JP2013054213A - Method for manufacturing optical transmission line fixing member including through-electrode - Google Patents

Method for manufacturing optical transmission line fixing member including through-electrode Download PDF

Info

Publication number
JP2013054213A
JP2013054213A JP2011192505A JP2011192505A JP2013054213A JP 2013054213 A JP2013054213 A JP 2013054213A JP 2011192505 A JP2011192505 A JP 2011192505A JP 2011192505 A JP2011192505 A JP 2011192505A JP 2013054213 A JP2013054213 A JP 2013054213A
Authority
JP
Japan
Prior art keywords
optical transmission
transmission line
fixing member
hole
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011192505A
Other languages
Japanese (ja)
Other versions
JP5866889B2 (en
Inventor
Koichi Nakayama
浩一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011192505A priority Critical patent/JP5866889B2/en
Publication of JP2013054213A publication Critical patent/JP2013054213A/en
Application granted granted Critical
Publication of JP5866889B2 publication Critical patent/JP5866889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical transmission line fixing member that includes through-electrodes, can be electrically connected with a photoelectric conversion element array member, and serves as an electronic component, and to provide an optical transmission line fixing member that includes through-electrodes, into which optical transmission lines can be easily inserted, and that can align the optical transmission lines with high accuracy.SOLUTION: A substrate 1 includes first through-holes and second through-holes formed therein in a thickness direction. With openings on both sides of the second through-holes covered, a conductive material is disposed on side walls of the first through-holes by electrolytic plating to form through-electrodes 10. A conductive material is disposed on at least one side of the substrate by electrolytic plating to form wiring parts 20 to be electrically connected with the through-electrodes, thereby manufacturing an optical transmission line fixing member 100. The optical transmission line fixing member 100 is laminated on a photoelectric conversion element array member 150 including plural photoelectric conversion elements 151 and wiring parts 157 on one side of a substrate 155 by inserting optical transmission lines 110 into the second through-holes.

Description

本発明は、光ファイバ、光導波路、光導波管などの光伝送路を固定する光伝送路固定部材に関する。特に、貫通電極を備えた光伝送路固定部材の製造方法に関する。 The present invention relates to an optical transmission line fixing member that fixes an optical transmission line such as an optical fiber, an optical waveguide, and an optical waveguide. In particular, the present invention relates to a method for manufacturing an optical transmission line fixing member having a through electrode.

ブロードバンドの普及と共に、光ファイバを用いた大容量の高速通信網が国内外で構築され、一般家庭にまで普及するに至っている。光ファイバを用いた通信においては、光電変換素子のアレイが形成された部材と、複数の光ファイバを固定する部材とで構成される接続モジュールが必要となる。 Along with the spread of broadband, high-capacity high-speed communication networks using optical fibers have been built both in Japan and overseas, and have spread to ordinary homes. In communication using an optical fiber, a connection module including a member in which an array of photoelectric conversion elements is formed and a member that fixes a plurality of optical fibers is required.

光ファイバのコア径は、数十マイクロメートルと極めて細いため、高精度の光通信を構築するためには、光信号を電気信号に変換する光電変換素子のアレイと光ファイバとの高精度な接続が接続モジュールにおいて極めて重要である。このような接続は、高度にアライメントされた光ファイバを固定する部材(以下、光伝送路固定部材という)により実現される。 The core diameter of the optical fiber is extremely thin, tens of micrometers. Therefore, in order to construct high-precision optical communication, a high-precision connection between an optical fiber and an array of photoelectric conversion elements that convert optical signals into electrical signals Is very important in the connection module. Such a connection is realized by a member for fixing a highly aligned optical fiber (hereinafter referred to as an optical transmission line fixing member).

このような光伝送路固定部材として、特許文献1には、光ファイバの光軸と平面型光導波路の光軸とがほぼ一致するように、光軸の垂直方向に対して傾斜角θで傾斜させた端面を有する光ファイバと、光軸の垂直方向に対して傾斜角θと略同一の角度で傾斜させた平面型光導波路とがガラス部材とシリコン基板との間に固定された光伝送路固定部材が開示されている。 As such an optical transmission line fixing member, Patent Document 1 discloses that the optical axis of the optical fiber and the optical axis of the planar optical waveguide are inclined at an inclination angle θ with respect to the vertical direction of the optical axis. An optical transmission line in which an optical fiber having an end face and a planar optical waveguide inclined at substantially the same angle as the inclination angle θ with respect to the direction perpendicular to the optical axis are fixed between the glass member and the silicon substrate A securing member is disclosed.

また、特許文献2には、光ファイバと光電変換素子の光軸および距離のアライメントを同時に且つ高精度で実現するために、アライメント用穴を設けた光伝送路固定部材と、アライメント用穴を設けた光電変換素子アレイ部材とを備える接続モジュールにおいて、それぞれのアライメント用穴の開口部に嵌まるようにして光伝送路固定部材と光電変換素子アレイ部材との間にアライメント用ボールを設けることが開示されている。 Further, in Patent Document 2, an optical transmission line fixing member provided with an alignment hole and an alignment hole are provided in order to realize the alignment of the optical axis and the distance between the optical fiber and the photoelectric conversion element simultaneously and with high accuracy. In the connection module including the photoelectric conversion element array member, it is disclosed that an alignment ball is provided between the optical transmission line fixing member and the photoelectric conversion element array member so as to be fitted into the opening of each alignment hole. Has been.

特開2007−17751号公報JP 2007-177751 A 特開2007−17809号公報JP 2007-17809 A

このような光モジュールにおいても高密度実装による高機能化が望まれているが、各部材を面方向に2次元実装することは限界に達しつつあり、より高機能化を実現するためには面方向に垂直な方向に部材を実装する3次元実装構造が必要となっている。しかし、従来の光伝送路固定部材は、単に光ファイバのような光伝送路を固定する機能を有するのみであり、より高機能化することが困難であった。また、光ファイバのような光伝送路は非常に細いため、従来の光伝送路固定部材では、光伝送路を部材自体に通すのが難しい。 Even in such an optical module, high functionality by high-density mounting is desired. However, the two-dimensional mounting of each member in the surface direction is reaching its limit, and in order to realize higher functionality There is a need for a three-dimensional mounting structure in which members are mounted in a direction perpendicular to the direction. However, the conventional optical transmission line fixing member only has a function of fixing an optical transmission line such as an optical fiber, and it has been difficult to achieve higher functionality. In addition, since an optical transmission line such as an optical fiber is very thin, it is difficult for the conventional optical transmission line fixing member to pass the optical transmission line through the member itself.

本発明は、上述の問題を解決するもので、光電変換素子アレイ部材との電気的接続を可能とし、電子部品として機能する貫通電極を備えた光伝送路固定部材を提供する。また、本発明は、光伝送路を差し込みやすく、且つ、高精度にアライメントすることが可能な貫通電極を備えた光伝送路固定部材を提供する。 The present invention solves the above-described problems, and provides an optical transmission line fixing member including a through electrode that can be electrically connected to a photoelectric conversion element array member and functions as an electronic component. In addition, the present invention provides an optical transmission line fixing member including a through electrode that can be easily inserted into the optical transmission line and can be aligned with high accuracy.

本発明の一実施形態によると、第1貫通孔と、第2貫通孔とが厚さ方向に沿って形成された基板を準備する工程と、前記第2貫通孔の両側の開口部を塞いだ状態で、前記第1貫通孔の側壁に電解めっきにより導電材を配設する電解めっき工程と、前記基板の少なくとも片側に電解めっきにより導電材を配設して、前記貫通電極に電気的に接続する配線部を形成する工程と、を備えることを特徴とする貫通電極を備えた光伝送路固定部材の製造方法が提供される。 According to an embodiment of the present invention, the step of preparing a substrate in which the first through hole and the second through hole are formed along the thickness direction, and the openings on both sides of the second through hole are blocked. In the state, an electroplating step of disposing a conductive material on the side wall of the first through hole by electroplating, and disposing the conductive material by electrolytic plating on at least one side of the substrate and electrically connecting to the through electrode And a step of forming a wiring portion to be provided. A method for manufacturing an optical transmission line fixing member having a through electrode is provided.

本発明の一実施形態に係る光伝送路固定部材の製造方法は、第2貫通孔の両側の開口部を塞いだ状態で、第1貫通孔の側壁及び基板の少なくとも片側に導電材を配設する電解めっき工程を備えることにより、第2貫通孔の側壁に導電材を配設した貫通電極と、貫通電極に電気的に接続する配線部とを形成することができる。このため、第1貫通孔は光伝送路を高精度にアライメントして固定する治具として機能し、配線部は光電変換素子アレイ部材との電気的接続を可能にする、電子部品として機能する貫通電極を備えた光伝送路固定部材を提供することができる。 In the method for manufacturing an optical transmission line fixing member according to one embodiment of the present invention, a conductive material is disposed on at least one side of the side wall of the first through hole and the substrate in a state where the openings on both sides of the second through hole are closed. By including the electrolytic plating step to be performed, it is possible to form a through electrode in which a conductive material is disposed on the side wall of the second through hole, and a wiring portion that is electrically connected to the through electrode. For this reason, the first through hole functions as a jig that aligns and fixes the optical transmission path with high accuracy, and the wiring portion is a through hole that functions as an electronic component that enables electrical connection with the photoelectric conversion element array member. An optical transmission line fixing member provided with an electrode can be provided.

前記基板の両側に開口部を有する中空構造となるように、前記導電材が前記第1貫通孔の側壁に沿って配設されてもよい。 The conductive material may be disposed along a side wall of the first through hole so as to have a hollow structure having openings on both sides of the substrate.

本発明の一実施形態に係る光伝送路固定部材の製造方法は、導電材を第1貫通孔に完全に充填するものではなく、導電材を第1貫通孔の側壁に沿って配設するため、貫通電極の導電性を確保しつつ、製造にかかる時間と製造コストを低減することができる。 In the method for manufacturing an optical transmission line fixing member according to an embodiment of the present invention, the conductive material is not completely filled in the first through hole, and the conductive material is disposed along the side wall of the first through hole. It is possible to reduce the manufacturing time and manufacturing cost while ensuring the conductivity of the through electrode.

前記第1貫通孔の側壁に配設された導電材と、前記基板の片側に配設された導電材とは、同時に形成されてもよい。 The conductive material disposed on the side wall of the first through hole and the conductive material disposed on one side of the substrate may be formed simultaneously.

本発明の一実施形態に係る光伝送路固定部材の製造方法は、第1貫通孔の側壁に配設された導電材と、基板の片側に配設された導電材とを同一の電解めっき工程により形成することにより、貫通電極と配線部とが同時に形成可能なため、製造にかかる時間と製造コストを低減することができる。 In the method for manufacturing an optical transmission line fixing member according to one embodiment of the present invention, the conductive material disposed on the side wall of the first through hole and the conductive material disposed on one side of the substrate are subjected to the same electrolytic plating step. By forming the through electrode, the through electrode and the wiring portion can be formed at the same time, so that the manufacturing time and manufacturing cost can be reduced.

前記第2貫通孔の片側の開口部の径が前記基板内部の前記第2貫通孔の径よりも大きくなるテーパー部を形成する工程をさらに備えてもよい。 You may further provide the process of forming the taper part from which the diameter of the opening part of the one side of the said 2nd through-hole becomes larger than the diameter of the said 2nd through-hole inside the said board | substrate.

本発明の一実施形態に係る光伝送路固定部材の製造方法は、第2貫通孔の片側の開口部の径が基板内部の第2貫通孔の径よりも大きくなるテーパー部を形成することにより、基板内部の第2貫通孔部位では光伝送路を高精度にアライメントして固定し、テーパー部では光伝送路を第2貫通孔に挿入しやすくした貫通電極を備えた光伝送路固定部材を提供することができる。 The method for manufacturing an optical transmission line fixing member according to an embodiment of the present invention forms a tapered portion in which the diameter of the opening on one side of the second through hole is larger than the diameter of the second through hole inside the substrate. An optical transmission line fixing member provided with a through electrode that makes it easy to insert the optical transmission line into the second through-hole at the tapered portion, and aligns and fixes the optical transmission line with high precision at the second through-hole portion inside the substrate. Can be provided.

前記導電材は、前記第1貫通孔の側壁に薄膜状に形成されてもよい。 The conductive material may be formed in a thin film on the side wall of the first through hole.

本発明の一実施形態に係る光伝送路固定部材の製造方法は、導電材を第1貫通孔に完全に充填するものではなく、導電材を第1貫通孔の側壁に薄膜状に形成するため、貫通電極の導電性を確保しつつ、製造にかかる時間と製造コストを低減することができる。 The method for manufacturing an optical transmission line fixing member according to an embodiment of the present invention does not completely fill the first through hole with the conductive material but forms the conductive material in a thin film on the side wall of the first through hole. It is possible to reduce the manufacturing time and manufacturing cost while ensuring the conductivity of the through electrode.

本発明によると、光電変換素子アレイ部材との電気的接続を可能とし、電子部品として機能する貫通電極を備えた光伝送路固定部材が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the optical transmission line fixing member provided with the penetration electrode which enables an electrical connection with a photoelectric conversion element array member and functions as an electronic component is provided.

一実施形態に係る本発明の光伝送路固定部材100を説明する図である。It is a figure explaining the optical transmission line fixing member 100 of this invention which concerns on one Embodiment. 一実施形態に係る本発明の光伝送路固定部材100を光電変換素子アレイ部材150に接続した様子を示す断面図である。It is sectional drawing which shows a mode that the optical transmission line fixing member 100 of this invention which concerns on one Embodiment was connected to the photoelectric conversion element array member 150. FIG. 一実施形態に係る本発明の光伝送路固定部材100の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the optical transmission line fixing member 100 of this invention which concerns on one Embodiment. 一実施形態に係る本発明の光伝送路固定部材100の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the optical transmission line fixing member 100 of this invention which concerns on one Embodiment. 一実施形態に係る本発明の光伝送路固定部材100の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the optical transmission line fixing member 100 of this invention which concerns on one Embodiment. 一実施形態に係る本発明の光伝送路固定部材100の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the optical transmission line fixing member 100 of this invention which concerns on one Embodiment. 一実施例に係る本発明の光伝送路固定部材200のSEM像であり、(a)は貫通孔230のテーパー部231を斜め上方から撮影した写真であり、(b)は光伝送路固定部材200の断面写真である。It is a SEM image of the optical transmission line fixing member 200 of this invention which concerns on one Example, (a) is the photograph which image | photographed the taper part 231 of the through-hole 230 from diagonally upward, (b) is an optical transmission line fixing member. It is 200 cross-sectional photographs. 参考例の光伝送路固定部材900のSEM像であり、(a)は貫通孔930のテーパー部931を斜め上方から撮影した写真であり、(b)は光伝送路固定部材900の断面写真である。It is a SEM image of the optical transmission line fixing member 900 of the reference example, (a) is a photograph of the tapered portion 931 of the through-hole 930 taken obliquely from above, and (b) is a cross-sectional photograph of the optical transmission line fixing member 900. is there. 一実施例に係る本発明の光伝送路固定用の貫通孔を上方から光学顕微鏡により撮影した写真である。It is the photograph which image | photographed the through-hole for fixing the optical transmission line of this invention which concerns on one Example from the upper direction with the optical microscope.

以下、図面を参照して本発明に係る貫通電極を備えた光伝送路固定部材の製造方法について説明する。但し、本発明の貫通電極を備えた光伝送路固定部材の製造方法は多くの異なる態様で実施することが可能であり、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, a method for manufacturing an optical transmission line fixing member having a through electrode according to the present invention will be described with reference to the drawings. However, the method of manufacturing an optical transmission line fixing member having a through electrode according to the present invention can be implemented in many different modes, and is limited to the description of the embodiments and examples shown below. It is not something. Note that in the drawings referred to in this embodiment mode and examples, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.

特許文献1のような従来の光伝送路固定部材は、基板の厚み方向と垂直な方向に光ファイバ等の光伝送路を配置していたため、光伝送路固定部材に積極的に電子部品として機能するような加工を施すことが困難であった。本発明者は、基板の厚み方向と平行な方向に光伝送路を配置することにより、光伝送路固定部材と光電変換素子アレイ部材とを面接触させ、配線部を設けた光伝送路固定部材と光電変換素子アレイ部材との電気的な接続を実現することを想到し、発明に至った。さらに、本発明者は、光伝送路固定部材に貫通電極を配設することにより、配線部を設けた面とは反対側の光伝送路固定部材の面にまで電気的な導通を付与し、電子部品として機能性を向上させることに想到した。 Since the conventional optical transmission line fixing member such as Patent Document 1 has an optical transmission line such as an optical fiber arranged in a direction perpendicular to the thickness direction of the substrate, the optical transmission line fixing member positively functions as an electronic component. It was difficult to perform such processing. The present inventor has arranged the optical transmission path in a direction parallel to the thickness direction of the substrate, thereby bringing the optical transmission path fixing member and the photoelectric conversion element array member into surface contact, and providing an optical transmission path fixing member provided with a wiring portion. The inventors have conceived of realizing electrical connection between the photoelectric conversion element array member and the photoelectric conversion element array member, resulting in the invention. Furthermore, the present inventor provides electrical conduction to the surface of the optical transmission line fixing member opposite to the surface on which the wiring portion is provided by disposing the through electrode on the optical transmission line fixing member, The idea was to improve functionality as an electronic component.

(光伝送路固定部材)
本実施形態に係る光伝送路固定部材は、基板と、基板の厚さ方向に沿って穿設され、側壁に導電材が配設された中空構造の貫通電極と、基板の厚さ方向に沿って穿設された光伝送路固定用の貫通孔と、基板の片側に配置され貫通電極と電気的に接続する配線部と、を備える。
(Optical transmission line fixing member)
The optical transmission line fixing member according to this embodiment includes a substrate, a through-hole electrode having a hollow structure that is perforated along the thickness direction of the substrate, and a conductive material is disposed on the side wall, and along the thickness direction of the substrate. And a through hole for fixing the optical transmission line, and a wiring portion disposed on one side of the substrate and electrically connected to the through electrode.

図1は、本発明の一実施形態に係る貫通電極を備えた光伝送路固定部材100(以下、光伝送路固定部材100という)の模式図である。図1(a)は光伝送路固定部材100の斜視図であり、図1(b)は図1(a)の鎖線X−X’における光伝送路固定部材100の断面図である。光伝送路固定部材100は、貫通電極10、貫通電極10に電気的に接続された配線部20及び光伝送路固定用の貫通孔30を基板1に備える。 FIG. 1 is a schematic view of an optical transmission line fixing member 100 (hereinafter referred to as an optical transmission line fixing member 100) provided with a through electrode according to an embodiment of the present invention. FIG. 1A is a perspective view of the optical transmission line fixing member 100, and FIG. 1B is a cross-sectional view of the optical transmission line fixing member 100 taken along a chain line X-X ′ in FIG. The optical transmission path fixing member 100 includes a through electrode 10, a wiring portion 20 electrically connected to the through electrode 10, and a through hole 30 for fixing an optical transmission path in the substrate 1.

図1(b)に示したように、貫通電極10は導電材21により内部を完全には充填されておらず、貫通孔の側壁に沿った薄膜状の導電材21を配設したのみの、基板の両側が開口した中空構造を有する。このような構成を有することにより、貫通電極10は光伝送路固定部材100の両面に対する導電性を確保しつつ、製造にかかる時間と製造コストを低減することができる。 As shown in FIG. 1B, the through electrode 10 is not completely filled with the conductive material 21, and only the thin film-shaped conductive material 21 is provided along the side wall of the through hole. It has a hollow structure in which both sides of the substrate are open. By having such a configuration, the through electrode 10 can reduce the time and manufacturing cost for manufacturing while ensuring the conductivity on both surfaces of the optical transmission line fixing member 100.

また、図1(b)に示したように、光伝送路固定部材100において、光伝送路固定用の貫通孔30は、片側の開口部の径が基板1内部の径よりも大きくなるテーパー部31を備える。テーパー部31は光伝送路を貫通孔30に挿入しやすくするための構造である。貫通孔30は光伝送路を高精度にアライメントして固定する治具として機能させるため、光伝送路の径よりもわずかに大きな径を有することが好ましい。貫通孔30の径は、例えば光伝送路の径の110%程度としてもよい。また、テーパー部31においては、光伝送路の挿入を開始する側の開口部の径を、貫通孔30の径の150%〜300%程度の値とすることにより、光伝送路を挿入しやすくすることができる。光伝送路の挿入をさらに容易にするために、テーパー部31の形状を徐々に拡径する部位を含み、かつ基板1の外側に向かって凸状の曲面となるようにしておくことが好ましい。徐々に拡径する部位が、貫通孔の全体の深さの値の2/3以下であることが好ましい。 Further, as shown in FIG. 1B, in the optical transmission line fixing member 100, the through hole 30 for fixing the optical transmission line has a tapered portion in which the diameter of the opening on one side is larger than the diameter inside the substrate 1. 31 is provided. The tapered portion 31 is a structure for facilitating insertion of the optical transmission path into the through hole 30. The through hole 30 preferably has a diameter slightly larger than the diameter of the optical transmission path in order to function as a jig for aligning and fixing the optical transmission path with high accuracy. The diameter of the through hole 30 may be about 110% of the diameter of the optical transmission path, for example. Moreover, in the taper part 31, it is easy to insert an optical transmission line by setting the diameter of the opening on the side where the insertion of the optical transmission line is started to a value of about 150% to 300% of the diameter of the through hole 30. can do. In order to further facilitate the insertion of the optical transmission line, it is preferable that the tapered portion 31 includes a portion where the diameter is gradually increased and has a convex curved surface toward the outside of the substrate 1. It is preferable that the part where the diameter gradually increases is 2/3 or less of the entire depth value of the through hole.

(光モジュール)
光モジュールは、基板の厚さ方向沿って形成された貫通電極及び光伝送路固定用の複数の貫通孔を備え、基板の両側に貫通電極と電気的に接続された配線部を有する光伝送路固定部材と、基板の片側に複数の光電変換素子及び配線部を備えた光電変換素子アレイ部材とが積層して構成され、光伝送路の配線部と光電変換素子アレイ部材の配線部とがバンプを介して電気的に接続されており、複数の貫通孔は複数の光電変換素子に対応する位置に配置するものである。複数の貫通孔にはそれぞれ光伝送路が挿入される。
(Optical module)
An optical module includes a through electrode formed along a thickness direction of a substrate and a plurality of through holes for fixing the optical transmission channel, and an optical transmission channel having wiring portions electrically connected to the through electrode on both sides of the substrate A fixing member and a photoelectric conversion element array member having a plurality of photoelectric conversion elements and wiring portions on one side of the substrate are laminated, and the wiring portion of the optical transmission path and the wiring portion of the photoelectric conversion element array member are bumped. The plurality of through holes are arranged at positions corresponding to the plurality of photoelectric conversion elements. An optical transmission line is inserted into each of the plurality of through holes.

図2は、本発明の一実施形態に係る光伝送路固定部材100を光電変換素子アレイ部材150に接続した様子を示す断面図である。光電変換素子アレイ部材150は、例えば光電変換素子151が配設されたアレイ部材153を支持基板155が支持する構造を有する。また、光電変換素子アレイ部材150は光伝送路固定部材100との接続面に配線部157を備える。光伝送路110は、光伝送路固定部材100のテーパー部31から貫通孔30に挿入されて固定される。光伝送路110の固定には接着剤などを用いてもよい。また、光伝送路110は光電変換素子アレイ部材150に配設された光電変換素子151に接続し、光電変換素子151との間で光信号を送受信する。 FIG. 2 is a cross-sectional view showing a state where the optical transmission line fixing member 100 according to one embodiment of the present invention is connected to the photoelectric conversion element array member 150. For example, the photoelectric conversion element array member 150 has a structure in which a support substrate 155 supports an array member 153 in which the photoelectric conversion elements 151 are disposed. Further, the photoelectric conversion element array member 150 includes a wiring portion 157 on the connection surface with the optical transmission line fixing member 100. The optical transmission path 110 is inserted into the through hole 30 from the tapered portion 31 of the optical transmission path fixing member 100 and fixed. An adhesive or the like may be used for fixing the optical transmission line 110. The optical transmission path 110 is connected to the photoelectric conversion element 151 disposed in the photoelectric conversion element array member 150, and transmits and receives an optical signal to and from the photoelectric conversion element 151.

光電変換素子151は、光信号と電気信号とを変換する素子であって、公知のものを用いることができる。図示しないが、光電変換素子151と配線部157とは電気的に接続されている。また、光電変換素子アレイ部材150は貫通電極を備えて、光電変換素子151からの電気信号を光電変換素子アレイ部材150の裏面から取り出してもよい。本実施形態においては、光伝送路固定部材100に配設された配線部20と、光電変換素子アレイ部材150に配設された配線部157とは、バンプ170を介して電気的に接続することができる。このような構成を有することにより、本実施形態においては、例えば光電変換素子151からの電気信号を光電変換素子アレイ部材150から光伝送路固定部材100を介して、外部へ取り出すこともでき、また、光伝送路固定部材100を介して入力された電気信号を光電変換素子151から光信号として光伝送路110に供給することもできる。 The photoelectric conversion element 151 is an element that converts an optical signal and an electrical signal, and a known element can be used. Although not shown, the photoelectric conversion element 151 and the wiring portion 157 are electrically connected. Further, the photoelectric conversion element array member 150 may include a through electrode, and an electric signal from the photoelectric conversion element 151 may be taken out from the back surface of the photoelectric conversion element array member 150. In the present embodiment, the wiring part 20 disposed on the optical transmission line fixing member 100 and the wiring part 157 disposed on the photoelectric conversion element array member 150 are electrically connected via the bumps 170. Can do. By having such a configuration, in the present embodiment, for example, an electrical signal from the photoelectric conversion element 151 can be taken out from the photoelectric conversion element array member 150 via the optical transmission line fixing member 100, and The electric signal input through the optical transmission line fixing member 100 can be supplied from the photoelectric conversion element 151 to the optical transmission line 110 as an optical signal.

本実施形態に係る光伝送路固定部材100は、光伝送路110を挿入するためのテーパー部31を配線部20が形成された基板1の面とは反対側の面に配設するため、光伝送路110の挿入時に光伝送路110が配線部20に直接触れることはない。したがって、光伝送路110の貫通孔30への挿入時に、光伝送路110による配線部20の損傷を防止することができる。 The optical transmission line fixing member 100 according to the present embodiment is provided with a tapered portion 31 for inserting the optical transmission line 110 on the surface opposite to the surface of the substrate 1 on which the wiring portion 20 is formed. The optical transmission line 110 does not directly touch the wiring unit 20 when the transmission line 110 is inserted. Therefore, when the optical transmission line 110 is inserted into the through hole 30, damage to the wiring part 20 due to the optical transmission line 110 can be prevented.

以上説明したように、本実施形態に係る光伝送路固定部材は、光電変換素子アレイ部材との電気的接続を可能とし、光伝送路固定部材を電子部品として機能させることができる。また、本実施形態に係る光伝送路固定部材は、光伝送路を差し込みやすく、且つ、高精度にアライメントすることができる。 As described above, the optical transmission line fixing member according to the present embodiment can be electrically connected to the photoelectric conversion element array member, and the optical transmission line fixing member can function as an electronic component. Moreover, the optical transmission line fixing member according to the present embodiment can be easily inserted into the optical transmission line and can be aligned with high accuracy.

(製造方法)
上述した本発明の一実施形態に係る光伝送路固定部材100の製造方法について以下に説明する。本発明の光伝送路固定部材の製造には、公知の半導体製造方法及び材料を用いることができる。特にMEMSの製造方法及び材料を好適に用いることができる。図3〜図6は、光伝送路固定部材100の製造方法を説明する模式図である。
(Production method)
A method for manufacturing the optical transmission line fixing member 100 according to the embodiment of the present invention described above will be described below. For manufacturing the optical transmission line fixing member of the present invention, known semiconductor manufacturing methods and materials can be used. In particular, MEMS manufacturing methods and materials can be suitably used. 3 to 6 are schematic views illustrating a method for manufacturing the optical transmission line fixing member 100. FIG.

光伝送路固定部材100用の基板1を準備する。基板1は、挿入される光伝送路を固定し、かつインターポーザーのコアとなるものである。基板1の厚さに制限はないが、取り扱い性を考慮して、例えば100μm〜800μmの範囲とすることが好ましい。本実施形態において、基板1は特に制限はないが、シリコン、炭化シリコン、ガリウム砒素等の半導体基板、ガラス、サファイア、石英、樹脂等の絶縁性基板等を用いることができる。なかでもドライエッチングによる微細加工に適したシリコン基板を用いることが好ましい(図3(a))。 A substrate 1 for the optical transmission line fixing member 100 is prepared. The substrate 1 fixes an optical transmission path to be inserted and serves as an interposer core. Although there is no restriction | limiting in the thickness of the board | substrate 1, it considers a handleability and it is preferable to set it as the range of 100 micrometers-800 micrometers, for example. In the present embodiment, the substrate 1 is not particularly limited, but a semiconductor substrate such as silicon, silicon carbide, and gallium arsenide, an insulating substrate such as glass, sapphire, quartz, and resin can be used. In particular, it is preferable to use a silicon substrate suitable for fine processing by dry etching (FIG. 3A).

基板1の両面にレジスト51を塗布して(図3(b))、マスク53及びマスク53’を形成する。マスク53を用いてシリコン基板1を反対側に形成されたマスク53’が露出するまでエッチングして(図3(c))、貫通電極10用の貫通孔15及び光伝送路固定用の貫通孔30となる貫通孔35を形成する。貫通孔15の径は、仕様に応じて適宜設定すればよく、例えば、10μm〜200μmの範囲としてもよい。貫通孔35の径は、挿入する光伝送路の径よりも大きく設定しておくとよい。その後、マスク53及びマスク53’を除去し、貫通孔15及び貫通孔35を備えた基板1を得る(図3(d))。エッチングには、DRIE(Deep Reactive Ion Etching)を好適に用いることができる。本実施形態においては、上記のようなMEMSの製造技術を用いるため、貫通孔15及び貫通孔35の位置精度及び加工精度が高いものとなる。したがって、貫通孔30に固定される光伝送路のアライメントを精度の高いものとすることができる。 A resist 51 is applied on both surfaces of the substrate 1 (FIG. 3B) to form a mask 53 and a mask 53 '. The silicon substrate 1 is etched using the mask 53 until the mask 53 ′ formed on the opposite side is exposed (FIG. 3C), and the through hole 15 for the through electrode 10 and the through hole for fixing the optical transmission line A through hole 35 to be 30 is formed. What is necessary is just to set the diameter of the through-hole 15 suitably according to a specification, for example, it is good also as the range of 10 micrometers-200 micrometers. The diameter of the through hole 35 may be set larger than the diameter of the optical transmission line to be inserted. Thereafter, the mask 53 and the mask 53 'are removed, and the substrate 1 provided with the through holes 15 and the through holes 35 is obtained (FIG. 3D). For etching, DRIE (Deep Reactive Ion Etching) can be suitably used. In the present embodiment, since the MEMS manufacturing technique as described above is used, the positional accuracy and processing accuracy of the through hole 15 and the through hole 35 are high. Therefore, the alignment of the optical transmission path fixed to the through hole 30 can be made highly accurate.

つづいて、貫通孔15及び貫通孔35が形成された基板1の両面にいわゆる感光性ドライフィルムレジストと呼ばれるフィルム状のレジスト51をラミネートして(図4(a))、フォトリソグラフィにより導電材を配設する位置を開口させてマスク53及びマスク53’を形成する(図4(b))。ここで、マスク53は、貫通孔30のテーパー部31を形成するためのものであり、貫通孔30の径の150%〜300%程度の径となるように貫通孔35の位置に形成される。 Subsequently, a film-like resist 51 called a so-called photosensitive dry film resist is laminated on both surfaces of the substrate 1 in which the through holes 15 and the through holes 35 are formed (FIG. 4A), and a conductive material is applied by photolithography. A mask 53 and a mask 53 ′ are formed by opening the positions to be disposed (FIG. 4B). Here, the mask 53 is for forming the tapered portion 31 of the through hole 30, and is formed at the position of the through hole 35 so as to have a diameter of about 150% to 300% of the diameter of the through hole 30. .

マスク53’が形成された基板1の面に対してドライエッチングを行う(図4(c))。本実施形態においては、光伝送路の挿入をさらに容易にするために、徐々に拡径する部位を含み、かつ基板1の外側に向かって凸状となるようにテーパー部31を形成するために、等方性のエッチングガスを用いながら、イオンを異方性に照射することが好ましい。テーパー部31は、このような等方性と異方性のバランスを制御することにより形成することができる。 Dry etching is performed on the surface of the substrate 1 on which the mask 53 'is formed (FIG. 4C). In the present embodiment, in order to further facilitate the insertion of the optical transmission line, the tapered portion 31 is formed so as to include a portion that gradually increases in diameter and to be convex toward the outside of the substrate 1. It is preferable to irradiate ions anisotropically while using an isotropic etching gas. The tapered portion 31 can be formed by controlling such a balance between isotropic property and anisotropy.

通常の等方性のエッチングガスを用いたエッチングでは、マスク下にアンダーカットを生じ断面視において、基板の内側に凸状の曲面となった等方性のエッチング面が形成される。これに対して、例えば、エッチャントの指向性を高めると断面視において、略垂直に近い異法性の高いエッチング面が形成される。エッチャントの指向性を制御することで、エッチング面が変化することが分かる。したがって、エッチャントの指向性を制御して等方性の成分よりも異方性の成分が富んだ状態を実現することで、徐々に拡径する部位を含み、かつ基板の外側に凸状の曲面となったテーパー部31を形成することができる。徐々に拡径する部位が、貫通孔の全体の深さの値の2/3以下であることが好ましい。 In etching using a normal isotropic etching gas, an undercut is formed under the mask, and an isotropic etching surface having a convex curved surface is formed inside the substrate in a cross-sectional view. On the other hand, for example, when the directivity of the etchant is increased, an etching surface with high illegality close to vertical is formed in a cross-sectional view. It can be seen that the etched surface changes by controlling the directivity of the etchant. Therefore, by controlling the directivity of the etchant to realize a state in which the anisotropic component is richer than the isotropic component, the curved surface includes a portion that gradually expands and has a convex shape outside the substrate. Thus, the tapered portion 31 can be formed. It is preferable that the part where the diameter gradually increases is 2/3 or less of the entire depth value of the through hole.

例えば、等方性のエッチングガスとして、六フッ化硫黄(SF6)などを用い、通常のDRIEよりも高周波パワーを高くして、圧力を高くする(低真空条件)ことにより実現することができる。これらの条件及び処理時間を調整することにより所望の曲率を有するテーパー部31を形成することができる。貫通孔35にテーパー部31を形成した基板1からマスク53及びマスク53’を除去する(図4(d))。テーパー部31により拡径された貫通孔35の光伝送路挿入側の開口径を、貫通孔35の径の150%〜300%程度となるように形成する。 For example, it can be realized by using sulfur hexafluoride (SF 6 ) or the like as an isotropic etching gas and by increasing the high-frequency power and increasing the pressure (low vacuum condition) compared to normal DRIE. . By adjusting these conditions and the processing time, the tapered portion 31 having a desired curvature can be formed. The mask 53 and the mask 53 ′ are removed from the substrate 1 in which the tapered portion 31 is formed in the through hole 35 (FIG. 4D). The opening diameter on the optical transmission line insertion side of the through hole 35 expanded in diameter by the tapered portion 31 is formed to be about 150% to 300% of the diameter of the through hole 35.

次に、基板1を熱酸化処理あるいはCVD法により絶縁膜(例えば、SiO2)3を形成する(図5(a))。絶縁膜3の厚さに制限はないが、所望の電気絶縁性が得られるように設定し、例えば、0.1μm〜2μmの範囲とするとよい。絶縁膜3を形成した基板1は、その後の電解めっきのために、シード層61を形成する(図5(b))。シード層61は、バリア層(密着層を兼ねる)と導電層とを積層したもの、導電層を単層としたものなどを用いることができる。バリア層(密着層を兼ねる)としては、Ti、TiN、Crなどを用いることができる。導電層としては、Cu、Auなどを用いることができる。典型的には、シード層61は基板1側にTi層、その上にCu層(以下、Cu/Ti層)、Cu層/TiN層又はCu/Cr層などにより構成することができる。シード層61の厚さに制限はないが、例えば、0.1μm〜1μmの範囲とするとよい。基板1の厚さによっては、貫通孔15の側壁全体にシード層61を形成するために、貫通孔15の開口部の両側からシード層61を成膜する処理を行うとよい。シード層61の成膜方法は、PVD、スパッタ法などの真空成膜法から適宜選択できる。 Next, an insulating film (for example, SiO 2 ) 3 is formed on the substrate 1 by thermal oxidation or CVD (FIG. 5A). Although there is no restriction | limiting in the thickness of the insulating film 3, It is good to set so that desired electrical insulation may be obtained, for example, it is good to set it as the range of 0.1 micrometer-2 micrometers. The substrate 1 on which the insulating film 3 is formed forms a seed layer 61 for subsequent electrolytic plating (FIG. 5B). As the seed layer 61, a layer in which a barrier layer (also serving as an adhesion layer) and a conductive layer are stacked, a layer in which the conductive layer is a single layer, or the like can be used. Ti, TiN, Cr, or the like can be used as the barrier layer (also serving as an adhesion layer). As the conductive layer, Cu, Au, or the like can be used. Typically, the seed layer 61 can be composed of a Ti layer on the substrate 1 side and a Cu layer (hereinafter referred to as Cu / Ti layer), a Cu layer / TiN layer, a Cu / Cr layer, or the like thereon. Although there is no restriction | limiting in the thickness of the seed layer 61, For example, it is good to set it as the range of 0.1 micrometer-1 micrometer. Depending on the thickness of the substrate 1, the seed layer 61 may be formed from both sides of the opening of the through hole 15 in order to form the seed layer 61 on the entire side wall of the through hole 15. The film formation method of the seed layer 61 can be appropriately selected from vacuum film formation methods such as PVD and sputtering.

シード層61を形成した基板1の両面にいわゆる感光性ドライフィルムレジストと呼ばれるフィルム状のレジスト51をラミネートして(図5(c))、フォトリソグラフィにより導電材を配設する位置を開口させてマスク55を形成する(図5(d))。ここで、マスク55は貫通電極10の側面に薄膜状の導電材21を配設し、配線部20を形成するためのものである。シード層61に給電する電解めっきを施して貫通孔15の側壁および基板1上に導電材21を配設して、貫通電極10および配線部20を形成する(図6(a))。導電材21としては、例えば銅(Cu)、金(Au)等を用いることができる。なかでも銅(Cu)は材料コストが低く好ましい。導電材を貫通孔15内に充填するように配設してもよいが、薄膜状の導電材21を貫通孔15の側壁に沿って配設することが生産効率上好ましい。導電材21の厚さに制限はないが、例えば、1μm〜20μmの範囲の薄膜状とするとよい。好ましくは、5μm〜15μmの範囲の薄膜状とするとよい。 A film-like resist 51 called a so-called photosensitive dry film resist is laminated on both surfaces of the substrate 1 on which the seed layer 61 is formed (FIG. 5C), and the position where the conductive material is disposed is opened by photolithography. A mask 55 is formed (FIG. 5D). Here, the mask 55 is for forming the wiring part 20 by disposing the thin-film conductive material 21 on the side surface of the through electrode 10. Electrolytic plating for supplying power to the seed layer 61 is performed to dispose the conductive material 21 on the side wall of the through hole 15 and the substrate 1, thereby forming the through electrode 10 and the wiring portion 20 (FIG. 6A). As the conductive material 21, for example, copper (Cu), gold (Au), or the like can be used. Of these, copper (Cu) is preferable because of its low material cost. Although the conductive material may be disposed so as to fill the through hole 15, it is preferable in terms of production efficiency that the thin film-shaped conductive material 21 is disposed along the side wall of the through hole 15. Although there is no restriction | limiting in the thickness of the electrically conductive material 21, For example, it is good to set it as the thin film form of the range of 1 micrometer-20 micrometers. Preferably, a thin film in the range of 5 μm to 15 μm is used.

貫通孔15の側壁と基板1への導電材21の配設は、別々の工程で行ってもよいが、同一の電解めっき工程で行うことで、生産効率が向上する。なお、同一の電解めっき工程で貫通孔15の側壁と基板1への導電材21の配設を行うため、各導電材の厚さは略同じ値となる。その後、基板1からマスク55を除去する(図6(b))。このようにすることにより、導電材21が配設されていない光伝送路固定用の貫通孔30が形成される。なお、本実施形態においては、貫通孔35にシード層61を形成した貫通孔30の例を示したが、本発明に係る光伝送路固定部材100の光伝送路固定用の貫通孔は、光伝送路を高精度にアライメントして固定できればよく、シード層61を形成しなくてもよい。 The arrangement of the conductive material 21 on the side wall of the through hole 15 and the substrate 1 may be performed in separate steps, but the production efficiency is improved by performing the same electrolytic plating step. In addition, since the conductive material 21 is disposed on the side wall of the through hole 15 and the substrate 1 in the same electrolytic plating process, the thickness of each conductive material has substantially the same value. Thereafter, the mask 55 is removed from the substrate 1 (FIG. 6B). By doing in this way, the through-hole 30 for optical transmission line fixation in which the electrically conductive material 21 is not arrange | positioned is formed. In the present embodiment, the example of the through hole 30 in which the seed layer 61 is formed in the through hole 35 is shown, but the through hole for fixing the optical transmission line of the optical transmission line fixing member 100 according to the present invention is an optical transmission line. It suffices if the transmission path can be aligned and fixed with high accuracy, and the seed layer 61 need not be formed.

必要に応じて基板1上にさらに多層配線層(図示せず)を形成して、光伝送路固定部材100を得る。多層配線層(図示せず)は、公知のビルドアップ配線形成技術を用いて形成することができる。多層配線層(図示せず)は、基板1の両側に形成されてもよい。さらに電極パッド等を任意に作製することもできる。 If necessary, a multilayer wiring layer (not shown) is further formed on the substrate 1 to obtain the optical transmission line fixing member 100. A multilayer wiring layer (not shown) can be formed using a known build-up wiring forming technique. A multilayer wiring layer (not shown) may be formed on both sides of the substrate 1. Furthermore, an electrode pad or the like can be arbitrarily produced.

以上説明したように、本実施形態に係る光伝送路固定部材の製造方法は、光電変換素子アレイ部材との電気的接続を可能とし、電子部品として機能する貫通電極を備えた光伝送路固定部材を提供することができる。また、本実施形態に係る光伝送路固定部材は、光伝送路を差し込みやすく、且つ、高精度にアライメントすることが可能な貫通電極を備えた光伝送路固定部材を提供することができる。 As described above, the method for manufacturing an optical transmission line fixing member according to the present embodiment enables an electrical connection with the photoelectric conversion element array member, and an optical transmission line fixing member including a through electrode that functions as an electronic component. Can be provided. Moreover, the optical transmission line fixing member according to the present embodiment can provide an optical transmission line fixing member including a through electrode that can be easily inserted into the optical transmission line and can be aligned with high accuracy.

上述した本発明に係る貫通電極を備えた光伝送路固定部材の製造方法について、実施例を用いて発明の要部をより詳細に説明する。 About the manufacturing method of the optical-transmission-path fixing member provided with the penetration electrode which concerns on this invention mentioned above, the principal part of invention is demonstrated in detail using an Example.

厚さ500μmのシリコン基板に、貫通電極形成用の第1貫通孔を150μm×160μmの矩形開口、光ファイバ固定用の第2貫通孔をφ90μmの円形開口としてDRIEにより形成した。シリコン基板の両面にドライフィルムレジスト(ニチゴーモートン社製)をラミネートし、第2貫通孔の周囲をフォトリソグラフィにより開口させた。ドライフィルムレジストの開口はφ180μmであった。このドライフィルムレジストをマスクとして、等法性のエッチングガスとしてSF6を用いてエッチングを行った。 A first through hole for forming a through electrode was formed as a rectangular opening of 150 μm × 160 μm and a second through hole for fixing an optical fiber was formed as a circular opening of φ90 μm on a silicon substrate having a thickness of 500 μm by DRIE. A dry film resist (manufactured by Nichigo Morton) was laminated on both sides of the silicon substrate, and the periphery of the second through hole was opened by photolithography. The opening of the dry film resist was φ180 μm. Using this dry film resist as a mask, etching was performed using SF 6 as an isotropic etching gas.

エッチングは以下の条件で行った。
〔エッチング条件〕
ガス流量:500sccm
処理圧力:2〜3Pa
RF電源:600W
処理時間:15分
Etching was performed under the following conditions.
[Etching conditions]
Gas flow rate: 500sccm
Processing pressure: 2-3 Pa
RF power supply: 600W
Processing time: 15 minutes

以上のようにしてテーパー部を形成した。図7は、実施例に係る光伝送路固定部材200の走査型電子顕微鏡(SEM)像であり、図7(a)は貫通孔230のテーパー部231を斜め上方から撮影した写真であり、(b)は光伝送路固定部材200の断面写真である。エッチングを行ったシリコン基板1の表面からおよそ20μm〜30μmの深さの位置まで、等方性エッチングによるエッチング面に類似した加工面が現れていることが分かる。この領域を第1領域231aと呼ぶこととする。第1領域231aよりも貫通孔230の深い位置では、徐々に拡径する部位を含み、かつ基板の外側に向かって凸状となっている形状となっている。この領域を第2領域231bと呼ぶこととする。第2領域231bにおいて、エッチングを開始した側の開口は約φ180μmであり、図示したように徐々に拡径する部位を含み、かつ基板の外側に向かって凸状となっている形状であることが確認できる。 A tapered portion was formed as described above. FIG. 7 is a scanning electron microscope (SEM) image of the optical transmission line fixing member 200 according to the example, and FIG. 7A is a photograph of the tapered portion 231 of the through hole 230 taken obliquely from above ( b) is a cross-sectional photograph of the optical transmission line fixing member 200. It can be seen that a processed surface similar to the etched surface by isotropic etching appears from the surface of the etched silicon substrate 1 to a depth of about 20 μm to 30 μm. This area is referred to as a first area 231a. At a deeper position of the through hole 230 than the first region 231a, the shape includes a part that gradually increases in diameter and is convex toward the outside of the substrate. This area is referred to as a second area 231b. In the second region 231b, the opening on the side where the etching is started has a diameter of about φ180 μm, includes a portion that gradually increases in diameter as shown in the figure, and has a shape that is convex toward the outside of the substrate. I can confirm.

(参考例)
参考例として、実施例と同様の条件で、エッチングの処理時間を5分間行った。参考例の光伝送路固定部材900のSEM像であり、(a)は貫通孔930のテーパー部931を斜め上方から撮影した写真であり、(b)は光伝送路固定部材900の断面写真である。実施例と比べると、参考例においては、エッチングを行ったエッチング面は異方性エッチングに類似した加工面が現れており、第1領域931aはエッチングにより角部を有するような形状となり、第1領域931aと第2領域931bとの境界にはエッジ931cが観察される。また、第2領域231bでは、孔径は同程度であり、徐々に拡径する部位が顕著には観察されない。
(Reference example)
As a reference example, the etching treatment time was 5 minutes under the same conditions as in the example. It is a SEM image of the optical transmission line fixing member 900 of the reference example, (a) is a photograph of the tapered portion 931 of the through-hole 930 taken obliquely from above, and (b) is a cross-sectional photograph of the optical transmission line fixing member 900. is there. Compared with the example, in the reference example, the etched surface in which the etching was performed has a processed surface similar to the anisotropic etching, and the first region 931a has a shape having a corner portion by the etching. An edge 931c is observed at the boundary between the region 931a and the second region 931b. Moreover, in the 2nd area | region 231b, the hole diameter is comparable and the site | part which expands gradually is not observed notably.

図9は、貫通孔を上方から光学顕微鏡により撮影した写真である。実施例の光伝送路固定部材200においては、テーパー部231の第1領域231aと第2領域231bの表面が滑らかに接続されているので、上方から貫通孔230を観察した時に第1領域231aと第2領域231bの境界がエッジとして観察されない。一方、参考例の光伝送路固定部材900においては、テーパー部931の第1領域931aと第2領域931bの境界に環状の線が観察され、エッジ931cが存在することが分かる。したがって、実施例の光伝送路固定部材200においては、テーパー部231が上記のような形状であることから、挿入された光ファイバがテーパー部231をガイドとして貫通孔230内に導かれ、容易に光ファイバの挿入が行えるものと考えられる。 FIG. 9 is a photograph of the through hole taken from above with an optical microscope. In the optical transmission line fixing member 200 of the embodiment, since the surfaces of the first region 231a and the second region 231b of the tapered portion 231 are smoothly connected, when the through hole 230 is observed from above, the first region 231a The boundary of the second region 231b is not observed as an edge. On the other hand, in the optical transmission line fixing member 900 of the reference example, an annular line is observed at the boundary between the first region 931a and the second region 931b of the tapered portion 931, and it can be seen that an edge 931c exists. Therefore, in the optical transmission line fixing member 200 of the embodiment, since the tapered portion 231 has the shape as described above, the inserted optical fiber is guided into the through hole 230 using the tapered portion 231 as a guide, and easily It is considered that an optical fiber can be inserted.

1:基板、10:貫通電極、15:貫通孔、20:配線部、21:導電材、30:貫通孔、31:テーパー部、35:貫通孔、51:レジスト、53:マスク、53’:マスク、55:マスク、61:シード層、100:光伝送路固定部材、110:光伝送路、150:光電変換素子アレイ部材、151:光電変換素子、153:アレイ部材、155:支持基板、157:配線部、170:バンプ、200:光伝送路固定部材、230:貫通孔、231:テーパー部、231a:第1領域、231b:第2領域、900:光伝送路固定部材、930:貫通孔、931:テーパー部、931a:第1領域、931b:第2領域、エッジ:931c 1: Substrate, 10: Through electrode, 15: Through hole, 20: Wiring part, 21: Conductive material, 30: Through hole, 31: Tapered part, 35: Through hole, 51: Resist, 53: Mask, 53 ′: Mask: 55: Mask, 61: Seed layer, 100: Optical transmission path fixing member, 110: Optical transmission path, 150: Photoelectric conversion element array member, 151: Photoelectric conversion element, 153: Array member, 155: Support substrate, 157 : Wiring part, 170: Bump, 200: Optical transmission line fixing member, 230: Through hole, 231: Tapered part, 231a: First region, 231b: Second region, 900: Optical transmission line fixing member, 930: Through hole 931: Tapered portion, 931a: first region, 931b: second region, edge: 931c

Claims (5)

第1貫通孔と、第2貫通孔とが厚さ方向に沿って形成された基板を準備する工程と、
前記第2貫通孔の両側の開口部を塞いだ状態で、前記第1貫通孔の側壁に電解めっきにより導電材を配設して貫通電極を形成する電解めっき工程と、
前記基板の少なくとも片側に電解めっきにより導電材を配設して、前記貫通電極に電気的に接続する配線部を形成する工程と、
を備えることを特徴とする貫通電極を備えた光伝送路固定部材の製造方法。
Preparing a substrate in which a first through hole and a second through hole are formed along a thickness direction;
An electrolytic plating step of forming a through electrode by disposing a conductive material on the side wall of the first through hole by electrolytic plating in a state where the openings on both sides of the second through hole are closed;
Disposing a conductive material on at least one side of the substrate by electrolytic plating to form a wiring portion electrically connected to the through electrode;
The manufacturing method of the optical-transmission-path fixing member provided with the penetration electrode characterized by comprising.
前記基板の両側に開口部を有する中空構造となるように、前記導電材が前記第1貫通孔の側壁に沿って配設されることを特徴とする請求項1に記載の貫通電極を備えた光伝送路固定部材の製造方法。 2. The through electrode according to claim 1, wherein the conductive material is disposed along a side wall of the first through hole so as to form a hollow structure having openings on both sides of the substrate. Manufacturing method of optical transmission line fixing member. 前記第1貫通孔の側壁に配設された導電材と、前記基板の片側に配設された導電材とは、同時に形成されることを特徴とする請求項1又は2に記載の貫通電極を備えた光伝送路固定部材の製造方法。 3. The through electrode according to claim 1, wherein the conductive material disposed on the side wall of the first through hole and the conductive material disposed on one side of the substrate are formed simultaneously. A manufacturing method of an optical transmission line fixing member provided. 前記第2貫通孔の片側の開口部の径が前記基板内部の前記第2貫通孔の径よりも大きくなるテーパー部を形成する工程をさらに備えることを特徴とする請求項1乃至3の何れか一に記載の貫通電極を備えた光伝送路固定部材の製造方法。 4. The method according to claim 1, further comprising a step of forming a tapered portion in which a diameter of an opening on one side of the second through hole is larger than a diameter of the second through hole inside the substrate. A manufacturing method of an optical transmission line fixing member provided with the penetration electrode according to one. 前記導電材は、前記第1貫通孔の側壁に薄膜状に形成されることを特徴とする請求項4に記載の貫通電極を備えた光伝送路固定部材の製造方法。 The method of manufacturing an optical transmission line fixing member having a through electrode according to claim 4, wherein the conductive material is formed in a thin film shape on a side wall of the first through hole.
JP2011192505A 2011-09-05 2011-09-05 Manufacturing method of optical transmission line fixing member provided with through electrode Active JP5866889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192505A JP5866889B2 (en) 2011-09-05 2011-09-05 Manufacturing method of optical transmission line fixing member provided with through electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192505A JP5866889B2 (en) 2011-09-05 2011-09-05 Manufacturing method of optical transmission line fixing member provided with through electrode

Publications (2)

Publication Number Publication Date
JP2013054213A true JP2013054213A (en) 2013-03-21
JP5866889B2 JP5866889B2 (en) 2016-02-24

Family

ID=48131245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192505A Active JP5866889B2 (en) 2011-09-05 2011-09-05 Manufacturing method of optical transmission line fixing member provided with through electrode

Country Status (1)

Country Link
JP (1) JP5866889B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312613A (en) * 1989-05-30 1991-01-21 Hughes Microelectronics Ltd Photoelectric part and manufacture thereof
JPH04114006U (en) * 1991-03-26 1992-10-07 古河電気工業株式会社 Ferrule for optical connector
JPH0575237A (en) * 1991-09-11 1993-03-26 Fujitsu Ltd Conductor pattern formation
JPH07198991A (en) * 1993-12-28 1995-08-01 Adamando Kogyo Kk Connector ferrule for optical communication
JP2003298194A (en) * 2002-02-01 2003-10-17 Toray Ind Inc Method for producing circuit board and member for circuit board
JP2006053266A (en) * 2004-08-10 2006-02-23 Toshiba Corp Optical semiconductor module and semiconductor apparatus using the same
JP2008236556A (en) * 2007-03-22 2008-10-02 Tdk Corp Thin film bulk acoustic resonator
JP2009301023A (en) * 2008-05-14 2009-12-24 Seikoh Giken Co Ltd Optical modulator
JP2012226342A (en) * 2011-04-07 2012-11-15 Sony Corp Optical module, method of manufacturing optical module, and optical communication device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312613A (en) * 1989-05-30 1991-01-21 Hughes Microelectronics Ltd Photoelectric part and manufacture thereof
JPH04114006U (en) * 1991-03-26 1992-10-07 古河電気工業株式会社 Ferrule for optical connector
JPH0575237A (en) * 1991-09-11 1993-03-26 Fujitsu Ltd Conductor pattern formation
JPH07198991A (en) * 1993-12-28 1995-08-01 Adamando Kogyo Kk Connector ferrule for optical communication
JP2003298194A (en) * 2002-02-01 2003-10-17 Toray Ind Inc Method for producing circuit board and member for circuit board
JP2006053266A (en) * 2004-08-10 2006-02-23 Toshiba Corp Optical semiconductor module and semiconductor apparatus using the same
JP2008236556A (en) * 2007-03-22 2008-10-02 Tdk Corp Thin film bulk acoustic resonator
JP2009301023A (en) * 2008-05-14 2009-12-24 Seikoh Giken Co Ltd Optical modulator
JP2012226342A (en) * 2011-04-07 2012-11-15 Sony Corp Optical module, method of manufacturing optical module, and optical communication device

Also Published As

Publication number Publication date
JP5866889B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5621155B2 (en) Method for vertically interconnecting 3D electronic modules by vias
TWI511248B (en) Vias in porous substrates
US7877874B2 (en) Process for the collective fabrication of 3D electronic modules
TWI637672B (en) New termination and connection between chip and substrate
KR101732471B1 (en) Multilayer composite electronic structure and method of terminating a side of the same
JP2004186187A (en) Semiconductor device and its fabricating process
KR20040028566A (en) Semiconductor device and manufacturing method thereof
JP2006012889A (en) Method for manufacturing semiconductor chip and semiconductor device
US8080876B2 (en) Structure and method for creating reliable deep via connections in a silicon carrier
JP2010267805A (en) Semiconductor package and method of manufacturing the semiconductor package
JP2008516422A (en) Device comprising an assembly comprising a plurality of hard conductive microchips, and electrical connection method between such a device and a device comprising a soft conductive protrusion
US11105989B2 (en) Optical assembly and method of forming the same
JP5708762B2 (en) Method for manufacturing through electrode substrate
JP2009049087A (en) Method for manufacturing electronic component and electronic component
JP5866889B2 (en) Manufacturing method of optical transmission line fixing member provided with through electrode
JP2011228484A (en) Semiconductor device and manufacturing method for the same
KR101323894B1 (en) Interconnection structure through substrate and method of manufacturing the same, and device package having interconnection structure through substrate and method of manufacturing the same
JP5453763B2 (en) Method for manufacturing through electrode substrate
JP2016157901A (en) Electronic device
KR102432339B1 (en) Interposer using inclined electrode and manufacturing method thereof
TWI715625B (en) Manufacturing method of wiring structure
JP2011018672A (en) Semiconductor device, and method of manufacturing the same
JP2006269796A (en) Pin structure of wiring board
KR101851057B1 (en) Semiconductor structure including dielectric waveguide and method of forming the same
JP6191322B2 (en) Metal filling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5866889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150