JP2013057098A - Plating current density distribution measurement device and plating current density distribution measurement method - Google Patents

Plating current density distribution measurement device and plating current density distribution measurement method Download PDF

Info

Publication number
JP2013057098A
JP2013057098A JP2011195666A JP2011195666A JP2013057098A JP 2013057098 A JP2013057098 A JP 2013057098A JP 2011195666 A JP2011195666 A JP 2011195666A JP 2011195666 A JP2011195666 A JP 2011195666A JP 2013057098 A JP2013057098 A JP 2013057098A
Authority
JP
Japan
Prior art keywords
plating
plated
measurement
current
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011195666A
Other languages
Japanese (ja)
Other versions
JP5124756B1 (en
Inventor
Yoshiharu Kikuchi
義治 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuken Industry Co Ltd
Yuken Kogyo Co Ltd
Original Assignee
Yuken Industry Co Ltd
Yuken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuken Industry Co Ltd, Yuken Kogyo Co Ltd filed Critical Yuken Industry Co Ltd
Priority to JP2011195666A priority Critical patent/JP5124756B1/en
Priority to PCT/JP2012/072727 priority patent/WO2013035780A1/en
Application granted granted Critical
Publication of JP5124756B1 publication Critical patent/JP5124756B1/en
Publication of JP2013057098A publication Critical patent/JP2013057098A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a unit that achieves accurate measurement of in-plane distribution of a plating current density in a cathode plate.SOLUTION: The plating current density distribution measurement device includes: a plating bath; an anode and a member to be plated that are at least partially disposed under the surface of a plating solution contained in the plating bath; a first current measuring body comprising a first insulator and a first measurement electrode formed on one surface of the first insulator and disposed so that the first insulator faces a part of the surface to be plated of the member to be plated; a plating power supply; a first wiring for electrically connecting an anode terminal of the plating power supply to the anode; a second wiring for electrically connecting a cathode terminal of the plating power supply to the member to be plated; a third wiring for electrically connecting the cathode terminal of the plating power supply to the first measurement electrode so that the first measurement electrode and the member to be plated form a parallel relationship; and a first current measurement device disposed in the third wiring.

Description

本発明は、めっき電流密度分布測定装置およびめっき電流密度分布の測定方法に関する。
本発明において、めっき電流密度分布とは、めっき液中にあるアノードと被めっき部材との間に電圧を印加したときに、被めっき部材におけるめっきが施される面(以下、「被めっき面」ともいう。)におけるめっき電流密度(単位:A/dm)の、被めっき面内での分布を意味する。
The present invention relates to a plating current density distribution measuring apparatus and a plating current density distribution measuring method.
In the present invention, the plating current density distribution is a surface to be plated on the member to be plated when a voltage is applied between the anode and the member to be plated in the plating solution (hereinafter referred to as “surface to be plated”). Also means the distribution of the plating current density (unit: A / dm 2 ) in the surface to be plated.

新たな組成のめっきを行ったり、めっきが施される被めっき部材の形状が新たな形状であったりする場合には、そのめっきに求められる特性(具体的には、めっき厚、めっき外観、密着性、耐食性などが例示される。)を適切な範囲内に制御するために、めっき電流密度、攪拌速度、めっき液の温度などのめっき条件を最適化する必要がある。   When plating with a new composition or the shape of the member to be plated is a new shape, the characteristics required for the plating (specifically, plating thickness, plating appearance, adhesion) In order to control the properties within a suitable range, it is necessary to optimize plating conditions such as plating current density, stirring speed and plating solution temperature.

そのような最適なめっき条件を設定するための簡易的な試験として、ハルセル試験がよく知られている。ハルセル試験を行うための装置(ハルセル試験装置)では、アノードをなす陽極板と、この陽極板に対して斜めに傾いて配置される陰極板(被めっき部材に相当する。)との間に電圧を印加して、陰極板に析出しためっきの状態を評価して適切なめっき条件を設定する。   As a simple test for setting such optimum plating conditions, a hull cell test is well known. In an apparatus for performing a hull cell test (hull cell test apparatus), a voltage is applied between an anode plate forming an anode and a cathode plate (corresponding to a member to be plated) disposed obliquely with respect to the anode plate. Is applied to evaluate the state of plating deposited on the cathode plate and set appropriate plating conditions.

ここで、陽極板と陰極板とは斜めに傾いて配置されているため、陰極板の陽極板に対向する面の各位置と陽極板との相対的な位置関係は、陰極板のめっき液の液面に平行な方向に沿って変化する。また、めっき液を攪拌しながらめっきを行う場合には、めっき槽の底面が台形となっているため、陰極板の陽極板に対向する面の各位置におけるめっき液の液流の程度は異なっていることが多い。   Here, since the anode plate and the cathode plate are disposed obliquely, the relative positional relationship between each position of the surface of the cathode plate facing the anode plate and the anode plate is determined by the plating solution of the cathode plate. It changes along the direction parallel to the liquid level. In addition, when performing plating while stirring the plating solution, since the bottom surface of the plating tank is trapezoidal, the degree of the plating solution flow at each position on the surface of the cathode plate facing the anode plate is different. There are many.

このため、陽極板と陰極板との間に電圧を印加すると、陰極板の陽極板に対向する面の各位置におけるめっき電流密度は異なり、陰極板の各位置で異なるめっき条件で析出しためっきが得られる。そこで、得られた陰極板上のめっきの各位置での析出状態(めっき厚、外観など)を評価することによって、好適なめっき条件を見出すことができる。   Therefore, when a voltage is applied between the anode plate and the cathode plate, the plating current density at each position on the surface of the cathode plate facing the anode plate is different, and plating deposited under different plating conditions at each position on the cathode plate can get. Thus, by evaluating the deposition state (plating thickness, appearance, etc.) at each position of plating on the obtained cathode plate, suitable plating conditions can be found.

このハルセル試験装置は小型で簡易的なものであるから、実際の工程におけるめっき条件を再現するために、様々な改良が施されている。
例えば、特許文献1では、フープめっきや電線へのめっきなどにおいて求められる高速電気めっきを再現できるように、陰極板に代えて棒状の陰極部材を用い、その中心軸周りに回転可能とする機構を備えるめっき試験装置が開示されている。
Since this Hull cell test apparatus is small and simple, various improvements have been made in order to reproduce the plating conditions in the actual process.
For example, in Patent Document 1, a rod-shaped cathode member is used in place of the cathode plate so as to reproduce high-speed electroplating required in hoop plating, plating on electric wires, and the like, and a mechanism that can rotate around the central axis is used. A plating test apparatus is disclosed.

特許3185191号公報Japanese Patent No. 3185191

前述のハルセル試験装置やその改良装置では、陰極板におけるめっき電流密度の分布は、めっき電流密度が直接的に測定されるのではなく、めっき電流密度の変動に基づき変化するめっきの析出状態を反映して変化するめっき厚などのめっき特性を代用特性として測定することにより、評価されていた。   In the above-mentioned Hull Cell test equipment and its improved equipment, the plating current density distribution on the cathode plate reflects the plating deposition state that changes based on fluctuations in the plating current density, instead of directly measuring the plating current density. It has been evaluated by measuring plating characteristics such as plating thickness, which change as a substitute characteristic.

しかしながら、このような評価方法では、陰極板上の被めっき面の異なる位置に析出しためっきについて、代用特性として用いた評価項目が変化していない、またはその変化量が小さい場合には、それらの位置においてめっき電流密度は実質的に同一であったと認識されてしまうという問題点を有する。すなわち、評価しためっき特性の変化としては表れないめっき電流密度の変動が評価しなかっためっき特性の変化をもたらしている場合があっても、これを認識することができない。この評価しなかっためっき特性が試験段階では認識不可能なめっき特性、例えば長期的な耐食性などであるときには、そのめっき特性が管理されていないめっきを備える製品が量産され、後日大量の不良品を市場から回収する必要に迫られる可能性がある。
このため、陰極板におけるめっき電流密度の分布を直接的に評価する手段が望まれていた。
However, in such an evaluation method, if the evaluation items used as substitute characteristics have not changed or the amount of change is small for plating deposited at different positions on the surface to be plated on the cathode plate, There is a problem that it is recognized that the plating current density is substantially the same at the position. That is, even if a variation in plating current density that does not appear as a change in the evaluated plating characteristics may cause a change in the plating characteristics that was not evaluated, this cannot be recognized. When the plating characteristics not evaluated are plating characteristics that cannot be recognized at the test stage, such as long-term corrosion resistance, products with plating whose plating characteristics are not controlled will be mass-produced, and a large number of defective products will be produced at a later date. May need to be recovered from the market.
For this reason, a means for directly evaluating the distribution of the plating current density in the cathode plate has been desired.

本発明は、このような技術背景を鑑み、陰極板におけるめっき電流密度の面内分布の直接的な測定を実現する測定装置および測定方法を提供することを課題とする。   In view of such a technical background, an object of the present invention is to provide a measuring apparatus and a measuring method that can directly measure the in-plane distribution of plating current density in a cathode plate.

上記課題を解決するために提供される本発明は次のとおりである。
(1)めっき槽;前記めっき槽に収容されるめっき液の液面よりも下側に少なくとも一部が配置される、アノードおよび被めっき部材;第一の絶縁体およびその一方の面上に形成された第一の測定用電極を備え、前記被めっき部材のめっきが施される面の一部に当該第一の絶縁体が対向するように配置される第一の電流測定体;めっき電源;前記めっき電源の陽極用端子と前記アノードとを電気的に接続する第一の配線;前記めっき電源の陰極用端子と前記被めっき部材とを電気的に接続する第二の配線;前記めっき電源の陰極用端子と前記第一の測定用電極とを、当該第一の測定用電極と前記被めっき部材とが並列関係をなすように電気的に接続する第三の配線;ならびに第三の配線上に配置される第一の電流測定手段を備えることを特徴とするめっき電流密度分布測定装置。
The present invention provided to solve the above problems is as follows.
(1) Plating tank; anode and member to be plated at least partly disposed below the surface of the plating solution contained in the plating tank; formed on the first insulator and one surface thereof A first current measuring body provided with the first electrode for measurement and disposed so that the first insulator faces a part of a surface of the member to be plated that is plated; A first wiring that electrically connects the anode terminal of the plating power source and the anode; a second wiring that electrically connects the cathode terminal of the plating power source and the member to be plated; A third wiring for electrically connecting the cathode terminal and the first measurement electrode so that the first measurement electrode and the member to be plated are in a parallel relationship; and on the third wiring Comprising first current measuring means arranged on Plating current density distribution measuring apparatus.

(2)第二の絶縁体およびその一方の面上に形成された第二の測定用電極を備え、当該第二の測定用電極と前記第一の測定用電極とを非接触としつつ、前記被めっき部材のめっきが施される面に当該第二の絶縁体が対向するように配置される第二の測定用電極;前記めっき電源の陰極用端子と前記第二の測定用電極とを、当該第二の測定用電極、前記第一の測定用電極および前記被めっき部材が並列関係をなすように電気的に接続する第四の配線;ならびに第四の配線上に配置される第二の電流測定手段をさらに備える上記(1)記載の装置。   (2) a second insulator and a second measurement electrode formed on one surface thereof, wherein the second measurement electrode and the first measurement electrode are not in contact with each other; A second measurement electrode disposed so that the second insulator faces the surface of the member to be plated; the cathode terminal of the plating power source and the second measurement electrode; A fourth wiring electrically connecting the second measuring electrode, the first measuring electrode, and the member to be plated so as to form a parallel relationship; and a second wiring disposed on the fourth wiring. The apparatus according to (1), further comprising a current measuring unit.

(3)前記めっきが施される面上の複数の位置に前記第一の電流測定体が配置されることを可能とする配置調整手段をさらに備える上記(1)または(2)に記載の装置。   (3) The apparatus according to (1) or (2), further including an arrangement adjusting unit that enables the first current measurement body to be arranged at a plurality of positions on the surface to be plated. .

(4)めっき液中にあるアノードと被めっき部材との間に電圧を印加したときに、当該被めっき部材のめっきが施される面におけるめっき電流密度分布を測定する方法であって、前記めっきが施される面の一部に絶縁物を介して測定用電極を配置し、前記アノードとめっき電源の陽極用端子とを電気的に接続し、前記被めっき部材および前記測定用電極をこれらが並列関係を有するように前記めっき電源の陰極用端子に電気的に接続し、前記めっき電源から電圧を印加して、前記測定用電極に流れるめっき電流を測定し、当該測定されためっき電流に基づいて、前記めっきが施される面における前記測定用電極が配置された部分のめっき電流密度に係る情報を得ることを特徴とするめっき電流密度分布の測定方法。   (4) A method for measuring a plating current density distribution on a surface of a member to be plated when a voltage is applied between the anode in the plating solution and the member to be plated, the plating A measuring electrode is disposed on a part of the surface to which the plating is applied via an insulator, the anode and the anode terminal of the plating power source are electrically connected, and the member to be plated and the measuring electrode are Electrically connected to the cathode terminal of the plating power source so as to have a parallel relationship, applying a voltage from the plating power source, measuring the plating current flowing through the measurement electrode, and based on the measured plating current A method for measuring a plating current density distribution, comprising obtaining information relating to a plating current density of a portion where the measurement electrode is disposed on a surface to be plated.

なお、「めっき電流密度に係る情報」は、めっき電流密度のみならず、測定された電流値をも含む。めっきが施される面における測定用電極が配置される部分の面積が一定であれば、電流値はめっき電流密度と同等に扱うことができる。   The “information relating to the plating current density” includes not only the plating current density but also the measured current value. If the area of the portion where the measurement electrode is disposed on the surface to be plated is constant, the current value can be handled equivalent to the plating current density.

(5)前記測定用電極を複数用意し、前記めっきが施される面の異なる部分に互い非接触として当該複数の測定用電極を配置し、当該複数の測定用電極に流れるめっき電流を個別に測定して、前記めっきが施される面の異なる部分のそれぞれにおけるめっき電流密度に係る情報を得る上記(4)記載の測定方法。   (5) A plurality of the measurement electrodes are prepared, the plurality of measurement electrodes are arranged in non-contact with each other on different portions of the surface to be plated, and the plating current flowing through the plurality of measurement electrodes is individually determined. The measurement method according to (4), wherein measurement is performed to obtain information on plating current density in each of different portions on the surface to be plated.

(6)前記測定用電極の前記めっきが施される面の配置を変化させることにより、一個の前記測定用電極を用いて、前記めっきが施される面上の複数の位置におけるめっき電流を測定して、当該複数の位置のそれぞれにおけるめっき電流密度に係る情報を得る上記(4)または(5)に記載の測定方法。   (6) Measure plating currents at a plurality of positions on the surface to be plated using one measurement electrode by changing the arrangement of the surface to be plated of the measurement electrode. And the measuring method as described in said (4) or (5) which obtains the information which concerns on the plating current density in each of the said some position.

上記の発明によれば、被めっき部材のめっきが施される面におけるめっき電流の面内分布が直接的に得られる。したがって、めっき電流密度などのめっき条件を従来よりも精密に設定することが実現される。   According to said invention, the in-plane distribution of the plating current in the surface where the plating of the member to be plated is performed is directly obtained. Accordingly, it is possible to set the plating conditions such as the plating current density more precisely than in the past.

本発明の第一の実施形態に係るめっき電流密度分布測定装置の構成を概念的に示す図である。It is a figure which shows notionally the structure of the plating current density distribution measuring apparatus which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係るめっき電流密度分布測定装置の構成を概念的に示す図である。It is a figure which shows notionally the structure of the plating current density distribution measuring apparatus which concerns on 2nd embodiment of this invention. 実施例1において測定されためっき電流の時間変動を示すグラフである。3 is a graph showing the temporal variation of the plating current measured in Example 1. 実施例2において使用された被めっき部材の形状を概念的に示す正面図(a)および正面図のA−A断面での断面図(b)である。It is sectional drawing (b) in the AA cross section of the front view (a) which shows the shape of the to-be-plated member used in Example 2, and a front view. 実施例2において使用された被めっき部材に付着させた電流測定体についての、第一の座繰り側の配置(a)および第二の座繰り側の配置(a)を概念的に示す図である。It is a figure which shows notionally the arrangement | positioning (a) of the 1st countersink side, and the arrangement | positioning (a) of the 2nd countersink side about the electric current measurement body made to adhere to the to-be-plated member used in Example 2. is there. 実施例1において測定されためっき電流の時間変動を示すグラフである。3 is a graph showing the temporal variation of the plating current measured in Example 1.

本発明の実施形態に係るめっき電流密度分布測定装置について以下に説明する。
図1は、本発明の第一の実施形態に係るめっき電流密度分布測定装置の構成を概念的に示す図である。
A plating current density distribution measuring apparatus according to an embodiment of the present invention will be described below.
FIG. 1 is a diagram conceptually showing the configuration of the plating current density distribution measuring apparatus according to the first embodiment of the present invention.

本実施形態に係るめっき電流密度分布測定装置100は、めっき槽1および使用時においてめっき槽1に収容されるめっき液の液面よりも下側に少なくとも一部が配置されるアノード2および被めっき部材3を備える。アノード2の材質は導電性を有している限り任意であり、その形状も任意である。被めっき部材3の材質も導電性を有している限り任意であり、その形状も任意である。アノード2と被めっき部材3との相対配置も任意である。図1ではアノード2と被めっき部材3とはその間隔も一定となるように対向して配置されているが、ハルセル試験装置のように、アノード2が被めっき部材3に対して斜めに傾いた状態で配置されてもよい。   The plating current density distribution measuring apparatus 100 according to this embodiment includes a plating tank 1 and an anode 2 that is at least partially disposed below the liquid level of a plating solution that is accommodated in the plating tank 1 when used and a plating target. A member 3 is provided. The material of the anode 2 is arbitrary as long as it has electroconductivity, and the shape is also arbitrary. The material of the member 3 to be plated is arbitrary as long as it has electrical conductivity, and its shape is also arbitrary. The relative arrangement of the anode 2 and the member to be plated 3 is also arbitrary. In FIG. 1, the anode 2 and the member to be plated 3 are arranged to face each other so that the distance between them is constant, but the anode 2 is inclined with respect to the member to be plated 3 as in the Hull cell test apparatus. It may be arranged in a state.

本実施形態に係るめっき電流密度分布測定装置100は、めっき電流を測定する部材として、第一の絶縁体5およびその一方の面上に形成された第一の測定用電極6を備える積層体からなる第一の電流測定体7を備える。そして、この第一の電流測定体7は、第一の絶縁体5が被めっき部材3のめっきが施される面(被めっき面)4に第一の絶縁体5が対向するように配置される。好ましい一態様では、第一の絶縁体5は直接的にまたは粘着手段などにより間接的に被めっき面4に付着される。第一の絶縁体5を被めっき面4に直接的に付着させる場合には、第一の絶縁体5が粘着剤からなっていることが好ましい。   The plating current density distribution measuring apparatus 100 according to this embodiment is a laminate including a first insulator 5 and a first measurement electrode 6 formed on one surface thereof as a member for measuring a plating current. The first current measuring body 7 is provided. And this 1st electric current measurement body 7 is arrange | positioned so that the 1st insulator 5 may oppose the surface (to-be-plated surface) 4 to which the 1st insulator 5 is plated of the to-be-plated member 3. FIG. The In a preferred embodiment, the first insulator 5 is attached to the surface to be plated 4 directly or indirectly by adhesive means or the like. When the first insulator 5 is directly attached to the surface 4 to be plated, the first insulator 5 is preferably made of an adhesive.

第一の絶縁体5の材質は絶縁性材料であれば限定されない。第一の測定用電極6の材質は導電性材料であれば限定されないが、被めっき面4を構成する材料と同一の材料からなることが好ましい。   The material of the first insulator 5 is not limited as long as it is an insulating material. The material of the first measuring electrode 6 is not limited as long as it is a conductive material, but it is preferably made of the same material as that constituting the surface 4 to be plated.

第一の電流測定体7の厚さは限定されないが、薄ければ薄いほど好ましい。過度に厚い場合には、その第一の電流測定体7の第一の絶縁体5が対向する部分の被めっき面4における電流密度と第一の電流測定体7の第一の測定用電極6におけるめっき電流密度との相違が顕著となり、第一の電流測定体7によるめっき電流の測定精度が低下する。   Although the thickness of the 1st electric current measurement body 7 is not limited, The thinner is so preferable. When it is excessively thick, the current density in the surface 4 to be plated and the first measuring electrode 6 of the first current measuring body 7 in the portion where the first insulator 5 of the first current measuring body 7 faces. The difference from the plating current density becomes remarkable, and the measurement accuracy of the plating current by the first current measuring body 7 is lowered.

第一の電流測定体7の被めっき面への投影面積も限定されないが、この投影面積がめっき電流密度分布のグリッドサイズとなるため、その面積での測定精度が確保される限り小さいことが好ましい。   The projected area of the first current measuring body 7 on the surface to be plated is not limited, but since this projected area is the grid size of the plating current density distribution, it is preferably as small as possible to ensure the measurement accuracy in that area. .

本実施形態に係るめっき電流密度分布測定装置100は、第一の電流測定体7と同様の構成で被めっき面4に配置される第二の電流測定体8をも備える。この第二の電流測定体8が備える第二の測定用電極は第一の測定用電極6と非接触とされる。これらの電極が接触してしまうと、アノードに対する互いの電位が同一となり、めっき電流密度分布を測定することができなくなってしまう。   The plating current density distribution measuring apparatus 100 according to the present embodiment also includes a second current measuring body 8 arranged on the plated surface 4 with the same configuration as the first current measuring body 7. The second measurement electrode provided in the second current measurement body 8 is not in contact with the first measurement electrode 6. When these electrodes come into contact with each other, the potential with respect to the anode becomes the same, and the plating current density distribution cannot be measured.

以上のめっき槽1内の配置を備えるめっき電流密度分布測定装置100は、めっき電源9を備える。このめっき電源は、正電圧を出力するための陽極用端子10と負電圧を出力するための陰極用端子11とを備え、少なくとも直流での電圧印加が可能とされる。その定格電流および定格電圧は任意であり、試験条件に応じて設定されるべきものである。   The plating current density distribution measuring apparatus 100 having the above arrangement in the plating tank 1 includes a plating power source 9. The plating power source includes an anode terminal 10 for outputting a positive voltage and a cathode terminal 11 for outputting a negative voltage, and voltage application at least in direct current is possible. The rated current and rated voltage are arbitrary and should be set according to the test conditions.

上記のめっき電源9の陽極用端子10は、導電体からなる第一の配線12によってアノード2と電気的に接続されている。一方、陰極用端子11は、導電体からなる第二の配線13によって被めっき部材3と電気的に接続されている。さらに、陰極用端子11は、導電体からなる第三の配線14によって、第一の電流測定体7が備える第一の測定用電極6と、被めっき部材3と第一の測定用電極6とが並列関係をなすように電気的に接続される。   The anode terminal 10 of the plating power source 9 is electrically connected to the anode 2 through a first wiring 12 made of a conductor. On the other hand, the cathode terminal 11 is electrically connected to the member to be plated 3 by a second wiring 13 made of a conductor. Furthermore, the cathode terminal 11 includes a first measurement electrode 6 provided in the first current measurement body 7, a member to be plated 3, and a first measurement electrode 6 by a third wiring 14 made of a conductor. Are electrically connected to form a parallel relationship.

かかる構成を備えることにより、被めっき面4における第一の絶縁体5に対向する部分に流れるべきめっき電流は、第一の測定用電極6および第三の配線14を通じて流れることになる。したがって、第三の配線14に配置される第一の電流測定手段15により、被めっき面4における第一の絶縁体5に対向する部分に流れるべきめっき電流を測定することが実現される。第一の電流測定体7の被めっき面4への投影面積は既知であるから、この測定されためっき電流を上記の投影面積で除することにより、被めっき面4における第一の絶縁体5に対向する部分におけるめっき電流密度を直接的に求めることができる。なお、上記の投影面積は既知であるから、第一の電流測定手段15により測定された電流値をめっき電流密度の代用値としてもよい。   With this configuration, the plating current that should flow to the portion of the surface to be plated 4 facing the first insulator 5 flows through the first measurement electrode 6 and the third wiring 14. Accordingly, it is possible to measure the plating current that should flow through the portion of the surface to be plated 4 facing the first insulator 5 by the first current measuring means 15 disposed on the third wiring 14. Since the projected area of the first current measuring body 7 on the plated surface 4 is known, the first insulator 5 on the plated surface 4 is obtained by dividing the measured plating current by the projected area. It is possible to directly determine the plating current density in the portion facing the surface. Since the projected area is known, the current value measured by the first current measuring means 15 may be used as a substitute value for the plating current density.

また、本実施形態に係るめっき電流密度分布測定装置100は、めっき電源9の陰極用端子11と第二の電流測定体8が備える第二の測定用電極とを、第二の測定用電極、第一の測定用電極6および被めっき部材3が並列関係をなすように電気的に接続する第四の配線16を備える。そして、第四の配線16上には第二の電流測定手段17が配置されており、この第二の電流測定手段17によって、被めっき面4における第二の電流測定体8が備える第二の絶縁体に対向する部分に流れるべきめっき電流を第一の電流測定体7とは独立に測定することが実現される。第二の電流測定体8の被めっき面4への投影面積も既知であるから、第二の電流測定手段17により測定しためっき電流から、被めっき面4における第二の絶縁体に対向する部分のめっき電流密度を直接的に求めることができる。なお、第一および第二の電流測定体7、8の被めっき面4への投影面積を同一にしておけば、第一および第二の電流測定手段15、17により測定された二つの電流値の比はそれぞれの電流測定体の絶縁体が対向する部分のめっき電流密度の比に等しくなる。   Moreover, the plating current density distribution measuring apparatus 100 according to the present embodiment includes a cathode terminal 11 of the plating power source 9 and a second measurement electrode provided in the second current measurement body 8 as a second measurement electrode, A fourth wiring 16 that electrically connects the first measuring electrode 6 and the member to be plated 3 so as to form a parallel relationship is provided. A second current measuring unit 17 is disposed on the fourth wiring 16, and the second current measuring unit 17 includes a second current measuring unit 8 on the surface to be plated 4. It is possible to measure the plating current that should flow in the portion facing the insulator independently of the first current measuring body 7. Since the projected area of the second current measuring body 8 onto the surface to be plated 4 is also known, the portion of the surface to be plated 4 facing the second insulator from the plating current measured by the second current measuring means 17 The plating current density can be obtained directly. If the projected areas of the first and second current measuring bodies 7 and 8 on the surface to be plated 4 are the same, the two current values measured by the first and second current measuring means 15 and 17 are used. Is equal to the ratio of the plating current density at the portion where the insulators of the respective current measuring bodies face each other.

第一の電流測定手段15および第二の電流測定手段17は電流計であってもよいし、シャント抵抗と電圧測定手段とからなっていてもよい。   The first current measuring means 15 and the second current measuring means 17 may be ammeters or may be composed of a shunt resistor and a voltage measuring means.

本実施形態に係るめっき電流密度分布測定装置100は上記のように2つの電流測定体を備えるが、電流測定体が1つであってもよいし、3個以上であってもよい。電流測定体が複数ある場合には、一度のめっきにより被めっき面4のめっき電流密度分布を測定することができるため、好ましい。   Although the plating current density distribution measuring apparatus 100 according to this embodiment includes two current measuring bodies as described above, there may be one current measuring body or three or more current measuring bodies. When there are a plurality of current measuring bodies, the plating current density distribution on the surface to be plated 4 can be measured by a single plating, which is preferable.

また、複数の電流測定体を用いて測定すれば、被めっき面4における異なる位置のめっき電流の時間変動を同時に計測することができる。従来技術に係る被めっき面の電流密度分布の評価手段(例えばハルセル試験)では、前述のように、析出しためっきにおける特性(膜厚、外観など)を測定することによりめっき電流密度分布を評価するため、得られるめっき電流密度分布に関する情報は限定的である。例えば、得られためっきの厚さや外観に基づいてめっき電流密度分布を評価する場合には、めっき初期におけるめっき電流密度の影響は、その後に析出するめっきによってほとんど消されてしまう。これに対し、上記のように被めっき面4上の複数の電流測定体を用いてめっき電流の時間変動を同時に計測すれば、被めっき面4上のある位置におけるめっき初期のめっき電流密度の変動を他の位置と対比可能に評価することができる。したがって、例えば、ある位置においてめっき初期にめっき電流密度が過度に高い状態を経由している場合には、その後に析出しためっきのめっき状態は適切であるためめっき厚や外観の観点からは他の位置と変化がないときでも、その位置に係るめっき条件でめっきすればめっきの密着性が低下する可能性があることなどを知ることができる。   Moreover, if it measures using a several electric current measurement body, the time fluctuation of the plating current of the different position in the to-be-plated surface 4 can be measured simultaneously. In the conventional means for evaluating the current density distribution on the surface to be plated (for example, the hull cell test), as described above, the plating current density distribution is evaluated by measuring the characteristics (film thickness, appearance, etc.) of the deposited plating. Therefore, the information regarding the plating current density distribution obtained is limited. For example, when the plating current density distribution is evaluated based on the thickness and appearance of the obtained plating, the influence of the plating current density at the initial stage of plating is almost eliminated by plating that is subsequently deposited. On the other hand, if the time variation of the plating current is simultaneously measured using a plurality of current measuring bodies on the surface 4 to be plated as described above, the variation in the plating current density at the initial stage of plating at a certain position on the surface 4 to be plated. Can be evaluated in a comparable manner with other positions. Therefore, for example, when a plating current density is excessively high at a certain position in the initial stage of plating, the plating state of the plating deposited after that is appropriate, so from the viewpoint of plating thickness and appearance, Even when there is no change in position, it is possible to know that there is a possibility that the adhesion of the plating may be lowered if plating is performed under the plating conditions related to the position.

続いて、本発明の第二の実施形態に係るめっき電流密度分布測定装置について説明する。
図2は、本発明の第二の実施形態に係るめっき電流密度分布測定装置の構成を概念的に示す図である。
Subsequently, a plating current density distribution measuring apparatus according to a second embodiment of the present invention will be described.
FIG. 2 is a diagram conceptually showing the configuration of the plating current density distribution measuring apparatus according to the second embodiment of the present invention.

本発明の第二の実施形態に係るめっき電流密度分布測定装置200の基本的な構成は本発明の第一の実施形態に係るめっき電流密度分布測定装置100と同一であるから、相違点を中心に説明する。   The basic configuration of the plating current density distribution measuring apparatus 200 according to the second embodiment of the present invention is the same as that of the plating current density distribution measuring apparatus 100 according to the first embodiment of the present invention. Explained.

本発明の第一の実施形態に係るめっき電流密度分布測定装置100は第一および第二の電流測定体7、8を備えるが、第二の実施形態に係るめっき電流密度分布測定装置200は第一の電流測定体7のみを備え第二の電流測定8を備えない。   Although the plating current density distribution measuring apparatus 100 according to the first embodiment of the present invention includes the first and second current measuring bodies 7 and 8, the plating current density distribution measuring apparatus 200 according to the second embodiment is the first. Only one current measurement body 7 is provided and the second current measurement 8 is not provided.

一方、第二の実施形態に係るめっき電流密度分布測定装置200は、第一の電流測定体7が被めっき面上の異なる位置に第一の電流測定体7が配置されることを可能とする配置調整手段20を備える。図2では、第一の電流測定体7がその先端に取り付けられたアームと、そのアームをめっき槽におけるめっき液の液面と平行な方向に移動させる駆動手段(モーターなど)とからなる配置調整手段20が例示的に示されている。配置調整手段20は、第一の電流測定体7が配置される位置を二次元的または三次元的に変動させることができることが好ましい。そのようにすることで被めっき面の任意の位置に第一の電流測定体7を配置することが実現される。   On the other hand, the plating current density distribution measuring apparatus 200 according to the second embodiment enables the first current measuring body 7 to be arranged at different positions on the surface to be plated. Arrangement adjusting means 20 is provided. In FIG. 2, the arrangement adjustment is made up of an arm having the first current measuring body 7 attached to the tip thereof, and driving means (such as a motor) for moving the arm in a direction parallel to the surface of the plating solution in the plating tank. Means 20 are shown by way of example. It is preferable that the arrangement adjusting means 20 can change the position where the first current measuring body 7 is arranged two-dimensionally or three-dimensionally. By doing so, it is possible to arrange the first current measurement body 7 at an arbitrary position on the surface to be plated.

第二の実施形態に係るめっき電流密度分布測定装置200が備える配置調整手段20を用いて第一の電流測定体7を被めっき面上で移動させ、各位置において第一の電流測定手段により電流を測定すれば、めっき電流密度分布測定装置200が備える第一の電流測定体7が一つだけであっても、被めっき面のめっき電流密度分布を測定することが実現される。   The first current measuring body 7 is moved on the surface to be plated using the arrangement adjusting means 20 provided in the plating current density distribution measuring apparatus 200 according to the second embodiment, and the current is measured by the first current measuring means at each position. Is measured, the plating current density distribution on the surface to be plated can be measured even if the plating current density distribution measuring apparatus 200 has only one first current measuring body 7.

第二の実施形態に係るめっき電流密度分布測定装置200では、第一の電流測定体7は被めっき面上に付着することなく、配置調整手段20によって保持されていることによって被めっき面に対する相対的な配置が固定されていることが好ましい。この場合においても、第一の電流測定体7における第一の測定用電極7は被めっき面との間に第一の絶縁体を有することとして、第一の測定用電極におけるめっき電流の全量が第三の配線14に流れ、第一の電流測定手段15により計測されるようにするべきである。   In the plating current density distribution measuring apparatus 200 according to the second embodiment, the first current measurement body 7 does not adhere to the surface to be plated and is held by the arrangement adjusting means 20 so that it is relative to the surface to be plated. It is preferable that the general arrangement is fixed. Also in this case, the first measuring electrode 7 in the first current measuring body 7 has the first insulator between the surface to be plated, and the total amount of plating current in the first measuring electrode is It should flow through the third wiring 14 and be measured by the first current measuring means 15.

配置調整手段20による第一の電流測定体7の被めっき面上の配置の変更は、めっき処理中(めっき電源による電圧印加が行われている間)にも可能とされることが好ましい。   It is preferable that the arrangement of the first current measuring body 7 on the surface to be plated can be changed by the arrangement adjusting means 20 during the plating process (while voltage is applied by the plating power source).

(実施例1)
(株)山本鍍金試験器製の水槽(B−55ハルセル(登録商標)並型水槽)を用い、70mm×65mm(厚さ2mm)の純亜鉛からなるアノード、および100mm×65mm(厚さ0.2mm)のりん脱酸銅C1220からなる被めっき部材を、いずれについても長辺の一方が水槽の底面に接するように水槽内に配置した。
Example 1
Using a water tank (B-55 Hull Cell (Registered Trademark) parallel type water tank) manufactured by Yamamoto Metal Testing Co., Ltd., an anode made of pure zinc of 70 mm × 65 mm (thickness 2 mm), and 100 mm × 65 mm (thickness 0. 2 mm) of the phosphor-deoxidized copper C1220 was placed in the water tank so that one of the long sides was in contact with the bottom surface of the water tank.

この被めっき部材にNo.1から6までの6つの電流測定体を付着させた。具体的には、被めっき部材のアノードに近位側の短片の上端を基準として、各電流測定体の中心が次の位置になるように各電流測定体を配置した。
No.1:上記の被めっき部材の基準点から垂直方向下向き(以下「下向き」と略記する。)に26mm、水平方向に上記のアノード近位側の短片から離間する向き(以下「右向き」と略記する)に6mm
No.2:上記基準点から下向きに26mm、右向きに48mm
No.3:上記基準点から下向きに26mm、右向きに90mm
No.4:上記基準点から下向きに59mm、右向きに6mm
No.5:上記基準点から下向きに59mm、右向きに48mm
No.6:上記基準点から下向きに59mm、右向きに90mm
No.1および4の電流測定体がアノードに最も近位であり、No.3および6はアノードに最も遠位であった。いずれの電流測定体も、測定用電極はりん脱酸銅C1220からなり寸法は12mm×12mm(厚さ0.3mm)であり、絶縁体は、測定用電極と同面積の粘着剤((株)ニトムズ製 T4200)であった。
No. 1 is used for this member to be plated. Six current measuring bodies 1 to 6 were attached. Specifically, each current measurement body was arranged so that the center of each current measurement body was at the next position with respect to the upper end of the proximal short piece on the anode of the member to be plated.
No. 1: 26 mm vertically downward (hereinafter abbreviated as “downward”) from the reference point of the member to be plated, and a direction away from the short piece on the anode proximal side in the horizontal direction (hereinafter abbreviated as “rightward”). ) 6mm
No. 2: 26 mm downward from the reference point, 48 mm rightward
No. 3: 26 mm downward from the reference point, 90 mm to the right
No. 4: 59mm downward from the reference point, 6mm right
No. 5: 59 mm downward from the reference point, 48 mm rightward
No. 6: 59mm downward from the reference point, 90mm rightward
No. 1 and 4 amperometric bodies are most proximal to the anode; 3 and 6 were most distal to the anode. In any of the current measuring bodies, the measuring electrode is made of phosphorous deoxidized copper C1220, and the dimensions are 12 mm × 12 mm (thickness 0.3 mm). Nitoms T4200).

これらの電流測定体および被めっき部材について、これらが電気回路的に並列となるようにしつつ、めっき電源((株)山本鍍金試験器製 YPP−15100A、以下同じ。)の陰極用端子に接続した。アノードについてもめっき電源の陽極用端子に接続した。各電流測定体に流れるめっき電流を測定できるように、各電流測定体と陰極用端子との間には電流計を配置した。   About these electric current measurement bodies and to-be-plated members, it connected to the terminal for cathodes of a plating power source (YPP-15100A made by Yamamoto Sekin Tester Co., Ltd., the same shall apply hereinafter) so as to be parallel in electrical circuit. . The anode was also connected to the anode terminal of the plating power source. An ammeter was placed between each current measurement body and the cathode terminal so that the plating current flowing through each current measurement body could be measured.

267mlの亜鉛めっき液(ユケン工業(株)製メタスFZ996シリーズ亜鉛めっき標準組成)を水槽内に注入した。   267 ml of zinc plating solution (Metas FZ996 series zinc plating standard composition manufactured by Yuken Industry Co., Ltd.) was poured into the water tank.

水槽内の所定の位置に配置されたアノードの底辺の中心からアノードの法線方向で被めっき部材側に40mm離間した水槽の底面上の位置に、長径30mmで棒状の攪拌子を配置し、攪拌子を100rpmで回転させてめっき液を攪拌した。   A rod-shaped stirrer having a major axis of 30 mm is disposed at a position on the bottom surface of the water tank 40 mm away from the center of the bottom of the anode arranged at a predetermined position in the water tank toward the member to be plated in the normal direction of the anode. The daughter was rotated at 100 rpm to stir the plating solution.

めっき液の温度が40℃に維持されていることを確認して、めっき電源から電流2Aを維持するように電圧を印加し、印加開始から180秒間のめっき電流を測定した。   After confirming that the temperature of the plating solution was maintained at 40 ° C., a voltage was applied from the plating power source so as to maintain a current of 2 A, and the plating current was measured for 180 seconds from the start of application.

その結果を図3に示す。図3に示されるように、理論上電流値が高いと予想されるNo.1および4の電流測定体において高い電流値が測定された。また、めっき液の攪拌の影響を適切に反映して、No.4におけるめっき電流はNo.1におけるめっき電流よりも高くなった。他の位置の電流測定体においても、アノードからの距離およびめっき液攪拌の影響を適切に反映した電流値が測定された。   The result is shown in FIG. As shown in FIG. 3, the No. High current values were measured in the 1 and 4 amperometric bodies. In addition, reflecting the influence of stirring of the plating solution appropriately, No. The plating current in No. 4 is no. It became higher than the plating current in 1. The current value appropriately reflecting the distance from the anode and the influence of the agitation of the plating solution was also measured in the current measurement bodies at other positions.

(実施例2)
快削黄銅丸棒(C3604)を加工して得られたものであって図4に示される形状を有する部材を被めっき部材とした。被めっき部材の寸法は次のとおりであった。
外径:64mm
肉厚:18mm
一方の座繰り部:径42mm、深さ8mm
他方の座繰り部:径42mm、深さ4mm
貫通孔:孔径10mm
(Example 2)
A member obtained by processing a free-cutting brass round bar (C3604) and having a shape shown in FIG. 4 was a member to be plated. The dimensions of the member to be plated were as follows.
Outer diameter: 64mm
Wall thickness: 18mm
One counterbore: diameter 42mm, depth 8mm
The other counterbore part: diameter 42mm, depth 4mm
Through hole: Hole diameter 10mm

底面が112mm×82mmのほぼ直方体のめっき槽に、上記の被めっき部材を、貫通孔の中心軸がめっき槽の底面の短径に平行になるように配置した。被めっき部材のめっき槽内の配置の詳細は次の通りであった。
貫通孔の中心軸と底面との距離:45mm
一方の座繰りが設けられた端面とこれに対向するめっき槽の側面(以下、「側面1」という。)との距離:32mm
貫通孔の中心軸とこれに平行なめっき槽の側面との距離:56mm
The member to be plated was placed in a substantially rectangular parallelepiped plating tank having a bottom surface of 112 mm × 82 mm so that the central axis of the through hole was parallel to the short axis of the bottom surface of the plating tank. Details of the arrangement of the member to be plated in the plating tank were as follows.
Distance between central axis and bottom of through hole: 45mm
The distance between the end face provided with one counterbore and the side face of the plating tank facing this end face (hereinafter referred to as “side face 1”): 32 mm
Distance between the central axis of the through-hole and the side surface of the plating tank parallel to this: 56 mm

ここで、被めっき部材には、一方の座繰り部側に4つ(No.5〜8)の電流測定体(外径5mmおよび厚さ0.3mmのりん脱酸銅C1220製の測定用電極と絶縁体としての粘着剤との積層体、以下同じ。)を、他方の座繰り部側に4つ(No.1〜4)の電流測定体を、図5に示されるような配置で付着させた。なお、めっき槽内において被めっき部材の貫通孔の中心線を含むめっき槽の底面に平行な平面内にNo.1〜3および5〜7の測定用電極の中心が位置するようにこれらの測定用電極は配置された。また、No.4および8の測定用電極は、めっき槽内において被めっき部材の貫通孔の中心線を含むめっき槽の底面に垂直な平面内にこれらの電極の中心が位置するように配置された。   Here, on the member to be plated, there are four (No. 5 to 8) current measurement bodies (measurement electrodes made of phosphorous deoxidized copper C1220 having an outer diameter of 5 mm and a thickness of 0.3 mm) on one countersink portion side. And 4 (No. 1 to 4) current measuring bodies are attached in the arrangement as shown in FIG. 5 on the other countersink side. I let you. It should be noted that, in the plating tank, No. 2 is placed in a plane parallel to the bottom surface of the plating tank including the center line of the through hole of the member to be plated. These measurement electrodes were arranged so that the centers of the measurement electrodes 1 to 3 and 5 to 7 were located. No. The measurement electrodes 4 and 8 were arranged in the plating tank so that the centers of these electrodes were located in a plane perpendicular to the bottom surface of the plating tank including the center line of the through hole of the member to be plated.

これらの電流測定体および被めっき部材について、これら全てが電気回路的に並列となるようにしつつ、めっき電源の陰極用端子に接続した。二つのアノードについてもめっき電源の陽極用端子に接続した。各電流測定体に流れるめっき電流を測定できるように、各電流測定体と陰極用端子との間には電流計を配置した。   The current measuring body and the member to be plated were connected to the cathode terminal of the plating power source while all of them were parallel in electrical circuit. The two anodes were also connected to the anode terminal of the plating power source. An ammeter was placed between each current measurement body and the cathode terminal so that the plating current flowing through each current measurement body could be measured.

めっき液の温度が40℃に維持されていることを確認して、めっき電源から電流5Aを維持するように電圧を印加し、印加開始から150秒間のめっき電流を測定した。電圧印加中はめっき液の攪拌を行わなかった。   After confirming that the temperature of the plating solution was maintained at 40 ° C., a voltage was applied from the plating power source so as to maintain a current of 5 A, and the plating current was measured for 150 seconds from the start of application. During the voltage application, the plating solution was not stirred.

その結果を図6に示す。図6に示されるように、理論上電流値が高いと予想されるNo.4および8の電流測定体において高い電流値が測定された。また、理論上電流値が低いと予想されるNo.6の電流測定体において低い電流値が測定された。また、No.1および5は水槽内の配置が近似していることから、極めて近似した電流値の変動傾向が得られた。   The result is shown in FIG. As shown in FIG. 6, the No. High current values were measured in 4 and 8 amperometric bodies. In addition, No. which is expected to have a low current value theoretically. A low current value was measured in 6 current measuring bodies. No. Since 1 and 5 are close in the arrangement in the water tank, a very similar tendency of fluctuation of the current value was obtained.

(2)第二の絶縁体およびその一方の面上に形成された第二の測定用電極を備え、当該第二の測定用電極と前記第一の測定用電極とを非接触としつつ、前記被めっき部材のめっきが施される面に当該第二の絶縁体が対向するように配置される第二の電流測定体;前記めっき電源の陰極用端子と前記第二の測定用電極とを、当該第二の測定用電極、前記第一の測定用電極および前記被めっき部材が並列関係をなすように電気的に接続する第四の配線;ならびに第四の配線上に配置される第二の電流測定手段をさらに備える上記(1)記載の装置。 (2) a second insulator and a second measurement electrode formed on one surface thereof, wherein the second measurement electrode and the first measurement electrode are not in contact with each other; A second current measuring body arranged so that the second insulator faces the surface of the member to be plated; the cathode terminal of the plating power source and the second measuring electrode; A fourth wiring electrically connecting the second measuring electrode, the first measuring electrode, and the member to be plated so as to form a parallel relationship; and a second wiring disposed on the fourth wiring. The apparatus according to (1), further comprising a current measuring unit.

(3)前記めっきが施される面上の任意の位置に前記第一の電流測定体が配置されることを可能とする配置調整手段をさらに備える上記(1)または(2)に記載の装置。 (3) The apparatus according to (1) or (2), further including an arrangement adjusting unit that enables the first current measurement body to be arranged at an arbitrary position on the surface to be plated. .

Claims (6)

めっき槽;
前記めっき槽に収容されるめっき液の液面よりも下側に少なくとも一部が配置される、アノードおよび被めっき部材;
第一の絶縁体およびその一方の面上に形成された第一の測定用電極を備え、前記被めっき部材のめっきが施される面の一部に当該第一の絶縁体が対向するように配置される第一の電流測定体;
めっき電源;
前記めっき電源の陽極用端子と前記アノードとを電気的に接続する第一の配線;
前記めっき電源の陰極用端子と前記被めっき部材とを電気的に接続する第二の配線;
前記めっき電源の陰極用端子と前記第一の測定用電極とを、当該第一の測定用電極と前記被めっき部材とが並列関係をなすように電気的に接続する第三の配線;ならびに
第三の配線上に配置される第一の電流測定手段
を備えることを特徴とするめっき電流密度分布測定装置。
Plating tank;
An anode and a member to be plated, at least a portion of which is disposed below the liquid surface of the plating solution stored in the plating tank;
A first insulator and a first measuring electrode formed on one surface thereof are provided so that the first insulator is opposed to a part of the surface to be plated of the member to be plated. A first amperometric body disposed;
Plating power supply;
First wiring for electrically connecting the anode terminal of the plating power source and the anode;
A second wiring for electrically connecting the cathode terminal of the plating power source and the member to be plated;
A third wiring for electrically connecting the cathode terminal of the plating power source and the first measurement electrode so that the first measurement electrode and the member to be plated are in a parallel relationship; and A plating current density distribution measuring apparatus comprising a first current measuring means disposed on the third wiring.
第二の絶縁体およびその一方の面上に形成された第二の測定用電極を備え、当該第二の測定用電極と前記第一の測定用電極とを非接触としつつ、前記被めっき部材のめっきが施される面に当該第二の絶縁体が対向するように配置される第二の測定用電極;
前記めっき電源の陰極用端子と前記第二の測定用電極とを、当該第二の測定用電極、前記第一の測定用電極および前記被めっき部材が並列関係をなすように電気的に接続する第四の配線;ならびに
第四の配線上に配置される第二の電流測定手段
をさらに備える請求項1記載の装置。
A member to be plated, comprising a second insulator and a second measurement electrode formed on one surface thereof, wherein the second measurement electrode and the first measurement electrode are not in contact with each other. A second measuring electrode arranged so that the second insulator faces the surface to be plated with;
The cathode terminal of the plating power source and the second measurement electrode are electrically connected so that the second measurement electrode, the first measurement electrode, and the member to be plated form a parallel relationship. The apparatus according to claim 1, further comprising: a fourth wiring; and second current measuring means disposed on the fourth wiring.
前記めっきが施される面上の複数の位置に前記第一の電流測定体が配置されることを可能とする配置調整手段をさらに備える請求項1または2に記載の装置。   The apparatus according to claim 1, further comprising an arrangement adjusting unit that enables the first current measurement body to be arranged at a plurality of positions on a surface to be plated. めっき液中にあるアノードと被めっき部材との間に電圧を印加したときに、当該被めっき部材のめっきが施される面におけるめっき電流密度分布を測定する方法であって、
前記めっきが施される面の一部に絶縁物を介して測定用電極を配置し、
前記アノードとめっき電源の陽極用端子とを電気的に接続し、
前記被めっき部材および前記測定用電極をこれらが並列関係を有するように前記めっき電源の陰極用端子に電気的に接続し、
前記めっき電源から電圧を印加して、前記測定用電極に流れるめっき電流を測定し、
当該測定されためっき電流に基づいて、前記めっきが施される面における前記測定用電極が配置された部分のめっき電流密度に係る情報を得ること
を特徴とするめっき電流密度分布の測定方法。
When a voltage is applied between an anode in a plating solution and a member to be plated, a method of measuring a plating current density distribution on a surface to be plated of the member to be plated,
An electrode for measurement is arranged through an insulator on a part of the surface to be plated,
Electrically connecting the anode and the anode terminal of the plating power source;
Electrically connecting the plated member and the measurement electrode to the cathode terminal of the plating power source so that they have a parallel relationship;
Apply a voltage from the plating power source, measure the plating current flowing through the measurement electrode,
A method for measuring a plating current density distribution, wherein information relating to a plating current density of a portion where the measurement electrode is arranged on a surface to be plated is obtained based on the measured plating current.
前記測定用電極を複数用意し、前記めっきが施される面の異なる部分に互い非接触として当該複数の測定用電極を配置し、当該複数の測定用電極に流れるめっき電流を個別に測定して、前記めっきが施される面の異なる部分のそれぞれにおけるめっき電流密度に係る情報を得る請求項4記載の測定方法。   Prepare a plurality of measurement electrodes, place the plurality of measurement electrodes in non-contact with each other on different parts of the surface to be plated, and individually measure the plating current flowing through the plurality of measurement electrodes. The measurement method according to claim 4, wherein information relating to a plating current density in each of different portions of the surface to be plated is obtained. 前記測定用電極の前記めっきが施される面の配置を変化させることにより、一個の前記測定用電極を用いて、前記めっきが施される面上の複数の位置におけるめっき電流を測定して、当該複数の位置のそれぞれにおけるめっき電流密度に係る情報を得る請求項4または5に記載の測定方法。   By changing the arrangement of the surface to be plated of the measurement electrode, using one measurement electrode, the plating current is measured at a plurality of positions on the surface to be plated, The measurement method according to claim 4 or 5, wherein information relating to a plating current density at each of the plurality of positions is obtained.
JP2011195666A 2011-09-08 2011-09-08 Plating current density distribution measuring apparatus and plating current density distribution measuring method Active JP5124756B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011195666A JP5124756B1 (en) 2011-09-08 2011-09-08 Plating current density distribution measuring apparatus and plating current density distribution measuring method
PCT/JP2012/072727 WO2013035780A1 (en) 2011-09-08 2012-09-06 Plating current density distribution measurement device and plating current density distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195666A JP5124756B1 (en) 2011-09-08 2011-09-08 Plating current density distribution measuring apparatus and plating current density distribution measuring method

Publications (2)

Publication Number Publication Date
JP5124756B1 JP5124756B1 (en) 2013-01-23
JP2013057098A true JP2013057098A (en) 2013-03-28

Family

ID=47692907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195666A Active JP5124756B1 (en) 2011-09-08 2011-09-08 Plating current density distribution measuring apparatus and plating current density distribution measuring method

Country Status (2)

Country Link
JP (1) JP5124756B1 (en)
WO (1) WO2013035780A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200133A (en) * 2018-05-16 2019-11-21 マツダ株式会社 Electrodeposition test sensor, electrodeposition test method and test device using the sensor
JP7074937B1 (en) * 2021-06-04 2022-05-24 株式会社荏原製作所 Plating equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224795A (en) * 1984-03-22 1985-11-09 シエ−リング・アクチエンゲゼルシヤフト Method of measuring electric current density in electroplating bath
JPS63138246A (en) * 1986-11-29 1988-06-10 Oki Electric Ind Co Ltd Method for testing stirring state of plating liquid
JPH0835099A (en) * 1994-07-21 1996-02-06 Matsushita Electric Works Ltd Electroplating method of substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224795A (en) * 1984-03-22 1985-11-09 シエ−リング・アクチエンゲゼルシヤフト Method of measuring electric current density in electroplating bath
JPS63138246A (en) * 1986-11-29 1988-06-10 Oki Electric Ind Co Ltd Method for testing stirring state of plating liquid
JPH0835099A (en) * 1994-07-21 1996-02-06 Matsushita Electric Works Ltd Electroplating method of substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200133A (en) * 2018-05-16 2019-11-21 マツダ株式会社 Electrodeposition test sensor, electrodeposition test method and test device using the sensor
JP7077761B2 (en) 2018-05-16 2022-05-31 マツダ株式会社 Electrolytic property test sensor, electrodeposition test method using the sensor, and test equipment
JP7074937B1 (en) * 2021-06-04 2022-05-24 株式会社荏原製作所 Plating equipment
WO2022254690A1 (en) * 2021-06-04 2022-12-08 株式会社荏原製作所 Plating device

Also Published As

Publication number Publication date
WO2013035780A1 (en) 2013-03-14
JP5124756B1 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP2019085612A (en) Plating analysis method, plating analysis system, and computer program for plating analysis
JP5124756B1 (en) Plating current density distribution measuring apparatus and plating current density distribution measuring method
JP2009115747A (en) Method and device for measuring conductive performance of paste
CN109612921B (en) Corrosion monitoring sensor and preparation method thereof
JP6933963B2 (en) Method of determining the arrangement of feeding points in an electroplating device and an electroplating device for plating a rectangular substrate
JP2016114391A (en) Electric copper plating solution analysis device and electric copper plating solution analysis method
CN111801445B (en) Coating device and coating system
WO2015137400A1 (en) Electrolytic copper plating solution analysis device and electrolytic copper plating solution analysis method
JP4667968B2 (en) Plating apparatus, plating process management apparatus, plating method, and plating process management method
JP2013095968A (en) Method of manufacturing plating film
US10988855B2 (en) Plating device
US20120061244A1 (en) Method and device for the controlled electrolytic treatment of thin layers
JP7006472B2 (en) Nickel film forming method
JP4385824B2 (en) Method and apparatus for analyzing electrolytic copper plating solution
JPH034158A (en) Test apparatus for electrochemical reaction process in manufacture of printed circuit board and method of electrodepositing printed circuit board
JPH0625883A (en) Electrode and method for measuring uniformity ratio
KR20120079414A (en) Method of plating for pcb
CN107604423A (en) A kind of clamping device electroplated in high precision suitable for more substrates
RU178301U1 (en) Independent control of electrochemical potentials to control the adhesion of the coating by cathodic polarization
JP3428206B2 (en) Electrolytic purification method and measuring device used in the electrolytic purification method
Ádám et al. Electrochemical Migration of SAC305 Solders and Tin Surface Finish in NaCI Environment
CN116240611A (en) Electroplating plate, electroplating device and electroplating method
JPS6227655A (en) Device for measuring current density of liquid contact surface
JP2013076627A (en) Copper pitting corrosion evaluation method
JP2023056787A (en) Contact probe and method for manufacturing contact probe

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 5124756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250