JP2013053838A - Combustion method of low fuel consumption and low exhaust gas - Google Patents

Combustion method of low fuel consumption and low exhaust gas Download PDF

Info

Publication number
JP2013053838A
JP2013053838A JP2011206593A JP2011206593A JP2013053838A JP 2013053838 A JP2013053838 A JP 2013053838A JP 2011206593 A JP2011206593 A JP 2011206593A JP 2011206593 A JP2011206593 A JP 2011206593A JP 2013053838 A JP2013053838 A JP 2013053838A
Authority
JP
Japan
Prior art keywords
gas
water
combustion
ultrafine
combustion method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011206593A
Other languages
Japanese (ja)
Inventor
Osamu Sudo
修 須藤
Katsuo Matsuzawa
勝男 松澤
Shigeru Matsumura
茂 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011206593A priority Critical patent/JP2013053838A/en
Publication of JP2013053838A publication Critical patent/JP2013053838A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a combustion method capable of reducing remarkably a fuel consumption and an exhaust gas, in a boiler, a turbine, an internal combustion engine or domestic equipment using a city gas or natural gas.SOLUTION: A large amount of very microfined water having 0.1 to 20 nm of water fine particle size is generated in a gas, and the very microfined water is mixed at 20 to 50 vol.% of ratio, followed with stirring to be dispersed, in the boiler, the turbine, the internal combustion engine or the domestic equipment using the gas such as the city gas or natural gas as a combustion source, and a gas emulsion fuel is brought thereby and is transferred to a burner, to be burnt together with combustion air.

Description

本発明は都市ガスや天然ガス等を用いるボイラーやタービン、内燃機関或いは家庭用風呂釜等の燃焼機器において、大幅な燃費の低減化と排気ガスの削減化を可能とする新規な燃焼方法に関するものである。  The present invention relates to a novel combustion method capable of drastically reducing fuel consumption and exhaust gas in combustion equipment such as boilers, turbines, internal combustion engines or household bath tubs using city gas or natural gas. It is.

産業活動や生活活動には多大なエネルギーを消費するもので、従来よりこのエネルギー源としては石油類や天然ガス、都市ガス等の天然資源に依存していたものであるが、今日に至るまで先進諸国の経済発展に伴い莫大な天然資源の消費がなされて来たため、既に天然資源の枯渇化が危惧されるに至っており、且莫大量の天然資源の燃焼に伴って排出され続けた膨大量の炭酸ガスを初めとする温暖化ガスにより地球環境が著しく破壊され、健康被害者の続発はもとより、天候異変や異常気象による集中豪雨と洪水や山崩れ、河川の氾濫等による農作物や道路、住宅等の被害も莫大な金額に至っている。これがためかかる問題に対しては国際的にも最優先の解決課題とされている。  Industrial activities and daily activities consume a lot of energy, and this energy source has traditionally depended on natural resources such as petroleum, natural gas, and city gas, but it has advanced to this day. Since the consumption of enormous natural resources has been made with the economic development of each country, the depletion of natural resources has already become a concern, and the enormous amount of carbon dioxide that has been discharged along with the burning of enormous amounts of natural resources. Global warming gas such as gas will significantly damage the global environment, causing damage to crops, roads, houses, etc. due to heavy rain and floods, landslides, river floods, etc. due to weather changes and abnormal weather, as well as subsequent health victims Has also reached a huge amount. For this reason, this problem is regarded as the highest priority issue internationally.

この課題の解決手段として早くから燃焼源としての石油に対して、水を分散混合させたエマルジョン化燃料を用いることが提案されているものの、エマルジョン燃料により燃焼性を保持させつつ燃費の低減化と排気ガスの削減化を図るうえからは、少なくとも石油に対して20乃至50容量%の水を混合させたうえ、この混合させた水に水蒸気改質反応及び水性ガス反応を創出せしめることで実現しえるもので、これがためにはエマルジョン燃料における石油と水とが均質に分散混合されていること、並びに分散混合される水の液滴が可能な限り微細化されて微爆性を積極的に発揮させること、及び燃焼に際して気化熱の剥奪の少ないことが要件とされている。  Although it has been proposed to use an emulsified fuel in which water is dispersed and mixed with petroleum as a combustion source as a means for solving this problem, the fuel consumption is reduced and the exhaust gas is maintained while maintaining the combustibility with the emulsion fuel. In order to reduce gas, it can be realized by mixing at least 20 to 50% by volume of water with respect to petroleum and creating a steam reforming reaction and a water gas reaction in the mixed water. For this purpose, the oil and water in the emulsion fuel are uniformly dispersed and mixed, and the droplets of the water to be dispersed and mixed are made as fine as possible to positively exert micro explosiveness. In addition, it is a requirement that the vaporized heat is less deprived during combustion.

ところで石油類と水とは不溶性の関係にあることから、相互を安定して分散混合させるためには乳化剤による化学結合を図ることが試みられてなるものの、乳化剤の使用は相互の分散混合はなされる反面、水と石油と乳化剤とが強固に結合されるため、水の液滴の微細化がなし得ず微爆性の発揮も不十分となり、且結合により燃焼に際しての気化熱の剥奪も大きく、従って石油類に対して水もせいぜい7乃至10%容量割合を超えると燃焼性も著しく損なわれ、且近年に至っては乳化剤が環境ホルモンの生成原因ともなることから実用使用も至難となっている。  By the way, since petroleum and water are in an insoluble relationship, in order to stably disperse and mix each other, attempts are made to chemically bond with an emulsifier, but the emulsifier is used to disperse and mix with each other. On the other hand, water, petroleum, and emulsifiers are firmly bonded, so that water droplets cannot be made finer, and the microexplosive performance is insufficient. Therefore, if the water content exceeds 7 to 10% by volume relative to petroleum, the flammability is remarkably impaired, and in recent years, the emulsifier is also a cause of the production of environmental hormones, making it difficult to use in practice.

これがため化学的結合による石油類と水との分散混合を図る技術思想から、物理的分散混合による技術思想に転換し高速回転ミキサー手段や超音波キャピラリー手段、或いは静止混合手段等による数多に亘る分散混合研究を重ねた結果においても、長時における安定的分散混合は実現できるに至っていない。
そこで発明者等は石油類と水とを衝突させ撹乱させ破砕させ分散させる撹乱分散モジュールにより均質な分散混合並びに水の液滴の微細化を図ったうえ、直ちに燃焼させることにより燃焼性の保持と且燃費の大幅な低減と排気ガスの削減化が実現しえることを究明し、多くの先願例えば特願2010−264312号で開示している。
For this reason, the technical idea of dispersive mixing of petroleum and water by chemical bonding is changed to the technical idea of physical dispersive mixing, and there are many by high-speed rotating mixer means, ultrasonic capillary means, or static mixing means. Even in the result of repeated dispersion mixing research, stable dispersion mixing for a long time has not been realized.
In view of this, the inventors collaborated with oil and water to disturb, crush and disperse the oil, and then homogenous dispersion mixing and refinement of the water droplets were performed, and immediately combusted to maintain the combustibility. In addition, it has been found that a significant reduction in fuel consumption and a reduction in exhaust gas can be realized, and many prior applications, for example, Japanese Patent Application No. 2010-264312, have disclosed.

而して近年に至ってはボイラーやタービン、内燃機関或いは家庭用燃焼機器類においても、燃焼源を従来の灯油や軽油或いは重油等の石油類から、都市ガスや天然ガス等のガス類への転換が積極的になされている。
してみると都市ガスや天然ガスは気体状であるから、その粒径も略0.1乃至1.0nm程度の極微粒状であって、反面該ガス類とエマルジョン燃料化をなす水は蒸散水においてもその粒径は略6乃至20μm以上とされており、かかる状態で分散混合を図っても大きな粒径差に比重さも加重されて均質分散が実現できない。
Thus, in recent years, in boilers, turbines, internal combustion engines, and household combustion equipment, the combustion source is changed from conventional petroleum oils such as kerosene, light oil or heavy oil to gases such as city gas and natural gas. Has been made aggressively.
As a result, city gas and natural gas are in the form of a gas, and the particle size thereof is very fine, about 0.1 to 1.0 nm. On the other hand, the water that forms emulsion fuel with the gas is transpiration water. In this case, the particle size is approximately 6 to 20 μm or more, and even if dispersion mixing is performed in such a state, the specific gravity is also added to the large particle size difference, and uniform dispersion cannot be realized.

ところで他方において水の毛細管作用を持つ蒸散極より水を微粒状に蒸散せしめたうえ高電場雰囲気内に放散させることでレイリー分裂が促進されてその粒径が0.1乃至20nmの極微粒化水が生成しえる静電霧化技術も公知されてなるものの、蒸散極からの蒸散に依存するためその生成量もせいぜい10cc/min程度とされ、エマルジョン燃料への分散混合用としては到底対処できない。
そこで発明者等は極微粒化水を多量且安価に生成させるために更なる研究を重ねた結果、水を加圧噴霧させ若しくは加圧微細分離させたうえ、高電場雰囲気下でレイリー分裂を促進させることにより多量且安価に生成しえ、且撹乱分散モジュール内で均質に分散混合しえ、以って燃費の低減化と排気ガスの削減化が実現できることに想到し本発明に至った。
By the way, on the other hand, water is finely evaporated from a transpiration electrode having a capillary action of water, and then dissipated in a high electric field atmosphere to promote Rayleigh splitting, and ultrafine water having a particle size of 0.1 to 20 nm. Although the electrostatic atomization technology capable of generating water is well known, it depends on transpiration from the transpiration electrode, so that the generation amount is at most about 10 cc / min, and cannot be dealt with for dispersion mixing into emulsion fuel.
Therefore, the inventors conducted further research to produce ultrafine water in a large amount and at a low cost. As a result, water was sprayed or pressurized and finely separated, and Rayleigh splitting was promoted in a high electric field atmosphere. Thus, the present invention has been conceived that it can be produced in large quantities and at low cost, and can be homogeneously dispersed and mixed in the disturbance dispersion module, thereby realizing reduction in fuel consumption and reduction in exhaust gas.

本発明は都市ガスや天然ガス等を用いるボイラーやタービン、内燃機関或いは家庭用燃焼機器において、大幅な燃費の低減化と排気ガスの削減化を可能とする燃焼方法を提供することにある。  An object of the present invention is to provide a combustion method capable of significantly reducing fuel consumption and exhaust gas in boilers, turbines, internal combustion engines, and household combustion equipment using city gas, natural gas, or the like.

上述の課題を解決するために本発明が採用した技術的手段は、都市ガスや天然ガス等のガス類を燃焼源とするボイラーやタービン、内燃機関或いは家庭用燃焼機器において、都市ガスや天然ガス等のガス類に対して、水の極微細粒径が0.1乃至20nmの極微細化水を多量に生成せしめるとともに、この極微細化水を20乃至50容量%割合で混合し、且撹乱分散せしめてガスエマルジョン燃料となしたうえバーナーに移送のうえ、燃焼空気と共に燃焼せしめて、以って燃焼性を保持しつつ燃費の20乃至50%の低減化と排気ガスの20乃至50%の削減を実現する燃焼方法に存する。
更に本発明の技術構成の要点とされる極微細粒径が0.1乃至20nmの極微細化水を多量に生成するために、水を加圧のうえ所要の間隙を以って配位され、且所要の孔径とその噴霧角度が90乃至160°噴霧ノズルより、一旦液滴の粒径を10μm以下に噴霧させたうえ、その付加電圧が5,000及至10,000Vの高電場雰囲気内に噴散せしめてレイリー分裂を促進させ、その極微細粒径が0.1乃至20nmの極微細化水を多量に生成する加圧噴霧手段を用いる構成、若しくは水を加圧のうえその細孔径が8乃至80μmに形成されたセラミックフィルターで透水分離させ一旦液滴の粒径を略20μm以下の微細粒径の液滴としたうえ、その付加電圧が5,000及至10,000Vの高電場雰囲気内に放散せしめてレイリー分裂を促進せしめ、その極微細粒径が0.3乃至30nmの極微細化水を多量に生成する構成に存する。
The technical means adopted by the present invention in order to solve the above-mentioned problems are as follows: city gas or natural gas in boilers, turbines, internal combustion engines or household combustion equipment using gas such as city gas or natural gas as a combustion source. This produces a large amount of ultrafine water with an ultrafine particle size of water of 0.1 to 20 nm, and mixes the ultrafine water with a proportion of 20 to 50% by volume. Dispersed into gas emulsion fuel, transferred to burner, and burned with combustion air, thus reducing fuel consumption by 20 to 50% and maintaining 20 to 50% of exhaust gas while maintaining combustibility. It exists in the combustion method which realizes reduction.
Furthermore, in order to produce a large amount of ultrafine water having an ultrafine particle size of 0.1 to 20 nm, which is the main point of the technical configuration of the present invention, the water is pressurized and coordinated with a necessary gap. In addition, once the droplet diameter is sprayed to 10 μm or less from a spray nozzle having a required pore diameter and spray angle of 90 to 160 °, the applied voltage is within a high electric field atmosphere of 5,000 to 10,000 V. A structure using a pressure spraying means for generating a large amount of ultrafine water having an ultrafine particle size of 0.1 to 20 nm by promoting the Rayleigh splitting by spraying, or having a pore diameter after pressurizing water In a high electric field atmosphere where the added voltage ranges from 5,000 to 10,000 V after the water droplets are separated by a ceramic filter formed to 8 to 80 μm and the droplets are once reduced to a fine particle size of approximately 20 μm or less. Rayleigh split off Promoting allowed consists in large quantities produce constituting the ultrafine Kamizu its very fine particle size of 0.3 to 30 nm.

本発明は上述の如き構成からなるものであって、主たる燃焼源に都市ガスや天然ガス等のガス類を用いるとともに、このガス類に対してその粒径が0.1及至20nmの若しくは0.3乃至30nmの極微細化水が20乃至50容量%割合で混合されるものであって、かかる極微細化水ではその粒径が極めて微細で性状が都市ガスや天然ガスと略同等の気体状で且粒径も近似するとともに実質的比重差も無くなるため相互の混合も極めて良好になされる。
そしてガス類と極微細化水とが所要の容量割合で混合されたうえ撹乱分散モジュールを流通することにより、ガス類と極微細化水相互が多方向に撹乱されるとともに、相互の混合性の良好さとも相俟って短時且連続的に均質分散がなされてガスエマルジョン燃料が形成される。
加えて本発明では使用する燃焼機器のガスエマルジョン燃料の供給量に合せて、水の加圧力と噴霧ノズル数若しくはセラミックスフィルターの面積の調整如何で容易に対処できる。
The present invention is configured as described above, and uses a gas such as city gas or natural gas as a main combustion source, and has a particle size of 0.1 to 20 nm or 0.0. 3 to 30 nm ultrafine water is mixed at a ratio of 20 to 50% by volume, and the ultrafine water has a very fine particle size and is almost in the same form as city gas or natural gas. In addition, since the particle size is approximated and the substantial specific gravity difference is eliminated, the mutual mixing is extremely good.
Gases and ultrafine water are mixed in the required volume ratio and then distributed through the disturbance dispersion module, so that the gases and ultrafine water are disturbed in multiple directions and the mutual mixing properties are reduced. Combined with goodness, a homogeneous dispersion is made in a short time and continuously to form a gas emulsion fuel.
In addition, according to the present invention, it is possible to easily cope with the adjustment of the pressure of water and the number of spray nozzles or the area of the ceramic filter in accordance with the supply amount of the gas emulsion fuel of the combustion equipment to be used.

かくして形成されたガスエマルジョン燃料はバーナーのガス供給路内を移送されたうえ、その先端において燃焼空気と共に燃焼がなされるものであるが、ガスエマルジョン燃料内に混合される極微細化水はその粒径が極めて微細でガス類の粒径に近似するものであるから、燃焼に際して微爆作用が積極的になされるばかりか、気化熱の剥奪も無く従ってガス類に対して50容量%の極微細化水が分散混合されても、十分に燃焼性が保持され燃焼がなされる。
そして当然の事ながら、該ガスエマルジョン燃料には極微細化水が20乃至50容量%割合で分散混合されるものであるから、該分散混合割合の燃費の低減化と且排気ガスの削減も実現できる。
The gas emulsion fuel thus formed is transferred through the gas supply passage of the burner and burned together with the combustion air at the tip, but the ultrafine water mixed in the gas emulsion fuel has its particles. The diameter is extremely fine and approximates to the particle size of gases, so that not only microexplosive action is actively performed during combustion, but there is no deprivation of heat of vaporization, so 50 volume% of gas is extremely fine. Even if the water is dispersed and mixed, the combustibility is sufficiently maintained and combustion is performed.
Of course, since the ultra fine water is dispersed and mixed in the gas emulsion fuel at a ratio of 20 to 50% by volume, the fuel consumption and the exhaust gas can be reduced. it can.

都市ガスに対して、水に2kg/cmの加圧を付加したうえ、その孔径が0.2mm、スプレー角度120°のノズルで平均12μmの液滴で噴霧させたうえ、その付加電圧が6,000Vの高電場雰囲気内に噴散させてレイリー分裂により平均11nmの極微細化水を、都市ガスに対し40容量%割合で混合し撹乱分散モジュールを流通せしめてガスエマルジョン燃料となしたうえ、ガス供給路よりガスバーナー先端に移送させて燃焼する。The city gas was pressurized with 2 kg / cm 2 of water, sprayed with droplets having an average pore size of 0.2 mm and a spray angle of 120 ° with an average of 12 μm, and the applied voltage was 6 After being dispersed in a high electric field atmosphere of 1,000,000 V, ultra-fine water with an average of 11 nm is mixed by Rayleigh fission at a rate of 40% by volume with respect to city gas, and a disturbance dispersion module is distributed to form a gas emulsion fuel. It is transferred from the gas supply path to the gas burner tip and burned.

以下に本発明実施例を図とともに詳細に説明すれば、図1は本発明の燃焼方法の説明図であって、ガス1は本発明における主たる燃焼源となるものであって、都市ガスを初め天然ガス等燃焼に供しえるガス類であれば使用できる。
反面水2は本来的には通常の地下水や湧水若しくは水道水が用いられるものであるが、この水2は性状の異なる気体状ガス1と均質な分散混合を図ることによりガスエマルジョン燃料3となすものであって、且ガスエマルジョン燃料3としては一方においてガス1による従来からの燃焼性を十分に保持し、且他方においてはガス1に対して大幅な燃費の低減化と排気ガスの削減化を実現させることが本発明の主たる目的である。
In the following, the embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view of the combustion method of the present invention. Gas 1 is a main combustion source in the present invention. Any gas that can be used for combustion, such as natural gas, can be used.
On the other hand, normal ground water, spring water or tap water is used as the water 2, but the water 2 is mixed with the gas emulsion fuel 3 by homogeneously mixing with the gaseous gas 1 having different properties. As for the gas emulsion fuel 3, the conventional combustibility by the gas 1 is sufficiently maintained on the one hand, and on the other hand, the fuel consumption is significantly reduced and the exhaust gas is reduced with respect to the gas 1. This is the main purpose of the present invention.

これがためには、ガス1に対して混合される水2としては20乃至50容量%割合が望まれるとともに、かかる水2の混合により形成されるガスエマルジョン燃料3が、ガス1と同等の燃焼性を発揮させるためには、水2をガス1と略同等の性状即ち液滴の粒径の極微細化、特にはその粒径が0.1乃至20nmで且比重差の消失等により相互の均質な分散混合を図ること、並びに液滴の極微細化による燃焼時の微爆作用の積極的発揮と燃焼に際しての気化熱の剥奪の防止が不可欠となる。
従ってかかる要件を満足させるうえからは、水2の液滴を望ましくは20nm以下に微細化させた極微細化水2Aとして混合させることが好適である。
For this purpose, 20 to 50% by volume of the water 2 mixed with the gas 1 is desired, and the gas emulsion fuel 3 formed by mixing the water 2 has a combustibility equivalent to that of the gas 1. In order to exhibit water, the properties of water 2 are almost the same as those of gas 1, that is, the particle size of droplets is made extremely fine, in particular, the particle size is 0.1 to 20 nm and the mutual difference in specific gravity is lost. In addition, it is indispensable to achieve proper dispersion and mixing, and to positively exert a micro-explosive action during combustion by making the droplets extremely fine and to prevent desorption of vaporization heat during combustion.
Therefore, in order to satisfy these requirements, it is preferable to mix the water 2 droplets as ultra-fine water 2A that is preferably made finer to 20 nm or less.

そこで発明者等は水2を極微細化となすために鋭意研究を重ねた結果、図7に例示するように水Aを直径400μ程度の蒸散極Bより蒸散Cせしめたうえ略5,000Vの高電場雰囲気内Dで高電場を付加することによりレイリー分裂が促進されて略20nm程度の極微細化された水が略9cc/minと僅かながら生成しえることを発見した。
而して本発明ではボイラーを初めタービン、内燃機関或いは家庭用燃焼機器へのガスエマルジョン燃料3を生成供給するものであって、例えばボイラーにおいても小型でも100乃至200l/hr、中型でも300乃至1,000l/hr、更に大型では1,000乃至3,000l/hr程度の供給が要請される。
Therefore, the inventors conducted extensive research to make the water 2 extremely fine. As shown in FIG. 7, the water A was evaporated from the evaporation pole B having a diameter of about 400 μm, and was about 5,000 V. It has been discovered that by applying a high electric field in a high electric field atmosphere D, Rayleigh splitting is promoted, and ultrafine water of about 20 nm can be generated slightly at about 9 cc / min.
Thus, in the present invention, the gas emulsion fuel 3 is generated and supplied to a boiler, an internal combustion engine or a household combustion device as well as a boiler. For example, the boiler is small and 100 to 200 l / hr, and the medium is 300 to 1 The supply of about 1,000 to 3,000 l / hr is required for a larger size.

これがために更なる研究を重ねた結果、加圧噴霧手段30若しくは加圧微細分離手段31により対処できることを究明した。
即ち加圧噴霧手段30は図2に示されてなる如く、ケーシング30Aの上部には水2が加圧ポンプ30Bを介して導水管30Cに導水のうえ、この導水管30Cには所要の間隙を以って噴霧ノズル30Dが配設されている。
この噴霧ノズル30Dは該噴霧ノズル30Dからの噴霧させる液滴の粒径が微細なもの、より望ましくは3乃至15μmが極微細化水2Aを形成するうえからも好適である。
かかる噴霧粒径の液滴の形成には、噴霧ノズル30の孔径としては0.1乃至0.3mmで且スプレー角度が90乃至160°の広角のものが好適で、且液滴の噴霧粒径は噴霧圧力にも関係するもので、噴霧圧力が2.0〜5.0kg/cmの場合には噴霧ノズル30Dの孔径としては略0.1乃至0.3mm程度で対処しえる。
反面噴霧圧力が5乃至20kg/cmと高圧である場合には、噴霧ノズル30Dの孔径もやや大きな0.3乃至0.5nm程度のものでも使用できる。
As a result of further research, it has been found that the pressure spraying means 30 or the pressure fine separation means 31 can cope with this.
That is, as shown in FIG. 2, in the pressurized spraying means 30, water 2 is introduced into the water conduit 30C through the pressure pump 30B in the upper part of the casing 30A, and a necessary gap is provided in the water conduit 30C. Accordingly, the spray nozzle 30D is disposed.
The spray nozzle 30D is suitable for forming the micronized water 2A having a fine particle diameter of droplets sprayed from the spray nozzle 30D, more preferably 3 to 15 μm.
For the formation of droplets having such a spray particle size, the spray nozzle 30 preferably has a hole diameter of 0.1 to 0.3 mm and a wide spray angle of 90 to 160 °. Is also related to the spray pressure. When the spray pressure is 2.0 to 5.0 kg / cm 2 , the hole diameter of the spray nozzle 30D can be dealt with by about 0.1 to 0.3 mm.
On the other hand, when the spray pressure is as high as 5 to 20 kg / cm 2 , a spray nozzle 30D having a slightly larger hole diameter of about 0.3 to 0.5 nm can be used.

噴霧ノズル30Dにより所要の微細粒径に噴霧された水は、その下方に設けられた高電場雰囲気30Eに噴散せしめるとともに、該高電場雰囲気30Eに付加される高電場30Fによりレイリー分裂が促進されて極微細化水2Aが多量に生成される。
いま一つの加圧微細分離手段31については図3に示されている。即ち加圧微細分離手段31は図示するようにケーシング30Aの上部には水2が加圧ポンプ30Bを介して導水管30Cより加圧槽31Aに注水される。そして加圧槽31Aの底面には、織成による網目合若しくは穿孔による細孔径が8乃至80μm程度に形成されたセラミックスフィルター31Bが配設されている。
かかる場合のセラミックスフィルター31Bの網目合若しくは細孔径は、加圧槽31A内に注水された水に加圧させて微細分離できる大きさで、通常加圧槽31Aへの加圧は略0.2乃至10kg/cm程度であり、これ以上細くなると微細分離が至難となり、反面これより粗くなると微細な微細分離ができなくなる。
The water sprayed to the required fine particle size by the spray nozzle 30D is scattered in the high electric field atmosphere 30E provided below, and the Rayleigh splitting is promoted by the high electric field 30F added to the high electric field atmosphere 30E. Thus, a very large amount of ultrafine water 2A is produced.
The other pressurized fine separation means 31 is shown in FIG. That is, as shown in the figure, the pressurized fine separation means 31 has water 2 poured into the pressurized tank 31A from the water conduit 30C through the pressurized pump 30B in the upper part of the casing 30A. A ceramic filter 31B having a mesh size by weaving or a pore diameter by drilling of about 8 to 80 μm is disposed on the bottom surface of the pressurizing tank 31A.
In such a case, the mesh size or pore diameter of the ceramic filter 31B is such that it can be finely separated by pressurizing the water poured into the pressurizing tank 31A, and the pressurization to the pressurizing tank 31A is approximately 0.2. It is about 10 kg / cm 2 , and if it becomes thinner than this, fine separation becomes difficult. On the other hand, if it becomes coarser, fine separation becomes impossible.

そしてセラミックスフィルター31Bにより所要の微細粒径に微細分離がなされた水は、その下方に設けられた高電場雰囲気30E内に放散されるとともに、該高電場雰囲気30Eに付加される高電場30Fにより、レイリー分裂が促進されてその極微細粒径が0.3乃至30nmの極微細化水2Aが多量に生成されることとなる。
かかる如くして生成された極微細化水2Aは極微細化水調整ポンプ4B、及び他方のガス1のガス調整ポンプ4Aとによりガス1に対する極微細化水2Aの混合割合を調整のうえ、撹乱分散モジュール5に供給される。
The water finely separated into the required fine particle size by the ceramic filter 31B is diffused into the high electric field atmosphere 30E provided below the high electric field 30F, which is added to the high electric field atmosphere 30E. Rayleigh splitting is promoted and a large amount of ultrafine water 2A having an ultrafine particle size of 0.3 to 30 nm is generated.
The ultrafine water 2A generated in this way is disturbed by adjusting the mixing ratio of the ultrafine water 2A to the gas 1 by the ultrafine water adjustment pump 4B and the gas adjustment pump 4A of the other gas 1. It is supplied to the distribution module 5.

この撹乱分散モジュール5は、図4に示す如く供給されるガス1と極微細化水2Aとを短時に、相互を撹乱させつつ均質に分散させてガスエマルジョン燃料3が形成されるものである。
この撹乱分散モジュール5は、供給されるガス1と極微細化水2とを短時間内に相互を均質に分散混合できるものであれば実用に供しえるものであって、図3には撹乱分散モジュール5の説明図であって、所要容量のハウジング5Aの一方側にはガス1を供給するガス供給管1Aと、極微細化水2を供給する極微細化水供給管2Bが連結されている。
The disturbance dispersion module 5 is configured to form the gas emulsion fuel 3 by uniformly dispersing the gas 1 and the ultrafine water 2A supplied as shown in FIG. 4 while disturbing each other.
This disturbance dispersion module 5 can be put to practical use as long as the supplied gas 1 and ultrafine water 2 can be uniformly dispersed and mixed with each other within a short time. It is explanatory drawing of the module 5, Comprising: The gas supply pipe | tube 1A which supplies the gas 1 and the ultrafine water supply pipe | tube 2B which supplies the ultrafine water 2 are connected with one side of the housing 5A of required capacity | capacitance. .

そして該撹乱分散モジュール5のハウジング5A内には、ガス1や極微細化水2を少ない負圧を以って撹乱分散させつつ相互を均質に混合させる撹乱板50が適宜数配設されてなるもので撹乱板50は金属円板の所定半径毎の円周線に沿って所定間隙を以って一方側に三角形状の切欠凸起50Aが、更に他方側には異なる所定半径毎の円周線に沿って所定間隙を以って他方側に三角形状の切欠凸起50Bが突出形成されてなり、流通されるガス1や極微細化水2は、一方側に突出形成された切欠凸起50A及び他方側に突出形成された切欠凸起50Bの切欠形成に伴う空隙部分を流通し、且一方側に突出形成された切欠凸起50Aや他方側に突出形成された切欠凸起50Bにより接触撹乱されつつ相互が均質に分散混合され、ガスエマルジョン燃料3が形成される。
更に多量のガス1及び極微細化水2が流通される場合には、負圧を可能な限り小さくする必要上から撹乱板50を回転自在なスワラ(旋回器)とすることも提案される。
In the housing 5A of the disturbance dispersion module 5, an appropriate number of disturbance plates 50 are arranged so that the gas 1 and the ultrafine water 2 are homogeneously mixed with each other while being disturbed and dispersed with a small negative pressure. The disturbing plate 50 has a triangular notch protrusion 50A on one side with a predetermined gap along a circumferential line for each predetermined radius of the metal disk, and further on the other side the circumference for each different predetermined radius. A triangular notch protrusion 50B is projected on the other side with a predetermined gap along the line, and the gas 1 and ultrafine water 2 to be circulated are notched protrusions formed on one side. 50A and the notch protrusion 50B protruding from the other side are circulated through the gap portion, and contacted by the notch protrusion 50A protruding from the one side and the notch protrusion 50B protruding from the other side. While being disturbed, each other is homogeneously dispersed and mixed, and gas emulsion Fuel 3 is formed.
Further, when a large amount of gas 1 and ultrafine water 2 are circulated, it is also proposed that the disturbing plate 50 be a rotatable swirler (swivel) in order to reduce the negative pressure as much as possible.

かくして撹乱分散モジュール5により形成されたガスエマルジョン燃料3は、該撹乱分散モジュール5の他端5Bと連結されるガスバーナー6のガス供給路6Aに移送される。
このガスバーナー6は、その先端部6Bにおいて燃焼に必要な空気供給路6Cからの空気とともに燃焼がなされる。
ところでガスエマルジョン燃料3の如く気体燃料の燃焼は、予混合燃焼と拡散燃焼に大別され予混合燃焼はガスエマルジョン燃料と空気を予め均一に混合した予混合気を燃焼させる方式で、未燃混合気と燃焼排気との境界に火炎帯が形成され、この火炎帯が混合気中を伝播する特色を持つ。予混合気をバーナーで連続的に燃焼させれば定常予混合火炎が形成されるが、バーナー噴出口からの予混合気の噴出速度が火炎伝播速度より遅ければ逆火を起こす。かかる予混合燃焼における火炎の構造を図に示す。
Thus, the gas emulsion fuel 3 formed by the disturbance dispersion module 5 is transferred to the gas supply path 6A of the gas burner 6 connected to the other end 5B of the disturbance dispersion module 5.
The gas burner 6 is combusted together with the air from the air supply path 6C necessary for combustion at the tip portion 6B.
By the way, combustion of gaseous fuel such as gas emulsion fuel 3 is roughly divided into premixed combustion and diffusion combustion, and premixed combustion is a method in which a premixed gas in which gas emulsion fuel and air are uniformly mixed is burned, and unburned mixing is performed. A flame zone is formed at the boundary between the gas and the combustion exhaust, and this flame zone has the feature of propagating through the air-fuel mixture. If the premixed gas is continuously burned by the burner, a steady premixed flame is formed, but if the premixed gas jet speed from the burner outlet is slower than the flame propagation speed, flashback occurs. The structure of the flame in such premixed combustion is shown in the figure.

他方拡散燃焼は、ガスエマルジョン燃料3と空気とが別々に供給され相互拡散によって生じた境界に火炎帯が形成され、燃焼成分と酸素がこの火炎帯に拡散してきて燃焼し、火炎帯は伝播しない。図4は拡散燃焼におけるバーナー6が示されてなるが、予混合燃焼手段による場合は、ガス供給路6Aの前段に空気を供給する供給弁6Dが設けられるものである。尚、予混合燃焼の火炎構造を図5に拡散燃焼における火炎の構造を図6に示しておく。  On the other hand, in diffusion combustion, a flame zone is formed at the boundary caused by mutual diffusion when the gas emulsion fuel 3 and air are supplied separately, and combustion components and oxygen diffuse into this flame zone and burn, and the flame zone does not propagate . FIG. 4 shows the burner 6 in the diffusion combustion. In the case of the premixed combustion means, a supply valve 6D for supplying air is provided in the front stage of the gas supply path 6A. The flame structure in premixed combustion is shown in FIG. 5, and the flame structure in diffusion combustion is shown in FIG.

現状のガスバーナーの前部に、水を極微細化水となす工程と、且この極微細化水とガスとを均質に分散混合させる撹乱分散モジュールを配設するのみで、ガスの燃焼機器に使用できる。  Just by installing the process of turning water into ultrafine water and a disturbance dispersion module that uniformly disperses and mixes this ultrafine water and gas at the front of the current gas burner, Can be used.

本発明燃焼の説明図である。  It is explanatory drawing of this invention combustion. 加圧噴霧手段の説明図である。  It is explanatory drawing of a pressure spraying means. 加圧微細分離手段の説明図である。  It is explanatory drawing of a pressurization fine separation means. 撹乱分散モジュールの説明図である。  It is explanatory drawing of a disturbance dispersion | distribution module. 予混合燃焼の火炎構造説明図である。  It is flame structure explanatory drawing of premix combustion. 拡散燃焼の火炎構造説明図である。  It is flame structure explanatory drawing of diffusion combustion. 従来の水の極微細化方法の説明図である。  It is explanatory drawing of the conventional ultrafine-watering method.

1 ガス
1A ガス供給管
2 水
2A 極微細化水
2B 極微細化水供給管
3 ガスエマルジョン燃料
30 加圧噴霧手段
30A ケーシング
30B 加圧ポンプ
30C 導水管
30D 噴霧ノズル
30E 高電場雰囲気
30F 高電場
31 加圧微細分離手段
31A 加圧槽
31B セラミックフィルター
4A 極微細化水調整ポンプ
4B ガス調整ポンプ
5 撹乱分散モジュール
5A ハウジング
5B 撹乱分散モジュール他端
50 撹乱板
50A 一方側の切欠凸起
50B 他方側の切欠凸起
6 ガスバーナー
6A ガス供給路
6B ガスバーナー先端部
6C 空気供給路
6D 供給弁
1 gas 1A gas supply pipe 2 water 2A ultrafine water 2B ultrafine water supply pipe 3 gas emulsion fuel 30 pressurized spray means 30A casing 30B pressurization pump 30C water conduit 30D spray nozzle 30E high electric field atmosphere 30F high electric field 31 additional Pressure fine separation means 31A Pressure tank 31B Ceramic filter 4A Ultra fine water adjustment pump 4B Gas adjustment pump 5 Disturbing dispersion module 5A Housing 5B Disturbing dispersion module other end 50 Disturbing plate 50A Notch protrusion 50B on one side Notch protrusion on the other side Start 6 Gas burner 6A Gas supply path 6B Gas burner tip 6C Air supply path 6D Supply valve

Claims (4)

都市ガスや天然ガス等のガス類を燃焼源とするボイラー、タービン、内燃機関或いは家庭用燃焼機器において、水の微細粒径が0.1乃至20nmの極微細化水を多量に生成し、且この極微細化水をガス類に対し、20乃至50容量%割合で撹乱分散モジュールで分散混合せしめてガスエマルジョン燃料となし、而してバーナーに移行のうえ燃焼空気と共に燃焼し、以って燃焼性を保持し且燃費の20乃至50%割合の低減化及び排気ガスの20乃至50%割合の削減化を可能とする燃焼方法。  In boilers, turbines, internal combustion engines or household combustion appliances that use gas such as city gas or natural gas as a combustion source, a large amount of ultrafine water with a fine particle diameter of 0.1 to 20 nm is produced, and This ultra-fine water is dispersed and mixed with gas in a ratio of 20 to 50% by volume in a disturbance dispersion module to form a gas emulsion fuel, which is then transferred to a burner and combusted with combustion air. A combustion method that can maintain the fuel efficiency and reduce the fuel consumption by 20 to 50% and the exhaust gas by 20 to 50%. ガスエマルジョン燃料に所要割合の空気を混合のうえ、バーナーにおいて燃焼させる請求項1記載の燃焼方法。  The combustion method according to claim 1, wherein the gas emulsion fuel is mixed with a required ratio of air and burned in a burner. 水を加圧のうえ所要の間隙で配位され、且所要の孔径と噴霧角度が90乃至160°の噴霧ノズルにより、一旦その液滴の粒径を10μm以下に噴霧させたうえ、その付加電圧が5,000乃至10,000Vの高電場雰囲気内に噴散せしめてレイリー分裂を促進させ、その極微細粒径が0.1乃至20nmの極微細化水を多量に生成せしめる加圧噴霧手段が用いられてなる、請求項1若しくは請求項2記載の燃焼方法。  Water is pressurized and coordinated at the required gap, and the droplet diameter is once sprayed to 10 μm or less by a spray nozzle having a required pore size and spray angle of 90 to 160 °, and then the additional voltage is applied. Is a spraying means for spraying in a high electric field atmosphere of 5,000 to 10,000 V to promote Rayleigh splitting and to generate a large amount of ultrafine water having an ultrafine particle size of 0.1 to 20 nm. The combustion method according to claim 1 or 2, wherein the combustion method is used. 加圧水槽内の水を加工のうえ、その底面に配設されてなるセラミックスフィルターで加圧微細分離させて、その液滴の粒径が20μm以下に微細分離さえたうえ、その付加電圧が5,000乃至10,000Vの高電場雰囲気内に放散せしめてレイリー分裂を促進させ、その極微細粒径が0.3乃至30nmの極微細化水を多量に生成せしめる微細分離手段が用いられてなる請求項1若しくは請求項2記載の燃焼方法。  After processing the water in the pressurized water tank, pressurizing and finely separating it with a ceramics filter arranged on the bottom surface, and finely separating the droplets to a particle size of 20 μm or less, the additional voltage is 5 A fine separation means is used which diffuses in a high electric field atmosphere of 000 to 10,000 V to promote Rayleigh splitting and produces a large amount of ultrafine water having an ultrafine particle size of 0.3 to 30 nm. The combustion method according to claim 1 or 2.
JP2011206593A 2011-09-02 2011-09-02 Combustion method of low fuel consumption and low exhaust gas Withdrawn JP2013053838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011206593A JP2013053838A (en) 2011-09-02 2011-09-02 Combustion method of low fuel consumption and low exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011206593A JP2013053838A (en) 2011-09-02 2011-09-02 Combustion method of low fuel consumption and low exhaust gas

Publications (1)

Publication Number Publication Date
JP2013053838A true JP2013053838A (en) 2013-03-21

Family

ID=48130977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206593A Withdrawn JP2013053838A (en) 2011-09-02 2011-09-02 Combustion method of low fuel consumption and low exhaust gas

Country Status (1)

Country Link
JP (1) JP2013053838A (en)

Similar Documents

Publication Publication Date Title
JP6317631B2 (en) Spray nozzle, combustion apparatus equipped with spray nozzle, and gas turbine plant
JP5368063B2 (en) Oily substance combustion apparatus and oily substance combustion method
DE102005022772A1 (en) Burner with partial premixing and pre-evaporation of the liquid fuel
JP2013053838A (en) Combustion method of low fuel consumption and low exhaust gas
JP2012184911A (en) Combustion method of low fuel consumption and low exhaust gas
KR101810831B1 (en) an eletric heating element for nozzled spray droplet and the liquid fuel spraying and mixing device uisng both multistage-perforated heating plate and an eletric heating element
JP5694281B2 (en) Emulsified fuel manufacturing method and manufacturing apparatus thereof
JP2010025382A (en) Emulsified fuel manufacturing device
JP4472013B2 (en) Water-in-oil emulsion fuel
RU86280U1 (en) FUEL COMBUSTION DEVICE IN COMBUSTION CHAMBER
US20110194374A1 (en) Stirring, emulsifying and small molecule clustering apparatus for producing oil-water fuel
KR20030017889A (en) Manufacturing method of emulsion fuel oil and device for the same
De Azevedo et al. Characterization of a blurry injector for burning biofuels in a compact flameless combustion chamber
JP2013095917A (en) Tool for producing atomized dispersed mixed fuel of oil and water
JPH0139008B2 (en)
JP2018173258A (en) Premixed combustion device
JP2013190194A (en) Method for reducing fuel consumption and emission gas of gas combustion apparatus
JP3161981B2 (en) Nozzle for combustion of waste oil mixed type liquid fuel and combustion method
JP2011001533A (en) Apparatus for synthesizing emulsion fuel
JP2012057927A (en) Method of burning mixed fuel of liquid fuel and water, and mixed fuel injection device
RU86281U1 (en) BURNER FOR BURNING FUELS WITH NORMAL OR INCREASED VISCOSITY IN THE COMBUSTION CAMERA OF A GAS TURBINE ENGINE
Ramly et al. Effect of Fractal Grid, Rapid Mixing Injector and Diesel Fuel on Combustion System
JP2012220178A (en) Method and device for combusting emulsion fuel of gases and water
JP3161982B2 (en) Nozzle for combustion of waste oil mixed type liquid fuel and combustion method
JP2011163726A (en) Emulsion fuel combustion device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104