JP2013053829A - Boiler with corrosion inhibition apparatus and method for inhibiting corrosion of boiler - Google Patents

Boiler with corrosion inhibition apparatus and method for inhibiting corrosion of boiler Download PDF

Info

Publication number
JP2013053829A
JP2013053829A JP2011193866A JP2011193866A JP2013053829A JP 2013053829 A JP2013053829 A JP 2013053829A JP 2011193866 A JP2011193866 A JP 2011193866A JP 2011193866 A JP2011193866 A JP 2011193866A JP 2013053829 A JP2013053829 A JP 2013053829A
Authority
JP
Japan
Prior art keywords
corrosion
particles
inhibiting
boiler
superheater tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011193866A
Other languages
Japanese (ja)
Other versions
JP6046886B2 (en
JP2013053829A5 (en
Inventor
Kouya Takeda
航哉 竹田
Masahiro Sugata
雅裕 菅田
Isamu Maekawa
勇 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48130969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013053829(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2011193866A priority Critical patent/JP6046886B2/en
Publication of JP2013053829A publication Critical patent/JP2013053829A/en
Publication of JP2013053829A5 publication Critical patent/JP2013053829A5/ja
Application granted granted Critical
Publication of JP6046886B2 publication Critical patent/JP6046886B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a boiler with a corrosion inhibition apparatus that can effectively inhibit the corrosion of a superheater tube.SOLUTION: The boiler with the corrosion inhibition apparatus includes: a third gas duct 22 through which combustion exhaust gas passes; the superheater tube 27 arranged in the third gas duct 22; and the corrosion inhibition apparatus 59 for inhibiting the corrosion of the superheater tube 27 by blowing corrosion inhibiting particles having a particle diameter of 0.1 μm or larger and smaller than 10 μm into a second gas duct 21 and attaching the particles to a face surface of the superheater tube 27.

Description

本発明は、ボイラの特に過熱器管の腐食を防止するための腐食抑制装置を備える腐食抑制装置付きボイラ、及びボイラの腐食抑制方法に関する。   TECHNICAL FIELD The present invention relates to a boiler with a corrosion suppression device including a corrosion suppression device for preventing corrosion of a boiler, particularly a superheater tube, and a boiler corrosion suppression method.

従来のボイラとして、燃料を燃焼炉で燃焼させ、その燃焼により発生する燃焼排ガスが有する熱によって過熱器で蒸気を過熱して、高温・高圧の過熱蒸気を発生するものがある。この過熱蒸気は、発電に利用することができる。   As a conventional boiler, there is a boiler that burns fuel in a combustion furnace and superheats steam with a superheater by heat of combustion exhaust gas generated by the combustion to generate high-temperature and high-pressure superheated steam. This superheated steam can be used for power generation.

ここで、近年にあっては、CO削減や廃棄物の熱利用の観点から、例えば建設廃材系木質等のバイオマスや、廃タイヤ及び廃プラスチック等の廃棄物をボイラの燃料として活用することが進められている。 Here, in recent years, from the viewpoint of CO 2 reduction and waste heat utilization, it is possible to use, for example, biomass such as construction waste wood and waste such as waste tires and plastic as fuel for boilers. It is being advanced.

このようなバイオマス燃料や廃棄物燃料にあっては、燃料中に、例えばNaCl、KCl等の塩類や、鉛及び亜鉛等の重金属を含んでいる。従って、燃焼炉での燃焼により、例えば、KCl、NaCl、ZnCl、KSO、NaSO等から成る低融点(300°C程度)の溶融塩が生成され、このような溶融塩は、燃焼灰と共に後流側の過熱器に流れていく。この過熱器は、上記発電に利用される高温・高圧の蒸気を生成するものであるから、そのガス温度は、蒸気温度より高い温度に設定されており、流れて来たKCl、NaCl、ZnCl、KSO、NaSO等から成る溶融塩が、300°C以上の高温の過熱器を構成する過熱器管の表面に付着することによって、過熱器管が腐食するという問題を生じている。 In such biomass fuel and waste fuel, the fuel contains salts such as NaCl and KCl, and heavy metals such as lead and zinc. Accordingly, the combustion in the combustion furnace generates a low melting point (about 300 ° C.) molten salt composed of, for example, KCl, NaCl, ZnCl 2 , K 2 SO 4 , Na 2 SO 4, and the like. Flows along with the combustion ash to the superheater on the downstream side. Since this superheater generates high-temperature and high-pressure steam used for the power generation, the gas temperature is set higher than the steam temperature, and KCl, NaCl, ZnCl 2 that has flowed in. , K 2 SO 4 , Na 2 SO 4, etc. cause a problem that the superheater tube corrodes due to the molten salt adhering to the surface of the superheater tube constituting the high temperature superheater of 300 ° C. or higher. ing.

次に、このように過熱器管が腐食するという問題を解決するための従来のボイラの腐食防止方法の一例について説明する(例えば、特許文献1参照。)。   Next, an example of a conventional boiler corrosion prevention method for solving the problem that the superheater tube corrodes in this way will be described (for example, see Patent Document 1).

このボイラの腐食防止方法は、所定量の所定の粒子(腐食防止粒子)を燃焼炉内に供給して、当該腐食防止粒子を、この燃焼炉内で生成される溶融塩の粒子(溶融塩粒子)に混合させるものである。この混合によって、溶融塩粒子は、良好に分散されて、この溶融塩粒子の表面が腐食防止粒子によって取り囲まれた状態となり、溶融塩粒子を腐食防止粒子によって希釈することができる。そして、この希釈された溶融塩粒子が、下流側の過熱器管の表面に付着することになるので、過熱器管の表面に付着する溶融塩粒子の濃度及び接触面積を、腐食防止粒子によって低減することができる。これによって、過熱器管の腐食を抑制しようとするものである。   In this boiler corrosion prevention method, a predetermined amount of predetermined particles (corrosion prevention particles) are supplied into a combustion furnace, and the corrosion prevention particles are converted into molten salt particles (molten salt particles) generated in the combustion furnace. ). By this mixing, the molten salt particles are well dispersed so that the surface of the molten salt particles is surrounded by the corrosion preventing particles, and the molten salt particles can be diluted with the corrosion preventing particles. Since the diluted molten salt particles adhere to the surface of the superheater tube on the downstream side, the concentration and the contact area of the molten salt particles adhering to the surface of the superheater tube are reduced by the corrosion preventing particles. can do. This is to suppress the corrosion of the superheater tube.

なお、腐食防止粒子は、その融点が燃焼炉の燃焼温度より高く、燃焼炉及び過熱器付近では溶融しないものであり、かつ、塩素分濃度、Na濃度、K濃度、重金属濃度が各々1000ppm以下であって、溶融塩成分を殆ど含まないものである。   The corrosion preventing particles have a melting point higher than the combustion temperature of the combustion furnace, do not melt in the vicinity of the combustion furnace and the superheater, and have a chlorine concentration, Na concentration, K concentration, and heavy metal concentration of 1000 ppm or less, respectively. Therefore, it contains almost no molten salt component.

そして、腐食防止粒子の平均粒子径は、10〜20μmに規定されている。このように平均粒子径を規定したのは、平均粒子径が20μmを越えると、腐食防止粒子が大き過ぎて溶融塩粒子が腐食防止粒子に取り囲まれ難くなると共に、腐食防止粒子が過熱器管に付着し難くなる。また、腐食防止粒子の平均粒子径が10μmより小さいと、腐食防止粒子が小さ過ぎて燃焼排ガス流に乗って過熱器管を回り込み、腐食防止粒子が過熱器管に付着し難くなるためと考えられている。   And the average particle diameter of a corrosion prevention particle is prescribed | regulated to 10-20 micrometers. The average particle diameter is defined in this way because when the average particle diameter exceeds 20 μm, the corrosion prevention particles are too large and the molten salt particles are difficult to be surrounded by the corrosion prevention particles, and the corrosion prevention particles are placed in the superheater tube. It becomes difficult to adhere. In addition, if the average particle size of the corrosion prevention particles is smaller than 10 μm, the corrosion prevention particles are too small to get on the combustion exhaust gas flow and go around the superheater tube, and it is difficult for the corrosion prevention particles to adhere to the superheater tube. ing.

特開2006−308179号公報JP 2006-308179 A

しかし、上記従来のボイラの腐食防止方法では、燃焼炉で生成される溶融塩粒子の表面に腐食防止粒子を付着させて、溶融塩粒子が直接に過熱器管に接触して付着しないようにして、過熱器管の腐食を防止するものであるので、当該ボイラで生成される溶融塩粒子の量に応じて多量の腐食防止粒子を燃焼炉内に供給する必要があり、腐食防止粒子のコストが嵩むと共に、この腐食防止粒子を含む燃焼灰の処理のためのコストも嵩む。   However, in the conventional boiler corrosion prevention method, the corrosion prevention particles are adhered to the surface of the molten salt particles generated in the combustion furnace so that the molten salt particles do not directly adhere to the superheater tube. In order to prevent corrosion of the superheater tube, it is necessary to supply a large amount of corrosion prevention particles into the combustion furnace according to the amount of molten salt particles generated in the boiler, and the cost of the corrosion prevention particles is reduced. In addition to increasing the cost, the cost for treating the combustion ash containing the corrosion-inhibiting particles also increases.

ところで、本願の発明者は、過熱器管に付着する焼却灰のうち、過熱器管を腐食させる主要因となる物質は、粒子径が0.1〜10μmの極めて細かな粒子であることを解明している。   By the way, the inventor of the present application clarifies that among the incinerated ash adhering to the superheater tube, the substance that becomes the main factor corroding the superheater tube is very fine particles having a particle diameter of 0.1 to 10 μm. doing.

このように、粒子径が0.1〜10μmの極めて細かな粒子が、過熱器管を腐食させる主要因となっている理由は、腐食の原因となるNaやKの塩化物は、粒子径が0.1〜10μmの粒子として多く存在しており、粒子径が10μmを超える粒子には、極端に少なくなるからであり、このことを本願の発明者は解明した。   As described above, the reason why extremely fine particles having a particle diameter of 0.1 to 10 μm are the main factor corroding the superheater tube is that the chlorides of Na and K that cause corrosion have a particle diameter of This is because there are many particles having a particle size of 0.1 to 10 μm, and the number of particles exceeding 10 μm is extremely small.

そうすると、上記従来のボイラの腐食防止方法によると、平均粒子径が10〜20μmの上記従来の腐食防止粒子が、過熱器管の表面に付着することができたとしても、その腐食防止粒子の外側表面にそれよりも粒子径が小さい0.1〜10μmの溶融塩粒子が付着すると、この粒子径の小さい溶融塩粒子が拡散して、粒子径が大きい腐食防止粒子どうしの隙間を通り抜けて、過熱器管の表面に付着することになる。   Then, according to the conventional corrosion prevention method for boilers, even if the conventional corrosion prevention particles having an average particle diameter of 10 to 20 μm can adhere to the surface of the superheater tube, When molten salt particles having a particle diameter of 0.1 to 10 μm smaller than that adhere to the surface, the molten salt particles having a smaller particle diameter diffuse and pass through the gaps between the corrosion preventing particles having a larger particle diameter to cause overheating. It will adhere to the surface of the vessel.

よって、上記従来のボイラの腐食防止方法では、過熱器管の腐食を効果的に抑制することはできない。   Therefore, the conventional boiler corrosion prevention method cannot effectively suppress the corrosion of the superheater tube.

本発明は、上記のような課題を解決するためになされたものであり、過熱器管の腐食を効果的に抑制することができる腐食抑制装置付きボイラ及びボイラの腐食抑制方法を提供することを目的としている。   The present invention has been made in order to solve the above-described problems, and provides a boiler with a corrosion suppressing device capable of effectively suppressing corrosion of a superheater tube and a method for suppressing corrosion of a boiler. It is aimed.

本発明に係る腐食抑制装置付きボイラは、燃焼排ガスが通る排ガス通路と、前記排ガス通路内に設けられている過熱器管と、粒子径が0.1μm以上10μm未満の腐食抑制粒子を、前記排ガス通路内に吹き込んで前記過熱器管の表面に付着させることで、前記過熱器管の腐食を抑制するための腐食抑制装置とを備えることを特徴とするものである。   The boiler with a corrosion inhibitor according to the present invention includes an exhaust gas passage through which combustion exhaust gas passes, a superheater pipe provided in the exhaust gas passage, and corrosion inhibitor particles having a particle diameter of 0.1 μm or more and less than 10 μm. It is provided with the corrosion suppression apparatus for suppressing the corrosion of the said superheater pipe | tube by blowing in a passage and making it adhere to the surface of the said superheater pipe | tube.

本発明の作用を説明する前に、まず、この発明に係る腐食抑制装置付きボイラの基本原理について説明する。本願の発明者は、排ガス通路内に飛散する粒子径が0.1〜10μmであり、かつ、NaやKの塩化物を含む腐食性粒子が、過熱器管の金属界面やその外表面に形成される腐食層の表面(以下、単に「過熱器管の金属界面等」と言うこともある。)に付着することによって、過熱器管の腐食が進行することを究明した。そこで、当該腐食性粒子と同程度の粒子径が0.1μm以上10μm未満の腐食抑制粒子を、排ガス通路内に吹き込んで前記過熱器管の金属界面等に付着させることによって、0.1〜10μmの腐食性粒子が前記過熱器管の金属界面等に付着する付着重量及び付着面積を小さくして、過熱器管の腐食の進行を抑制するようにした。   Before describing the operation of the present invention, first, the basic principle of the boiler with a corrosion inhibiting device according to the present invention will be described. The inventor of the present application has a particle diameter of 0.1 to 10 μm scattered in the exhaust gas passage, and corrosive particles containing Na or K chloride are formed on the metal interface of the superheater tube or the outer surface thereof. It was found that the corrosion of the superheater tube proceeds by adhering to the surface of the corrosion layer (hereinafter sometimes simply referred to as “the metal interface of the superheater tube”). Therefore, 0.1-10 μm by corroding corrosion-inhibiting particles having a particle size comparable to the corrosive particles of 0.1 μm or more and less than 10 μm into the exhaust gas passage and adhering to the metal interface of the superheater tube. The corrosion weight of the superheater tube adheres to the metal interface of the superheater tube or the like, and the adhesion area and the adhesion area are reduced to suppress the progress of corrosion of the superheater tube.

この発明に係る腐食抑制装置付きボイラによると、腐食抑制装置を使用して、粒子径が0.1μm以上10μm未満の腐食抑制粒子を、排ガス通路内に吹き込むことによって、この吹き込んだ腐食抑制粒子を過熱器管の金属界面等に対して熱泳動や慣性衝突によって付着させることができる。これによって、排ガス通路内で飛散する粒子径が0.1〜10μmの腐食性粒子が、過熱器管の金属界面等に付着する付着重量及び付着面積を減少させることができ、過熱器管の腐食の進行を抑制することができる。   According to the boiler with a corrosion inhibiting device according to the present invention, the corrosion inhibiting particles are blown into the exhaust gas passage by blowing the corrosion inhibiting particles having a particle diameter of 0.1 μm or more and less than 10 μm using the corrosion inhibiting device. It can be attached to the metal interface of the superheater tube by thermophoresis or inertial collision. As a result, the corrosive particles having a particle diameter of 0.1 to 10 μm scattered in the exhaust gas passage can reduce the adhesion weight and adhesion area adhering to the metal interface of the superheater tube, and the corrosion of the superheater tube. Can be suppressed.

この発明に係る腐食抑制装置付きボイラにおいて、上記腐食抑制粒子は、Ca、Si、Al、Mg及びFeのうち少なくとも1つの元素を主成分とする化合物であるものとするとよい。   In the boiler with a corrosion inhibiting apparatus according to the present invention, the corrosion inhibiting particles may be a compound having at least one element as a main component among Ca, Si, Al, Mg and Fe.

このように、比較的入手し易い元素を主成分とする化合物を使用して、過熱器管の腐食の進行を抑制することができる。   Thus, the progress of the corrosion of the superheater tube can be suppressed by using a compound whose main component is a relatively easily available element.

この発明に係る腐食抑制装置付きボイラにおいて、液体に前記腐食抑制粒子を混合して得られたスラリー状の混合物質、又は前記腐食抑制粒子よりも粒子径が大きい粉体に前記腐食抑制粒子を混合して得られた粉状の混合物質を、前記腐食抑制装置を使用して前記排ガス通路に吹き込むものとするとよい。   In the boiler with a corrosion inhibiting device according to the present invention, the corrosion inhibiting particles are mixed with a slurry-like mixed material obtained by mixing the corrosion inhibiting particles with a liquid, or powder having a particle diameter larger than the corrosion inhibiting particles. The powdery mixed material obtained in this way is preferably blown into the exhaust gas passage using the corrosion inhibitor.

このようにすると、排ガス通路に吹き込もうとする腐食抑制粒子の重量が小さい場合でも、腐食抑制装置を使用して、所望の重量の腐食抑制粒子を精度よく排ガス通路に吹き込むことが可能である。そして、腐食抑制粒子が混合される液体は、入手が容易であり安価であるものを使用することによって、そのコストの低減を図ることができる。また、腐食抑制粒子が混合される粉体として、腐食抑制粒子よりも粒子径の大きくて安価なもの、例えば焼却灰を使用することによって、当該粉体のコストの低減を図ることができる。   In this way, even when the weight of the corrosion-inhibiting particles to be blown into the exhaust gas passage is small, it is possible to accurately blow the desired weight of the corrosion-inhibiting particles into the exhaust gas passage using the corrosion suppressing device. . The liquid in which the corrosion inhibiting particles are mixed can be reduced in cost by using an easily available and inexpensive liquid. In addition, by using a powder having a particle diameter larger than that of the corrosion-inhibiting particles and cheaper, for example, incineration ash, as the powder mixed with the corrosion-inhibiting particles, the cost of the powder can be reduced.

この発明に係る腐食抑制装置付きボイラにおいて、前記腐食抑制粒子の融点が800℃以上であって、前記腐食抑制装置が前記腐食抑制粒子を吹き込む領域は、前記排ガス通路内のガス温度が800℃よりも低い領域であり、前記腐食抑制粒子の単位時間当たりの吹込み重量が、粒子径が0.1〜10μmの腐食性粒子が、前記過熱器管が設けられている前記排ガス通路を通る単位時間当たりの重量と略等しい重量、又はそれよりも大きい重量であるものとするとよい。   In the boiler with a corrosion inhibiting device according to the present invention, the melting point of the corrosion inhibiting particles is 800 ° C. or more, and the region where the corrosion inhibiting device blows the corrosion inhibiting particles is at a gas temperature in the exhaust gas passage from 800 ° C. In which the corrosive particles having a particle diameter of 0.1 to 10 μm pass through the exhaust gas passage in which the superheater tube is provided. It is preferable that the weight is substantially equal to or larger than the hit weight.

このように、融点が800℃以上の腐食抑制粒子を、排ガス通路内のガス温度が800℃よりも低い領域に吹き込むことによって、腐食抑制粒子が溶融して互いに結合することや、ガス中の成分の一部が腐食抑制粒子を核にして凝縮することで粒子径が大きくならないようにすることができ、腐食抑制粒子を、その粒子径が元の小さい状態で、過熱器管の金属界面やその外表面に形成される腐食層の表面全体に付着させることができる。これによって、過熱器管の表面全体の腐食の進行を効果的に抑制することができる。   In this way, by blowing the corrosion-inhibiting particles having a melting point of 800 ° C. or higher into a region where the gas temperature in the exhaust gas passage is lower than 800 ° C., the corrosion-inhibiting particles are melted and bonded to each other, and the components in the gas It is possible to prevent the particle diameter from becoming large by condensing a part of the corrosion-inhibiting particles as nuclei. It can be adhered to the entire surface of the corrosion layer formed on the outer surface. Thereby, the progress of the corrosion of the entire surface of the superheater tube can be effectively suppressed.

この発明に係る腐食抑制装置付きボイラにおいて、前記排ガス通路に設けられた一対の電極を有し、この一対の電極間の電気抵抗の変化に基づいて前記過熱器管の腐食の程度を検出して、その腐食の程度と対応する腐食検出信号を生成する腐食検出手段と、前記腐食検出手段が生成する前記腐食検出信号に基づいて前記腐食抑制装置を制御して、前記腐食抑制粒子の吹込み重量を制御する制御部とを備えるものとするとよい。   In the boiler with a corrosion inhibitor according to the present invention, the boiler has a pair of electrodes provided in the exhaust gas passage, and detects the degree of corrosion of the superheater tube based on a change in electrical resistance between the pair of electrodes. Corrosion detection means for generating a corrosion detection signal corresponding to the degree of corrosion, and the corrosion suppression device is controlled based on the corrosion detection signal generated by the corrosion detection means, and the weight of the corrosion-inhibiting particles blown in It is good to provide a control part which controls.

このようにすると、腐食検出手段は、電極に燃焼灰が付着する状況において、一対の電極間の電気抵抗を検出して、その電気抵抗の変化に基づいて電極の腐食の程度を検出することができ、その電極の腐食の程度と対応する腐食検出信号を生成することができる。従って、電極が過熱器管と同程度に腐食する状況に置くことによって、この腐食検出信号が、過熱器管の腐食の程度を表す信号として使用することができる。そして、制御部は、腐食検出手段が生成する腐食検出信号に基づいて、腐食抑制装置を制御して腐食抑制粒子の吹込み重量を制御することができる。これによって、制御部は、例えば過熱器管の腐食の進行が速いときは、腐食抑制粒子の吹込み重量を多くすることができ、そして、過熱器管の腐食の進行が遅いときは、腐食抑制粒子の吹込み重量を少なくすることができる。このようにして、過熱器管の腐食の程度に応じて適切な重量の腐食抑制粒子を排ガス通路内に吹き込むことができ、過熱器管の腐食を確実に抑制することができる。   In this way, the corrosion detecting means can detect the electrical resistance between the pair of electrodes in a situation where the combustion ash adheres to the electrodes, and detect the degree of corrosion of the electrodes based on the change in the electrical resistance. And a corrosion detection signal corresponding to the degree of corrosion of the electrode can be generated. Thus, by placing the electrode in a situation where it corrodes as much as the superheater tube, this corrosion detection signal can be used as a signal representing the degree of corrosion of the superheater tube. And a control part can control a corrosion suppression apparatus based on the corrosion detection signal which a corrosion detection means produces | generates, and can control the blowing weight of corrosion suppression particles. As a result, for example, when the corrosion of the superheater tube is fast, the control unit can increase the blowing weight of the corrosion-inhibiting particles, and when the corrosion of the superheater tube is slow, the control unit suppresses the corrosion. Particle blowing weight can be reduced. In this way, corrosion-inhibiting particles having an appropriate weight can be blown into the exhaust gas passage according to the degree of corrosion of the superheater tube, and corrosion of the superheater tube can be reliably suppressed.

この発明に係る腐食抑制装置付きボイラにおいて、前記腐食抑制粒子は、ボイラで生成された燃焼灰であり、その粒子径が2μmを超えて10μm未満であるものとするとよい。   In the boiler with a corrosion inhibiting apparatus according to the present invention, the corrosion inhibiting particles may be combustion ash generated by a boiler, and the particle diameter may be more than 2 μm and less than 10 μm.

このように、粒子径が2μmを超えて10μm未満の燃焼灰を、排ガス通路内に吹き込むことによって、過熱器管の腐食の進行を抑制することができるのは、粒子径が0.1μm以上であり2μm以下の燃焼灰は、腐食力が強いが、粒子径が2μmを超えて10μm未満の燃焼灰は、腐食力が弱いからである。従って、この腐食力が弱い粒子径が2μmを超えて10μm未満の燃焼灰を、排ガス通路内に吹き込むことによって、当該ボイラで生成される燃焼灰の腐食力を低減することができる。   In this way, by blowing combustion ash having a particle size of more than 2 μm and less than 10 μm into the exhaust gas passage, the progress of corrosion of the superheater tube can be suppressed when the particle size is 0.1 μm or more. This is because combustion ash having a particle size of 2 μm or less has a strong corrosive power, but a combustion ash having a particle diameter of more than 2 μm and less than 10 μm has a weak corrosive power. Therefore, the corrosive force of the combustion ash generated in the boiler can be reduced by blowing the combustion ash having a particle size having a weak corrosive force exceeding 2 μm and less than 10 μm into the exhaust gas passage.

本発明に係るボイラの腐食抑制方法は、粒子径が0.1μm以上10μm未満の腐食抑制粒子を排ガス通路に吹き込んで、この排ガス通路内に設けられている過熱器管の表面に付着させることで、前記過熱器管の腐食を抑制することを特徴とするものである。   In the method for inhibiting corrosion of a boiler according to the present invention, corrosion inhibiting particles having a particle size of 0.1 μm or more and less than 10 μm are blown into an exhaust gas passage and adhered to the surface of a superheater tube provided in the exhaust gas passage. The corrosion of the superheater tube is suppressed.

本発明に係るボイラの腐食抑制方法によると、本発明に係る腐食抑制装置付きボイラと同様に作用する。   The method for inhibiting corrosion of a boiler according to the present invention works in the same manner as the boiler with a corrosion inhibiting apparatus according to the present invention.

この発明に係る腐食抑制装置付きボイラは、粒子径が0.1μm以上10μm未満の腐食抑制粒子を、過熱器管の表面に付着させることによって、0.1〜10μmの腐食性粒子が過熱器管の金属界面等に付着する付着重量及び付着面積を小さくして、これによって、過熱器管の腐食を抑制する構成である。従って、従来よりも効果的に過熱器管の腐食の進行を抑制することができる。よって、過熱器管の保守、点検費用の低減を図ることができ、ボイラを安定して長期間継続して使用できるようにすることができる。   In the boiler with a corrosion inhibitor according to the present invention, the corrosion inhibitor particles having a particle diameter of 0.1 μm or more and less than 10 μm are adhered to the surface of the superheater tube, so that the corrosive particles of 0.1 to 10 μm are superheater tube. The adhesion weight and adhesion area adhering to the metal interface or the like are reduced, thereby suppressing the corrosion of the superheater tube. Therefore, the progress of corrosion of the superheater tube can be suppressed more effectively than in the past. Therefore, the maintenance and inspection costs of the superheater tube can be reduced, and the boiler can be used stably for a long period of time.

この発明の一実施形態に係る腐食抑制装置付きボイラの内部構造を示す概略斜視図である。It is a schematic perspective view which shows the internal structure of the boiler with a corrosion inhibitor which concerns on one Embodiment of this invention. 同実施形態に係る同ボイラの制御構成を示すブロック図である。It is a block diagram which shows the control structure of the boiler which concerns on the same embodiment. 同実施形態に係る同ボイラに設けられている腐食検出装置を示す模式図である。It is a schematic diagram which shows the corrosion detection apparatus provided in the boiler which concerns on the same embodiment. 同実施形態に係る同ボイラを説明するための図であり、粒子径の異なる燃焼灰中における各成分割合を示す図である。It is a figure for demonstrating the boiler which concerns on the same embodiment, and is a figure which shows each component ratio in the combustion ash from which particle diameter differs. 同実施形態に係る同ボイラを説明するための図であり、粒子径の異なる燃焼灰による過熱器管を模擬した条件での金属片の腐食量を示す図である。It is a figure for demonstrating the boiler which concerns on the same embodiment, and is a figure which shows the corrosion amount of the metal piece on the conditions which simulated the superheater pipe | tube by the combustion ash from which particle diameter differs. 同実施形態に係る同ボイラを説明するための図であり、腐食抑制粒子の添加割合と過熱器管を模擬した条件での金属片の腐食量との関係を示す図である。It is a figure for demonstrating the boiler which concerns on the same embodiment, and is a figure which shows the relationship between the addition ratio of a corrosion inhibitor particle, and the corrosion amount of the metal piece on the conditions which simulated the superheater pipe | tube. 同実施形態に係る同ボイラを説明するための図であり、燃焼灰の添加割合と過熱器管を模擬した条件での金属片の腐食量との関係を示す図である。It is a figure for demonstrating the boiler which concerns on the embodiment, and is a figure which shows the relationship between the addition rate of combustion ash, and the corrosion amount of the metal piece on the conditions which simulated the superheater pipe | tube.

まず、本願発明に係る腐食抑制装置付きボイラの基本原理について説明する。本願の発明者は、図1に示すボイラ19の第3煙道22内に飛散する粒子径が0.1〜10μmであり、かつ、NaやKの塩化物(例えばNaCl、KCl)を含む腐食性粒子(酸化剤としての粒子)が、第3煙道22内に設けられている過熱器管27の表面に付着することによって、過熱器管27の腐食が進行することを究明した。   First, the basic principle of the boiler with a corrosion inhibitor according to the present invention will be described. The inventor of the present application has a particle diameter of 0.1 to 10 μm scattered in the third flue 22 of the boiler 19 shown in FIG. 1, and corrosion containing Na or K chloride (for example, NaCl, KCl). The inventors investigated that the corrosion of the superheater tube 27 progresses when the conductive particles (particles as the oxidizing agent) adhere to the surface of the superheater tube 27 provided in the third flue 22.

そこで、当該腐食性粒子と同程度の粒子径(0.1μm以上10μm未満)の腐食抑制粒子を、例えば第2煙道21内に吹き込んで過熱器管27の表面に付着させることによって、燃焼灰に含まれている粒子径が0.1〜10μmの腐食性粒子が過熱器管27の表面に付着する付着重量及び付着面積を小さくして、過熱器管27の腐食の進行を抑制するようにした。   Therefore, the combustion ash is produced by blowing the corrosion-inhibiting particles having the same particle size (0.1 μm or more and less than 10 μm) as the corrosive particles, for example, into the second flue 21 and adhering to the surface of the superheater tube 27. The corrosion weight of the superheater tube 27 is reduced by reducing the adhesion weight and the adhesion area of the corrosive particles having a particle diameter of 0.1 to 10 μm contained in the surface of the superheater tube 27. did.

更に、この腐食抑制粒子による腐食抑制メカニズムについて詳しく説明する。
(1)粒子径が0.1〜2μmの腐食性粒子について
粒子径が0.1〜2μmの腐食性粒子は、主として熱泳動によって前記過熱器管27の金属界面等に付着する。そして、第3煙道22内を飛散する粒子のうち、粒子径が0.1〜2μmの粒子には、NaやKの塩化物を含む当該腐食性粒子が中心となって多く存在しており、当該腐食性粒子は、高い腐食力を有している。
Furthermore, the corrosion inhibition mechanism by the corrosion inhibition particles will be described in detail.
(1) Corrosive particles having a particle size of 0.1 to 2 μm Corrosive particles having a particle size of 0.1 to 2 μm adhere to the metal interface of the superheater tube 27 mainly by thermophoresis. Of the particles scattered in the third flue 22, there are many corrosive particles containing Na or K chloride in the particles having a particle size of 0.1 to 2 μm. The corrosive particles have a high corrosive power.

従って、これらの腐食性粒子が、過熱器管27の金属界面等に付着することによって腐食が生じる。   Therefore, corrosion occurs when these corrosive particles adhere to the metal interface of the superheater tube 27 or the like.

そこで、この発明に係る腐食抑制装置付きボイラ19によると、腐食抑制装置59(図1には、腐食抑制装置59の吹込み口59aが表れている。)を使用して、粒子径が0.1μm以上10μm未満の腐食抑制粒子を、第2煙道21内に吹き込むことによって、この吹き込んだ腐食抑制粒子を、第3煙道22内に設けられている過熱器管27の金属界面等に対して熱泳動によって付着させることができる。これによって、第3煙道22内の粒子径が0.1〜2μmの腐食性粒子が、過熱器管27の金属界面等に付着する付着重量及び付着面積を減少させることができ、過熱器管27の腐食の進行を抑制することができる。
(2)粒子径が2〜10μmの腐食性粒子について
粒子径が2〜10μmの腐食性粒子には、過熱器管27の金属界面等に対して熱泳動によって付着するものもあるが、慣性衝突によって過熱器管27の金属界面等に付着するものも多く存在している。
Therefore, according to the boiler 19 with a corrosion inhibiting device according to the present invention, the particle size is reduced to 0. 0 using the corrosion inhibiting device 59 (in FIG. 1, the blowing port 59a of the corrosion inhibiting device 59 appears). By blowing corrosion-inhibiting particles of 1 μm or more and less than 10 μm into the second flue 21, the blown corrosion-inhibiting particles are made against the metal interface of the superheater tube 27 provided in the third flue 22. Can be attached by thermophoresis. As a result, the corrosive particles having a particle diameter of 0.1 to 2 μm in the third flue 22 can reduce the adhesion weight and adhesion area adhering to the metal interface of the superheater tube 27, and the superheater tube. The progress of the corrosion of 27 can be suppressed.
(2) Corrosive particles having a particle diameter of 2 to 10 μm Some corrosive particles having a particle diameter of 2 to 10 μm adhere to the metal interface of the superheater tube 27 by thermophoresis, but inertial collision Therefore, there are many that adhere to the metal interface of the superheater tube 27.

そして、第3煙道22内に飛散する粒子(燃焼灰)のうち、粒子径が2〜10μmの粒子には、粒子径が0.1〜2μmの粒子と比較して、NaやKの塩化物を含む当該腐食性粒子よりも腐食性の弱い粒子が多く含まれているために、過熱器管27に対する腐食力は、前記(1)の場合よりも小さいと言える。   Of the particles (combustion ash) scattered in the third flue 22, the particles having a particle diameter of 2 to 10 μm are chlorinated with Na or K as compared with the particles having a particle diameter of 0.1 to 2 μm. It can be said that the corrosive force with respect to the superheater tube 27 is smaller than that in the case of (1) because many corrosive particles are contained in the corrosive particles.

また、腐食が進行するには、腐食性粒子が過熱器管27の金属界面等に連続的に付着することが必要であるが、腐食抑制装置59を使用して、粒子径が0.1μm以上10μm未満の腐食抑制粒子を、第2煙道21内に吹き込んで、この吹き込んだ腐食抑制粒子が過熱器管27の金属界面等に対して慣性衝突や熱泳動によって付着すると、この過熱器管27の金属界面等に慣性衝突等によって付着する腐食性粒子が、過熱器管27の金属界面にまで拡散して付着することを抑制することができる。これによって、過熱器管27の腐食の進行を抑制することができる。
(3)粒子径が10μm以上の腐食抑制粒子について(本願発明から除外される腐食抑制粒子)
腐食抑制装置59を使用して、粒子径が10μm以上の腐食抑制粒子を、第2煙道21内に吹き込むことによって、この吹き込んだ腐食抑制粒子を過熱器管27の金属界面等に付着させた場合は、粒子径が10μm以上の腐食抑制粒子どうしの隙間から粒子径が0.1〜10μmの腐食性粒子が入り込んで、過熱器管27の金属界面等に付着してしまう可能性が大きい。よって、粒子径が10μm以上の腐食抑制粒子を使用すると、過熱器管27の腐食を殆ど抑制することはできない。
Further, in order for the corrosion to proceed, it is necessary for the corrosive particles to continuously adhere to the metal interface or the like of the superheater tube 27, but the particle size is 0.1 μm or more using the corrosion suppression device 59. When corrosion-inhibiting particles of less than 10 μm are blown into the second flue 21 and the blown-in corrosion inhibiting particles adhere to the metal interface of the superheater tube 27 by inertial collision or thermophoresis, the superheater tube 27 It is possible to prevent the corrosive particles adhering to the metal interface or the like due to inertial collision or the like from diffusing and adhering to the metal interface of the superheater tube 27. Thereby, the progress of corrosion of the superheater tube 27 can be suppressed.
(3) Corrosion-inhibiting particles having a particle size of 10 μm or more (corrosion-inhibiting particles excluded from the present invention)
Using the corrosion suppression device 59, the corrosion suppression particles having a particle diameter of 10 μm or more were blown into the second flue 21 to adhere the blown corrosion suppression particles to the metal interface of the superheater tube 27 or the like. In this case, there is a high possibility that corrosive particles having a particle diameter of 0.1 to 10 μm enter from a gap between the corrosion-inhibiting particles having a particle diameter of 10 μm or more and adhere to the metal interface of the superheater tube 27. Therefore, when the corrosion-inhibiting particles having a particle diameter of 10 μm or more are used, the corrosion of the superheater tube 27 can hardly be suppressed.

従って、本発明は、粒子径が0.1〜10μmの腐食性粒子と同程度の粒子径(0.1μm以上10μm未満)の腐食抑制粒子を、第2煙道21内に吹き込んで過熱器管27の表面に付着させることによって、0.1〜10μmの腐食性粒子が過熱器管27の表面に付着する付着重量及び付着面積を小さくして、過熱器管27の腐食の進行を抑制するようにした。   Accordingly, in the present invention, the superheater tube is formed by blowing the corrosion-inhibiting particles having the same particle size (0.1 μm or more and less than 10 μm) as the corrosive particles having a particle size of 0.1 to 10 μm into the second flue 21. By adhering to the surface of the superheater tube 27, it is possible to reduce the weight and area of adhesion of the corrosive particles of 0.1 to 10 μm to the surface of the superheater tube 27, thereby suppressing the progress of corrosion of the superheater tube 27. I made it.

次に、本発明に係る腐食抑制装置付きボイラ19及びボイラの腐食抑制方法の一実施形態を、図1〜図3を参照して説明する。図1に示す腐食抑制装置付きボイラ(以下、単に「ボイラ」と言うこともある。)19は、燃料を燃焼炉10で燃焼させて、その燃焼により発生する燃焼排ガスが有する熱によって過熱器管27を過熱して、高温・高圧の過熱蒸気を発生することができるものである。   Next, one embodiment of the boiler 19 with a corrosion inhibitor and the method for inhibiting corrosion of a boiler according to the present invention will be described with reference to FIGS. A boiler with a corrosion suppression device (hereinafter sometimes simply referred to as a “boiler”) 19 shown in FIG. 1 burns fuel in a combustion furnace 10, and superheater tubes are heated by the heat of combustion exhaust gas generated by the combustion. 27 can be heated to generate high-temperature and high-pressure superheated steam.

そして、このボイラ19には、腐食抑制装置59が設けられており、この腐食抑制装置59が、腐食抑制粒子を第2煙道21内に吹き込むことによって、この後流側に設けられている過熱器管27の腐食を抑制することができるようになっている。また、このボイラ19は、燃焼炉10としての例えばごみ焼却炉を適用している排熱ボイラであり、更に、過熱器管27を通して得られる高温・高圧の過熱蒸気を利用して発電を行う発電機11を備えている。   And this boiler 19 is provided with the corrosion suppression apparatus 59, and this corrosion suppression apparatus 59 blows the corrosion suppression particle in the 2nd flue 21, The overheating provided in this downstream side Corrosion of the vessel tube 27 can be suppressed. The boiler 19 is an exhaust heat boiler that uses, for example, a waste incinerator as the combustion furnace 10, and further generates power using high-temperature and high-pressure superheated steam obtained through the superheater tube 27. Machine 11 is provided.

ごみ焼却炉(燃焼炉)10は、図1に示すように、ごみを供給するホッパ12を備えている。ホッパ12は、シュート13を介して主燃焼室14に繋がっており、ホッパ12から供給されたごみは、シュート13を通って主燃焼室14に送られる。主燃焼室14には、乾燥ストーカ15、燃焼ストーカ16及び後燃焼ストーカ17が設けられている。各ストーカ15,16,17の下方から一次空気が送られており、また主燃焼室14の天井14aから二次空気が送られている。   As shown in FIG. 1, the waste incinerator (combustion furnace) 10 includes a hopper 12 for supplying waste. The hopper 12 is connected to the main combustion chamber 14 via the chute 13, and the dust supplied from the hopper 12 is sent to the main combustion chamber 14 through the chute 13. The main combustion chamber 14 is provided with a dry stoker 15, a combustion stoker 16, and a post-combustion stoker 17. Primary air is sent from below the stokers 15, 16, and 17, and secondary air is sent from the ceiling 14 a of the main combustion chamber 14.

図1に示す主燃焼室14のごみは、まず乾燥ストーカ15に送られ、一次空気及び主燃焼室14の輻射熱により乾燥され着火される。着火したごみは、燃焼ストーカ16に送られる。また着火したごみからは、熱分解により可燃性ガスが発生する。この可燃性のガスは、一次空気により主燃焼室14の上部のガス層に送られ、このガス層にて二次空気と共に炎燃焼する。この炎燃焼に伴う熱輻射によりごみは、更に昇温される。着火したごみの一部は、燃焼ストーカ16にて燃焼し、残りの未燃焼分は、後燃焼ストーカ17へと送られる。未燃焼分のごみは、後燃焼ストーカ17で燃焼させられ、燃焼後に残った焼却灰は、シュート18から外部へと排出される。   The garbage in the main combustion chamber 14 shown in FIG. 1 is first sent to the drying stoker 15 and dried and ignited by the primary air and the radiant heat of the main combustion chamber 14. The ignited garbage is sent to the combustion stoker 16. In addition, combustible gas is generated from the ignited garbage by thermal decomposition. This combustible gas is sent to the gas layer above the main combustion chamber 14 by the primary air, and flame burns with the secondary air in this gas layer. The temperature of the dust is further increased by the heat radiation accompanying the flame combustion. A part of the ignited garbage is combusted by the combustion stoker 16, and the remaining unburned portion is sent to the post-combustion stoker 17. Unburned waste is burned by the post-combustion stoker 17, and the incineration ash remaining after the combustion is discharged from the chute 18 to the outside.

また、主燃焼室14は、図1に示すように、このボイラ19が備えている放射室20に接続されており、ごみの燃焼により生じた燃焼排ガスが、主燃焼室14から放射室20に送られてくる。この燃焼排ガスは、放射室20で再度燃焼した後に、ボイラ19の第2煙道21を通って第3煙道22へと導かれ、その後、図示しない排ガス処理設備で無害化の処理が成されてから大気に放出される。   Further, as shown in FIG. 1, the main combustion chamber 14 is connected to a radiation chamber 20 provided in the boiler 19, and combustion exhaust gas generated by combustion of garbage is transferred from the main combustion chamber 14 to the radiation chamber 20. Will be sent. This combustion exhaust gas is burned again in the radiation chamber 20 and then led to the third flue 22 through the second flue 21 of the boiler 19 and then detoxified by an exhaust gas treatment facility (not shown). Then released into the atmosphere.

この図1に示すボイラ19には、放射室20及び第2煙道21を規定する壁の各々に、ボイラドラム24に接続された複数の水管23が設けられている。水管23は、例えば炭素鋼(例えば、STB340)で形成され、その中にボイラドラム24から送られてくる水が流れている。水管23内の水は、放射室又は第2煙道20,21の廃熱を回収して、その一部が蒸発して汽水となりボイラドラム24へと戻される。ボイラドラム24に戻った汽水は、一部が気化して蒸気となっている。蒸気は、ボイラドラム24から第3煙道22に設けられた過熱器25へと送られて、過熱される。このように過熱されて高温高圧となった過熱蒸気は、タービン26へと送られ、発電機11を駆動する。   The boiler 19 shown in FIG. 1 is provided with a plurality of water pipes 23 connected to a boiler drum 24 on each of walls defining the radiation chamber 20 and the second flue 21. The water pipe 23 is formed of, for example, carbon steel (for example, STB340), and water sent from the boiler drum 24 flows therein. The water in the water pipe 23 recovers waste heat from the radiation chamber or the second flue 20, 21, and part of it is evaporated to become brackish water and returned to the boiler drum 24. A part of the brackish water returning to the boiler drum 24 is vaporized to become steam. The steam is sent from the boiler drum 24 to a superheater 25 provided in the third flue 22 to be superheated. The superheated steam that has been heated up to high temperature and high pressure is sent to the turbine 26 and drives the generator 11.

上記のように構成されたボイラ19によると、燃焼時に揮発した物質、並びに、焼却灰の一部(総称して「焼却灰等」と言う。)が燃焼排ガスにより放射室及び第2煙道20,21、並びに第3煙道22へと運ばれ、そして水管23及び過熱器25の過熱器管27に付着して堆積する。このような焼却灰等は、高い腐食性を有しており、高温の過熱器25の過熱器管27を腐食させる要因となっている。   According to the boiler 19 configured as described above, the substances that volatilized during combustion and a part of the incineration ash (collectively referred to as “incineration ash etc.”) are caused by the combustion exhaust gas to the radiation chamber and the second flue 20. , 21, and the third flue 22, and deposit on the water tube 23 and the superheater tube 27 of the superheater 25. Such incineration ash and the like have high corrosiveness, and cause corrosion of the superheater tube 27 of the high-temperature superheater 25.

次に、腐食抑制装置59について説明する。この腐食抑制装置59は、図1に示す過熱器管27の腐食を抑制するための装置であり、ボイラ19の第2煙道21を形成する側壁部に対して設けられている。そして、この腐食抑制装置59は、腐食抑制粒子を第2煙道21内に吹き込むことができる粒子供給装置であり、図1には、腐食抑制粒子を第2煙道21内に吹き込むための吹込み口59aが表れている。   Next, the corrosion inhibitor 59 will be described. The corrosion suppression device 59 is a device for suppressing the corrosion of the superheater tube 27 shown in FIG. 1, and is provided on the side wall portion that forms the second flue 21 of the boiler 19. The corrosion suppressing device 59 is a particle supply device that can blow the corrosion suppressing particles into the second flue 21. FIG. 1 shows a blower for blowing the corrosion suppressing particles into the second flue 21. The entrance 59a appears.

この腐食抑制粒子は、粒子径が0.1μm以上10μm未満の粒子であって、Ca、Si、Al、Mg及びFeのうち少なくとも1つの元素を主成分とする化合物であり、例えばCaO、SiOである。 The corrosion-inhibiting particles are particles having a particle size of 0.1 μm or more and less than 10 μm, and are compounds containing at least one element of Ca, Si, Al, Mg, and Fe as a main component, for example, CaO, SiO 2 It is.

そして、この腐食抑制粒子は、融点が800℃以上である。腐食抑制装置59がこの腐食抑制粒子を吹き込む領域は、その吹き込まれた領域の燃焼排ガスによって、腐食抑制粒子が溶融して互いに結合しないように、又は(及び)、ガス中の成分の一部が腐食抑制粒子を核にして凝縮して粒子径が大きくならないようなガス温度の領域である。つまり、この実施形態では、腐食抑制粒子を第2煙道21内に吹き込むようにしてあり、この第2煙道21は、その内側を流れる燃焼排ガスのガス温度が800℃よりも低い領域である。   The corrosion inhibiting particles have a melting point of 800 ° C. or higher. The area where the corrosion inhibiting device 59 blows in the corrosion inhibiting particles is such that the corrosion inhibiting particles are not melted and bonded to each other by the combustion exhaust gas in the blown area, or (and) some of the components in the gas are This is a gas temperature region in which the particle size is not increased by concentrating the corrosion-inhibiting particles as nuclei. That is, in this embodiment, the corrosion-inhibiting particles are blown into the second flue 21, and the second flue 21 is a region where the gas temperature of the combustion exhaust gas flowing inside thereof is lower than 800 ° C. .

更に、この実施形態では、水等の液体に腐食抑制粒子を混合して得られたスラリー状の混合物質、又は腐食抑制粒子よりも粒子径が大きい粉体(例えば焼却灰)に腐食抑制粒子を混合して得られた粉状の混合物質を、腐食抑制装置59を使用して第2煙道21内に吹き込むようにしている。   Further, in this embodiment, the corrosion-inhibiting particles are added to a slurry-like mixed material obtained by mixing the corrosion-inhibiting particles with a liquid such as water, or a powder (for example, incineration ash) having a particle diameter larger than that of the corrosion-inhibiting particles. The powdery mixed substance obtained by mixing is blown into the second flue 21 using the corrosion suppressing device 59.

次に、図1及び図2に示す腐食検出装置30、制御部100及び腐食抑制装置59について説明する。   Next, the corrosion detection device 30, the control unit 100, and the corrosion suppression device 59 shown in FIGS. 1 and 2 will be described.

腐食検出装置30は、図1に示すように、ボイラ19の第3煙道22の側壁部であって、過熱器25よりも燃焼排ガスの流れ方向の上流側に設けられ、先端の検出部が第3煙道22内に位置している。この腐食検出装置30は、第3煙道22内に設けられた一対の電極45、47(検出部であり後述する図3参照)を有し、この一対の電極45、47間の電気抵抗の変化に基づいて過熱器管27の腐食の程度を検出して、その腐食の程度と対応する腐食検出信号を生成するようになっている。   As shown in FIG. 1, the corrosion detection device 30 is provided on the side wall portion of the third flue 22 of the boiler 19 and on the upstream side of the superheater 25 in the flow direction of the combustion exhaust gas. Located in the third flue 22. The corrosion detection device 30 has a pair of electrodes 45 and 47 (a detection unit, see FIG. 3 described later) provided in the third flue 22, and the electrical resistance between the pair of electrodes 45 and 47 is Based on the change, the degree of corrosion of the superheater tube 27 is detected, and a corrosion detection signal corresponding to the degree of corrosion is generated.

制御部100は、腐食検出装置30が生成する腐食検出信号に基づいて腐食抑制装置59を制御して、腐食抑制粒子の吹込み重量を制御するものである。   The control unit 100 controls the corrosion suppression device 59 based on the corrosion detection signal generated by the corrosion detection device 30 to control the blowing weight of the corrosion suppression particles.

次に、上記のように構成された腐食抑制装置付きボイラ19の作用について説明する。この実施形態に係る腐食抑制装置付きボイラ19によると、図1に示す腐食抑制装置59を使用して、粒子径が0.1μm以上10μm未満の腐食抑制粒子(例えばCaO、SiO)を、第2煙道21内に吹き込むことによって、この吹き込んだ腐食抑制粒子を過熱器管27の金属界面やその外表面に形成される腐食層の表面(過熱器管27の金属界面等)に対して熱泳動や慣性衝突によって付着させることができる。これによって、第3煙道22内で飛散する粒子径が0.1〜10μmの腐食性粒子(例えばKCl、NaCl)が、過熱器管27の金属界面等に付着する付着重量及び付着面積を減少させることができ、過熱器管27の腐食の進行を抑制することができる。 Next, the operation of the boiler 19 with a corrosion inhibitor configured as described above will be described. According to the boiler 19 with a corrosion inhibiting device according to this embodiment, the corrosion inhibiting device 59 shown in FIG. 1 is used to corrode corrosion inhibiting particles (for example, CaO, SiO 2 ) having a particle diameter of 0.1 μm or more and less than 10 μm. 2 By blowing into the flue 21, the blown corrosion-inhibiting particles are heated against the metal interface of the superheater tube 27 and the surface of the corrosion layer formed on the outer surface thereof (such as the metal interface of the superheater tube 27). It can be attached by electrophoresis or inertial collision. As a result, the corrosive particles (for example, KCl, NaCl) having a particle diameter of 0.1 to 10 μm scattered in the third flue 22 reduce the adhesion weight and adhesion area adhering to the metal interface of the superheater tube 27. The progress of corrosion of the superheater tube 27 can be suppressed.

従って、従来よりも効果的に過熱器管27の腐食の進行を抑制することができる。よって、過熱器管27の保守、点検費用の低減を図ることができ、ボイラ19を安定して長期間継続して使用できるようにすることができる。   Therefore, the progress of corrosion of the superheater tube 27 can be suppressed more effectively than in the past. Therefore, maintenance and inspection costs for the superheater tube 27 can be reduced, and the boiler 19 can be used stably for a long period of time.

そして、腐食抑制粒子は、Ca、Si、Al、Mg及びFeのうち少なくとも1つの元素を主成分とする化合物であるので、比較的入手し易い元素を主成分とする化合物を使用して、過熱器管27の腐食の進行を抑制することができる。   Since the corrosion-inhibiting particles are compounds mainly composed of at least one element of Ca, Si, Al, Mg, and Fe, a compound mainly composed of relatively easily available elements is used for overheating. The progress of corrosion of the vessel tube 27 can be suppressed.

また、水等の液体に腐食抑制粒子を混合して得られたスラリー状の混合物質、又は腐食抑制粒子よりも粒子径が大きい粉体(例えば焼却灰)に腐食抑制粒子を混合して得られた粉状の混合物質を、腐食抑制装置59を使用して第2煙道21内に吹き込むようにしているので、第2煙道21内に吹き込もうとする腐食抑制粒子の重量が小さい場合でも、腐食抑制装置59を使用して、所望の重量の腐食抑制粒子を精度よく第2煙道21内に吹き込むことができる。そして、腐食抑制粒子が混合される液体として水を採用すると、水は、入手が容易であり安価であるので経済的である。また、腐食抑制粒子が混合される粉体として、腐食抑制粒子よりも粒子径の大きい安価なもの、例えば焼却灰を使用することによって、当該粉体のコストの低減を図ることができる。   Also obtained by mixing the corrosion-inhibiting particles into a slurry-like mixed material obtained by mixing the corrosion-inhibiting particles with a liquid such as water, or powder (for example, incineration ash) having a particle diameter larger than that of the corrosion-inhibiting particles. Since the powdery mixed substance is blown into the second flue 21 using the corrosion inhibitor 59, the weight of the corrosion inhibiting particles to be blown into the second flue 21 is small. However, the corrosion suppression device 59 can be used to accurately blow the corrosion suppression particles having a desired weight into the second flue 21. If water is used as the liquid in which the corrosion inhibiting particles are mixed, the water is economical because it is easily available and inexpensive. In addition, by using an inexpensive powder having a particle diameter larger than that of the corrosion-inhibiting particles, such as incineration ash, the powder can be reduced in cost.

更に、融点が800℃以上の腐食抑制粒子を採用しており、このような腐食抑制粒子を、ガス温度が800℃よりも低い第2煙道21内に吹き込むことによって、腐食抑制粒子の粒子径が大きくならないようにすることができ、腐食抑制粒子を、その粒子径が元の小さい状態で、過熱器管27の金属界面やその外表面に形成される腐食層の表面全体に付着させることができる。これによって、過熱器管27の表面全体の腐食の進行を効果的に抑制することができる。   Furthermore, corrosion inhibiting particles having a melting point of 800 ° C. or higher are employed. By blowing such corrosion inhibiting particles into the second flue 21 having a gas temperature lower than 800 ° C., the particle size of the corrosion inhibiting particles is increased. The corrosion-inhibiting particles can be adhered to the entire surface of the corrosion layer formed on the metal interface of the superheater tube 27 and its outer surface in a state where the particle diameter is originally small. it can. Thereby, the progress of corrosion on the entire surface of the superheater tube 27 can be effectively suppressed.

そして、図2に示す腐食検出装置30によると、この腐食検出装置30が備えている電極45、47に燃焼灰が付着する状況において、一対の電極45、47間の電気抵抗を検出して、その電気抵抗の変化に基づいて当該電極45、47の腐食の程度を検出することができ、その電極45、47の腐食の程度と対応する腐食検出信号を生成することができる。従って、当該電極45、47が過熱器管27と同程度に腐食する状況に置かれていることによって、この腐食検出信号を、過熱器管27の腐食の程度を表す信号として使用することができる。   Then, according to the corrosion detection device 30 shown in FIG. 2, in the situation where combustion ash adheres to the electrodes 45, 47 provided in the corrosion detection device 30, the electrical resistance between the pair of electrodes 45, 47 is detected, The degree of corrosion of the electrodes 45 and 47 can be detected based on the change in electrical resistance, and a corrosion detection signal corresponding to the degree of corrosion of the electrodes 45 and 47 can be generated. Therefore, the corrosion detection signal can be used as a signal indicating the degree of corrosion of the superheater tube 27 because the electrodes 45 and 47 are corroded to the same degree as the superheater tube 27. .

そして、制御部100は、腐食検出装置30が生成する腐食検出信号に基づいて、腐食抑制装置59を制御して腐食抑制粒子の吹込み重量を制御することができる。これによって、制御部100は、例えば過熱器管27の腐食の進行が速いときは、腐食抑制粒子の吹込み重量を多くすることができ、そして、過熱器管27の腐食の進行が遅いときは、腐食抑制粒子の吹込み重量を少なくすることができる。このようにして、過熱器管27の腐食の程度(例えば腐食量、腐食速度)に応じて、腐食を抑制でき、しかも経済的な重量の腐食抑制粒子を第2煙道21内に吹き込むことができ、過熱器管27の腐食を確実に抑制することができる。   And the control part 100 can control the corrosion suppression apparatus 59 based on the corrosion detection signal which the corrosion detection apparatus 30 produces | generates, and can control the blowing weight of corrosion suppression particles. Accordingly, the controller 100 can increase the blowing weight of the corrosion-inhibiting particles when the corrosion of the superheater tube 27 is fast, and when the corrosion of the superheater tube 27 is slow, for example. Further, it is possible to reduce the blowing weight of the corrosion-inhibiting particles. In this way, the corrosion can be suppressed according to the degree of corrosion of the superheater tube 27 (for example, the amount of corrosion and the corrosion rate), and the corrosion-inhibiting particles having an economical weight can be blown into the second flue 21. And corrosion of the superheater tube 27 can be reliably suppressed.

次に、図3を参照して、この実施形態で使用されている腐食検出装置30について更に詳しく説明する。腐食検出装置30は、腐食センサ31と、電気化学測定器32と、端末機33と、送風機34と、流量調整器35と、バルブ36を備えている。送風機34と流量調整器35は電極を冷却する冷却機構37を構成している。   Next, the corrosion detection device 30 used in this embodiment will be described in more detail with reference to FIG. The corrosion detection device 30 includes a corrosion sensor 31, an electrochemical measuring device 32, a terminal device 33, a blower 34, a flow rate regulator 35, and a valve 36. The blower 34 and the flow rate regulator 35 constitute a cooling mechanism 37 that cools the electrodes.

腐食センサ31は、ステンレス鋼から成る長尺円筒の保護管40を備えている。保護管40は、その内壁により冷却空気を流すための冷却通路40aが形作られている。保護管40の先端側の周面には、検出部である試料電極45、参照電極46および対極47の一端がボイラ19内に露出している。腐食センサ31は、ボイラ19の第3煙道22の側壁部であって、過熱器25よりも燃焼排ガスの流れ方向の上流側に設けられ、先端の検出部が第3煙道22内に位置している。   The corrosion sensor 31 includes a long cylindrical protective tube 40 made of stainless steel. The protective tube 40 is formed with a cooling passage 40a for flowing cooling air through its inner wall. One end of the sample electrode 45, the reference electrode 46, and the counter electrode 47, which are detection units, is exposed in the boiler 19 on the peripheral surface on the tip side of the protective tube 40. The corrosion sensor 31 is a side wall portion of the third flue 22 of the boiler 19 and is provided upstream of the superheater 25 in the flow direction of the combustion exhaust gas, and a tip detection portion is located in the third flue 22. doing.

上記各電極45,46,47に接続されたリード線51,54,55は、保護管40内を通じてボイラ19の外部に位置する当該保護管40の基端部の外まで引き出され、電気化学測定器32と電気的に接続されている。同様に、試料電極用熱電対53、保護管用熱電対56およびガス温度用熱電対57は、保護管40内を通じて当該保護管40の基端部の外まで引き出され、流量調整器35と電気的に接続されている。また、保護管40の基端部には、保護管40内の冷却通路40aに冷却空気を送るための送風機34が接続されている。   The lead wires 51, 54, 55 connected to the electrodes 45, 46, 47 are led out of the base end portion of the protective tube 40 located outside the boiler 19 through the protective tube 40, and subjected to electrochemical measurement. It is electrically connected to the device 32. Similarly, the sample electrode thermocouple 53, the protective tube thermocouple 56, and the gas temperature thermocouple 57 are drawn out to the outside of the base end portion of the protective tube 40 through the protective tube 40, and are electrically connected to the flow rate regulator 35. It is connected to the. Further, a blower 34 for sending cooling air to the cooling passage 40 a in the protective tube 40 is connected to the proximal end portion of the protective tube 40.

送風機34には、送風機34からの流量を制御するための流量調整器35が設けられている。また送風機34と冷却通路40aとの間には、空気量を調整するためのバルブ36が設けられている。流量調整器35は、前述の通り、熱電対53に接続されており、熱電対53からの出力に応じて、試料電極45の温度が予め定められた温度と等しくなるように、バルブ36の開度と送風機34からの冷却空気の流量を制御する。本実施形態では、試料電極45の温度が過熱器管27の温度と等しくなるように制御される。これにより、試料電極45が置かれた環境と過熱器管27が置かれた環境とを同じ状態とすることができるので、より正確に過熱器管27の腐食状態を推定することができる。   The blower 34 is provided with a flow rate regulator 35 for controlling the flow rate from the blower 34. A valve 36 for adjusting the amount of air is provided between the blower 34 and the cooling passage 40a. As described above, the flow rate regulator 35 is connected to the thermocouple 53, and the valve 36 is opened so that the temperature of the sample electrode 45 becomes equal to a predetermined temperature in accordance with the output from the thermocouple 53. And the flow rate of the cooling air from the blower 34 is controlled. In the present embodiment, the temperature of the sample electrode 45 is controlled to be equal to the temperature of the superheater tube 27. As a result, the environment in which the sample electrode 45 is placed and the environment in which the superheater tube 27 is placed can be brought into the same state, so that the corrosion state of the superheater tube 27 can be estimated more accurately.

電気化学測定器32は、公知の電気化学インピーダンス法により、試料電極45の腐食速度を計測する装置である。   The electrochemical measuring device 32 is a device that measures the corrosion rate of the sample electrode 45 by a known electrochemical impedance method.

上記のように腐食センサ31を用いて推定された過熱器管27の腐食速度、及びこの腐食速度を演算して得られた腐食量(腐食検出信号)は、腐食検出装置30の端末機33から制御部100へ送信される。   The corrosion rate of the superheater tube 27 estimated using the corrosion sensor 31 as described above and the corrosion amount (corrosion detection signal) obtained by calculating this corrosion rate are obtained from the terminal device 33 of the corrosion detection device 30. It is transmitted to the control unit 100.

次に、図4〜図7の説明をする。図4は、粒子径が異なる燃焼灰中における各成分割合を示している。図4では、Ca(カルシウム)、Cl(塩素)、Na+K(ナトリウム、カリウム)の合計が1となるように表してある。そして、粒子径が小の粒子とは、粒子径Dp≦2μmの粒子である。粒子径が中の粒子とは、2μm<粒子径Dp<10μmの粒子である。粒子径が大の粒子とは、粒子径Dp>10μmの粒子である。   Next, FIGS. 4 to 7 will be described. FIG. 4 shows the ratio of each component in the combustion ash having different particle diameters. In FIG. 4, the total of Ca (calcium), Cl (chlorine), and Na + K (sodium, potassium) is represented as 1. The particles having a small particle diameter are particles having a particle diameter Dp ≦ 2 μm. The particles having a medium particle size are particles having a particle size of 2 μm <particle size Dp <10 μm. The particles having a large particle size are particles having a particle size Dp> 10 μm.

この図4から分かるように、粒子径が小の燃焼灰(粒子)は、約98%が腐食力の強いCl及びNa+Kで構成され、腐食力を有しない不活性なCaが僅かに含まれている。よって、粒子径が小の燃焼灰は、腐食力が極めて強いと言える。   As can be seen from FIG. 4, the combustion ash (particles) having a small particle diameter is composed of Cl and Na + K having a strong corrosive power, and a slight amount of inactive Ca having no corrosive power. Yes. Therefore, it can be said that the combustion ash with a small particle diameter has extremely strong corrosive power.

粒子径が中の燃焼灰は、約62%が腐食力の強いCl及びNa+Kで構成されているが、残りの約38%は、腐食力を有しないCaで構成されている。よって、粒子径が中の燃焼灰は、粒子径が小の燃焼灰よりも腐食力が弱いと言える。   About 62% of the combustion ash having a medium particle size is composed of Cl and Na + K having strong corrosive power, and the remaining 38% is composed of Ca having no corrosive power. Therefore, it can be said that the combustion ash having a medium particle diameter has a lower corrosive power than the combustion ash having a small particle diameter.

粒子径が大の燃焼灰は、約38%が腐食力の強いCl及びNa+Kで構成されているが、残りの約62%は、腐食力を有しないCaで構成されている。よって、粒子径が大の燃焼灰は、粒子径が小、中の燃焼灰よりも腐食力が弱いと言える。   Combustion ash having a large particle size is composed of approximately 38% Cl and Na + K having strong corrosive power, and the remaining approximately 62% is composed of Ca having no corrosive power. Therefore, it can be said that the combustion ash having a large particle diameter has a corrosive force smaller than that of the combustion ash having a small particle diameter and medium.

図5は、粒子径の異なる燃焼灰による過熱器管27を模擬した条件での金属片(以下、「模擬過熱器管」と言う。)の腐食量を示している。この図5から分かるように、粒子径が小の燃焼灰は、粒子径が中の燃焼灰と比較して、腐食力が極めて強いと言える。そして、粒子径が中の燃焼灰は、腐食力が弱いと言える。図には示さないが、粒子径が大の燃焼灰は、腐食力が極めて弱いものである。   FIG. 5 shows the amount of corrosion of a metal piece (hereinafter referred to as “simulated superheater tube”) under the conditions of simulating the superheater tube 27 with combustion ash having different particle diameters. As can be seen from FIG. 5, it can be said that the combustion ash having a small particle diameter has extremely strong corrosive power as compared with the combustion ash having a medium particle diameter. And it can be said that the combustion ash with a medium particle diameter has weak corrosive power. Although not shown in the figure, the combustion ash having a large particle size has extremely weak corrosive power.

図6は、腐食抑制粒子の添加割合と模擬過熱器管の腐食量との関係を示す図である。つまり、腐食性の強い粒子径が小の燃焼灰に対して、粒子径が小の腐食抑制粒子を添加する場合において、この腐食抑制粒子の添加割合を増加させていくと、模擬過熱器管の腐食量が低減していくことが分かる。この図から分かるように、腐食抑制粒子の添加割合を約50%程度にすると、腐食抑制粒子を添加しない場合と比較して、腐食量を約2/5に低減することができ、大きな腐食抑制効果を得ることができる。   FIG. 6 is a diagram showing the relationship between the addition ratio of the corrosion-inhibiting particles and the corrosion amount of the simulated superheater tube. In other words, when adding corrosion inhibiting particles with a small particle size to combustion ash with a small corrosive particle size, increasing the addition ratio of the corrosion inhibiting particles increases the simulated superheater tube. It can be seen that the amount of corrosion decreases. As can be seen from this figure, when the addition ratio of the corrosion-inhibiting particles is about 50%, the amount of corrosion can be reduced to about 2/5 compared with the case where the corrosion-inhibiting particles are not added. An effect can be obtained.

図7は、燃焼灰の添加割合と模擬過熱器管の腐食量との関係を示す図である。図6では、粒子径が小の腐食抑制粒子を、腐食性の強い粒子径が小の燃焼灰に添加したが、図7では、粒子径が中の燃焼灰を、腐食性の強い粒子径が小の燃焼灰に添加した例を示している。この粒子径が中の燃焼灰は、図5から分かるように、腐食性が極めて弱いので、添加割合を約50%程度にすると、大きな腐食抑制効果を得ることができることが分かる。   FIG. 7 is a diagram showing the relationship between the addition ratio of combustion ash and the amount of corrosion of the simulated superheater tube. In FIG. 6, the corrosion-inhibiting particles having a small particle size are added to the combustion ash having a small corrosive particle size. In FIG. 7, the combustion ash having a medium particle size is added to the combustion ash having a strong corrosive particle size. An example of addition to small combustion ash is shown. As can be seen from FIG. 5, the combustion ash having a medium particle size is extremely weak in corrosiveness. Therefore, it can be seen that when the addition ratio is about 50%, a large corrosion inhibition effect can be obtained.

ただし、上記実施形態では、図1に示すように、ボイラ19の燃焼炉10として、例えばごみ焼却炉10を例として挙げたが、これ以外の燃焼炉を適用することができ、例えば重油を燃料とする燃焼炉を適用することができる。   However, in the above embodiment, as shown in FIG. 1, for example, the waste incinerator 10 is given as an example of the combustion furnace 10 of the boiler 19, but other combustion furnaces can be applied, for example, heavy oil as fuel A combustion furnace can be applied.

そして、上記実施形態では、図1に示すように、ボイラ19の燃焼炉10として、例えばストーカ式の燃焼炉を例に挙げたが、これ以外の形式の燃焼炉を適用することができ、例えば燃料を流動層で流動させながら燃焼させる流動層炉を適用することができる。   And in the said embodiment, as shown in FIG. 1, although the stoker type combustion furnace was mentioned as an example as the combustion furnace 10 of the boiler 19, the combustion furnace of a format other than this can be applied, for example, A fluidized bed furnace in which fuel is burned while flowing in a fluidized bed can be applied.

また、上記実施形態では、図3に示す腐食検出装置30を使用して、過熱器管27の腐食の程度を検出したが、これ以外の腐食検出装置を使用してもよい。   Moreover, in the said embodiment, although the degree of corrosion of the superheater pipe | tube 27 was detected using the corrosion detection apparatus 30 shown in FIG. 3, you may use the corrosion detection apparatus other than this.

更に、上記実施形態では、粒子径が0.1μm以上10μm未満の腐食抑制粒子を、過熱器管27よりも上流側の第2煙道21内に吹き込んだが、これに代えて、過熱器管27が設けられている第3煙道22内に吹き込むようにしてもよい。   Furthermore, in the above embodiment, the corrosion-inhibiting particles having a particle size of 0.1 μm or more and less than 10 μm are blown into the second flue 21 upstream from the superheater tube 27, but instead, the superheater tube 27. You may make it blow in in the 3rd flue 22 provided.

そして、上記実施形態では、粒子径が0.1μm以上10μm未満の腐食抑制粒子を、過熱器管27よりも上流側の第2煙道21内に吹き込んだが、これに代えて、ボイラ19で生成された燃焼灰であり、その粒子径が2μmを超えて10μm未満の燃焼灰(粒子径が中の燃焼灰)を、過熱器管27よりも上流側の第2煙道21内に吹き込むようにしてもよい。   In the above embodiment, the corrosion-inhibiting particles having a particle size of 0.1 μm or more and less than 10 μm are blown into the second flue 21 upstream from the superheater tube 27, but instead, generated by the boiler 19. The combustion ash having a particle diameter exceeding 2 μm and less than 10 μm (combustion ash having a particle diameter of medium) is blown into the second flue 21 upstream of the superheater pipe 27. May be.

このようにしても、過熱器管27の腐食の進行を抑制することができるのは、図5に示すように、粒子径が0.1μm以上であり2μm以下の燃焼灰(粒子径が小の燃焼灰)は、腐食力が強いが、粒子径が2μmを超えて10μm未満の燃焼灰(粒子径が中の燃焼灰)は、腐食力が弱いからである。従って、この腐食力が弱い粒子径が中の燃焼灰を、第2煙道21内に吹き込むことによって、当該ボイラで生成される燃焼灰の腐食力を低減することができる(図7参照)。   Even in this way, the progress of the corrosion of the superheater tube 27 can be suppressed because, as shown in FIG. 5, combustion ash having a particle size of 0.1 μm or more and 2 μm or less (particle size is small). This is because the burning ash (combustion ash) has a strong corrosive power, but the combustion ash having a particle diameter of more than 2 μm and less than 10 μm (combustion ash having a medium particle diameter) has a weak corrosive power. Therefore, the corrosive force of the combustion ash generated in the boiler can be reduced by blowing the combustion ash having a particle size having a weak corrosive force into the second flue 21 (see FIG. 7).

また、上記実施形態では、制御部100が、腐食検出装置30が生成する腐食検出信号に基づいて腐食抑制装置59を制御して、腐食抑制粒子の吹込み重量を制御するようにしたが、これに代えて、下記のようにして腐食抑制粒子の吹込み重量を制御してもよい。   Moreover, in the said embodiment, although the control part 100 controlled the corrosion suppression apparatus 59 based on the corrosion detection signal which the corrosion detection apparatus 30 produced | generated, it controlled the blowing weight of the corrosion suppression particle | grains. Instead of this, the blowing weight of the corrosion-inhibiting particles may be controlled as follows.

例えば腐食抑制装置59が腐食抑制粒子を第2煙道21内に吹き込む単位時間当たりの吹込み重量を、燃焼灰に含まれている粒子径が0.1〜10μmの腐食性粒子が、過熱器管27が設けられている第3煙道22を通る単位時間当たりの重量と略等しい重量、又はそれよりも大きい重量とすることができる。   For example, the corrosion suppression device 59 blows the corrosion-inhibiting particles into the second flue 21, and the corrosive particles having a particle diameter of 0.1 to 10 μm contained in the combustion ash are superheaters. The weight may be substantially equal to or greater than the weight per unit time passing through the third flue 22 provided with the tube 27.

この燃焼灰に含まれている粒子径が0.1〜10μmの腐食性粒子が、過熱器管27が設けられている第3煙道22を通る単位時間当たりの重量を求める方法として、例えば、まず、実際に第3煙道22を通る単位時間当たりの燃焼灰を採取して、この燃焼灰に含まれている粒子径が0.1〜10μmの腐食性粒子の重量を計測することによって得ることができる。また、この粒子径が0.1〜10μmの腐食性粒子の重量データに基づいて、ボイラに供給される燃料の質、供給量及び燃焼条件や環境等に応じて、粒子径が0.1〜10μmの腐食性粒子が、過熱器管27が設けられている第3煙道22を通る単位時間当たりの重量を推定することができる。   As a method for determining the weight per unit time through which the corrosive particles having a particle diameter of 0.1 to 10 μm contained in the combustion ash pass through the third flue 22 provided with the superheater tube 27, for example, First, the combustion ash per unit time that actually passes through the third flue 22 is collected and obtained by measuring the weight of corrosive particles having a particle diameter of 0.1 to 10 μm contained in the combustion ash. be able to. Further, based on the weight data of the corrosive particles having a particle diameter of 0.1 to 10 μm, the particle diameter is 0.1 to 0.1 depending on the quality of the fuel supplied to the boiler, the supply amount, the combustion condition, the environment, and the like. It is possible to estimate the weight per unit time of 10 μm corrosive particles passing through the third flue 22 where the superheater tube 27 is provided.

以上のように、本発明に係る腐食抑制装置付きボイラ及びボイラの腐食抑制方法は、過熱器管の腐食を効果的に抑制することができる優れた効果を有し、ごみ焼却ボイラのような過熱器管の腐食が懸念されるボイラに適用するのに適している。   As described above, the boiler with a corrosion inhibitor and the method for inhibiting corrosion of a boiler according to the present invention have an excellent effect of effectively suppressing corrosion of a superheater tube, and are superheated like a waste incineration boiler. Suitable for boilers where corrosion of pipes is a concern.

10 燃焼炉(ごみ焼却炉)
11 発電機
12 ホッパ
13 シュート
14 主燃焼室
14a 天井
15 乾燥ストーカ
16 燃焼ストーカ
17 後燃焼ストーカ
18 シュート
19 ボイラ
20 放射室
21 第2煙道
22 第3煙道
23 水管
24 ボイラドラム
25 過熱器
26 タービン
27 過熱器管
30 腐食検出装置
31 腐食センサ
32 電気化学測定器
33 端末機
34 送風機
35 流量調整器
36 バルブ
37 冷却機構
40 保護管
40a 冷却通路
45 試料電極
46 参照電極
47 対極
51 試料電極用リード線
53 試料電極用熱電対
54 参照電極用リード線
55 対極用リード線
56 保護管用熱電対
57 ガス温度用熱電対
59 腐食抑制装置
59a 吹込み口
100 制御部
10 Combustion furnace (garbage incinerator)
DESCRIPTION OF SYMBOLS 11 Generator 12 Hopper 13 Chute 14 Main combustion chamber 14a Ceiling 15 Dry stalker 16 Combustion stalker 17 Post combustion stalker 18 Chute 19 Boiler 20 Radiation chamber 21 Second flue 22 Third flue 23 Water pipe 24 Boiler drum 25 Superheater 26 Turbine 27 Superheater tube 30 Corrosion detection device 31 Corrosion sensor 32 Electrochemical measuring device 33 Terminal device 34 Blower 35 Flow controller 36 Valve 37 Cooling mechanism 40 Protection tube 40a Cooling passage 45 Sample electrode 46 Reference electrode 47 Counter electrode 51 Lead wire for sample electrode 53 Thermocouple for Sample Electrode 54 Reference Electrode Lead Wire 55 Counter Electrode Lead Wire 56 Protective Tube Thermocouple 57 Gas Temperature Thermocouple 59 Corrosion Inhibitor 59a Blow Inlet 100 Control Unit

Claims (7)

燃焼排ガスが通る排ガス通路と、
前記排ガス通路内に設けられている過熱器管と、
粒子径が0.1μm以上10μm未満の腐食抑制粒子を、前記排ガス通路内に吹き込んで前記過熱器管の表面に付着させることで、前記過熱器管の腐食を抑制するための腐食抑制装置とを備えることを特徴とする腐食抑制装置付きボイラ。
Exhaust gas passage through which combustion exhaust gas passes,
A superheater tube provided in the exhaust gas passage;
A corrosion inhibiting device for inhibiting corrosion of the superheater tube by blowing corrosion inhibiting particles having a particle diameter of 0.1 μm or more and less than 10 μm into the exhaust gas passage and adhering to the surface of the superheater tube; A boiler with a corrosion inhibitor characterized by comprising.
上記腐食抑制粒子は、Ca、Si、Al、Mg及びFeのうち少なくとも1つの元素を主成分とする化合物であることを特徴とする請求項1に記載の腐食抑制装置付きボイラ。   The boiler with a corrosion inhibiting device according to claim 1, wherein the corrosion inhibiting particles are a compound mainly containing at least one element of Ca, Si, Al, Mg and Fe. 液体に前記腐食抑制粒子を混合して得られたスラリー状の混合物質、又は前記腐食抑制粒子よりも粒子径が大きい粉体に前記腐食抑制粒子を混合して得られた粉状の混合物質を、前記腐食抑制装置を使用して前記排ガス通路に吹き込むことを特徴とする請求項1又は2記載の腐食抑制装置付きボイラ。   A slurry-like mixed substance obtained by mixing the corrosion-inhibiting particles with a liquid, or a powder-like mixed substance obtained by mixing the corrosion-inhibiting particles with a powder having a particle diameter larger than that of the corrosion-inhibiting particles. The boiler with a corrosion suppressing device according to claim 1 or 2, wherein the corrosion suppressing device is used to blow into the exhaust gas passage. 前記腐食抑制粒子の融点が800℃以上であって、
前記腐食抑制装置が前記腐食抑制粒子を吹き込む領域は、前記排ガス通路内のガス温度が800℃よりも低い領域であり、
前記腐食抑制粒子の単位時間当たりの吹込み重量は、粒子径が0.1〜10μmの腐食性粒子が、前記過熱器管が設けられている前記排ガス通路を通る単位時間当たりの重量と略等しい重量、又はそれよりも大きい重量であることを特徴とする請求項1乃至3のいずれかに記載の腐食抑制装置付きボイラ。
The melting point of the corrosion-inhibiting particles is 800 ° C. or higher,
The region where the corrosion inhibiting device blows the corrosion inhibiting particles is a region where the gas temperature in the exhaust gas passage is lower than 800 ° C.
The blowing weight per unit time of the corrosion-inhibiting particles is substantially equal to the weight per unit time through which the corrosive particles having a particle diameter of 0.1 to 10 μm pass through the exhaust gas passage where the superheater pipe is provided. The boiler with a corrosion inhibiting device according to any one of claims 1 to 3, wherein the boiler has a weight greater than or equal to the weight.
前記排ガス通路に設けられた一対の電極を有し、この一対の電極間の電気抵抗の変化に基づいて前記過熱器管の腐食の程度を検出して、その腐食の程度と対応する腐食検出信号を生成する腐食検出手段と、
前記腐食検出手段が生成する前記腐食検出信号に基づいて前記腐食抑制装置を制御して、前記腐食抑制粒子の吹込み重量を制御する制御部とを備えることを特徴とする請求項1乃至3のいずれかに記載の腐食抑制装置付きボイラ。
A corrosion detection signal having a pair of electrodes provided in the exhaust gas passage, detecting the degree of corrosion of the superheater tube based on a change in electrical resistance between the pair of electrodes, and corresponding to the degree of corrosion Corrosion detection means for generating
The control part which controls the said corrosion suppression apparatus based on the said corrosion detection signal which the said corrosion detection means produces | generates, and controls the blowing weight of the said corrosion suppression particle | grain is provided. A boiler with a corrosion inhibitor according to any one of the above.
前記腐食抑制粒子は、ボイラで生成された燃焼灰であり、その粒子径が2μmを超えて10μm未満であることを特徴とする請求項1乃至5のいずれかに記載の腐食抑制装置付きボイラ。   The boiler with a corrosion inhibiting device according to any one of claims 1 to 5, wherein the corrosion inhibiting particles are combustion ash produced by a boiler, and the particle diameter thereof is more than 2 µm and less than 10 µm. 粒子径が0.1μm以上10μm未満の腐食抑制粒子を排ガス通路に吹き込んで、この排ガス通路内に設けられている過熱器管の表面に付着させることで、前記過熱器管の腐食を抑制することを特徴とするボイラの腐食抑制方法。   Inhibiting corrosion of the superheater tube by blowing corrosion-inhibiting particles having a particle size of 0.1 μm or more and less than 10 μm into the exhaust gas passage and adhering it to the surface of the superheater tube provided in the exhaust gas passage. A method for inhibiting corrosion of a boiler.
JP2011193866A 2011-09-06 2011-09-06 BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD Ceased JP6046886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193866A JP6046886B2 (en) 2011-09-06 2011-09-06 BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193866A JP6046886B2 (en) 2011-09-06 2011-09-06 BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD

Publications (3)

Publication Number Publication Date
JP2013053829A true JP2013053829A (en) 2013-03-21
JP2013053829A5 JP2013053829A5 (en) 2013-05-02
JP6046886B2 JP6046886B2 (en) 2016-12-21

Family

ID=48130969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193866A Ceased JP6046886B2 (en) 2011-09-06 2011-09-06 BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD

Country Status (1)

Country Link
JP (1) JP6046886B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192313A1 (en) * 2013-05-31 2014-12-04 川崎重工業株式会社 Corrosion inhibitor for boilers, boiler and method for inhibiting corrosion of boiler
JP2015117910A (en) * 2013-12-19 2015-06-25 川崎重工業株式会社 Boiler with corrosion suppression device and boiler corrosion suppression method
WO2015186207A1 (en) * 2014-06-04 2015-12-10 川崎重工業株式会社 Boiler and method for replacing heat transfer tube thereof
WO2017115844A1 (en) * 2015-12-28 2017-07-06 川崎重工業株式会社 Boiler and corrosion suppression method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7141067B2 (en) * 2019-12-18 2022-09-22 日鉄エンジニアリング株式会社 Boiler Corrosion Inhibitor Production Method and Boiler and Boiler Corrosion Suppression Method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210314A (en) * 1986-03-08 1987-09-16 Kurabo Ind Ltd Incineration assist agent
JPH0359301A (en) * 1989-07-28 1991-03-14 Mitsubishi Heavy Ind Ltd Method for burning in bark-stoking boiler
JPH1033935A (en) * 1996-07-24 1998-02-10 Mitsubishi Heavy Ind Ltd Desulfurizing method in which sea shell is used as desulfurization agent
JPH10503582A (en) * 1995-10-06 1998-03-31 コンソルツイオ・オブリガトリオ・ナツイオナレ・ペル・イル・リチクラジオ・デイ・コンテニトリ・イン・プラステイカ・ペル・リキデイ Removal of hot acid gases and particulate matter in waste incineration processes
JP2000161655A (en) * 1998-11-27 2000-06-16 Toshiba Ceramics Co Ltd Water tube wall protection structure of furnace and corrosionproof coating agent
JP2001124303A (en) * 1999-10-28 2001-05-11 Shikoku Electric Power Co Inc Method for suppressing high temperature oxidation of unheated part of boiler
JP2003222303A (en) * 2002-01-29 2003-08-08 Jfe Engineering Kk Method of preventing stain of surface of heat transfer tube
JP2006308179A (en) * 2005-04-27 2006-11-09 Sumitomo Heavy Ind Ltd Corrosion prevention device and corrosion prevention method for boiler
JP2007032916A (en) * 2005-07-26 2007-02-08 Kurita Water Ind Ltd Method of preventing formation of clinker
JP2009046342A (en) * 2007-08-17 2009-03-05 Kurita Water Ind Ltd Exhaust gas component adhesion inhibitor and exhaust gas component adhesion-inhibiting method
JP2009112935A (en) * 2007-11-06 2009-05-28 Nippon Steel Engineering Co Ltd Dust adhesion-preventing method of emitted gas pipe and cyclone of waste melting furnace, and its apparatus
JP2009243744A (en) * 2008-03-31 2009-10-22 Taihokohzai:Kk Granular additive and method of manufacturing the same
JP2010060497A (en) * 2008-09-05 2010-03-18 Kawasaki Heavy Ind Ltd Corrosion monitoring sensor
JP2011012875A (en) * 2009-07-01 2011-01-20 Nippon Steel Engineering Co Ltd Method and device for suppressing generation of hydrogen chloride gas in waste gasification melting furnace

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210314A (en) * 1986-03-08 1987-09-16 Kurabo Ind Ltd Incineration assist agent
JPH0359301A (en) * 1989-07-28 1991-03-14 Mitsubishi Heavy Ind Ltd Method for burning in bark-stoking boiler
JPH10503582A (en) * 1995-10-06 1998-03-31 コンソルツイオ・オブリガトリオ・ナツイオナレ・ペル・イル・リチクラジオ・デイ・コンテニトリ・イン・プラステイカ・ペル・リキデイ Removal of hot acid gases and particulate matter in waste incineration processes
JPH1033935A (en) * 1996-07-24 1998-02-10 Mitsubishi Heavy Ind Ltd Desulfurizing method in which sea shell is used as desulfurization agent
JP2000161655A (en) * 1998-11-27 2000-06-16 Toshiba Ceramics Co Ltd Water tube wall protection structure of furnace and corrosionproof coating agent
JP2001124303A (en) * 1999-10-28 2001-05-11 Shikoku Electric Power Co Inc Method for suppressing high temperature oxidation of unheated part of boiler
JP2003222303A (en) * 2002-01-29 2003-08-08 Jfe Engineering Kk Method of preventing stain of surface of heat transfer tube
JP2006308179A (en) * 2005-04-27 2006-11-09 Sumitomo Heavy Ind Ltd Corrosion prevention device and corrosion prevention method for boiler
JP2007032916A (en) * 2005-07-26 2007-02-08 Kurita Water Ind Ltd Method of preventing formation of clinker
JP2009046342A (en) * 2007-08-17 2009-03-05 Kurita Water Ind Ltd Exhaust gas component adhesion inhibitor and exhaust gas component adhesion-inhibiting method
JP2009112935A (en) * 2007-11-06 2009-05-28 Nippon Steel Engineering Co Ltd Dust adhesion-preventing method of emitted gas pipe and cyclone of waste melting furnace, and its apparatus
JP2009243744A (en) * 2008-03-31 2009-10-22 Taihokohzai:Kk Granular additive and method of manufacturing the same
JP2010060497A (en) * 2008-09-05 2010-03-18 Kawasaki Heavy Ind Ltd Corrosion monitoring sensor
JP2011012875A (en) * 2009-07-01 2011-01-20 Nippon Steel Engineering Co Ltd Method and device for suppressing generation of hydrogen chloride gas in waste gasification melting furnace

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192313A1 (en) * 2013-05-31 2014-12-04 川崎重工業株式会社 Corrosion inhibitor for boilers, boiler and method for inhibiting corrosion of boiler
CN105229377A (en) * 2013-05-31 2016-01-06 川崎重工业株式会社 The anticorrosive method of the corrosion inhibitor of boiler, boiler and boiler
JP6078149B2 (en) * 2013-05-31 2017-02-08 川崎重工業株式会社 Boiler corrosion inhibitor, boiler and method for inhibiting corrosion of boiler
JP2015117910A (en) * 2013-12-19 2015-06-25 川崎重工業株式会社 Boiler with corrosion suppression device and boiler corrosion suppression method
WO2015186207A1 (en) * 2014-06-04 2015-12-10 川崎重工業株式会社 Boiler and method for replacing heat transfer tube thereof
CN105222118A (en) * 2014-06-04 2016-01-06 川崎重工业株式会社 The replacing options of boiler and boiler heat-transfer pipe
KR20170013976A (en) 2014-06-04 2017-02-07 가와사끼 쥬고교 가부시끼 가이샤 Boiler and method for replacing heat transfer tube thereof
JPWO2015186207A1 (en) * 2014-06-04 2017-04-20 川崎重工業株式会社 Replacement method of boiler and its heat transfer tube
CN105222118B (en) * 2014-06-04 2018-10-16 川崎重工业株式会社 The replacing options of boiler and boiler heat-transfer pipe
KR101993064B1 (en) * 2014-06-04 2019-06-25 가와사끼 쥬고교 가부시끼 가이샤 Boiler and method for replacing heat transfer tube thereof
WO2017115844A1 (en) * 2015-12-28 2017-07-06 川崎重工業株式会社 Boiler and corrosion suppression method
JP2017120150A (en) * 2015-12-28 2017-07-06 川崎重工業株式会社 Boiler and corrosion suppression method

Also Published As

Publication number Publication date
JP6046886B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6046886B2 (en) BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD
Syed et al. Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass
CA2569345C (en) System and method for decreasing a rate of slag formation at predetermined locations in a boiler system
Otsuka A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators
JP5452001B2 (en) Corrosion monitoring sensor
JP6309709B2 (en) BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD
JP2017181007A (en) Blockage suppression device and blockage suppression method for boiler
JP6078149B2 (en) Boiler corrosion inhibitor, boiler and method for inhibiting corrosion of boiler
Xiong et al. A typical super-heater tube leakage and high temperature corrosion mechanism investigation in a 260 t/h circulated fluidized boiler
US20030183537A1 (en) Method of spatial monitoring and controlling corrosion of superheater and reheater tubes
JPH07502830A (en) Real-time corrosion monitoring device and method in high temperature systems
JP2010117095A (en) Method for suppressing corrosion
Pronobis et al. Conversion of a pulverized coal boiler into a torrefied biomass boiler
JP4448053B2 (en) Boiler corrosion prevention apparatus and corrosion prevention method
Guo et al. Dynamic simulation on high-temperature corrosion behaviour of tube surface with fouling in utility boiler fired by high-chlorine coal
JP6339360B2 (en) BOILER WITH CORROSION CONTROL DEVICE AND BOILER CORROSION CONTROL METHOD
JP5767486B2 (en) Heat recovery plant and operation control method thereof
Pei et al. Development and validation of slagging model for typical coals in drop-tube furnace
JP2002106822A (en) Refuse incinerator and its operation method
JP7379023B2 (en) Corrosion detection device and corrosion detection method
JP6863257B2 (en) Waste incinerator Boiler blockage and corrosion control methods
CN108368998B (en) Boiler and corrosion-resistant method
JP6695391B2 (en) Denitration and corrosion reduction methods for waste incineration equipment
JP2009204224A (en) Ash adhesion preventing method for boiler facility juxtaposed to furnace, and boiler facility juxtaposed to furnace
CN110081420A (en) It is a kind of for prevent boiler water wall wear and high temperature corrosion adherent wind apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160826

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161118

R150 Certificate of patent or registration of utility model

Ref document number: 6046886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RVOP Cancellation by post-grant opposition