JP2013053568A - Oil separator and compressor including the same - Google Patents

Oil separator and compressor including the same Download PDF

Info

Publication number
JP2013053568A
JP2013053568A JP2011192729A JP2011192729A JP2013053568A JP 2013053568 A JP2013053568 A JP 2013053568A JP 2011192729 A JP2011192729 A JP 2011192729A JP 2011192729 A JP2011192729 A JP 2011192729A JP 2013053568 A JP2013053568 A JP 2013053568A
Authority
JP
Japan
Prior art keywords
oil
inner diameter
wall surface
separator
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011192729A
Other languages
Japanese (ja)
Other versions
JP5591196B2 (en
Inventor
Hiroshi Ogawa
博史 小川
Shigeki Iwanami
重樹 岩波
Kentaro Kishi
健太郎 貴志
Tadashi Hotta
忠資 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2011192729A priority Critical patent/JP5591196B2/en
Priority to DE201210215621 priority patent/DE102012215621A1/en
Publication of JP2013053568A publication Critical patent/JP2013053568A/en
Application granted granted Critical
Publication of JP5591196B2 publication Critical patent/JP5591196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Abstract

PROBLEM TO BE SOLVED: To provide an oil separator having a good separating efficiency that separates oil from coolant gas by a centrifugal force, and a compressor.SOLUTION: The oil separator, which centrifugally separates oil from a coolant mixed with the oil discharged from a compression mechanism part of a coolant compressor, recirculates the separated oil into the coolant compressor, and discharges the separated coolant outside, is characterized in that a separating pipe part constituted of a discharge part and an intake part keeps the discharge part fitted to an inner wall face of a separator housing, so that an inner diameter of the inner wall face of the separator housing is enlarged within a range from an intake hole central axis position to a part corresponding to an end part of the intake part.

Description

本発明は、冷媒ガス中のオイルを遠心力で分離するオイルセパレータ、及び、オイルセパレータを備えた圧縮機に関する。特に、冷媒圧縮機の圧縮機構部より吐出するオイル混入の冷媒から、オイルを遠心分離して、分離したオイルを前記冷媒圧縮機に再循環させるとともに、分離後の冷媒を外部に吐出するようにしたオイルセパレータ、及び、オイルセパレータを備えた圧縮機に関する。   The present invention relates to an oil separator that separates oil in refrigerant gas by centrifugal force, and a compressor including the oil separator. In particular, the oil is centrifuged from the oil-mixed refrigerant discharged from the compressor mechanism of the refrigerant compressor, the separated oil is recirculated to the refrigerant compressor, and the separated refrigerant is discharged to the outside. The present invention relates to an oil separator and a compressor including the oil separator.

冷凍サイクルで使用される圧縮機は、冷媒ガスにオイルを混入して圧縮機の潤滑を行っているが、この潤滑用オイルの一部は冷媒ガスとともに冷凍サイクルに吐出されてしまう。この冷凍サイクルに吐出される潤滑用オイルが多ければ多いほど、冷凍サイクルのシステム効率(COP、又は、成績係数ともいう)は低下する。そこで、冷凍サイクル中へのオイルの吐出を抑制するため、圧縮機の吐出側に冷媒ガスから潤滑用オイルを分離する遠心分離式オイルセパレータを設けることが知られている。   The compressor used in the refrigeration cycle lubricates the compressor by mixing oil in the refrigerant gas, but part of this lubricating oil is discharged to the refrigeration cycle together with the refrigerant gas. The more lubricating oil discharged into the refrigeration cycle, the lower the system efficiency (also referred to as COP or coefficient of performance) of the refrigeration cycle. In order to suppress oil discharge into the refrigeration cycle, it is known to provide a centrifugal oil separator that separates lubricating oil from refrigerant gas on the discharge side of the compressor.

このような従来技術として特許文献1がある。これは圧縮機から吐出されたオイルを含む冷媒から遠心力でオイルを分離するものであるが、遠心力でセパレータハウジングの円筒状内壁面に付着したオイルが、分離パイプ付近のガスの流れで巻き上げられ冷媒と供に吐き出される問題が生じていた。   There exists patent document 1 as such a prior art. This is to separate the oil from the refrigerant containing oil discharged from the compressor by centrifugal force, but the oil attached to the cylindrical inner wall surface of the separator housing by centrifugal force is wound up by the gas flow near the separation pipe. There has been a problem of being discharged with the refrigerant.

近年、環境問題を考慮して冷媒としてCO2(二酸化炭素)が使用されるようになってきている。ところが、このCO2冷媒は従来の134a冷媒などと比較してオイルとの密度差が小さいため、従来のオイルセパレータでは遠心分離が充分に行われずオイル分離効率が低下する。このため、冷凍サイクル中のオイルレートが増加し、ガスクーラや蒸発器での熱交換性能が損なわれCOPが低下するという問題があった。CO2冷媒サイクル固有の特徴として、従来冷媒に比して、オイルレートの低い環境下での熱交換器効率の上昇が大きく、更なる分離効率向上によるオイルレート低減が求められてきている。   In recent years, CO2 (carbon dioxide) has been used as a refrigerant in consideration of environmental problems. However, since the CO2 refrigerant has a smaller density difference from the oil than the conventional 134a refrigerant, the conventional oil separator is not sufficiently centrifuged and the oil separation efficiency is lowered. For this reason, the oil rate in a refrigerating cycle increases, the heat exchange performance in a gas cooler or an evaporator is impaired, and there existed a problem that COP fell. As a characteristic characteristic of the CO2 refrigerant cycle, the heat exchanger efficiency is greatly increased in an environment where the oil rate is low as compared with the conventional refrigerant, and a reduction in the oil rate by further improving the separation efficiency has been demanded.

特許第4381458号公報Japanese Patent No. 4381458

本発明は、上記問題に鑑み、遠心力が必要な遠心分離部は、冷媒の旋回流速が高まるように、円筒状のセパレータハウジングの内径を小さくし、分離後ターン流となった冷媒を吸入する冷媒吸入部(分離パイプ部端部)は、壁面に付着したオイルの巻き上げが小さくなるように、セパレータハウジングの内径を大きくして冷媒の流速を落とすようにした、オイルセパレータ、及び、当該オイルセパレータを備えた圧縮機を提供するものである。   In the present invention, in view of the above problem, the centrifugal separator that requires centrifugal force reduces the inner diameter of the cylindrical separator housing so as to increase the swirling flow velocity of the refrigerant, and sucks the refrigerant that has turned into a turn flow after separation. The refrigerant suction part (end part of the separation pipe part) includes an oil separator that increases the inner diameter of the separator housing so as to reduce the flow rate of the refrigerant so as to reduce the winding of the oil attached to the wall surface, and the oil separator The compressor provided with this is provided.

上記課題を解決するために、請求項1の発明は、冷媒圧縮機の圧縮機構部(57)より吐出するオイル混入の冷媒から、オイルを遠心分離して、分離したオイルを前記冷媒圧縮機に再循環させるとともに、分離後の冷媒を外部に吐出するようにしたオイルセパレータであって、該オイルセパレータは、前記冷媒圧縮機に再循環させるための送油口(87)を持つ貯油室(93)と、前記圧縮機構部(57)から吐出した冷媒を、セパレータハウジング(17)の円筒状の内壁面の接線方向から流入させる吸入孔(23)、外部に冷媒を吐出するガス吐出口(18)、及び、前記貯油室(93)に連通する開口部(17b)を有するセパレータハウジング(17)と、吐出部(19a)と吸入部(19b)から構成された分離パイプ部(19)であって、該吐出部(19a)がセパレータハウジング(17)の前記内壁面に嵌合又は設置されて、ガス吐出口(18)に連通し、前記吸入部(19b)の外径がセパレータハウジングの内壁面内径より小さい筒状で、前記吸入部(19b)端部がセパレータハウジング内で前記吸入孔(23)より貯油室側に開口した分離パイプ部(19)と、を具備し、セパレータハウジングの内壁面内径が、吸入孔(23)中心軸位置から、前記吸入部(19b)端部に対応した部位までの範囲で拡大することを特徴とするオイルセパレータである。   In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that oil is centrifuged from oil-mixed refrigerant discharged from the compression mechanism (57) of the refrigerant compressor, and the separated oil is supplied to the refrigerant compressor. An oil separator that recirculates and discharges the separated refrigerant to the outside, and the oil separator has an oil storage chamber (93) having an oil feed port (87) for recirculation to the refrigerant compressor. ), A suction hole (23) through which the refrigerant discharged from the compression mechanism (57) flows in from the tangential direction of the cylindrical inner wall surface of the separator housing (17), and a gas discharge port (18) for discharging the refrigerant to the outside ) And a separator housing (17) having an opening (17b) communicating with the oil storage chamber (93), and a separation pipe portion (19) comprising a discharge portion (19a) and a suction portion (19b) The discharge portion (19a) is fitted or installed on the inner wall surface of the separator housing (17), communicates with the gas discharge port (18), and the suction portion (19b) has an outer diameter of the separator housing. A separation pipe portion (19) having a cylindrical shape smaller than the inner wall surface inner diameter and having an end portion of the suction portion (19b) opened in the separator housing to the oil storage chamber side from the suction hole (23). The oil separator is characterized in that an inner diameter of the inner wall surface increases in a range from a position of the suction hole (23) central axis to a portion corresponding to the end of the suction portion (19b).

吸入部の端部付近での壁面からのオイルの再飛散を抑えるために、吸入部の端部付近のセパレータハウジングの内壁面の内径を拡大し、流速を下げるようにした。これにより、セパレータハウジングの円筒内壁面に付着したオイルが、反転して外部に吐出する際にガスの流れで巻き上げられ、冷媒とともに吐き出されることがないので、旋回流によるオイルの剥離が小さくなり、オイルレートの低減を行うことができる。また、オイルレートの低減により、熱交換器の熱交換効率が改善されるため、システム効率COPを向上させることができる。   In order to suppress the re-scattering of oil from the wall surface near the end of the suction part, the inner diameter of the inner wall surface of the separator housing near the end of the suction part is enlarged to reduce the flow velocity. As a result, the oil adhering to the cylindrical inner wall surface of the separator housing is rolled up by the gas flow when being reversed and discharged to the outside, and is not discharged together with the refrigerant, so that the oil peeling due to the swirling flow is reduced, The oil rate can be reduced. Moreover, since the heat exchange efficiency of the heat exchanger is improved by reducing the oil rate, the system efficiency COP can be improved.

請求項2の発明は、請求項1の発明において、前記セパレータハウジングの内壁面内径は、前記吸入孔(23)中心軸位置と、前記吸入部(19b)端部に対応した部位までの範囲で、2段階の内径を持つことを特徴とする。これにより、分離効率を向上させることができる。   According to a second aspect of the present invention, in the first aspect of the present invention, the inner diameter of the inner wall surface of the separator housing ranges from the position of the central axis of the suction hole (23) to the portion corresponding to the end of the suction portion (19b). It has a two-stage inner diameter. Thereby, the separation efficiency can be improved.

請求項3の発明は、請求項2の発明において、前記セパレータハウジングの内壁面内径において、前記吸入孔(23)中心軸を含む断面における内径D1と、前記吸入孔(23)中心軸位置から前記吸入部(19b)端部に対応した部位までの範囲で変化した断面の内径D2との関係が、1.1≦D2/D1≦1.5の範囲にあることを特徴とする。これにより、分離効率を向上させることができる。   According to a third aspect of the present invention, in the second aspect of the invention, the inner diameter of the inner surface of the separator housing is determined from the inner diameter D1 in a cross section including the central axis of the suction hole (23) and the position of the central axis of the suction hole (23). The relationship with the inner diameter D2 of the cross section changed in the range up to the portion corresponding to the end of the suction portion (19b) is in the range of 1.1 ≦ D2 / D1 ≦ 1.5. Thereby, the separation efficiency can be improved.

請求項4の発明は、請求項3の発明において、前記内径D1、前記内径D2、及び、前記内径D1から前記内径D2に変化した位置から、前記吸入部(19b)端部に対応した部位までの前記内壁面の中心軸方向の距離L2との関係が、
7≦L2/((D2−D1)/2)≦22の範囲にあることを特徴とする。これにより、分離効率を向上させることができる。
According to a fourth aspect of the present invention, in the third aspect of the invention, from the inner diameter D1, the inner diameter D2, and a position corresponding to the end of the suction portion (19b) from a position where the inner diameter D1 changes to the inner diameter D2. The relationship with the distance L2 in the central axis direction of the inner wall surface of
7 ≦ L2 / ((D2−D1) / 2) ≦ 22. Thereby, the separation efficiency can be improved.

請求項5の発明は、前記吸入孔(23)の流路断面積A0、前記吸入部(19b)の外径と、前記吸入孔(23)中心軸を含む断面における前記内壁面内径(D1)との間の環状空間の流路断面積A1、前記吸入孔(23)中心軸位置から、拡大した内壁面内径(D2)に変化した位置までの前記内壁面の中心軸方向の距離L1との関係が、7<L1×(A1/A0)<110の範囲にあることを特徴とする。これにより、内壁面内径が2段階に変化しないD1の場合に比べて、分離効率比が向上する。   According to a fifth aspect of the present invention, the inner diameter (D1) of the inner wall surface in a cross section including the flow path cross-sectional area A0 of the suction hole (23), the outer diameter of the suction portion (19b), and the central axis of the suction hole (23). A cross-sectional area A1 of the annular space between and the distance L1 in the direction of the central axis of the inner wall surface from the position of the central axis of the suction hole (23) to the position where the inner wall surface inner diameter (D2) has been enlarged. The relationship is in the range of 7 <L1 × (A1 / A0) <110. Thereby, compared with the case of D1 whose inner wall surface inner diameter does not change in two steps, the separation efficiency ratio is improved.

請求項6の発明は、請求項2から5のいずれか1項記載の発明において、前記セパレータハウジングの内壁面内径において、前記内壁面の中心軸方向に、前記吸入孔(23)中心軸位置から、前記吸入部(19b)端部に対応した部位までの範囲で、徐々に拡大することを特徴とする。この場合2段の段差をもちながら内壁面内径が徐々に拡大するので、一層分離効率を向上させることができる。   According to a sixth aspect of the present invention, in the invention according to any one of the second to fifth aspects, the inner diameter of the inner wall surface of the separator housing extends from the central axis position of the suction hole (23) in the central axis direction of the inner wall surface. In the range up to the portion corresponding to the end of the inhalation part (19b), it gradually expands. In this case, since the inner wall surface inner diameter gradually increases while having two steps, the separation efficiency can be further improved.

請求項7の発明は、請求項1から6のいずれか1項に記載のオイルセパレータを具備した圧縮機。   A seventh aspect of the present invention is a compressor including the oil separator according to any one of the first to sixth aspects.

なお、上記に付した符号は、後述する実施形態に記載の具体的実施態様との対応関係を示す一例である。   In addition, the code | symbol attached | subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.

(a)は、本発明の一実施形態のオイルセパレータ及びそれを適用した圧縮機を示す断面図であり、(b)は、(a)のA−A線に関する横断面図である。(A) is sectional drawing which shows the oil separator of one Embodiment of this invention, and the compressor to which it is applied, (b) is a cross-sectional view regarding the AA line of (a). (a)は、従来技術の遠心分離式オイルセパレータの説明図であり、(b)は、本発明の一実施形態のオイルセパレータの説明図である。(A) is explanatory drawing of the centrifugal oil separator of a prior art, (b) is explanatory drawing of the oil separator of one Embodiment of this invention. 本発明の一実施形態のオイルセパレータの円筒内壁面の内径比や、段違い位置に対する分離効率の効果を表したグラフであり、(a)は、寸法諸元の説明図、(b)は、内径比D2/D1と分離効率の関係を示すものであり、(c)は、内径比と段違い位置と分離効率の関係を示すものである。It is the graph showing the internal diameter ratio of the cylinder inner wall surface of the oil separator of one embodiment of the present invention, and the effect of the separation efficiency with respect to the step position, (a) is an explanatory diagram of the dimensions, (b) is the internal diameter The relationship between the ratio D2 / D1 and the separation efficiency is shown, and (c) shows the relationship between the inner diameter ratio, the step position and the separation efficiency. 本発明の他の実施形態を示すオイルセパレータの説明図である。It is explanatory drawing of the oil separator which shows other embodiment of this invention. 従来技術と本発明の一実施形態とを比較した分離効率比を表わしたグラフである。It is the graph showing the separation efficiency ratio which compared the prior art and one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態を説明する。各実施態様について、同一構成の部分には、同一の符号を付してその説明を省略する。従来技術に対する各実施態様の同一構成の部分には、同様に同一の符号を付してその説明を省略する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. About each embodiment, the same code | symbol is attached | subjected to the part of the same structure, and the description is abbreviate | omitted. Parts having the same configuration in each embodiment with respect to the prior art are similarly denoted by the same reference numerals and description thereof is omitted.

本発明の一実施形態のオイルセパレータは、冷媒圧縮機の圧縮機構部より吐出するオイル混入の冷媒から、オイルを遠心分離して、分離したオイルを前記冷媒圧縮機に再循環させるとともに、分離後の冷媒を外部に吐出するようにしたオイルセパレータである。
このような本実施形態のオイルセパレータは、従来、冷凍サイクルに用いられる冷媒中から潤滑油を分離する気液分離器(タンク)とは、機能として異なるものである。従来の冷凍サイクルにおける気液分離器では、あくまでタンクとしての機能が求められるので、タンク内では断面積が大きく、0.1〜1m/sec程度の低い流速のもとでの気液分離がなされる。
An oil separator according to an embodiment of the present invention is a method of centrifuging oil from a refrigerant mixed with oil discharged from a compression mechanism portion of a refrigerant compressor, recirculating the separated oil to the refrigerant compressor, and after separation. This is an oil separator that discharges the refrigerant to the outside.
Such an oil separator according to the present embodiment is different in function from a gas-liquid separator (tank) that separates lubricating oil from refrigerant used in a refrigeration cycle. Since the gas-liquid separator in the conventional refrigeration cycle is required to have a function as a tank, the cross-sectional area is large in the tank, and gas-liquid separation is performed under a low flow rate of about 0.1 to 1 m / sec. The

本実施形態のオイルセパレータは、高い分離効率を追求するため、5〜10m/sec程度の高速旋回して遠心分離をおこなうものである。このため、セパレータハウジングの円筒内壁面に付着したオイルが、反転して外部に吐出する際にガスの流れで巻き上げられ、冷媒とともに吐き出される点を改善することを課題とするものである。すなわち、高速旋回流によるオイル分離部のオイルの剥離を小さくすることを課題としている。   The oil separator according to the present embodiment performs centrifugal separation by turning at a high speed of about 5 to 10 m / sec in order to pursue high separation efficiency. For this reason, it is an object of the present invention to improve the point that the oil adhering to the cylindrical inner wall surface of the separator housing is rolled up by the gas flow when being reversed and discharged to the outside and discharged together with the refrigerant. That is, it is an object to reduce oil separation at the oil separation portion due to the high-speed swirling flow.

図1(a)は、本発明の一実施形態のオイルセパレータ及びそれを適用した圧縮機を示す断面図であり、(b)は、(a)のA−A線に関する横断面図である。
本発明の一実施形態のオイルセパレータは、図1の冷媒圧縮機に適用を限定されるものではなく、スクロール型圧縮機のみならず、その他の形式の圧縮機(ローリングピストン型、スライドベーン型、往復動型)のオイルセパレータに広く適用しても良い。本発明の一実施形態のオイルセパレータは、縦型に限らず横型の配置の圧縮機であっても良い。貯油部85は、密閉容器53の外部に限らず、内部に設置したタイプに適用しても良い。なお、本発明の一実施形態のオイルセパレータは、CO2冷媒を用いた圧縮機に適用されるオイルセパレータのみならず、それ以外の冷媒を使用した場合にあっても、分離効率が向上する。本発明は、フロン冷媒CO2等のヒートポンプユニット(給湯器)、車両用空調装置などの圧縮機用オイルセパレータに適用することができる。
Fig.1 (a) is sectional drawing which shows the oil separator of one Embodiment of this invention, and the compressor to which it is applied, (b) is a cross-sectional view regarding the AA line of (a).
The oil separator according to one embodiment of the present invention is not limited to the refrigerant compressor of FIG. 1, and is not limited to a scroll type compressor, but other types of compressors (rolling piston type, slide vane type, The present invention may be widely applied to a reciprocating type oil separator. The oil separator according to one embodiment of the present invention is not limited to a vertical type, and may be a compressor having a horizontal type. The oil storage section 85 is not limited to the outside of the sealed container 53 but may be applied to a type installed inside. In addition, the oil separator of one embodiment of the present invention improves the separation efficiency not only when the oil separator is applied to a compressor using a CO2 refrigerant but also when other refrigerants are used. The present invention can be applied to an oil separator for a compressor such as a heat pump unit (water heater) such as a chlorofluorocarbon refrigerant CO2 or a vehicle air conditioner.

以下、本発明の一実施形態のオイルセパレータが適用された冷媒圧縮機を、一例として説明する。
冷媒圧縮機の密閉容器53は円筒状の第1ハウジング59と、第2ハウジング61と、第3ハウジング63とから形成されている。圧縮機構部57は、主軸受65によって支持されたクランク機構67により公転する可動スクロール69と、可動スクロール69に対向配置された固定スクロール71とを具備しており、クランク機構67及び可動スクロール69は、主軸受65と副軸受73によって垂直に支持された電動機部55のシャフト75によって回転される。電動機のロータモータ55’はシャフト75に取り付けられ、ステータモータ55’’は第1ハウジング59に取り付けられている。
Hereinafter, a refrigerant compressor to which an oil separator according to an embodiment of the present invention is applied will be described as an example.
The airtight container 53 of the refrigerant compressor is formed of a cylindrical first housing 59, a second housing 61, and a third housing 63. The compression mechanism 57 includes a movable scroll 69 that revolves by a crank mechanism 67 supported by a main bearing 65, and a fixed scroll 71 that is disposed to face the movable scroll 69. The crank mechanism 67 and the movable scroll 69 are Rotation is performed by the shaft 75 of the electric motor unit 55 that is vertically supported by the main bearing 65 and the sub bearing 73. The motor rotor motor 55 ′ is attached to the shaft 75, and the stator motor 55 ″ is attached to the first housing 59.

固定スクロール71と可動スクロール69は渦巻状の溝をそれぞれ有しており、この溝の噛み合いによって形成される複数の作動室77が体積を縮小することによって固定スクロール71の渦巻状の溝の最外周側に連通する吸入室(吸入室は図示せず)に供給された冷媒を圧縮するように構成されている。圧縮機構部57の作動室77には吐出孔79を介して吐出室81が連通しており、この吐出室81にオイルセパレータの吸入管25の一端が接続されている(図示せず)。そして、この吸入管25の他端が、オイルセパレータのセパレータハウジング17に設けられた吸入孔23に接続されている。セパレータハウジング17は、筒状形成されている。このセパレータハウジング17の上部開口にはガス吐出口18が設けられている。分離パイプ部19は、セパレータハウジング17の上部開口に嵌合する吐出部である大径部(ガス吐出口18を構成している)19aと、この大径部19aの下部に形成された吸入部である小径部19bとを有している。大径部19aをセパレータハウジング17自体に形成しても良い。この場合には、小径部19bが嵌合されたパイプとなる。   The fixed scroll 71 and the movable scroll 69 each have a spiral groove, and a plurality of working chambers 77 formed by the engagement of the grooves reduce the volume, thereby reducing the outermost circumference of the spiral groove of the fixed scroll 71. The refrigerant supplied to the suction chamber (suction chamber not shown) communicating with the side is configured to be compressed. A discharge chamber 81 communicates with the working chamber 77 of the compression mechanism 57 through a discharge hole 79, and one end of an intake pipe 25 of an oil separator is connected to the discharge chamber 81 (not shown). The other end of the suction pipe 25 is connected to a suction hole 23 provided in the separator housing 17 of the oil separator. The separator housing 17 is formed in a cylindrical shape. A gas discharge port 18 is provided in the upper opening of the separator housing 17. The separation pipe portion 19 includes a large-diameter portion (a gas discharge port 18) 19a that is a discharge portion that fits into the upper opening of the separator housing 17, and a suction portion that is formed below the large-diameter portion 19a. And a small diameter portion 19b. The large diameter portion 19a may be formed in the separator housing 17 itself. In this case, the pipe is fitted with the small diameter portion 19b.

送油管33の一端は貯油室93の底部に設けられた送油口87に接続されている。冷媒は圧縮機構部57から吐出室81に吐出し、流入管25を通してオイルセパレータに供給される。吸入口23がセパレータハウジング17の円筒状の内壁面に設けられ、この円筒状の内壁面の接線方向から、オイルが混入された冷媒が流入される。セパレータハウジング17の円筒状の内壁面と、小径部19bの間の空間(環状空間)で旋回させてオイル1を分離し、冷媒をガス吐出口18から外部の冷媒回路に送り出す一方で、オイルを、貯油室93に流下させる。貯油室93に貯留したオイルは送油口87から送油管33を通して冷媒圧縮機に戻され、固定及び回転スクロールの摺動面等の摺動部に供給される。
セパレータハウジング17の円筒状の内壁面と小径部19bとの間の空間において旋回オイル1が分離された冷媒は小径部19bを介して分離パイプ部19に吸入され、ガス吐出口18から配管(図示せず)へと流出する。
One end of the oil feeding pipe 33 is connected to an oil feeding port 87 provided at the bottom of the oil storage chamber 93. The refrigerant is discharged from the compression mechanism 57 to the discharge chamber 81 and supplied to the oil separator through the inflow pipe 25. The suction port 23 is provided in the cylindrical inner wall surface of the separator housing 17, and the refrigerant mixed with oil flows in from the tangential direction of the cylindrical inner wall surface. The oil 1 is separated by rotating in the space (annular space) between the cylindrical inner wall surface of the separator housing 17 and the small diameter portion 19b, and the refrigerant is sent from the gas discharge port 18 to the external refrigerant circuit, while the oil is Then, it flows down to the oil storage chamber 93. The oil stored in the oil storage chamber 93 is returned from the oil supply port 87 to the refrigerant compressor through the oil supply pipe 33 and supplied to a sliding portion such as a sliding surface of the fixed and rotary scroll.
The refrigerant from which the swirling oil 1 is separated in the space between the cylindrical inner wall surface of the separator housing 17 and the small diameter portion 19b is sucked into the separation pipe portion 19 through the small diameter portion 19b, and is piped from the gas discharge port 18 (see FIG. (Not shown).

次に、本発明の一実施形態のオイルセパレータの主な特徴を説明する。
図2(a)は、従来技術の遠心分離式オイルセパレータの説明図であり、(b)は、本発明の一実施形態のオイルセパレータの説明図である。
図2(a)の従来技術は、圧縮機から吐出されたオイルを含む冷媒から遠心力でオイルを分離するものである。比重の重いオイルは、遠心力でセパレータハウジングの円筒内壁面に付着するが、小径部19bの端部S付近のガス流れにより油膜がせん断され、オイルを再飛散させる。遠心力でセパレータハウジングの内壁面Kに付着したオイルが、分離パイプ部19の小径部端部S付近のガスの流れで巻き上げられ、冷媒と供に外部に吐き出されてしまう。また、ガスの旋回流速を下げるために遠心分離部(内壁面K)の円筒内壁面内径を大きくすると遠心力が不足し分離効率が低下してしまう。
Next, main features of the oil separator according to one embodiment of the present invention will be described.
FIG. 2A is an explanatory diagram of a conventional centrifugal oil separator, and FIG. 2B is an explanatory diagram of an oil separator according to an embodiment of the present invention.
The prior art in FIG. 2 (a) separates oil by centrifugal force from a refrigerant containing oil discharged from a compressor. The oil having a high specific gravity adheres to the cylindrical inner wall surface of the separator housing by centrifugal force, but the oil film is sheared by the gas flow near the end S of the small diameter portion 19b, and the oil is scattered again. The oil adhering to the inner wall surface K of the separator housing due to centrifugal force is wound up by the gas flow in the vicinity of the small-diameter end S of the separation pipe portion 19 and is discharged to the outside together with the refrigerant. Moreover, if the inner diameter of the cylindrical inner wall surface of the centrifugal separation portion (inner wall surface K) is increased in order to reduce the gas swirling flow rate, the centrifugal force is insufficient and the separation efficiency decreases.

これに対して、図2(b)の本発明の一実施形態のオイルセパレータにおいては、小径部19bの端部S付近での壁面からのオイルの再飛散に着目し、小径部19bの端部S付近のみ円筒内壁面の内径を拡大し、流速を下げる。具体的には、図2(b)に示すように、遠心分離部17’と流速減速部17’’の円筒内壁面内径を段違いに構成したものである。   On the other hand, in the oil separator according to the embodiment of the present invention shown in FIG. 2B, paying attention to the re-scattering of oil from the wall surface in the vicinity of the end S of the small diameter portion 19b, the end of the small diameter portion 19b. Only in the vicinity of S, the inner diameter of the inner wall surface of the cylinder is enlarged and the flow velocity is lowered. Specifically, as shown in FIG. 2B, the inner diameters of the cylindrical inner walls of the centrifugal separation unit 17 'and the flow velocity reduction unit 17' 'are configured to be stepped.

図3は、本発明の一実施形態のオイルセパレータの円筒内壁面の内径比や、段違い位置に対する分離効率の効果を表したグラフであり、(a)は、寸法諸元の説明図、(b)は、内径比D2/D1と分離効率の関係を示す実験データであり、(c)は、内径比と段違い位置と分離効率の関係を示す実験データである。
ここで、D1は、セパレータハウジング17の内壁面内径において、吸入孔23中心を含む断面における内径である。D2は、吸入孔23中心から小径部19b端部に対応した部位Sまでの範囲で変化した断面の内径、すなわち、図3(a)の場合は拡大した流速減速部17’’の円筒内壁面内径である。図3のグラフは、CO2冷媒の場合の分離効率を示しているが、その他の場合の冷媒であっても、概ね同様の結果が得られる。なお、分離パイプ部の小径部19bの外径は、0.6〜0.7D1程度としている。
FIG. 3 is a graph showing the effect of the separation efficiency on the inner diameter ratio of the cylindrical inner wall surface of the oil separator and the uneven position of the oil separator according to the embodiment of the present invention, (a) is an explanatory diagram of the dimensions, ) Is experimental data showing the relationship between the inner diameter ratio D2 / D1 and the separation efficiency, and (c) is experimental data showing the relationship between the inner diameter ratio, the step position and the separation efficiency.
Here, D <b> 1 is an inner diameter in a cross section including the center of the suction hole 23 in the inner wall surface inner diameter of the separator housing 17. D2 is the inner diameter of the cross section changed in the range from the center of the suction hole 23 to the portion S corresponding to the end of the small diameter portion 19b, that is, the cylindrical inner wall surface of the enlarged flow velocity reduction portion 17 ″ in the case of FIG. The inner diameter. The graph of FIG. 3 shows the separation efficiency in the case of the CO2 refrigerant, but substantially the same result can be obtained with the refrigerant in other cases. In addition, the outer diameter of the small diameter part 19b of the separation pipe part is about 0.6 to 0.7D1.

図3の結果が示すように、セパレータハウジング17の内壁面内径において、吸入孔23中心を含む断面における内径D1と、吸入孔23中心から小径部19b端部に対応した部位までの範囲で変化した断面の内径D2との関係が、1.1≦D2/D1≦1.5の範囲において、極めて良好な分離効率が示されている。
また、内径D1、内径D2、及び、内径D1から内径D2に変化した位置から、小径部19b端部に対応した部位までの内壁面の中心軸方向の距離L2との関係が、
7≦L2/((D2−D1)/2)≦22の範囲において、極めて良好な分離効率が示されている。本実験結果から、オイル分離効率の目標値を99%とすると、D2/D1は1.1〜1.5の範囲である必要があり、L2/((D2−D1)/2)は7〜22の範囲である必要がある(なお、図3(b)、(c)のハッチング部は99%の領域を示している)。
As shown in the result of FIG. 3, the inner diameter of the inner wall surface of the separator housing 17 changed in the range from the inner diameter D1 in the cross section including the center of the suction hole 23 to the portion corresponding to the end of the small diameter portion 19b from the center of the suction hole 23. In the range of 1.1 ≦ D2 / D1 ≦ 1.5 in relation to the inner diameter D2 of the cross section, extremely good separation efficiency is shown.
In addition, the relationship between the inner diameter D1, the inner diameter D2, and the distance L2 in the direction of the central axis of the inner wall surface from the position where the inner diameter D1 changed to the inner diameter D2 to the portion corresponding to the end of the small diameter portion 19b,
In the range of 7 ≦ L2 / ((D2−D1) / 2) ≦ 22, extremely good separation efficiency is shown. From this experimental result, when the target value of the oil separation efficiency is 99%, D2 / D1 needs to be in the range of 1.1 to 1.5, and L2 / ((D2-D1) / 2) is 7 to It is necessary to be within a range of 22 (note that the hatched portions in FIGS. 3B and 3C indicate a 99% region).

さらに、吸入孔23の流路断面積A0とし、小径部19bの外径と、吸入孔23中心軸を含む断面における、内壁面内径D1との間の流路断面積A1とし、吸入孔23中心軸位置から、拡大した内壁面内径D2に変化した位置までの内壁面の中心軸方向の距離L1としたとき、それらの関係が、7<L1×(A1/A0)<110の範囲において、図4に示すように、分離効率比が向上する。ここで、図4の分離効率比とは、内壁面内径が2段階に変化しないD1の場合に比べた本実施形態の比率のことである。なお、分離効率とは、吸入孔23からの流入オイル量をMinとして、ガス吐出口18からの流出オイル量をMoutとしたとき、(Min−Mout)/Minの百分率である。   Furthermore, the flow path cross-sectional area A0 of the suction hole 23 is defined as the flow path cross-sectional area A1 between the outer diameter of the small diameter portion 19b and the inner wall surface inner diameter D1 in the cross section including the central axis of the suction hole 23. When the distance L1 in the central axis direction of the inner wall surface from the shaft position to the position where the inner wall surface inner diameter D2 is changed to the enlarged inner wall surface diameter D2, the relationship is shown in the range of 7 <L1 × (A1 / A0) <110. As shown in FIG. 4, the separation efficiency ratio is improved. Here, the separation efficiency ratio in FIG. 4 is the ratio of the present embodiment compared to the case of D1 where the inner wall surface inner diameter does not change in two steps. The separation efficiency is a percentage of (Min−Mout) / Min, where Min is the amount of oil flowing in from the suction hole 23 and Mout is the amount of oil flowing out from the gas discharge port 18.

図2(a)の従来技術に対して、本発明の一実施形態のオイルセパレータを効果は、上述したように、極めて良好な分離効率が得られるものである(内径D1は両者とも同じ)。従来技術の形状では、オイル分離効率97.5%であるのに対して、本発明の一実施形態では99.5%に向上した。これをオイル吐出量でみれば2.5%から0.5%に減少したことになり、吐出量が80%低減されたことになる。本発明の一実施形態のオイルセパレータを搭載するCO2ヒートポンプユニット(CO2給湯機)においてシステムオイルレートの低減を行うことができる。システムオイルレートの低減により、熱交換器の熱交換効率が改善されるため、システムCOP(成績係数)を向上させることができる。 The effect of the oil separator according to one embodiment of the present invention over the prior art of FIG. 2A is that, as described above, extremely good separation efficiency can be obtained (both inner diameters D1 are the same). In the shape of the prior art, the oil separation efficiency is 97.5%, whereas in one embodiment of the present invention, the efficiency is improved to 99.5%. If this is seen by oil discharge amount, it will be reduced from 2.5% to 0.5%, and the discharge amount will be reduced by 80%. The system oil rate can be reduced in a CO 2 heat pump unit (CO 2 water heater) equipped with the oil separator of one embodiment of the present invention. Since the heat exchange efficiency of the heat exchanger is improved by reducing the system oil rate, the system COP (coefficient of performance) can be improved.

本発明の他の実施形態としては、セパレータハウジングの内壁面内径において、内壁面の中心軸方向に、吸入孔23中心から、小径部19b端部に対応した部位までの範囲で、全体的に徐々に拡大するようにしても良い。あるいは、2段の段差を持ちながらそれぞれにおいて内径を徐々に拡大するようにしても良い。また、上記本発明の実施形態のオイルセパレータを様々な圧縮機に適用することができる。
また、本発明の他の実施形態として、図4に示すように、オイルセパレータの分離パイプ部として、一定の径を有するパイプ部を用いてもよい。
In another embodiment of the present invention, the inner diameter of the inner wall surface of the separator housing is gradually gradually increased as a whole from the center of the suction hole 23 to the portion corresponding to the end of the small diameter portion 19b in the central axis direction of the inner wall surface. You may make it expand to. Alternatively, the inner diameter may be gradually increased in each of the two steps. Moreover, the oil separator of the embodiment of the present invention can be applied to various compressors.
As another embodiment of the present invention, as shown in FIG. 4, a pipe portion having a constant diameter may be used as the separation pipe portion of the oil separator.

17 セパレータハウジング
17b 開口部
18 ガス吐出口
19 分離パイプ部
19a 吐出部、大径部
19b 吸入部、小径部
23 吸入孔
57 圧縮機構部
87 送油口
93 貯油室
DESCRIPTION OF SYMBOLS 17 Separator housing 17b Opening part 18 Gas discharge port 19 Separation pipe part 19a Discharge part, large diameter part 19b Suction part, small diameter part 23 Suction hole 57 Compression mechanism part 87 Oil supply port 93 Oil storage chamber

Claims (7)

冷媒圧縮機の圧縮機構部(57)より吐出するオイル混入の冷媒から、オイルを遠心分離して、分離したオイルを前記冷媒圧縮機に再循環させるとともに、分離後の冷媒を外部に吐出するようにしたオイルセパレータであって、該オイルセパレータは、
前記冷媒圧縮機に再循環させるための送油口(87)を持つ貯油室(93)と、
前記圧縮機構部(57)から吐出した冷媒を、セパレータハウジング(17)の円筒状の内壁面の接線方向から流入させる吸入孔(23)、外部に冷媒を吐出するガス吐出口(18)、及び、前記貯油室(93)に連通する開口部(17b)を有するセパレータハウジング(17)と、
吐出部(19a)と吸入部(19b)から構成された分離パイプ部(19)であって、該吐出部(19a)がセパレータハウジング(17)の前記内壁面に嵌合又は設置されて、ガス吐出口(18)に連通し、前記吸入部(19b)の外径がセパレータハウジングの内壁面内径より小さい筒状で、前記吸入部(19b)端部がセパレータハウジング内で前記吸入孔(23)より貯油室側に開口した分離パイプ部(19)と、を具備し、
セパレータハウジングの内壁面内径が、吸入孔(23)中心軸位置から、前記吸入部(19b)端部に対応した部位までの範囲で拡大することを特徴とするオイルセパレータ。
The oil is centrifuged from the oil-mixed refrigerant discharged from the compression mechanism section (57) of the refrigerant compressor, and the separated oil is recirculated to the refrigerant compressor, and the separated refrigerant is discharged to the outside. An oil separator, wherein the oil separator is
An oil storage chamber (93) having an oil supply port (87) for recirculation to the refrigerant compressor;
A suction hole (23) through which the refrigerant discharged from the compression mechanism (57) flows in from a tangential direction of the cylindrical inner wall surface of the separator housing (17), a gas discharge port (18) for discharging the refrigerant to the outside, and A separator housing (17) having an opening (17b) communicating with the oil storage chamber (93);
A separation pipe part (19) composed of a discharge part (19a) and a suction part (19b), the discharge part (19a) being fitted or installed on the inner wall surface of the separator housing (17), The suction port (18) communicates with the discharge port (18) so that the outer diameter of the suction portion (19b) is smaller than the inner diameter of the inner wall surface of the separator housing, and the end portion of the suction portion (19b) is within the separator housing. A separation pipe part (19) opened to the oil storage chamber side,
An oil separator characterized in that the inner diameter of the inner wall surface of the separator housing expands in a range from the position of the central axis of the suction hole (23) to a portion corresponding to the end of the suction portion (19b).
前記セパレータハウジングの内壁面内径は、前記吸入孔(23)中心軸位置と、前記吸入部(19b)端部に対応した部位までの範囲で、2段階の内径を持つことを特徴とする請求項1記載のオイルセパレータ。   The inner diameter of the inner wall surface of the separator housing has a two-stage inner diameter in a range from the central axis position of the suction hole (23) to a portion corresponding to the end of the suction portion (19b). The oil separator according to 1. 前記セパレータハウジングの内壁面内径において、前記吸入孔(23)中心軸を含む断面における内径D1と、前記吸入孔(23)中心軸位置から前記吸入部(19b)端部に対応した部位までの範囲で変化した断面の内径D2との関係が、
1.1≦D2/D1≦1.5
の範囲にあることを特徴とする請求項2に記載のオイルセパレータ。
In the inner diameter of the inner wall of the separator housing, an inner diameter D1 in a cross section including the central axis of the suction hole (23) and a range from the position of the central axis of the suction hole (23) to a portion corresponding to the end of the suction part (19b) The relationship with the inner diameter D2 of the cross section changed by
1.1 ≦ D2 / D1 ≦ 1.5
The oil separator according to claim 2, wherein the oil separator is in the range.
前記内径D1、前記内径D2、及び、前記内径D1から前記内径D2に変化した位置から、前記吸入部(19b)端部に対応した部位までの前記内壁面の中心軸方向の距離L2との関係が、
7≦L2/((D2−D1)/2)≦22
の範囲にあることを特徴とする請求項3に記載のオイルセパレータ。
Relationship between the inner diameter D1, the inner diameter D2, and the distance L2 in the central axis direction of the inner wall surface from the position changed from the inner diameter D1 to the inner diameter D2 to the portion corresponding to the end of the suction portion (19b) But,
7 ≦ L2 / ((D2-D1) / 2) ≦ 22
The oil separator according to claim 3, wherein the oil separator is in the range.
前記吸入孔(23)の流路断面積A0、
前記吸入部(19b)の外径と、前記吸入孔(23)中心軸を含む断面における前記内壁面内径(D1)との間の環状空間の流路断面積A1、
前記吸入孔(23)中心軸位置から、拡大した内壁面内径(D2)に変化した位置までの前記内壁面の中心軸方向の距離L1との関係が、
7<L1×(A1/A0)<110
の範囲にあることを特徴とする請求項2から4のいずれか1項に記載のオイルセパレータ。
The cross-sectional area A0 of the suction hole (23),
A channel cross-sectional area A1 of an annular space between the outer diameter of the suction portion (19b) and the inner wall surface inner diameter (D1) in a section including the central axis of the suction hole (23);
The relationship with the distance L1 in the direction of the central axis of the inner wall surface from the position of the central axis of the suction hole (23) to the position where the inner wall surface inner diameter (D2) is increased.
7 <L1 × (A1 / A0) <110
The oil separator according to any one of claims 2 to 4, wherein the oil separator is in the range.
前記セパレータハウジングの内壁面内径が、前記内壁面の中心軸方向に、前記吸入孔(23)中心軸位置から、前記吸入部(19b)端部に対応した部位までの範囲で、徐々に拡大することを特徴とする請求項2から5のいずれか1項に記載のオイルセパレータ。   The inner diameter of the inner wall surface of the separator housing gradually increases in the direction of the central axis of the inner wall surface from the position of the central axis of the suction hole (23) to the portion corresponding to the end of the suction section (19b). The oil separator according to any one of claims 2 to 5, wherein: 請求項1から6のいずれか1項に記載のオイルセパレータを具備した圧縮機。   A compressor comprising the oil separator according to any one of claims 1 to 6.
JP2011192729A 2011-09-05 2011-09-05 Oil separator and compressor provided with oil separator Active JP5591196B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011192729A JP5591196B2 (en) 2011-09-05 2011-09-05 Oil separator and compressor provided with oil separator
DE201210215621 DE102012215621A1 (en) 2011-09-05 2012-09-04 Oil separator for compressor e.g. scroll-type compressor, has precipitator with inner wall surface whose inner diameter in region from center axis position of suction hole is increased corresponding to inlet end portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192729A JP5591196B2 (en) 2011-09-05 2011-09-05 Oil separator and compressor provided with oil separator

Publications (2)

Publication Number Publication Date
JP2013053568A true JP2013053568A (en) 2013-03-21
JP5591196B2 JP5591196B2 (en) 2014-09-17

Family

ID=47710947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192729A Active JP5591196B2 (en) 2011-09-05 2011-09-05 Oil separator and compressor provided with oil separator

Country Status (2)

Country Link
JP (1) JP5591196B2 (en)
DE (1) DE102012215621A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583690A (en) * 2013-06-06 2015-04-29 松下知识产权经营株式会社 Oil separator and method for manufacturing oil separator
JP2016217158A (en) * 2015-05-14 2016-12-22 株式会社デンソー Oil separator
US20170321937A1 (en) * 2016-05-03 2017-11-09 Lg Electronics Inc. Linear compressor
WO2018061169A1 (en) * 2016-09-30 2018-04-05 株式会社日立産機システム Screw compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683686B (en) 2013-11-04 2018-06-05 开利公司 With the separated refrigerating circuit of oil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180808A (en) * 2003-12-19 2005-07-07 Denso Corp Oil separator
JP2009092060A (en) * 2007-09-19 2009-04-30 Nippon Soken Inc Oil separator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180808A (en) * 2003-12-19 2005-07-07 Denso Corp Oil separator
JP2009092060A (en) * 2007-09-19 2009-04-30 Nippon Soken Inc Oil separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104583690A (en) * 2013-06-06 2015-04-29 松下知识产权经营株式会社 Oil separator and method for manufacturing oil separator
US20150276288A1 (en) * 2013-06-06 2015-10-01 Panasonic Intellectual Property Management Co., Ltd. Oil separator and method for producing oil separator
US9863675B2 (en) * 2013-06-06 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Oil separator and method for producing oil separator
JP2016217158A (en) * 2015-05-14 2016-12-22 株式会社デンソー Oil separator
US20170321937A1 (en) * 2016-05-03 2017-11-09 Lg Electronics Inc. Linear compressor
US10584905B2 (en) * 2016-05-03 2020-03-10 Lg Electronics Inc. Linear compressor
US11175079B2 (en) 2016-05-03 2021-11-16 Lg Electronics Inc. Linear compressor
WO2018061169A1 (en) * 2016-09-30 2018-04-05 株式会社日立産機システム Screw compressor
JPWO2018061169A1 (en) * 2016-09-30 2019-06-24 株式会社日立産機システム Screw compressor

Also Published As

Publication number Publication date
DE102012215621A1 (en) 2013-03-07
JP5591196B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5591196B2 (en) Oil separator and compressor provided with oil separator
CN104937273B (en) Hermetic type compressor and the steam compression type refrigeration EGR with the hermetic type compressor
TWI515369B (en) A screw compressor and a chiller unit having the screw compressor
JP5039869B1 (en) Compressor
JP2009264175A (en) Refrigerant compressor
CN103644119A (en) Oil recovery member, and motor mechanism and compressor using the same
US9115715B2 (en) Compressor with pressure reduction groove formed in eccentric part
JP6597744B2 (en) Oil separator
WO2016059772A1 (en) Compressor
JP2003269336A (en) Compressor and oil separator
JP2018188986A (en) Internal intermediate pressure-type two-stage compression compressor
WO2019202682A1 (en) Oil separator, screw compressor, and refrigeration cycle device
JP2009221960A (en) Compressor
CN108138771A (en) Bearing of compressor case drain device
JP2013015069A (en) Oil separator and compressor having the same
JP2020101168A (en) Scroll compressor
JP2019056322A (en) Compressor
JP2018015742A (en) Oil separator, compression equipment and refrigeration cycle
JP2006105064A (en) Compressor
JP7022272B2 (en) Oil separator
JP2006307803A (en) Scroll compressor
JP2013164008A (en) Compressor
CN209370075U (en) It is vented separating pipe and screw compressor
JP2013238191A (en) Compressor
JP2009052497A (en) Refrigerant compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5591196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250