfer tubes 21 in the vicinity of the top portion of each lower heat transfer tube 21; 22B is arranged. 5 shows a case where the arrangement of the heat transfer tubes 21 is not staggered, and FIG. 6 shows a case where the arrangement of the heat transfer tubes 21 is a staggered arrangement.

更に、このガイドプレート22A、22Bの凹部22aの最下位部分に伝熱管21の頂上に液滴を流下するための流下孔22bを設けて、伝熱管21の管軸に垂直な面内で予め設定した所定の角度範囲βa内の傾斜角度βの傾斜(横傾斜(ヒール)+横揺れ(ロール))をした状態になっても、上側のそれぞれの伝熱管21の表面を流下した液体Dが、上側の列のそれぞれの伝熱管に1対1対応に対応する下側の列の伝熱管21に伝わるように構成する。   Furthermore, a flow-down hole 22b is provided in the lowermost part of the recess 22a of the guide plates 22A and 22B for flowing the liquid droplets on the top of the heat transfer tube 21, and is set in advance in a plane perpendicular to the tube axis of the heat transfer tube 21. The liquid D flowing down the surface of each upper heat transfer tube 21 even when the inclination angle β within the predetermined angle range βa is inclined (lateral inclination (heel) + roll (roll)), The heat transfer tubes are configured to be transmitted to the heat transfer tubes 21 in the lower row corresponding to the one-to-one correspondence with the heat transfer tubes in the upper row.

この上下の伝熱管21を1対1対応させるにあたり、上下の伝熱管21の列を上下方向に揃うように配置した場合には、図6に示すように、ガイドプレート22Aは対称型の波板若しくは折板でよい。また、千鳥型に配置した場合には、図7に示すように、非対称型の波板若しくは折板で形成すると上下の伝熱管を1対1対応させることができる。特に、千鳥型に配置した場合には、図4に示すチューブシート(管板)23、24において、伝熱管21で囲まれた面を支持する板材の幅(伝熱管21の相互間の距離)を千鳥配置しない場合に比べて大きくすることができるので、チューブシート(管板)23、24の強度、例えば、液体Dのスロッシングに対する強度を増加できる。   When the upper and lower heat transfer tubes 21 are in a one-to-one correspondence, when the rows of the upper and lower heat transfer tubes 21 are arranged in the vertical direction, the guide plate 22A is a symmetrical corrugated plate as shown in FIG. Or a folded plate may be sufficient. Moreover, when arrange | positioning at zigzag type | mold, as shown in FIG. 7, when it forms with an asymmetrical type corrugated sheet or a folded sheet, an up-and-down heat-transfer tube can be made to respond | correspond one-to-one. In particular, when arranged in a staggered pattern, the width of the plate material (the distance between the heat transfer tubes 21) that supports the surface surrounded by the heat transfer tubes 21 in the tube sheets (tube plates) 23 and 24 shown in FIG. Therefore, the strength of the tube sheets (tube sheets) 23 and 24, for example, the strength against sloshing of the liquid D can be increased.

また、確実に、上側の伝熱管21から下側の伝熱管21に液体Dを流下させることができ、しかも、その横断面内では下側の伝熱管21の表面全体を液膜で覆うことができ、また、ガイドプレート22A、22Bと伝熱管21の間で熱伝導を生じさせ、ガイドプレート22A、22Bを伝熱管21に設けた放熱または吸熱フィンとして機能させられるように、ガイドプレート22A、22Bの凹部22aが、下側の伝熱管21の頂部に接するようにガイドプレート22A、22Bを配置する。なお、ガイドプレート22A、22Bと伝熱管21に異種金属を使用する場合で電位差による腐食を防止する必要がある場合は、例えば、セラミックスフィラー充填のシリコン材料等の絶縁放熱シートを間に挟んでもよい   In addition, the liquid D can surely flow down from the upper heat transfer tube 21 to the lower heat transfer tube 21, and the entire surface of the lower heat transfer tube 21 can be covered with a liquid film in the cross section. Further, the guide plates 22A and 22B can be configured to generate heat conduction between the guide plates 22A and 22B and the heat transfer tube 21 so that the guide plates 22A and 22B function as heat dissipation or heat absorption fins provided in the heat transfer tube 21. The guide plates 22 </ b> A and 22 </ b> B are arranged so that the recess 22 a contacts the top of the lower heat transfer tube 21. In the case where different metals are used for the guide plates 22A and 22B and the heat transfer tube 21, when it is necessary to prevent corrosion due to a potential difference, for example, an insulating heat radiation sheet such as a silicon material filled with a ceramic filler may be sandwiched therebetween.

このガイドプレート22A、22Bは、凹部22aの近辺のみに流下孔22bが開いていてもよいし、全面に開いていてもよいが、流下孔22bが全面に開いている場合は、傾斜時に上の伝熱管21から滴下した液体Dがガイドプレート22A、22Bを通過しないよう、滴径Dより小さい開口となっているか、または上の伝熱管21から見て見通しが十分悪いルーバーシートになっている必要がある。   The guide plates 22A and 22B may have the flow-down hole 22b opened only in the vicinity of the recess 22a or may be opened over the entire surface. However, when the flow-down hole 22b is opened over the entire surface, In order to prevent the liquid D dripped from the heat transfer tube 21 from passing through the guide plates 22A and 22B, the opening should be smaller than the droplet diameter D, or a louver sheet with a sufficiently poor view as viewed from the heat transfer tube 21 above. There is.

伝熱管21の表面で気体が発生したり吸収したりされる用途で使用されている場合には、気体の往来が妨げられないように、ガイドプレート22A、22Bに十分な気体透過性が確保されていることが好ましい。また、このように、気体の発生、吸収過程が伝熱管21の表面だけでなくガイドプレート22A、22Bの表面でも行われるため、ガイドプレート22A、22Bとその下の伝熱管21との間は、熱が伝導するように接しさせる。   When used in an application where gas is generated or absorbed on the surface of the heat transfer tube 21, sufficient gas permeability is ensured in the guide plates 22A and 22B so as not to hinder gas traffic. It is preferable. In addition, since the generation and absorption processes of gas are performed not only on the surface of the heat transfer tube 21 but also on the surfaces of the guide plates 22A and 22B, the gap between the guide plates 22A and 22B and the heat transfer tube 21 therebelow is Contact to conduct heat.

そして、上から滴下する液体Dの滞留時間を長く確保したい場合には、伝熱管21の表面からその下のガイドプレート22A、22Bへは表面張力、毛細管現象により流下することなく、滴下させた方がよいので、ガイドプレート22A、22Bとその上の伝熱管21を接することがないように、滴径程度以上の間隔をあける。   And when it is desired to ensure a long residence time of the liquid D dripping from above, it is dropped from the surface of the heat transfer tube 21 to the guide plates 22A and 22B below it without flowing down due to surface tension and capillary action. Since the guide plates 22A and 22B and the heat transfer tube 21 thereabove are not in contact with each other, an interval equal to or larger than the droplet diameter is provided.

更に、図8に示すように、その横断面内では下側の伝熱管の頂部の左右に対して均等に液体Dを流下して、下側の伝熱管の表面全体を液膜で覆うことができるように、ガイドプレート22A、22Bの凹部22aの最下位部分を左右対称形状に形成する。   Further, as shown in FIG. 8, in the cross section, the liquid D is allowed to flow evenly to the left and right of the top of the lower heat transfer tube, and the entire surface of the lower heat transfer tube is covered with a liquid film. The lowermost part of the recess 22a of the guide plates 22A and 22B is formed in a bilaterally symmetrical shape so that it can be made.

このガイドプレート22A、22Bは、滴下する液体Dの自然滴径より小さい穴が開口しているメッシュシート、グレーチング、網、ルーバーシートのいずれかの板材を用いて、この板材に折り目または波目を付けて製作することができる。   The guide plates 22A and 22B are made of a mesh sheet, a grating, a net, or a louver sheet in which holes smaller than the natural droplet diameter of the liquid D to be dropped are opened. You can make it.

また、図8に示すように、流下孔22bを、凹部22aの最下位部分の左右に、最下位部の略中心線上に両端点を持つ半円、U字型、V字型、コの字型、爪型、先割れ爪型のいずれかの形状の切り込みを設けて谷折りすることにより形成する。つまり、板材を交互に山折と谷折にして波板若しくは折板とし、谷折部分に半円、U字型、V字型、コの字型、爪型、先割れ爪型等の切れ目22dを入れて、谷折りした際に谷折部分の外側に突起(爪部、舌部)22cが出るように、図9に示すようなガイドプレート22Cを形成する。これにより、谷折部分より左の斜面を谷折り部より右側に延長するスロープが突起22cにより形成され、また谷折部分より右側の斜面を谷折り部分より左側に延長するスロープが突起22cにより形成される。また突起22cを形成する切れ目22dはプレスによる剪断加工によって形成され、その際生じる「かえり(バリ)」がガイドプレート22Cの上面(谷部の内側)に出るように構成される。   Also, as shown in FIG. 8, the flow down holes 22b are formed in semicircles, U-shaped, V-shaped, and U-shaped with both end points on the left and right of the lowermost portion of the recess 22a and on the substantially center line of the lowermost portion. It is formed by providing a cut of any shape of a mold, a claw mold, or a claw-shaped claw mold and then folding the valley. In other words, the plate material is alternately folded into a mountain and a valley to form a corrugated sheet or a folded sheet, and a semicircular, U-shaped, V-shaped, U-shaped, claw-shaped, tip-claw-shaped claw-shaped cut, etc. 22d A guide plate 22C as shown in FIG. 9 is formed so that the projections (claws and tongues) 22c appear outside the valley fold when the valley is folded. Thus, a slope extending from the valley fold to the right side of the valley fold is formed by the protrusion 22c, and a slope extending right from the valley fold from the valley fold to the left by the protrusion 22c is formed by the protrusion 22c. Is done. The cut 22d forming the protrusion 22c is formed by shearing with a press, and a “burr” generated at that time is formed on the upper surface (inside the valley) of the guide plate 22C.

なお、この「かえり」とは、例えばハサミで薄い金属板を切った時に、切断面に生じる微細な尖り目のことで、バリとも呼ばれるものである。また、図8の平面図には、細かいパンチ穴(図示しない)を開けておくことが好ましいが、その際もパンチ加工の「かえり」はガイドプレート22Cの上面に出るように構成する。   The “kaeri” is also called a burr because it is a fine squint formed on the cut surface when a thin metal plate is cut with scissors, for example. Further, in the plan view of FIG. 8, it is preferable to make a fine punch hole (not shown), but at that time, the punching “bake” is configured to appear on the upper surface of the guide plate 22C.

上側の列の伝熱管21から流下してくる液滴Dを、このガイドプレート22Cの山折部分で受けて、斜面の傾斜または濡れ若しくは毛細管現象により、谷折部分の凹部22aに導く。このとき、例えば伝熱管21の管軸回りに左回りの傾斜があるために左斜面に滴下した液体Dは、流下孔22bの周囲でガイドプレート22Cの上面に出た「かえり」に阻害され、図9に示すように流下孔22bをよけて突起22cに導かれながら流下し、突起22cのスロープを下って谷折の折れ目よりも若干右側に導かれ、ここで滴下して下側の列の伝熱管21に移動する。同様に右斜面に滴下した液体Dは「かえり」をよけて谷折の折れ目より若干左側に導かれて滴下、下側の列の伝熱管21に移動する。これにより、図11に示すように、伝熱管21の管軸回りの傾斜がある場合でも直下の伝熱管21の鉛直線上近辺に流下させる効果がある。なお、滴下した液体Dが谷折近辺の突起22cに到達するまではガイドプレート22Cの裏面(下側の面)に回らないようにするのが好ましく、そのためには、平面部のパンチ穴(図示しない)の「かえり」も上面に出しておく方がよい。   The droplets D flowing down from the heat transfer tubes 21 in the upper row are received by the mountain fold portion of the guide plate 22C and guided to the concave portion 22a of the valley fold portion by slope inclination, wetting, or capillary action. At this time, for example, since there is a counterclockwise inclination around the tube axis of the heat transfer tube 21, the liquid D dripped onto the left inclined surface is hindered by the “back” that has come out on the upper surface of the guide plate 22C around the flow down hole 22b, As shown in FIG. 9, it flows down while being guided to the protrusion 22c through the flow hole 22b, and is guided to the right side of the fold of the valley fold down the slope of the protrusion 22c. It moves to the heat transfer tube 21 in the row. Similarly, the liquid D dripped onto the right slope is guided to the left slightly from the fold of the valley fold, avoiding “kaeri”, and drip and moves to the heat transfer tubes 21 in the lower row. As a result, as shown in FIG. 11, even when there is an inclination around the tube axis of the heat transfer tube 21, there is an effect of flowing down to the vicinity of the vertical line of the heat transfer tube 21 directly below. It is preferable that the dropped liquid D does not turn to the back surface (lower surface) of the guide plate 22C until it reaches the protrusion 22c near the valley fold. It ’s better to leave the “kaeri” on the top.

この方法によれば、図11に示すように、多少、傾斜が生じている場合でもより確実に下側の列の伝熱管21の左右両側の外表面が利用されることが期待できる。また、図10に示すように、ガイドプレート22Cの突起22cが、下の列の伝熱管21に接触することにより、ガイドプレート22Cが、下の列の伝熱管21に安定して座るようになり、更に、接触面積が増加するので熱伝導による熱伝達も行われ、確実にガイドプレート22Cから伝熱管21に伝熱されることになる。   According to this method, as shown in FIG. 11, it can be expected that the outer surfaces on both the left and right sides of the heat transfer tubes 21 in the lower row are used more reliably even when there is a slight inclination. Further, as shown in FIG. 10, the projection 22c of the guide plate 22C comes into contact with the heat transfer tube 21 in the lower row, so that the guide plate 22C is stably seated on the heat transfer tube 21 in the lower row. Furthermore, since the contact area increases, heat transfer is also performed by heat conduction, and heat is reliably transferred from the guide plate 22C to the heat transfer tube 21.

また、図8及び図9の右側に、谷線と直交する稜線22eを持つように凸加工を施し、より積極的に液体Dを突起22cに導くとともに、傾斜時に、谷線と平行な方向に移動するのを、言い換えれば、液体Dが谷線に沿って移動するのを防止するように、板材22CにV字型の切れ目22dと山折の稜線22eを設けた例を示す。   8 and FIG. 9, a convex process is performed so as to have a ridge line 22e perpendicular to the valley line, and the liquid D is more positively guided to the protrusion 22c, and in a direction parallel to the valley line when inclined. In other words, an example in which the plate 22C is provided with a V-shaped cut line 22d and a mountain ridge line 22e so as to prevent the liquid D from moving along the valley line.

また、図12に示すように、鋼材を格子状に組んだグレーチング22gを使用してガイドプレート22Dを形成する場合、平行なフラットバー22gaと、このフラットバー22gaの底辺近辺の間を棒材22gbでつなぐものを使用するとよい。この場合、グレーチング22gを折り込んだ後のつなぐフラットバー22gaの間隔L1が伝熱管21の間隔L2と同一になるように、プレス加工で波型に変形させることでガイドプレート22Dを形成できる。なお、グレーチング22gを折り込んだ後のフラットバー22gaの間隔L1を伝熱管21の横間隔L2の半分にして、下側となるフラットバー22gaが伝熱管21の頂部の上方に配置されるようにしてもよい。   As shown in FIG. 12, when forming the guide plate 22D using a grating 22g in which steel materials are assembled in a lattice shape, a bar 22gb is formed between the parallel flat bar 22ga and the vicinity of the bottom of the flat bar 22ga. Use what you connect. In this case, the guide plate 22D can be formed by deforming into a corrugated shape by pressing so that the interval L1 of the flat bar 22ga to be connected after the grating 22g is folded is the same as the interval L2 of the heat transfer tube 21. Note that the interval L1 between the flat bars 22ga after folding the grating 22g is half of the lateral interval L2 of the heat transfer tube 21, so that the lower flat bar 22ga is disposed above the top of the heat transfer tube 21. Also good.

上記の流下液膜式熱交換器20、吸収式冷凍機システム30、及び船舶、洋上構造物、水中構造物によれば、これらの船舶等の傾斜や揺動があった場合であっても、流下液膜式熱交換器20において、液体分配装置10により冷媒や吸収液等の液体Dを均等に分配して、伝熱管21の頂上に滴下して、上の列に位置する伝熱管21から滴下した液体Dを確実に下の列に位置する伝熱管21の表面に落下させることができて、熱交換性能の低下を回避できる。   According to the above-mentioned falling film heat exchanger 20, absorption refrigeration system 30, and ships, offshore structures, underwater structures, even if these ships etc. are inclined or swinging, In the falling liquid film heat exchanger 20, the liquid D such as a refrigerant or an absorbing liquid is evenly distributed by the liquid distributor 10, dropped onto the top of the heat transfer tube 21, and then from the heat transfer tube 21 located in the upper row. The dropped liquid D can be reliably dropped onto the surface of the heat transfer tube 21 located in the lower row, and a decrease in heat exchange performance can be avoided.

特に、液体分配装置10の構成により液体Dを均等に、トレイ15に分配して、伝熱管21に液体Dを滴下することができる。また、広い水平面に液体Dを分配できる。また、伝熱管21の長手方向に45度傾斜しても、液体Dを伝熱管21に供給し続けることができる。その結果、船舶、洋上構造物、水中構造物などにも搭載できるようになる。   In particular, the liquid D can be evenly distributed to the tray 15 by the configuration of the liquid distributor 10, and the liquid D can be dropped onto the heat transfer tube 21. Further, the liquid D can be distributed over a wide horizontal plane. Further, even when the heat transfer tube 21 is inclined 45 degrees in the longitudinal direction, the liquid D can be continuously supplied to the heat transfer tube 21. As a result, it can be mounted on ships, offshore structures, underwater structures and the like.

また、上凹部を有するガイドプレート22A、22B、22Cの配置により、伝熱管21の管軸に垂直な面内で予め設定した所定の角度範囲内において傾斜した状態になっても、上側のそれぞれの伝熱管21の外表面を流下した液体Dが、上側のそれぞれの伝熱管21に1対1対応に対応する下側の伝熱管21に伝わるので、確実に液体Dを下の次の列の伝熱管21の頂上に滴下することができる。   In addition, the arrangement of the guide plates 22A, 22B, and 22C having the upper recesses allows each of the upper plates to be tilted within a predetermined angle range set in advance in a plane perpendicular to the tube axis of the heat transfer tube 21. Since the liquid D flowing down the outer surface of the heat transfer tube 21 is transferred to the lower heat transfer tube 21 corresponding to the upper heat transfer tube 21 in a one-to-one correspondence, the liquid D is reliably transferred to the lower row. It can be dropped on the top of the heat tube 21.

また、伝熱管群の配置において、伝熱管の横本数と比べて多くの上下本数を配置しても管軸に垂直な面内での傾斜による性能低下を回避できるため、設置に必要な敷面積を減らせる効果があり、またそのような伝熱管群の配置により液体分配装置10において横方向の分配を簡略化できる効果がある。   In addition, in the arrangement of heat transfer tube groups, even if a large number of upper and lower tubes are arranged compared to the horizontal number of heat transfer tubes, it is possible to avoid performance degradation due to inclination in a plane perpendicular to the tube axis, so the floor area required for installation In addition, the arrangement of the heat transfer tube groups has an effect of simplifying the horizontal distribution in the liquid distribution apparatus 10.

また、分配タンク11の伝熱管21の長手方向の中央付近に配置することにより、第1分配流路13と第2分配流路14A、14Bに下り勾配を設けた場合に、下り勾配の長さを最も短くできるので、装置全体として高さを低くすることができる。更に、排出装置12を同一形状のスタブパイプで形成する構成により、排出の際の流体抵抗が同じになるので、各スタブパイプの出口から排出される液体Dの量を均一にすることが容易にできる。   Further, when the first distribution channel 13 and the second distribution channels 14A and 14B are provided with a downward gradient by being arranged near the center in the longitudinal direction of the heat transfer tube 21 of the distribution tank 11, the length of the downward gradient is provided. Therefore, the overall height of the apparatus can be reduced. Further, the structure in which the discharge device 12 is formed of stub pipes having the same shape makes the fluid resistance during discharge the same, so it is easy to make the amount of liquid D discharged from the outlet of each stub pipe uniform. it can.

そして、本発明に係る実施の形態の吸収式冷凍システム30は、上記の流下液膜式熱交換器20を用いて構成されるので、上記の流下液膜式熱交換器20と同様な効果を奏することができる。   And since the absorption refrigeration system 30 of embodiment which concerns on this invention is comprised using said falling liquid film type heat exchanger 20, the effect similar to said falling liquid film type heat exchanger 20 is obtained. Can play.

また、本発明に係る実施の形態の船舶は、上記の流下液膜式熱交換器20、又は、上記の吸収式冷凍システム10を、その伝熱管分布エリアの長手方向、または正方形のエリアの場合はこの正方形の一辺の方向と、船長方向(船体の前後方向、ロール軸方向)を一致させて搭載して構成される。この構成によれば、上記の流下液膜式熱交換器と同様な効果を奏することができる。   Further, the ship according to the embodiment of the present invention has the falling liquid film heat exchanger 20 or the absorption refrigeration system 10 in the longitudinal direction of the heat transfer tube distribution area or in a square area. Is configured so that the direction of one side of the square is aligned with the ship length direction (front and rear direction of the hull, roll axis direction). According to this configuration, the same effects as those of the falling liquid film heat exchanger can be obtained.

更に、本発明に係る実施の形態の洋上構造物、水中構造物は、上記の流下液膜式熱交換器20、又は、上記の吸収式冷凍システム10を搭載して構成されるので、上記の流下液膜式熱交換器と同様な効果を奏することができる。なお、これらの洋上構造物、水中構造物が略船舶形状をしている場合には、その伝熱管分布エリアの長手方向、または正方形のエリアの場合はこの正方形の一辺の方向と、船長方向を一致させて搭載することが好ましい。   Furthermore, since the offshore structure and the underwater structure of the embodiment according to the present invention are configured by mounting the falling liquid film heat exchanger 20 or the absorption refrigeration system 10 described above, An effect similar to that of the falling liquid film heat exchanger can be obtained. In addition, when these offshore structures and underwater structures are substantially ship-shaped, the longitudinal direction of the heat transfer tube distribution area, or in the case of a square area, the direction of one side of the square and the ship length direction It is preferable to mount them in the same manner.

本発明の流下液膜式熱交換器、吸収式冷凍機システム、及び船舶、洋上構造物、水中構造物によれば、これらの船舶等の傾斜や揺動があった場合であっても、流下液膜式熱交換器において、液体分配装置により冷媒や吸収液等の液体を均等に分配して、伝熱管の頂上に滴下して、上の列に位置する伝熱管から滴下した液体を確実に下の列に位置する伝熱管の表面に落下させることができて、熱交換性能の低下を回避できるので、流下液膜式熱交換器の全てに利用でき、また、流下液膜式熱交換器を用いた吸収器、蒸発器、蒸留器、濃縮装置、吸収式冷凍システムなどに広く利用でき、また、幅広く、船舶、洋上構造物、水中構造物に利用できる。   According to the falling film heat exchanger, absorption refrigeration system, ship, offshore structure, and underwater structure of the present invention, even if these ships or the like are inclined or swung, In a liquid film heat exchanger, liquid such as refrigerant and absorption liquid is evenly distributed by a liquid distributor and dropped onto the top of the heat transfer tube to ensure that the liquid dropped from the heat transfer tube located in the upper row Since it can be dropped on the surface of the heat transfer tube located in the lower row and the deterioration of heat exchange performance can be avoided, it can be used for all falling liquid film type heat exchangers, and falling liquid film type heat exchangers It can be widely used in absorbers, evaporators, distillers, concentrators, absorption refrigeration systems, etc., and widely used in ships, offshore structures and underwater structures.

10 液体分配装置
11 分配タンク
12 排出装置
13 第1分配流路
14A、14B 第2分配流路
14a 仕切り板
14b 分配孔
15 トレイ
20 流下液膜式熱交換器
20A 蒸発器
20B 吸収器
21 伝熱管
22A、22B、22C、22D ガイドプレート
22a 凹部(谷部)
22b 流下孔
22c 突起(爪部、舌部)
22d 切れ目
22e 稜線
22g グレーチング
22ga フラットバー
22gb 棒材
23、24 チューブプレート
25 仕切り板
26、26A、26B 底部
27A、27B 液溜め
28 波返し
29 冷媒・吸収液分離ルーバー
30 吸収式冷凍システム
D、Da、Db 液体(液滴)
DESCRIPTION OF SYMBOLS 10 Liquid distribution apparatus 11 Distribution tank 12 Discharge apparatus 13 1st distribution flow path 14A, 14B 2nd distribution flow path 14a Partition plate 14b Distribution hole 15 Tray 20 Falling liquid film type heat exchanger 20A Evaporator 20B Absorber 21 Heat transfer pipe 22A , 22B, 22C, 22D Guide plate 22a Concavity (valley)
22b Downflow hole 22c Protrusion (claw, tongue)
22d Cut line 22e Ridge line 22g Grating 22ga Flat bar 22gb Bar 23, 24 Tube plate 25 Partition plate 26, 26A, 26B Bottom 27A, 27B Reservoir 28 Wave return 29 Refrigerant / absorbing liquid separating louver 30 Absorption refrigeration system D, Da, Db liquid (droplet)

Claims (12)

流下液膜式熱交換器において、上から見て広いエリアに分布する伝熱管の外表面に液体を分配する液体分配装置を、前記液体を受けて一時的に貯蔵する分配タンクと、該分配タンクから前記液体を排出するための複数の排出装置と、前記排出装置から排出される前記液体を受ける第1分配流路を備えて構成し、前記液体を前記第1分配流路が受け持つ領域に導き、前記液体を伝熱管に滴下することを特徴とする流下液膜式熱交換器。   In a falling liquid film type heat exchanger, a distribution tank for distributing liquid to the outer surface of a heat transfer tube distributed over a wide area as viewed from above, a distribution tank for receiving and temporarily storing the liquid, and the distribution tank And a plurality of discharge devices for discharging the liquid from the discharge device, and a first distribution channel for receiving the liquid discharged from the discharge device, and guiding the liquid to a region that the first distribution channel is responsible for. The falling liquid film heat exchanger is characterized in that the liquid is dropped onto a heat transfer tube. 前記第1分配流路のうち少なくとも主要部分を前記伝熱管の分布するエリアの上から見て長手方向に、または正方形のエリアの場合は該正方形の一辺の方向に配置するとともに、前記分布エリアの長手方向または前記正方形の一辺の方向をいくつかに分けた区画を前記第1分配流路が受け持つ領域とすることを特徴とする請求項1に記載の流下液膜式熱交換器。   In the first distribution flow path, at least a main part is arranged in the longitudinal direction when viewed from above the area where the heat transfer tubes are distributed, or in the case of a square area, in the direction of one side of the square, 2. The falling film heat exchanger according to claim 1, wherein a section obtained by dividing the longitudinal direction or the direction of one side of the square into several parts is an area that the first distribution flow path takes. 前記第1分配流路の端部から排出される前記液体を受けるトレイか、または上から見たときに前記第1分配流路の主要部分に対して交差する第2分配流路を備えて構成するとともに、前記トレイまたは前記第2分配流路に分配孔を設けて、該分配孔から前記液体を前記第1分配流路が受け持つ領域内で分配し、前記液体を前記伝熱管に滴下することを特徴とする請求項1または2に記載の流下液膜式熱交換器。   A tray that receives the liquid discharged from the end of the first distribution flow path, or a second distribution flow path that intersects with a main portion of the first distribution flow path when viewed from above. In addition, a distribution hole is provided in the tray or the second distribution flow path, the liquid is distributed from the distribution hole in an area that the first distribution flow path takes, and the liquid is dropped onto the heat transfer tube. The falling film heat exchanger according to claim 1 or 2, wherein 前記第1分配流路に先端側が下方となる5度以上且つ45度以下の下り勾配を持たせて形成したことを特徴とする請求項1〜3のいずれか1項に記載の流下液膜式熱交換器。   The falling liquid film type according to any one of claims 1 to 3, wherein the first distribution channel is formed to have a downward gradient of 5 degrees or more and 45 degrees or less with a tip side downward. Heat exchanger. 前記分配タンクを前記伝熱管の長手方向の中央付近に配置したことを特徴とする請求項1〜4のいずれか1項に記載の流下液膜式熱交換器。   The falling liquid film heat exchanger according to any one of claims 1 to 4, wherein the distribution tank is disposed near a center in a longitudinal direction of the heat transfer tube. 前記分布エリアの短手方向、または正方形のエリアの場合は他辺の方向も複数に分けた区画を前記第1分配流路が受け持つ領域とすることを特徴とする請求項1〜5のいずれか1項に記載の流下液膜式熱交換器。   The short direction of the distribution area, or, in the case of a square area, a region divided into a plurality of directions on the other side is defined as a region which the first distribution flow path takes. 2. A falling film heat exchanger according to item 1. 前記排出装置を同一形状のスタブパイプで形成したことを特徴とする請求項1〜6のいずれか1項に記載の流下液膜式熱交換器。   The falling film heat exchanger according to any one of claims 1 to 6, wherein the discharge device is formed of a stub pipe having the same shape. 略水平に配置する伝熱管を備えた流下液膜式熱交換器において、上下方向に間隔を有する列をなして複数の前記伝熱管を配置し、水平方向に並んだ前記伝熱管の列と、その下の水平方向に並んだ前記伝熱管の列との間に、下側のそれぞれの前記伝熱管の頂上部分の近傍に凹部の最下位部分が配置されるように、前記凹部を有するガイドプレートを配置するとともに、該ガイドプレートの前記凹部の最下位部分に前記伝熱管の頂上に液滴を流下するための流下孔を設けて、前記伝熱管の管軸に垂直な面内で予め設定した所定の角度範囲内において傾斜した状態になっても、上側のそれぞれの前記伝熱管の外表面を流下した液体が、上側のそれぞれの伝熱管に1対1対応に対応する下側の前記伝熱管に伝わるように構成したことを特徴とする請求項1〜7のいずれか1項に記載の流下液膜式熱交換器。   In the falling liquid film type heat exchanger provided with the heat transfer tubes arranged substantially horizontally, a plurality of the heat transfer tubes are arranged in rows arranged in the vertical direction, and the rows of the heat transfer tubes arranged in the horizontal direction, A guide plate having the recesses such that a lowermost portion of the recesses is disposed in the vicinity of the top portion of each lower heat transfer tube between the row of the heat transfer tubes arranged in the horizontal direction below. In addition, a flow-down hole is provided in the lowest part of the concave portion of the guide plate for flowing a liquid droplet on the top of the heat transfer tube, and is set in advance in a plane perpendicular to the tube axis of the heat transfer tube. The lower heat transfer tubes corresponding to the respective upper heat transfer tubes in a one-to-one correspondence with the liquid that has flowed down the outer surfaces of the upper heat transfer tubes even when they are inclined within a predetermined angle range. The claim is characterized in that it is communicated to Falling film heat exchanger according to any one of 1 to 7. 請求項1〜8のいずれか1項に記載の流下液膜式熱交換器を用いることを特徴とする吸収式冷凍システム。   An absorption refrigeration system using the falling film heat exchanger according to any one of claims 1 to 8. 請求項1〜8のいずれか1項に記載の流下液膜式熱交換器、又は、請求項9に記載の吸収式冷凍システムを搭載することを特徴とする船舶。   A ship equipped with the falling film type heat exchanger according to any one of claims 1 to 8, or the absorption refrigeration system according to claim 9. 請求項1〜8のいずれか1項に記載の流下液膜式熱交換器、又は、請求項9に記載の吸収式冷凍システムを搭載することを特徴とする洋上構造物。   An offshore structure equipped with the falling film heat exchanger according to any one of claims 1 to 8, or the absorption refrigeration system according to claim 9. 請求項1〜7のいずれか1項に記載の流下液膜式熱交換器、又は、請求項9に記載の吸収式冷凍システムを搭載することを特徴とする水中構造物。   An underwater structure equipped with the falling liquid film heat exchanger according to any one of claims 1 to 7, or the absorption refrigeration system according to claim 9.
JP2011197227A 2011-09-09 2011-09-09 Falling film type heat exchanger, absorption refrigeration system, ship, offshore structure and underwater structure Withdrawn JP2013057484A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011197227A JP2013057484A (en) 2011-09-09 2011-09-09 Falling film type heat exchanger, absorption refrigeration system, ship, offshore structure and underwater structure
PCT/JP2012/070803 WO2013035508A1 (en) 2011-09-09 2012-08-16 Falling liquid film heat exchanger, absorption refrigeration system, ship, offshore structure, and underwater structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197227A JP2013057484A (en) 2011-09-09 2011-09-09 Falling film type heat exchanger, absorption refrigeration system, ship, offshore structure and underwater structure

Publications (1)

Publication Number Publication Date
JP2013057484A true JP2013057484A (en) 2013-03-28

Family

ID=47831958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197227A Withdrawn JP2013057484A (en) 2011-09-09 2011-09-09 Falling film type heat exchanger, absorption refrigeration system, ship, offshore structure and underwater structure

Country Status (2)

Country Link
JP (1) JP2013057484A (en)
WO (1) WO2013035508A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822409A (en) * 2014-01-22 2014-05-28 浙江大学 Falling film type heat exchanger with tubes in spiral arrangement
KR101556199B1 (en) 2013-07-19 2015-09-30 삼성중공업 주식회사 Apparatus for liquefied gas vaporization
WO2017010844A1 (en) * 2015-07-15 2017-01-19 지에스건설 주식회사 Liquid distributor for column
EP3309474A1 (en) * 2016-10-13 2018-04-18 Gadlab Engineering Oy Arrangement for absorption refrigeration unit and absorption refrigeration system
FR3097137A1 (en) * 2019-06-17 2020-12-18 Naval Energies Evaporator of a working fluid for an ETM plant, including a redistribution system
JP2021536559A (en) * 2018-08-14 2021-12-27 ヨーク (ウーシー) エアー・コンディショニング・アンド・リフリジェレーション・カンパニー,リミテッド Flowing liquid film type evaporator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3038038B1 (en) 2015-06-24 2017-07-21 Commissariat Energie Atomique DEVICE FOR DISPENSING FILM FALLING ON A PLATE EXCHANGER COMPRISING FIRST AND SECOND DISTRIBUTION STAGES
CN107091545A (en) * 2016-02-18 2017-08-25 约克(无锡)空调冷冻设备有限公司 A kind of falling film evaporator suitable for low pressure refrigerant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH658198A5 (en) * 1983-01-04 1986-10-31 Sulzer Ag LIQUID DISTRIBUTOR IN A SUBSTANCE AND HEAT EXCHANGE COLUMN.
US6253571B1 (en) * 1997-03-17 2001-07-03 Hitachi, Ltd. Liquid distributor, falling film heat exchanger and absorption refrigeration
JPH11108501A (en) * 1997-10-08 1999-04-23 Tokyo Gas Co Ltd Evaporator for absorption-type refrigerating machine
JP2000179989A (en) * 1998-12-11 2000-06-30 Hitachi Ltd Sprinkler of absorption water cooler/heater
JP4185717B2 (en) * 2002-07-02 2008-11-26 昭和電工株式会社 Air temperature liquefied gas vaporizer
WO2009089503A2 (en) * 2008-01-11 2009-07-16 Johnson Controls Technology Company Vapor compression system
JP2011027296A (en) * 2009-07-23 2011-02-10 Hitachi Appliances Inc Liquid distributor, shell-type heat exchanger using this, and absorption refrigerator using these

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101556199B1 (en) 2013-07-19 2015-09-30 삼성중공업 주식회사 Apparatus for liquefied gas vaporization
CN103822409A (en) * 2014-01-22 2014-05-28 浙江大学 Falling film type heat exchanger with tubes in spiral arrangement
WO2017010844A1 (en) * 2015-07-15 2017-01-19 지에스건설 주식회사 Liquid distributor for column
KR20170008985A (en) * 2015-07-15 2017-01-25 지에스건설 주식회사 Liquid distributor for column
KR101711101B1 (en) 2015-07-15 2017-03-13 지에스건설 주식회사 Liquid distributor for column
EP3309474A1 (en) * 2016-10-13 2018-04-18 Gadlab Engineering Oy Arrangement for absorption refrigeration unit and absorption refrigeration system
JP2021536559A (en) * 2018-08-14 2021-12-27 ヨーク (ウーシー) エアー・コンディショニング・アンド・リフリジェレーション・カンパニー,リミテッド Flowing liquid film type evaporator
FR3097137A1 (en) * 2019-06-17 2020-12-18 Naval Energies Evaporator of a working fluid for an ETM plant, including a redistribution system
WO2020254315A1 (en) * 2019-06-17 2020-12-24 Naval Energies Working fluid evaporator for an otec plant, comprising in particular a redistribution system

Also Published As

Publication number Publication date
WO2013035508A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5607006B2 (en) Falling liquid film heat exchanger, absorption chiller system, ship, offshore structure, underwater structure
JP2013057484A (en) Falling film type heat exchanger, absorption refrigeration system, ship, offshore structure and underwater structure
EP1870647B1 (en) Flooded evaporator
JP5850099B2 (en) Flowing film evaporator
CN104303000A (en) Heat exchanger
CN108225095B (en) Cooling tower water distribution system
JP2016014495A (en) Falling film evaporator
JP2014020755A (en) Downward flow liquid film type evaporator
JP2014088918A (en) Open rack type vaporization device
CN112283983B (en) Falling film evaporator and air conditioning system
JP2003185293A (en) High-temperature regenerator and absorption type water heater/chiller
US20220178595A1 (en) Liquid refrigerant sprayer and falling liquid film type evaporator
JP4879125B2 (en) Absorption refrigerator
RU2588333C2 (en) Heat exchanger with falling film absorption cooling system, vessel, marine structure and underwater offshore structure
US20120133063A1 (en) Jet stream generating method and apparatus
JP2014020754A (en) Downward flow liquid film type evaporator
CN113124511A (en) Liquid distributor, heat exchanger and air conditioner water chilling unit
EP3922937B1 (en) Vaporization device
JP5848977B2 (en) Absorption refrigerator
JP3378785B2 (en) Absorption chiller absorber
JP2008232572A (en) Absorption refrigerating machine
JP2021178302A (en) Gas-liquid contact device
CN113350815A (en) Liquid distributor for distillation column
JP2008075885A (en) Evaporator
CN114396743A (en) Liquid distributor of falling film heat exchanger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131213

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202