JP2013056814A - Method for manufacturing silicon carbide sintered compact and silicon carbide sintered compact - Google Patents

Method for manufacturing silicon carbide sintered compact and silicon carbide sintered compact Download PDF

Info

Publication number
JP2013056814A
JP2013056814A JP2011197536A JP2011197536A JP2013056814A JP 2013056814 A JP2013056814 A JP 2013056814A JP 2011197536 A JP2011197536 A JP 2011197536A JP 2011197536 A JP2011197536 A JP 2011197536A JP 2013056814 A JP2013056814 A JP 2013056814A
Authority
JP
Japan
Prior art keywords
silicon carbide
bonding
silicon
intermediate layer
carbide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011197536A
Other languages
Japanese (ja)
Other versions
JP5674602B2 (en
Inventor
Motohiro Umetsu
基宏 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2011197536A priority Critical patent/JP5674602B2/en
Publication of JP2013056814A publication Critical patent/JP2013056814A/en
Application granted granted Critical
Publication of JP5674602B2 publication Critical patent/JP5674602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon carbide sintered compact by which manufacturing according to application can be easily performed while retaining properties peculiar to silicon carbide and defects hardly occur, and to provide a silicon carbide sintered compact.SOLUTION: The method for manufacturing a silicon carbide sintered compact integrated based on two or more silicon carbide compacts includes: a step of sandwiching a bonding intermediate layer having particles of silicon carbide, boron carbide, carbon and silicon mixed between silicon carbide compacts; a step of integrating the silicon carbide compacts having the sandwiched bonding intermediate layer by CIP; and a step of firing the integrated silicon carbide compacts. The bonding intermediate layer is a ceramic mixed powder sheet containing, relative to 100 pts.wt. of silicon carbide: 0.2-0.6 wt.% of boron carbide; 5-15 wt.% of carbon; and 5-10 wt.% of silicon. Then, the ceramic mixed powder sheet has a thickness of 0.05-0.500 mm.

Description

本発明は、2個以上の炭化珪素成形体を基にして得られる一体化された炭化珪素焼結体の製造方法および炭化珪素焼結体に関する。   The present invention relates to a method for producing an integrated silicon carbide sintered body obtained on the basis of two or more silicon carbide formed bodies and a silicon carbide sintered body.

従来、炭化珪素焼結体の中空構造品、複雑形状品、長尺品等を製造するために、炭化珪素焼結体同士を接合する方法が知られている。そのような方法のうち一般的なものとして、Si金属やガラス等を接合材として用いる方法がある。しかし、このようにして得られた生成物は、接合材が母材と異なるため、その炭化珪素固有の特性が損なわれる。例えば、生成物について、強度の低下、ヤング率の低下、電気特性の導通不良が生じる。   2. Description of the Related Art Conventionally, a method for joining silicon carbide sintered bodies to each other in order to manufacture a silicon carbide sintered body having a hollow structure, a complicated shape, a long product, or the like is known. As such a general method, there is a method using Si metal, glass or the like as a bonding material. However, since the product obtained in this way has a bonding material different from that of the base material, the inherent characteristics of silicon carbide are impaired. For example, the product has a decrease in strength, a decrease in Young's modulus, and poor electrical properties.

また、接合界面に中間層を有する焼結体同士を直接接合する方法も知られている。非特許文献1には、焼結体の接合界面に、接合の中間層として、炭化珪素粉末に、ホウ素およびAlを添加した混合粉末を用いて、ホットプレスにより接合する方法が開示されている。しかし、このような方法では、高温での処理や接合面の高精度加工が必要である。また、ホットプレスを用いるためには形状に制約があり、汎用性が低く、コストも嵩んでしまう。   A method of directly joining sintered bodies having an intermediate layer at the joining interface is also known. Non-Patent Document 1 discloses a method of bonding by hot pressing using a mixed powder obtained by adding boron and Al to silicon carbide powder as a bonding intermediate layer at a bonding interface of a sintered body. However, such a method requires high-temperature processing and high-precision processing of the joint surface. Moreover, in order to use a hot press, there exists a restriction | limiting in a shape, versatility is low, and cost will also increase.

また、接合層を生じない接合方法として、焼結体同士を直接接合させる拡散接合等が試みられている。しかし、このような接合方法では、拡散が起こる高温での処理が必要となるため、接合面を高精度に加工しても未接合の空隙が残り易い。   Further, as a bonding method that does not generate a bonding layer, diffusion bonding that directly bonds sintered bodies to each other has been attempted. However, such a joining method requires treatment at a high temperature at which diffusion occurs, so that unjoined voids are likely to remain even if the joining surface is processed with high accuracy.

特開昭59−108801号公報JP 59-108801 A

井関孝善、荒川健二、松崎浩、鈴木広茂、「炭化珪素焼結体のホットプレスによる接合」、The Ceramic Society of Japan、窯業協会、1983、91 [8]、p349-354Takayoshi Izeki, Kenji Arakawa, Hiroshi Matsuzaki, Hiroshi Suzuki, “Joint of sintered silicon carbide by hot pressing”, The Ceramic Society of Japan, Ceramic Association, 1983, 91 [8], p349-354

これに対し、炭化珪素の成形体を接合することで、最終的に炭化珪素の焼結体を得る方法が提案されている。例えば、特許文献1記載のラジアル型セラミックローターの製造方法では、翼部側成形体と軸部成形体とを密接するか、同材料のスラリー又はペースト状の接合剤を介在させて密接し、CIP(冷間等方圧加圧法)で結合して接合一体化して焼成している。しかし、このような接合では、中間層が存在せず、成形体の接合面に空隙が残り易い。   On the other hand, a method has been proposed in which a silicon carbide sintered body is finally obtained by bonding silicon carbide compacts. For example, in the manufacturing method of the radial type ceramic rotor described in Patent Document 1, the blade-side molded body and the shaft-shaped molded body are brought into close contact with each other, or in contact with a slurry or paste-like bonding agent of the same material. They are bonded by a cold isostatic pressure method, joined and integrated, and fired. However, in such joining, there is no intermediate layer, and voids tend to remain on the joining surface of the molded body.

本発明は、このような事情に鑑みてなされたものであり、炭化珪素固有の特性を維持しつつ、容易に用途に応じた製造ができ、不良が生じ難い炭化珪素焼結体の製造方法および炭化珪素焼結体を提供することを目的とする。   The present invention has been made in view of such circumstances, and a method for producing a silicon carbide sintered body that can be easily produced in accordance with the application while maintaining the characteristics inherent to silicon carbide, and is less likely to cause defects. An object is to provide a silicon carbide sintered body.

(1)上記の目的を達成するため、本発明の炭化珪素焼結体の製造方法は、2個以上の炭化珪素成形体を基に一体化された炭化珪素焼結体の製造方法であって、炭化珪素成形体の間に、炭化珪素、炭化ホウ素、炭素および珪素の粒子が混合された接合中間層を挟む工程と、前記接合中間層が挟まれた炭化珪素成形体をCIPで一体化する工程と、前記一体化された炭化珪素成形体を焼成する工程と、を含み、前記接合中間層は、炭化珪素100重量部に対し、炭化ホウ素を0.2重量%以上0.6重量%以下、炭素を5重量%以上15重量%以下、珪素を5重量%以上10重量%以下の割合で含有し、0.05mm以上0.500mm以下の厚さを有するセラミックス混合粉末シートであることを特徴としている。   (1) In order to achieve the above object, a method for manufacturing a silicon carbide sintered body of the present invention is a method for manufacturing a silicon carbide sintered body integrated based on two or more silicon carbide molded bodies. The step of sandwiching a bonding intermediate layer in which particles of silicon carbide, boron carbide, carbon and silicon are mixed between the silicon carbide molded body and the silicon carbide molded body in which the bonding intermediate layer is sandwiched are integrated by CIP. And a step of firing the integrated silicon carbide molded body, wherein the bonding intermediate layer has a boron carbide content of 0.2 wt% or more and 0.6 wt% or less with respect to 100 parts by weight of silicon carbide. A ceramic mixed powder sheet containing carbon in a proportion of 5 wt% to 15 wt% and silicon in a proportion of 5 wt% to 10 wt% and having a thickness of 0.05 mm to 0.500 mm It is said.

これにより、各部分で炭化珪素固有の特性を維持した中空構造品、複雑形状品、長尺品等に応用可能な炭化珪素焼結体を得ることができる。また、加工や処理の制約が少ないため、容易に用途に応じた製造ができる。また、生成物の接合面に空隙が残り難く、不良が生じ難い。接合中間層は、焼成時に炭素と珪素が反応焼結し炭化珪素化する。その結果、焼成後の接合中間層は母材と同等の特性を有する。接合中間層の厚さを0.05mm以上とすることで、炭化珪素成形体の接合界面において、接合中間層がCIP時の変形に追従できる。また、接合中間層の厚さを0.500mm以下とすることで、炭化珪素焼結体の接合界面の密度を均一化することができる。   Thereby, a silicon carbide sintered body that can be applied to a hollow structure product, a complex shape product, a long product, or the like that maintains the characteristics unique to silicon carbide in each portion can be obtained. Moreover, since there are few restrictions of a process and a process, manufacture according to a use can be performed easily. Further, voids are unlikely to remain on the joint surface of the product, and defects are unlikely to occur. In the bonding intermediate layer, carbon and silicon react and sinter into silicon carbide during firing. As a result, the bonded intermediate layer after firing has the same characteristics as the base material. By setting the thickness of the bonding intermediate layer to 0.05 mm or more, the bonding intermediate layer can follow the deformation during CIP at the bonding interface of the silicon carbide molded body. Moreover, the density of the joining interface of a silicon carbide sintered compact can be equalize | homogenized because the thickness of a joining intermediate | middle layer shall be 0.500 mm or less.

(2)また、本発明の炭化珪素焼結体の製造方法は、炭化珪素、炭化ホウ素、炭素、珪素、溶媒、結合剤および分散剤を混合したスラリーをドクターブレードによりシート化することで、前記接合中間層を作製する工程を更に含むことを特徴としている。これにより、炭化珪素成形体の接合が容易になる。   (2) Further, in the method for producing a silicon carbide sintered body of the present invention, the slurry obtained by mixing silicon carbide, boron carbide, carbon, silicon, a solvent, a binder, and a dispersing agent is formed into a sheet with a doctor blade. The method further includes a step of producing a bonding intermediate layer. Thereby, joining of a silicon carbide molded object becomes easy.

(3)また、本発明の炭化珪素焼結体は、2個以上の炭化珪素成形体を基に一体化された炭化珪素焼結体であって、炭化珪素成形体の接合により生じた接合層に対してボンビング法によるHeリーク試験を行なったときのHeリーク量が1×10−7Pa・m/sec以下であり、前記接合層の接合強度は、400MPa以上であることを特徴としている。このように、炭化珪素焼結体は、母材部分と特性が同等の接合層を有しており、欠陥や密度の不均一等の無い接合層が形成されている。したがって、炭化珪素固有の特性を維持した中空構造品、複雑形状品、長尺品等に応用できる。 (3) Moreover, the silicon carbide sintered body of the present invention is a silicon carbide sintered body integrated on the basis of two or more silicon carbide molded bodies, and a bonding layer formed by joining the silicon carbide molded bodies. The amount of He leak when performing a He leak test by a bombing method is 1 × 10 −7 Pa · m 3 / sec or less, and the bonding strength of the bonding layer is 400 MPa or more. . As described above, the silicon carbide sintered body has a bonding layer having characteristics equivalent to those of the base material portion, and a bonding layer free from defects and non-uniform density is formed. Therefore, it can be applied to a hollow structure product, a complex shape product, a long product, or the like that maintains the characteristics unique to silicon carbide.

本発明によれば、各部分で炭化珪素固有の特性を維持した中空構造品、複雑形状品、長尺品等に応用可能な炭化珪素焼結体を得ることができる。また、加工や処理の制約が少ないため、容易に用途に応じた製造ができる。また、生成物の接合面に空隙が残り難く、不良が生じ難い。   According to the present invention, it is possible to obtain a silicon carbide sintered body that can be applied to a hollow structure product, a complex shape product, a long product, or the like that maintains the characteristics unique to silicon carbide in each portion. Moreover, since there are few restrictions of a process and a process, manufacture according to a use can be performed easily. Further, voids are unlikely to remain on the joint surface of the product, and defects are unlikely to occur.

以下に、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described.

(炭化珪素焼結体の製造方法)
まず、炭化珪素成形体を作製する。炭化珪素成形体は、金型プレス成形、CIP成形、鋳込み成形、射出成形等の方法により所望の形状に作製できる。また、炭化珪素成形体はいずれの方法による場合でも結合剤として働くバインダーを含んで形成されていることが望ましい。これにより、成形体と接合中間層として用いるセラミックス粉末との結合を強め、接合した成形体に対して生加工するのに十分な接合強度を維持させることができる。
(Silicon carbide sintered body manufacturing method)
First, a silicon carbide molded body is produced. The silicon carbide molded body can be produced in a desired shape by a method such as die press molding, CIP molding, casting molding, injection molding or the like. Moreover, it is desirable that the silicon carbide molded body is formed including a binder that functions as a binder in any method. Thereby, the coupling | bonding of a molded object and the ceramic powder used as a joining intermediate | middle layer can be strengthened, and sufficient joining strength can be maintained for carrying out a raw process with respect to the joined molded object.

次に、接合中間層を作製する。接合中間層として用いるセラミックス粉末は、炭化珪素100重量部に対し、炭化ホウ素を0.2重量%以上0.6重量%以下、炭素を5重量%以上15重量%以下、珪素を5重量%以上10重量%以下添加したものである。これにより、接合中間層は、焼成時に炭素と珪素が反応焼結し炭化珪素化する。その結果、焼成後の接合中間層は母材と同等の特性を有する。   Next, a bonding intermediate layer is produced. The ceramic powder used as the bonding intermediate layer is composed of 0.2 to 0.6% by weight of boron carbide, 5 to 15% by weight of carbon, and 5% by weight or more of silicon with respect to 100 parts by weight of silicon carbide. 10% by weight or less is added. As a result, the bonding intermediate layer is converted to silicon carbide by reaction sintering of carbon and silicon during firing. As a result, the bonded intermediate layer after firing has the same characteristics as the base material.

接合中間層は、炭化珪素、炭化ホウ素、炭素および珪素の粉末に溶媒、結合剤および分散剤を混合したスラリーをドクターブレードによりシート化することで、セラミックス混合粉末シートとして形成することが好ましい。これにより、炭化珪素成形体の接合が容易になる。   The bonding intermediate layer is preferably formed as a ceramic mixed powder sheet by forming a slurry obtained by mixing a powder of silicon carbide, boron carbide, carbon, and silicon with a solvent, a binder, and a dispersant with a doctor blade. Thereby, joining of a silicon carbide molded object becomes easy.

また、そのセラミックス混合粉末シートの厚さは、0.05mm以上0.500mm以下であることが好ましい。接合中間層の厚さを0.05mm以上とすることで、炭化珪素成形体の接合界面において、接合中間層がCIP時の変形に追従できる。また、接合中間層の厚さを0.500mm以下とすることで、炭化珪素焼結体の接合界面の密度を均一化することができる。   Moreover, it is preferable that the thickness of the ceramic mixed powder sheet is 0.05 mm or more and 0.500 mm or less. By setting the thickness of the bonding intermediate layer to 0.05 mm or more, the bonding intermediate layer can follow the deformation during CIP at the bonding interface of the silicon carbide molded body. Moreover, the density of the joining interface of a silicon carbide sintered compact can be equalize | homogenized because the thickness of a joining intermediate | middle layer shall be 0.500 mm or less.

次に、接合しようとする炭化珪素成形体のそれぞれについて、接合界面で密着する形状に表面を加工する。接合中間層の追従性により表面の凹凸を吸収できるため、炭化珪素成形体の接合界面について高精度加工は不要である。そして、接合界面に接合中間層としてセラミックス混合粉末シートを挟み、CIPにより接合する。このときのCIPは、98MPa以上のCIP圧力で行なうことが好ましい。CIP圧力を98MPa以上とすることで、接合中間層であるセラミックス混合粉末シートが母材の炭化珪素成形体と同等の密度になり、接合界面の密度を均一化することができる。   Next, the surface of each silicon carbide molded body to be bonded is processed into a shape that closely adheres at the bonding interface. Since the surface irregularities can be absorbed by the followability of the bonding intermediate layer, high-precision processing is not required for the bonding interface of the silicon carbide molded body. Then, a ceramic mixed powder sheet is sandwiched between the bonding interfaces as a bonding intermediate layer and bonded by CIP. CIP at this time is preferably performed at a CIP pressure of 98 MPa or more. By setting the CIP pressure to 98 MPa or more, the ceramic mixed powder sheet as the bonding intermediate layer has a density equivalent to that of the silicon carbide molded body of the base material, and the density of the bonding interface can be made uniform.

CIPにより一体化された炭化珪素成形体は、炭化珪素が緻密化する焼成条件で焼成する。具体的には、アルゴン雰囲気において1900℃以上2100℃以下で焼成することが好ましい。以上に述べた方法で炭化珪素焼結体を製造することにより、炭化珪素の特性を維持した製品を安価で容易に作製できる。   The silicon carbide molded body integrated by CIP is fired under firing conditions in which silicon carbide is densified. Specifically, baking is preferably performed at 1900 ° C. or higher and 2100 ° C. or lower in an argon atmosphere. By manufacturing a silicon carbide sintered body by the method described above, a product maintaining the characteristics of silicon carbide can be easily manufactured at low cost.

(炭化珪素焼結体の特徴)
上記の方法で得られた炭化珪素焼結体は、炭化珪素成形体の接合により生じた接合層に対してボンビング法によるHeリーク試験を行なったときのHeリーク量が1×10−7Pa・m/sec以下である。また、接合層の接合強度は、400MPa以上である。このように、作製された炭化珪素焼結体は、母材部分と特性が同等の接合層を有しており、欠陥や密度の不均一等の無い接合層が形成されている。したがって、炭化珪素焼結体を炭化珪素固有の特性を維持した中空構造品、複雑形状品、長尺品等に応用できる。
(Characteristics of sintered silicon carbide)
The silicon carbide sintered body obtained by the above method has a He leak amount of 1 × 10 −7 Pa · when a He leak test by a bombing method is performed on a bonding layer formed by bonding the silicon carbide molded body. m 3 / sec or less. Further, the bonding strength of the bonding layer is 400 MPa or more. Thus, the produced silicon carbide sintered body has a bonding layer having characteristics equivalent to those of the base material portion, and a bonding layer free from defects and non-uniform density is formed. Therefore, the silicon carbide sintered body can be applied to a hollow structure product, a complex shape product, a long product, etc., in which characteristics unique to silicon carbide are maintained.

炭化珪素成形体の原料を作製した。まず、炭化珪素粉末(平均粒径0.5μm)に、焼結助剤として炭化ホウ素を0.5重量%、炭素源としてコールタールを10重量%添加し、溶媒として水を加えた。これにポリカルボン酸系の分散剤、PVA系の結合剤を添加して混合し、スプレードライにより造粒し、水分量0.5質量%の炭化珪素顆粒を得た。そして、この炭化珪素顆粒を用いて100mm×100mm×30mmのサイズに成形したものを2個作製した。作製した成形体のうち、一方には、φ20mmの貫通穴を生加工により設けた。   A raw material for a silicon carbide molded body was produced. First, boron carbide (0.5% by weight) as a sintering aid, coal tar (10% by weight) as a carbon source, and water as a solvent were added to silicon carbide powder (average particle size 0.5 μm). A polycarboxylic acid-based dispersant and a PVA-based binder were added thereto, mixed, and granulated by spray drying to obtain silicon carbide granules having a water content of 0.5% by mass. And two things which shape | molded into the size of 100 mm x 100 mm x 30 mm using this silicon carbide granule were produced. One of the produced molded bodies was provided with a through hole of φ20 mm by raw processing.

次に、炭化珪素粉末100重量部に対し、炭化ホウ素を0.5重量%、炭素源としてコールタールを1〜20重量%、珪素を1〜15重量%添加し、溶媒として水を加えた。これにポリカルボン酸系の分散剤、PVA系の結合剤を添加し、ボールミルにより混合してスラリーを得た。得られたスラリーを用いて、ドクターブレードにより、厚さ0.04〜0.60mmの接合中間層として用いるセラミックス粉末シートを作製した。   Next, with respect to 100 parts by weight of the silicon carbide powder, 0.5% by weight of boron carbide, 1-20% by weight of coal tar as a carbon source, and 1-15% by weight of silicon were added, and water was added as a solvent. A polycarboxylic acid-based dispersant and a PVA-based binder were added thereto and mixed by a ball mill to obtain a slurry. Using the obtained slurry, a ceramic powder sheet used as a bonding intermediate layer having a thickness of 0.04 to 0.60 mm was produced by a doctor blade.

次に、炭化珪素成形体の100mm×100mm面に、セラミックス混合粉末シートを接合中間層として載せ、その上にもう一つのφ20mmの貫通穴を設けた炭化珪素成形体を載せた後、CIPにより147MPaの圧力で接合し一体化した。一体化した炭化珪素成形体を、大気中500℃×6時間で脱脂を行い、アルゴン雰囲気において2000℃×3時間の条件で焼成し、炭化珪素焼結体を得た。   Next, a ceramic mixed powder sheet is placed as a bonding intermediate layer on a 100 mm × 100 mm surface of the silicon carbide molded body, and another silicon carbide molded body provided with another through hole of φ20 mm is placed thereon, and then CIP is 147 MPa. It joined and integrated with the pressure of. The integrated silicon carbide molded body was degreased at 500 ° C. for 6 hours in the air and fired in an argon atmosphere at 2000 ° C. for 3 hours to obtain a silicon carbide sintered body.

得られた炭化珪素焼結体を評価するため、これに対しボンビング法によるHeリーク試験を行なった。また、炭化珪素焼結体を3mm×4mm×40mmに加工し、接合層を中心とした4点曲げ試験により接合強度を測定した。表1は、炭化珪素焼結体の作製条件および試験結果を示している。   In order to evaluate the obtained silicon carbide sintered body, a He leak test by a bombing method was performed on the sintered body. Moreover, the silicon carbide sintered body was processed into 3 mm × 4 mm × 40 mm, and the bonding strength was measured by a four-point bending test with the bonding layer as the center. Table 1 shows the production conditions and test results of the silicon carbide sintered body.

Figure 2013056814
Figure 2013056814

本発明の実施例であるNo.2、3、5〜8、12、13、16〜18の試料(太枠)については、Heリーク量が1×10−7Pa・m/sec以下であり、十分な気密性を有していることを確認できた。また、これらの試料は、炭化珪素無垢体とほぼ同等の接合強度を有していることを確認できた。このように、実施例として母材と同等の特性の接合層を有する炭化珪素焼結体が得られた。その結果から、得られた炭化珪素焼結体の接合層には欠陥や密度の不均一等が無いことが分かった。 For the samples Nos. 2, 3, 5-8, 12, 13, and 16-18 (thick frames), which are examples of the present invention, the He leak amount is 1 × 10 −7 Pa · m 3 / sec or less. It was confirmed that it had sufficient airtightness. Moreover, it was confirmed that these samples had substantially the same bonding strength as that of solid silicon carbide. Thus, the silicon carbide sintered compact which has a joining layer of the characteristic equivalent to a base material as an Example was obtained. From the result, it was found that the obtained bonding layer of the silicon carbide sintered body was free from defects and non-uniform density.

一方、比較例については、以下の通りであった。すなわち、No.1の試料の気密性は低く、その接合強度も低い値であった。これは、炭化ホウ素は炭化珪素の固相焼結による焼結助剤として機能するところ、接合中間層として用いるセラミックス粉末の炭化ホウ素量が少ないため、反応により生成した炭化珪素に十分な焼結性が得られず、緻密化しなかったためと考えられる。No.9の試料の気密性は低く、その接合強度も低い値であった。これは、接合中間層として用いるセラミックス粉末の炭化ホウ素量が余剰であり、接合中間層内で、炭化ホウ素そのものが残留しためと考えられる。   On the other hand, the comparative example was as follows. That is, the airtightness of the sample No. 1 was low, and the bonding strength was also low. This is because boron carbide functions as a sintering aid for solid-phase sintering of silicon carbide, and the ceramic powder used as the bonding intermediate layer has a small amount of boron carbide. Is not obtained, and it is thought that it was not densified. The airtightness of the sample No. 9 was low, and the bonding strength was also low. This is probably because the amount of boron carbide in the ceramic powder used as the bonding intermediate layer is excessive, and boron carbide itself remains in the bonding intermediate layer.

No.4の試料の気密性は低く、その接合強度も低い値であった。これは、接合中間層として用いるセラミックス粉末の炭素量が少ないため、珪素と反応する炭素源がなく、珪素そのものが残留したためと考えられる。No.10の試料の気密性は低く、その接合強度も低い値であった。これは、接合中間層として用いるセラミックス粉末の珪素と反応する炭素量が余剰であり、残炭部が空隙となったためと考えられる。   The airtightness of the sample No. 4 was low, and the bonding strength was also low. This is probably because the ceramic powder used as the bonding intermediate layer has a small amount of carbon, so there is no carbon source that reacts with silicon, and silicon itself remains. The airtightness of the sample No. 10 was low, and the bonding strength was also low. This is presumably because the amount of carbon that reacts with silicon in the ceramic powder used as the bonding intermediate layer is excessive, and the remaining carbon portion becomes voids.

No.11の試料の気密性は低く、その接合強度も低い値であった。これは、接合中間層として用いるセラミックス粉末における珪素量が少ないため、接合中間層内で、炭化珪素の反応焼結による結合が不足したためと考えられる。No.14の試料の気密性は低く、その接合強度も低い値であった。これは、接合中間層として用いるセラミックス粉末における珪素量が余剰であるため、接合中間層内で、珪素そのものが残留しためと考えられる。   The airtightness of the sample No. 11 was low, and the bonding strength was also low. This is presumably because the amount of silicon in the ceramic powder used as the bonding intermediate layer is small, and bonding due to reactive sintering of silicon carbide is insufficient in the bonding intermediate layer. The airtightness of the sample No. 14 was low, and the bonding strength was also low. This is presumably because the silicon amount in the ceramic powder used as the bonding intermediate layer is excessive, so that silicon itself remains in the bonding intermediate layer.

No.15の試料の気密性は低く、接合強度も低い値であった。これは、セラミックス粉末シートが薄かったため、接合界面に追従できず、空隙が発生したためと考えられる。No.19の試料の気密性は低く、接合強度も低い値であった。これは、セラミックス粉末シートが厚かったため、接合層が緻密化できず、空隙が発生したためと考えられる。このように、比較例についてはいずれも問題が生じた。   The airtightness of the sample No. 15 was low, and the bonding strength was also low. This is presumably because the ceramic powder sheet was thin and could not follow the bonding interface, resulting in voids. The airtightness of the sample No. 19 was low, and the bonding strength was also low. This is presumably because the ceramic powder sheet was thick and the bonding layer could not be densified and voids were generated. As described above, all the comparative examples have problems.

Claims (3)

2個以上の炭化珪素成形体を基に一体化された炭化珪素焼結体の製造方法であって、
炭化珪素成形体の間に、炭化珪素、炭化ホウ素、炭素および珪素の粒子が混合された接合中間層を挟む工程と、
前記接合中間層が挟まれた炭化珪素成形体をCIPで一体化する工程と、
前記一体化された炭化珪素成形体を焼成する工程と、を含み、
前記接合中間層は、炭化珪素100重量部に対し、炭化ホウ素を0.2重量%以上0.6重量%以下、炭素を5重量%以上15重量%以下、珪素を5重量%以上10重量%以下の割合で含有し、0.05mm以上0.500mm以下の厚さを有するセラミックス混合粉末シートであることを特徴とする炭化珪素焼結体の製造方法。
A method for producing a silicon carbide sintered body integrated on the basis of two or more silicon carbide molded bodies,
Sandwiching a bonding intermediate layer in which silicon carbide, boron carbide, carbon and silicon particles are mixed, between silicon carbide molded bodies;
Integrating the silicon carbide molded body sandwiched with the joining intermediate layer with CIP;
Firing the integrated silicon carbide molded body,
In the bonding intermediate layer, boron carbide is 0.2 wt% to 0.6 wt%, carbon is 5 wt% to 15 wt%, and silicon is 5 wt% to 10 wt% with respect to 100 parts by weight of silicon carbide. A method for producing a silicon carbide sintered body, which is a ceramic mixed powder sheet that is contained in the following proportion and has a thickness of 0.05 mm to 0.500 mm.
炭化珪素、炭化ホウ素、炭素、珪素、溶媒、結合剤および分散剤を混合したスラリーをドクターブレードによりシート化することで、前記接合中間層を作製する工程を更に含むことを特徴とする請求項1記載の炭化珪素焼結体の製造方法。   2. The method according to claim 1, further comprising the step of forming the joining intermediate layer by forming a slurry in which silicon carbide, boron carbide, carbon, silicon, a solvent, a binder and a dispersing agent are mixed into a sheet with a doctor blade. The manufacturing method of the silicon carbide sintered compact of description. 2個以上の炭化珪素成形体を基に一体化された炭化珪素焼結体であって、
炭化珪素成形体の接合により生じた接合層に対してボンビング法によるHeリーク試験を行なったときのHeリーク量が1×10−7Pa・m/sec以下であり、
前記接合層の接合強度は、400MPa以上であることを特徴とする炭化珪素焼結体。
A silicon carbide sintered body integrated on the basis of two or more silicon carbide molded bodies,
The amount of He leak when a He leak test by a bombing method is performed on the bonding layer generated by bonding the silicon carbide molded body is 1 × 10 −7 Pa · m 3 / sec or less,
The silicon carbide sintered body characterized in that the bonding strength of the bonding layer is 400 MPa or more.
JP2011197536A 2011-09-09 2011-09-09 Method for manufacturing silicon carbide sintered body and silicon carbide sintered body Active JP5674602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197536A JP5674602B2 (en) 2011-09-09 2011-09-09 Method for manufacturing silicon carbide sintered body and silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197536A JP5674602B2 (en) 2011-09-09 2011-09-09 Method for manufacturing silicon carbide sintered body and silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JP2013056814A true JP2013056814A (en) 2013-03-28
JP5674602B2 JP5674602B2 (en) 2015-02-25

Family

ID=48133035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197536A Active JP5674602B2 (en) 2011-09-09 2011-09-09 Method for manufacturing silicon carbide sintered body and silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP5674602B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108801A (en) * 1982-12-13 1984-06-23 Ngk Insulators Ltd Radial type ceramic rotor and its manufacturing method
JPH04310580A (en) * 1991-04-04 1992-11-02 Toshiba Ceramics Co Ltd Bonding of formed silicon carbide
JP2005015317A (en) * 2003-06-30 2005-01-20 Sumitomo Electric Ind Ltd Bonded body of ceramic-metal composite, bonding method, and apparatus for manufacturing liquid crystal or semiconductor using the bonded body
JP2010173921A (en) * 2009-01-30 2010-08-12 Taiheiyo Cement Corp Silicon carbide joined body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108801A (en) * 1982-12-13 1984-06-23 Ngk Insulators Ltd Radial type ceramic rotor and its manufacturing method
JPH04310580A (en) * 1991-04-04 1992-11-02 Toshiba Ceramics Co Ltd Bonding of formed silicon carbide
JP2005015317A (en) * 2003-06-30 2005-01-20 Sumitomo Electric Ind Ltd Bonded body of ceramic-metal composite, bonding method, and apparatus for manufacturing liquid crystal or semiconductor using the bonded body
JP2010173921A (en) * 2009-01-30 2010-08-12 Taiheiyo Cement Corp Silicon carbide joined body

Also Published As

Publication number Publication date
JP5674602B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
CN102180674B (en) Preparation method of reaction-sintered SiC ceramic
CN102190495B (en) Preparation method for promoting to sinter zirconium boride or zirconium carbide ceramics by using reaction aids
CN104150940B (en) Silicon nitride and silicon carbide complex phase porous ceramics and preparation method thereof
CN101456737A (en) Boron carbide base composite ceramic and preparation method thereof
CN110655407A (en) Preparation method of silicon carbide ceramic with controllable resistance
CN103833403B (en) The preparation method of the toughness reinforcing boron carbide ceramics matrix material of a kind of silicon carbide whisker and product
CN100432017C (en) Fast prepn process of machinable high-strength SiN-B4C ceramic
CN109320251B (en) Preparation method of high-performance pressureless sintering silicon carbide composite ceramic
CN111004034B (en) Silicon carbide ceramic, method for producing same, and semiconductor component
CN104926309B (en) A kind of without boron or the preparation method of the compact silicon carbide ceramic of rare earth element
CN102184873A (en) Method for preparing diamond-silicon carbide electronic packaging material fast
CN101734920B (en) Titanium nitride porous ceramics and preparation method thereof
CN109180192A (en) The preparation method of carbide composite ceramic, its carbide composite ceramic obtained and application and ceramic
CN104131208A (en) Aluminium oxide-titanium carbide micron composite ceramic cutter material and microwave sintering method thereof
CN103204682A (en) High thermal conductive aluminum nitride ceramic heat dissipation substrate and preparation method thereof
CN107935576B (en) Silicon nitride combined mullite-silicon carbide ceramic composite material and preparation method thereof
CN109467442B (en) Silicon nitride ceramic and preparation method thereof
CN109437955B (en) Quick preparation method of brake material based on polycarbosilane modification
JP5674602B2 (en) Method for manufacturing silicon carbide sintered body and silicon carbide sintered body
CN103981398B (en) A kind of high-performance metal cramic coat material and preparation method thereof
KR101141263B1 (en) ADHESIVE MATERIALS OF WC-Fe BASED HARD METAL AND MANUFACTURING METHOD OF THE SAME
JP6072557B2 (en) Glass molding material
CN112661516A (en) Composite ceramic glass hot bending die and preparation method thereof
CN107805071B (en) Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability
CN111099897A (en) Silicon carbide composite material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250