JP2013053407A - Seismic isolation method for existing building - Google Patents

Seismic isolation method for existing building Download PDF

Info

Publication number
JP2013053407A
JP2013053407A JP2011190355A JP2011190355A JP2013053407A JP 2013053407 A JP2013053407 A JP 2013053407A JP 2011190355 A JP2011190355 A JP 2011190355A JP 2011190355 A JP2011190355 A JP 2011190355A JP 2013053407 A JP2013053407 A JP 2013053407A
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation device
temporary support
existing building
vertical rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011190355A
Other languages
Japanese (ja)
Other versions
JP5749606B2 (en
Inventor
Yoshihiro Matsushita
嘉宏 松下
Akira Naito
陽 内藤
Naoyuki Takahashi
直行 高橋
Kohei Kishimoto
光平 岸本
Masashi Morita
将史 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2011190355A priority Critical patent/JP5749606B2/en
Publication of JP2013053407A publication Critical patent/JP2013053407A/en
Application granted granted Critical
Publication of JP5749606B2 publication Critical patent/JP5749606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a seismic isolation method for an existing building with a mixture of seismic isolation devices having a different vertical rigidity, which allows each of the seismic isolation devices having a different vertical rigidity to be applied with a designed axial force, achieving predetermined seismic isolation performance.SOLUTION: A seismic isolation device A having a low vertical rigidity is joined to an upper structure 5 and a lower structure 6 of an existing building, while a seismic isolation device B having a high vertical rigidity is joined to the lower structure 6 and not joined to the upper structure 5. In this state, a temporary support column 4 corresponding to the seismic isolation device having a low vertical rigidity is unloaded, while the pressure of a jack 4b of a temporary support column 4 corresponding to the seismic isolation device having a high vertical rigidity which is not joined to the upper structure is adjusted so that the building load applied to the temporary support column is maintained at a fixed state. Subsequently, the seismic isolation device having a high vertical rigidity is joined to the upper structure, and the temporary support column corresponding to the device is then unloaded.

Description

本発明は、既存建物の上部構造と下部構造の間に介在させる免震改修用の免震装置とし
て、鉛直剛性が異なる免震装置(例えば、バネ支承方式の免震装置と滑り支承方式の免震
装置)を混在させる既存建物の免震化工法に関する。
The present invention provides a seismic isolation device having a different vertical rigidity (for example, a spring-supporting seismic isolation device and a sliding bearing-based seismic isolation device) as a seismic isolation device interposed between an upper structure and a lower structure of an existing building. This is related to the seismic isolation method for existing buildings.

既存建物の上部構造を油圧ジャッキ付きの仮受け支柱で仮受けし、この状態で上部構造
と下部構造の間の軸力伝達部材(杭又は柱)を切断除去し、当該軸力伝達部材の除去され
た場所や当該軸力伝達部材に隣接する梁の直下など、除去された軸力伝達部材が負担して
いた軸力の伝達径路中に、夫々、免震装置を設置して、仮受け支柱から免震装置へ建物荷
重を移行させることにより、既存建物を免震改修する既存建物の免震化工法においては、
建物の振動制御の目的から、免震装置として、積層ゴム支承に代表されるバネ支承方式の
免震装置と、直交するスライドレール(ローラーベアリング)又は面摩擦材などを用いた
滑り支承方式の免震装置を混在させることがある。また、同じバネ支承方式の免震装置で
も、建物内側と建物外側に鉛直剛性の高い積層ゴム支承と鉛直剛性の低い積層ゴム支承と
を振り分けて配置することは、特許文献1によって既に知られている。
The upper structure of the existing building is temporarily received by a temporary support post with a hydraulic jack, and in this state, the axial force transmission member (pile or column) between the upper structure and the lower structure is cut and removed, and the axial force transmission member is removed. The seismic isolation device is installed in each of the axial force transmission paths borne by the removed axial force transmission member, such as directly under the beam adjacent to the axial force transmission member. In the seismic isolation method for existing buildings, the building load is transferred from the seismic isolation device to the seismic isolation device.
For the purpose of building vibration control, as a seismic isolation device, a spring bearing type seismic isolation device typified by laminated rubber bearings and a sliding bearing type exemption using orthogonal slide rails (roller bearings) or surface friction materials. Seismic devices may be mixed. Further, even in the same spring support type seismic isolation device, it is already known from Patent Document 1 that a laminated rubber bearing having a high vertical rigidity and a laminated rubber bearing having a low vertical rigidity are distributed and arranged on the inside and outside of the building. Yes.

バネ支承方式の免震装置と滑り支承方式の免震装置とでは、特許文献2の段落0006
にも記載されているように、鉛直剛性に約5倍〜10倍程度もの大きな差異があるので、
既存建物の上部構造を仮受け支柱で仮受けした状態から、仮受け支柱の除荷(ジャッキダ
ウン)を行って、仮受け支柱から免震装置へ建物荷重を移行させる際、隣り合うバネ支承
方式の免震装置と滑り支承方式の免震装置に同時に荷重移行すると、鉛直剛性の高い滑り
支承方式の免震装置に荷重が集中する可能性がある。
Paragraph 0006 of Patent Document 2 describes a spring-supporting seismic isolation device and a sliding-supporting seismic isolation device.
There is a big difference of about 5 to 10 times in vertical rigidity as described in
When the superstructure of an existing building is temporarily received with a temporary support post, the temporary support post is unloaded (jacked down) and the building load is transferred from the temporary support post to the seismic isolation device. If the load is transferred to both the seismic isolation device and the sliding support type seismic isolation device at the same time, the load may concentrate on the sliding support type seismic isolation device with high vertical rigidity.

即ち、図6に示すように、隣り合う位置にバネ支承方式の免震装置Aと滑り支承方式の
免震装置Bとを配置し、それらの免震装置A,Bの上下と既存建物の上,下部構造5,6
を接合した後、図7に示すように、仮受け支柱4の除荷(ジャッキ4bによるジャッキダ
ウン)を行って、隣り合うバネ支承方式の免震装置Aと滑り支承方式の免震装置Bに同時
に荷重移行すると、鉛直剛性の低いバネ支承方式の免震装置Aでは載荷による縮み量が大
であるのに対し、鉛直剛性の高い滑り支承方式の免震装置Bでは、載荷による縮み量が小
であるから、この荷重導入による免震装置A,Bの縮み量の違いにより、梁9やスラブ8
を介して鉛直剛性の高い免震装置Bの方向へ荷重が流れる可能性が高い。その結果、鉛直
剛性の高い滑り支承方式の免震装置Bに設計以上の荷重が導入されてしまい、全体として
所定の免震性能を発揮できない可能性があるため、高度な施工管理が必要である。
That is, as shown in FIG. 6, a spring bearing type seismic isolation device A and a sliding bearing type seismic isolation device B are arranged at adjacent positions, and above and below the seismic isolation devices A and B and above the existing building. Substructure 5, 6
7, the unloading of the temporary support post 4 (jack down by the jack 4 b) is performed as shown in FIG. 7, and the adjacent spring support type seismic isolation device A and sliding support type seismic isolation device B are used. When the load is transferred at the same time, the amount of contraction due to loading is large in the spring isolation system A with low vertical rigidity, while the amount of contraction due to loading is small in the base isolation system B with high vertical rigidity. Therefore, due to the difference in the amount of shrinkage of the seismic isolation devices A and B due to this load introduction, the beam 9 and the slab 8
There is a high possibility that a load flows in the direction of the seismic isolation device B having high vertical rigidity. As a result, a load higher than the design is introduced into the seismic isolation device B having a high vertical rigidity, and it is possible that the predetermined seismic isolation performance cannot be exhibited as a whole, so that advanced construction management is necessary. .

特開2009−121043号公報JP 2009-121043 A 特開2001−288928号公報JP 2001-288289 A

本発明は、上記の問題点を踏まえてなされたものであって、その目的とするところは、
既存建物の上部構造と下部構造の間に介在させる免震改修用の免震装置として、鉛直剛性
が異なる免震装置を混在させる既存建物の免震化工法において、鉛直剛性が異なる免震装
置に設計通りに建物荷重を導入することができ、所定の免震性能を発揮できるようにする
ことにある。
The present invention has been made in view of the above-mentioned problems, and the object is as follows.
In the seismic isolation method for existing buildings where seismic isolation devices with different vertical stiffnesses are mixed as seismic isolation devices that are interposed between the upper and lower structures of existing buildings, The building load can be introduced as designed, and the desired seismic isolation performance can be exhibited.

上記の目的を達成するために、本発明が講じた技術的手段は、次の通りである。即ち、
請求項1に記載の発明は、既存建物の上部構造と下部構造の間に介在させる免震改修用の
免震装置として、鉛直剛性が異なる免震装置を混在させる既存建物の免震化工法であって
、鉛直剛性の高い免震装置と鉛直剛性の低い免震装置のうち、鉛直剛性の低い免震装置を
既存建物の上部構造及び下部構造と接合し、鉛直剛性の高い免震装置については既存建物
の下部構造と接合し且つ上部構造と未接合の状態で、鉛直剛性の低い免震装置に対応する
仮受け支柱の除荷を行い、既存建物の上部構造と未接合の状態にある鉛直剛性の高い免震
装置については、仮受け支柱のジャッキの圧力を調整することにより、当該仮受け支柱に
掛かる建物荷重を一定状態に保持し、次いで、鉛直剛性の高い免震装置を既存建物の上部
構造と接合した後、鉛直剛性の高い免震装置に対応する仮受け支柱の除荷を行うことを特
徴としている。尚、本発明において、仮受け支柱に掛かる建物荷重を「一定状態に保持す
る」とは、許容範囲内に保持すると言う意味であり、必ずしも厳密な意味で一定である必
要はない。
In order to achieve the above object, technical measures taken by the present invention are as follows. That is,
The invention according to claim 1 is a seismic isolation method for an existing building in which seismic isolation devices having different vertical stiffnesses are mixed as a seismic isolation device to be interposed between the upper structure and the lower structure of an existing building. Of the seismic isolation devices with high vertical rigidity and low vertical rigidity, the seismic isolation devices with low vertical rigidity are joined to the upper and lower structures of existing buildings. Unload the temporary support strut corresponding to the seismic isolation device with low vertical rigidity in a state where it is joined to the lower structure of the existing building and is not joined to the upper structure, and the vertical structure that is not joined to the upper structure of the existing building. For the seismic isolation device with high rigidity, by adjusting the pressure of the jack of the temporary support column, the building load applied to the temporary support column is kept constant, and then the seismic isolation device with high vertical rigidity is installed on the existing building. Vertical stiffness after joining with superstructure It is characterized by performing the unloading of the temporary supporting struts corresponding to high seismic isolation device. In the present invention, “holding the building load applied to the temporary support column” in a constant state means to keep it within an allowable range, and does not necessarily have to be constant in a strict sense.

請求項2に記載の発明は、既存建物の上部構造をジャッキ付きの仮受け支柱で仮受けし
、この状態で上部構造と下部構造の間の軸力伝達部材を切断除去し、除去された軸力伝達
部材が負担していた軸力の伝達径路中に、夫々、免震装置を設置して、仮受け支柱から免
震装置へ建物荷重を移行させることにより、既存建物を免震改修する既存建物の免震化工
法であって、
隣り合う位置に配置される滑り支承方式の免震装置とバネ支承方式の免震装置の各々に
対応する仮受け支柱に掛かる軸力伝達部材が切断除去された際の建物荷重を仮受け支柱の
ジャッキに取り付けられた圧力計により測定する第一工程と、
バネ支承方式の免震装置を既存建物の上、下部構造と接合した状態に設置し、滑り支承
方式の免震装置を既存建物の下部構造と接合し且つ上部構造と未接合の状態に設置する第
二工程と、
バネ支承方式の免震装置に対応する仮受け支柱の除荷を行い、既存建物の上部構造と未
接合の状態にある滑り支承方式の免震装置については、仮受け支柱のジャッキの圧力を第
一工程での測定値が保持されるように調整することにより、当該仮受け支柱に掛かる建物
荷重を一定状態に保持する第三工程と、
滑り支承方式の免震装置を既存建物の上部構造と接合した後、滑り支承方式の免震装置
に対応する仮受け支柱の除荷を行う第四工程とを有することを特徴としている。
The invention according to claim 2 temporarily receives the upper structure of the existing building with a temporary support post with a jack, and in this state, the axial force transmission member between the upper structure and the lower structure is cut and removed, and the removed shaft is removed. Existing seismic isolation renovation of existing buildings by installing seismic isolation devices in the axial force transmission path borne by the force transmission member and transferring building loads from temporary support posts to seismic isolation devices A seismic isolation method for buildings,
The building load when the axial force transmission member applied to the temporary support struts corresponding to each of the sliding support type seismic isolation device and the spring support type seismic isolation device arranged adjacent to each other is cut and removed is stored in the temporary support post. A first step of measuring with a pressure gauge attached to the jack;
Install the spring support type seismic isolation device on the existing building and joined with the lower structure, and install the sliding support type seismic isolation device on the existing building's lower structure and unconnected with the upper structure. The second step;
Unload the temporary support struts corresponding to the spring bearing type seismic isolation device, and for the sliding support type seismic isolation device that is not joined to the superstructure of the existing building, the jack pressure of the temporary support column A third step of keeping the building load applied to the temporary support column in a constant state by adjusting the measurement value in one step to be held;
A fourth step of unloading the temporary support column corresponding to the sliding support type seismic isolation device after joining the sliding support type seismic isolation device with the superstructure of the existing building is characterized.

請求項3に記載の発明は、請求項2に記載の既存建物の免震化工法であって、軸力伝達
部材が杭頭部であることを特徴としている。
Invention of Claim 3 is the seismic isolation method of the existing building of Claim 2, Comprising: An axial force transmission member is a pile head, It is characterized by the above-mentioned.

請求項4に記載の発明は、請求項2に記載の既存建物の免震化工法であって、軸力伝達
部材が柱であることを特徴としている。
The invention described in claim 4 is the seismic isolation method for an existing building described in claim 2, characterized in that the axial force transmission member is a column.

請求項1に記載の発明によれば、鉛直剛性が異なる免震装置に設計通りに建物荷重を導
入することができ、所定の免震性能を発揮できる。即ち、鉛直剛性の高い免震装置が未だ
既存建物の上部構造と接合されていない状態で、鉛直剛性の低い免震装置に対応する仮受
け支柱の除荷を行うので、鉛直剛性の高い免震装置側については、鉛直剛性の低い免震装
置の載荷による縮み量に応じて、仮受け支柱のジャッキの圧力を調整することにより、当
該仮受け支柱に掛かる建物荷重を一定又はほぼ一定に保持することができ、この状態で、
鉛直剛性の高い免震装置を既存建物の上部構造と接合した後、鉛直剛性の高い免震装置に
対応する仮受け支柱の除荷を行うので、鉛直剛性の高い免震装置に設計以上の荷重が導入
されることがない。
According to invention of Claim 1, a building load can be introduce | transduced into a seismic isolation apparatus from which vertical rigidity differs, as designed, and predetermined seismic isolation performance can be exhibited. In other words, the seismic isolation device with high vertical rigidity is not yet joined to the superstructure of the existing building, and the temporary support column corresponding to the base isolation device with low vertical rigidity is unloaded. On the equipment side, the building load applied to the temporary support strut is kept constant or nearly constant by adjusting the jack pressure of the temporary support strut according to the amount of shrinkage caused by the loading of the seismic isolation device with low vertical rigidity. In this state you can
After the seismic isolation device with high vertical rigidity is joined to the superstructure of the existing building, the temporary support struts corresponding to the seismic isolation device with high vertical rigidity are unloaded. Will not be introduced.

請求項2に記載の発明によれば、隣り合う位置に配置された鉛直剛性の高い滑り支承方
式の免震装置と鉛直剛性の低いバネ支承方式の免震装置の各々に、第一工程での測定値に
対応する荷重を導入でき、滑り支承方式の免震装置に設計以上の荷重が導入されることが
ないので、所定の免震性能を発揮できる。
According to the second aspect of the present invention, each of the sliding support type seismic isolation device having a high vertical rigidity and the spring support type having a low vertical rigidity arranged in adjacent positions is provided in the first step. A load corresponding to the measured value can be introduced, and a load greater than the design is not introduced into the sliding bearing type seismic isolation device, so that a predetermined seismic isolation performance can be exhibited.

尚、請求項1、2に記載の発明は、既存建物の基礎下に免震装置を配置するいわゆる基
礎免震工法、地下階又は地上階の柱の途中を切断除去して、その位置に免震装置を設置す
るいわゆる中間免震工法の何れにおいても適用可能である。それ故、請求項2に記載の発
明における上部構造と下部構造の間の軸力伝達部材としては、請求項3、4に記載の通り
、杭頭部、柱の何れであってもよい。
In addition, the invention described in claims 1 and 2 is a so-called basic seismic isolation method in which a seismic isolation device is arranged under the foundation of an existing building. It can be applied to any so-called intermediate seismic isolation method that installs seismic devices. Therefore, the axial force transmission member between the upper structure and the lower structure in the invention described in claim 2 may be either a pile head or a pillar as described in claims 3 and 4.

本発明の実施形態を示す要部の縦断正面図である。It is a vertical front view of the principal part which shows embodiment of this invention. 図1に続く工程を説明する要部の縦断正面図である。It is a longitudinal front view of the principal part explaining the process following FIG. 図2に続く工程を説明する要部の縦断正面図である。It is a longitudinal front view of the principal part explaining the process following FIG. 図3に続く工程を説明する要部の縦断正面図である。FIG. 4 is a longitudinal front view of a main part for explaining a process following FIG. 3. 免震装置設置作業の順番を説明する概略平面図である。It is a schematic plan view explaining the order of seismic isolation apparatus installation work. 従来例を説明する要部の縦断正面図である。It is a vertical front view of the principal part explaining a prior art example. 従来例を説明する要部の縦断正面図である。It is a vertical front view of the principal part explaining a prior art example.

以下、本発明に係る既存建物の免震化工法を図面に基づいて説明する。図1は、杭基礎
で支持された既存建物の下方を掘削して基礎(既存フーチングであり、図示の例では、杭
頭接合部やパイルキャップと呼ばれることもある。)1及び杭2の頭部を露出させた後、
掘削底に耐圧盤(マットスラブ)3を築造し、その上に立設した仮受け支柱(鋼材4aと
ジャッキ4bとで構成されている。)4で上部構造(基礎1から上方の既存建物)5を仮
受けし、この状態で上部構造5と下部構造6の間の軸力伝達部材である杭頭部2aを切断
除去し、杭頭部2aが切断除去された際の仮受け支柱4に掛かる荷重(これが真の建物荷
重である。)を前記ジャッキ4bに取り付けられた圧力計7により測定する第一工程を示
している。8は最下階のスラブ、9は梁である。第一工程における測定値(実荷重)が設
計荷重(各免震装置に分担させる設計上の荷重であり、既存建物の構造、仕上げ荷重、積
載荷重等に基づいて算出される。)の許容範囲内にあることを確認し、次の工程へと免震
改修工事を進める。
Hereinafter, the seismic isolation method for an existing building according to the present invention will be described with reference to the drawings. FIG. 1 shows an excavation below an existing building supported by a pile foundation (existing footing, which may be called a pile head joint or a pile cap in the illustrated example) 1 and the head of a pile 2. After exposing the part
A pressure-resistant panel (mat slab) 3 is constructed on the bottom of the excavation, and the upper structure (existing building above the foundation 1) is provided with a temporary support post (consisting of a steel material 4a and a jack 4b) 4 standing on it. 5, the pile head 2a which is an axial force transmission member between the upper structure 5 and the lower structure 6 is cut and removed in this state, and the pile receiving head 4a when the pile head 2a is cut and removed The first step of measuring the applied load (this is the true building load) with the pressure gauge 7 attached to the jack 4b is shown. 8 is the lowest floor slab, and 9 is a beam. Measured value (actual load) in the first step is the allowable range of the design load (the design load shared by each seismic isolation device and calculated based on the structure of the existing building, finishing load, loading load, etc.) Confirm that it is within the range and proceed with the seismic isolation repair work to the next process.

尚、図示の例では、既存建物の基礎1下に免震改修用の免震装置を配置するいわゆる基
礎免震工法であるため、杭2及び耐圧盤3を総称して下部構造6と呼んでいるが、地下階
又は地上階の柱の途中を切断除去して、その位置に免震改修用の免震装置を設置するいわ
ゆる中間免震工法の場合には、柱の切断除去部より下方の構造物全体を下部構造と称する
ことになる。前記ジャッキ4bとして、図示の例では油圧ジャッキを用いているが、ねじ
ジャッキやエアジャッキ等であってもよい。
In the example shown in the figure, since this is a so-called basic seismic isolation method in which a seismic isolation device is installed under the foundation 1 of an existing building, the pile 2 and the pressure platen 3 are collectively referred to as the lower structure 6. However, in the case of the so-called intermediate seismic isolation method in which a base isolation or seismic isolation device is installed at that position by cutting and removing the middle part of the basement or ground floor pillar, The entire structure will be referred to as the lower structure. In the illustrated example, a hydraulic jack is used as the jack 4b, but a screw jack, an air jack, or the like may be used.

図2は、鉛直剛性の低い免震装置としてのバネ支承方式の免震装置(図示の例では積層
ゴム支承の免震装置である。)Aを既存建物の上,下部構造5,6と接合した状態に設置
し、直交するスライドレール(ローラーベアリング)を用いた鉛直剛性の高い免震装置と
しての滑り支承方式の免震装置Bを既存建物の下部構造6と接合し且つ上部構造5と未接
合の状態に設置する第二工程を示している。10はバネ支承方式の免震装置Aと上部構造
5を繋ぐ上架台、11はバネ支承方式の免震装置Aと下部構造6を繋ぐ下架台である。滑
り支承方式の免震装置Bについては、当該免震装置Bと下部構造6を繋ぐ下架台12の配
筋、コンクリート打設を完了させてあるが、上部構造5に繋ぐ上架台13は配筋までとし
、上部構造5に未だ接合されていない状態としてある。
FIG. 2 shows a spring bearing type seismic isolation device (in the example shown, a seismic isolation device of a laminated rubber bearing) A as a seismic isolation device with low vertical rigidity. The sliding bearing type seismic isolation device B as a vertical isolation device having high vertical rigidity using orthogonal slide rails (roller bearings) is joined to the lower structure 6 of the existing building and the upper structure 5 The 2nd process installed in the state of joining is shown. Reference numeral 10 denotes an upper frame that connects the spring support type seismic isolation device A and the upper structure 5, and 11 denotes a lower frame that connects the spring support type seismic isolation device A and the lower structure 6. With respect to the seismic isolation device B of the sliding support system, the arrangement of the undercarriage 12 connecting the seismic isolation device B and the lower structure 6 and the concrete placement have been completed, but the upper support 13 connected to the upper structure 5 is arranged. In this state, the upper structure 5 is not yet joined.

図3は、バネ支承方式の免震装置Aに対応する仮受け支柱4の除荷(ジャッキダウン)
を行って、バネ支承方式の免震装置Aに建物荷重を移行させ、既存建物の上部構造と未接
合の状態にある滑り支承方式の免震装置Bについては、バネ支承方式の免震装置Aの載荷
による鉛直方向への縮み量に対応させて同時に、仮受け支柱4のジャッキ4bの圧力を第
一工程での測定値(実荷重)が保持されるように調整することにより、当該仮受け支柱4
に掛かる建物荷重を一定状態に保持する(許容範囲内に保持すると言う意味であり、必ず
しも厳密な意味で一定である必要はない。)第三工程を示している。
FIG. 3 shows unloading (jack down) of the temporary support post 4 corresponding to the seismic isolation device A of the spring support system.
The building load is transferred to the spring bearing type seismic isolation device A, and for the sliding bearing type seismic isolation device B that is not joined to the superstructure of the existing building, the spring bearing type seismic isolation device A By adjusting the pressure of the jack 4b of the temporary support column 4 so that the measured value (actual load) in the first step is maintained at the same time, corresponding to the amount of contraction in the vertical direction due to the loading of Prop 4
The third step is shown in which the building load applied to is held in a constant state (which means that the building load is held within an allowable range and does not necessarily have to be constant in a strict sense).

図4は、上架台13のコンクリート打設を行うことによって、滑り支承方式の免震装置
Bを既存建物の上部構造5と接合した後、滑り支承方式の免震装置Bに対応する仮受け支
柱4の除荷(ジャッキダウン)を行って、滑り支承方式の免震装置Bに建物荷重を移行さ
せる第四工程を示している。
FIG. 4 shows a temporary support post corresponding to the sliding support type seismic isolation device B after the sliding support type seismic isolation device B is joined to the upper structure 5 of the existing building by placing concrete on the upper base 13. 4 shows the fourth step of unloading (jack down) 4 and transferring the building load to the sliding bearing type seismic isolation device B.

以上の通り、既存建物の上部構造5をジャッキ4b付きの仮受け支柱4で仮受けし、こ
の状態で上部構造5と下部構造6の間の軸力伝達部材を切断除去し、除去された軸力伝達
部材が負担していた軸力の伝達径路中(図示の例では、当該軸力伝達部材の除去された場
所である)に、夫々、鉛直剛性が異なる免震装置を設置して、仮受け支柱から免震装置へ
建物荷重を移行させることにより、既存建物を免震改修する既存建物の免震化工法を、図
1〜図4で示した第一工程〜第四工程の作業手順で実施することにより、免震装置A、B
に荷重を移行する過程で生じる可能性のある免震装置A、Bの鉛直剛性の違いによる荷重
の乗り移りを防止できるので、鉛直剛性が異なる免震装置A、Bに設計通りに荷重を導入
することができ、所定の免震性能を発揮できることになる。
As described above, the upper structure 5 of the existing building is temporarily received by the temporary support column 4 with the jack 4b, and the axial force transmission member between the upper structure 5 and the lower structure 6 is cut and removed in this state, and the removed shaft is removed. A seismic isolation device with different vertical rigidity is installed in each of the axial force transmission paths borne by the force transmission member (in the illustrated example, the place where the axial force transmission member is removed). By shifting the building load from the receiving column to the seismic isolation device, the seismic isolation method for the existing building that performs seismic isolation repair of the existing building is performed by the work procedure of the first process to the fourth process shown in FIGS. By implementing seismic isolation devices A and B
The load transfer due to the difference in vertical stiffness between the seismic isolation devices A and B that may occur in the process of transferring the load to can be prevented, so the load is introduced to the seismic isolation devices A and B with different vertical stiffness as designed. And the specified seismic isolation performance can be demonstrated.

尚、鉛直剛性が異なる免震装置(バネ支承方式の免震装置Aと滑り支承方式の免震装置
B)の個数や配置は、免震改修する既存建物の条件に合わせて任意に設定される。また、
一つの既存建物に対して数多くの免震装置(バネ支承方式の免震装置Aと滑り支承方式の
免震装置B)が設置される場合、図5に示すように、建物全体Cを平面的に幾つかの工区
に分けて、第一工区、第二工区、第三工区の順に荷重移行を行うことが望ましい。図5に
示した例では、先ず、第一工区において、二つのバネ支承方式の免震装置Aについて同時
に荷重移行を行った後、残る一つの滑り支承方式の免震装置Bへの荷重移行を行い、次に
、第二工区において、三つの滑り支承方式の免震装置Bについて同時に荷重移行を行い、
次に、第三工区において、二つのバネ支承方式の免震装置Aについて同時に荷重移行を行
った後、残る一つの滑り支承方式の免震装置Bへの荷重移行を行うことになる。
The number and arrangement of seismic isolation devices (spring bearing type seismic isolation device A and sliding bearing type seismic isolation device B) having different vertical rigidity are arbitrarily set according to the conditions of the existing building to be seismically isolated. . Also,
When many seismic isolation devices (spring bearing type seismic isolation device A and sliding bearing type seismic isolation device B) are installed in one existing building, as shown in FIG. It is desirable to perform load transfer in the order of the first work area, the second work area, and the third work area. In the example shown in FIG. 5, first, in the first work area, the load transfer is performed simultaneously for the two spring support type seismic isolation devices A, and then the load transfer to the remaining one of the sliding support type seismic isolation devices B is performed. Next, in the second work area, load transfer is performed simultaneously for the three sliding bearing type seismic isolation devices B,
Next, in the third work area, the load is transferred to the two spring-supporting seismic isolation devices A at the same time, and then the remaining load is transferred to the sliding support-type seismic isolation device B.

以上に本発明を図示した実施例に基づいて説明したが、もとより本発明の要旨は図示し
た実施例に限定されるものではない。
Although the present invention has been described based on the illustrated embodiment, the gist of the present invention is not limited to the illustrated embodiment.

A バネ支承方式の免震装置(鉛直剛性の低い免震装置)
B 滑り支承方式の免震装置(鉛直剛性の高い免震装置)
C 建物全体
1 基礎
2 杭
2a 杭頭部
3 耐圧盤
4 仮受け支柱
4a 鋼材
4b ジャッキ
5 上部構造
6 下部構造
7 圧力計
8 スラブ
9 梁
10 上架台
11 下架台
12 下架台
13 上架台
A Seismic isolation device with spring support system (Seismic isolation device with low vertical rigidity)
B Seismic isolation device with sliding bearing system (Seismic isolation device with high vertical rigidity)
C Whole building 1 Foundation 2 Pile 2a Pile head 3 Pressure-resistant panel 4 Temporary support post 4a Steel 4b Jack 5 Upper structure 6 Lower structure 7 Pressure gauge 8 Slab 9 Beam 10 Upper base 11 Lower base 12 Lower base 13 Upper base

Claims (4)

既存建物の上部構造と下部構造の間に介在させる免震改修用の免震装置として、鉛直剛
性が異なる免震装置を混在させる既存建物の免震化工法であって、鉛直剛性の高い免震装
置と鉛直剛性の低い免震装置のうち、鉛直剛性の低い免震装置を既存建物の上部構造及び
下部構造と接合し、鉛直剛性の高い免震装置については既存建物の下部構造と接合し且つ
上部構造と未接合の状態で、鉛直剛性の低い免震装置に対応する仮受け支柱の除荷を行い
、既存建物の上部構造と未接合の状態にある鉛直剛性の高い免震装置については、仮受け
支柱のジャッキの圧力を調整することにより、当該仮受け支柱に掛かる建物荷重を一定状
態に保持し、次いで、鉛直剛性の高い免震装置を既存建物の上部構造と接合した後、鉛直
剛性の高い免震装置に対応する仮受け支柱の除荷を行うことを特徴とする既存建物の免震
化工法。
This is a seismic isolation method for existing buildings that uses seismic isolation devices with different vertical stiffnesses as seismic isolation devices that are interposed between the upper and lower structures of existing buildings. Of the seismic isolation devices with low vertical rigidity, join the seismic isolation device with low vertical rigidity with the upper structure and lower structure of the existing building, and connect the seismic isolation device with high vertical rigidity with the lower structure of the existing building and Unloading the temporary support struts corresponding to the seismic isolation device with low vertical rigidity in the unconnected state with the superstructure, and for the seismic isolation device with high vertical rigidity in the unconnected state with the superstructure of the existing building, By adjusting the pressure of the jack of the temporary support column, the building load applied to the temporary support column is kept constant, and then the vertical rigidity is increased after joining the seismic isolation device with high vertical rigidity to the superstructure of the existing building. Compatible with high seismic isolation devices Base sinkers method of existing buildings and performing unloading of the strut receiving.
既存建物の上部構造をジャッキ付きの仮受け支柱で仮受けし、この状態で上部構造と下
部構造の間の軸力伝達部材を切断除去し、除去された軸力伝達部材が負担していた軸力の
伝達径路中に、夫々、免震装置を設置して、仮受け支柱から免震装置へ建物荷重を移行さ
せることにより、既存建物を免震改修する既存建物の免震化工法であって、
隣り合う位置に配置される滑り支承方式の免震装置とバネ支承方式の免震装置の各々に
対応する仮受け支柱に掛かる軸力伝達部材が切断除去された際の建物荷重を仮受け支柱の
ジャッキに取り付けられた圧力計により測定する第一工程と、
バネ支承方式の免震装置を既存建物の上、下部構造と接合した状態に設置し、滑り支承
方式の免震装置を既存建物の下部構造と接合し且つ上部構造と未接合の状態に設置する第
二工程と、
バネ支承方式の免震装置に対応する仮受け支柱の除荷を行い、既存建物の上部構造と未
接合の状態にある滑り支承方式の免震装置については、仮受け支柱のジャッキの圧力を第
一工程での測定値が保持されるように調整することにより、当該仮受け支柱に掛かる建物
荷重を一定状態に保持する第三工程と、
滑り支承方式の免震装置を既存建物の上部構造と接合した後、滑り支承方式の免震装置
に対応する仮受け支柱の除荷を行う第四工程とを有することを特徴とする既存建物の免震
化工法。
The upper structure of the existing building is temporarily received by a temporary support post with a jack, and in this state, the axial force transmission member between the upper structure and the lower structure is cut and removed, and the shaft that the removed axial force transmission member has borne A seismic isolation method for existing buildings, where seismic isolation devices are installed in the power transmission path, and the building load is transferred from the temporary support column to the seismic isolation device. ,
The building load when the axial force transmission member applied to the temporary support struts corresponding to each of the sliding support type seismic isolation device and the spring support type seismic isolation device arranged adjacent to each other is cut and removed is stored in the temporary support post. A first step of measuring with a pressure gauge attached to the jack;
Install the spring support type seismic isolation device on the existing building and joined with the lower structure, and install the sliding support type seismic isolation device on the existing building's lower structure and unconnected with the upper structure. The second step;
Unload the temporary support struts corresponding to the spring bearing type seismic isolation device, and for the sliding support type seismic isolation device that is not joined to the superstructure of the existing building, the jack pressure of the temporary support column A third step of keeping the building load applied to the temporary support column in a constant state by adjusting the measurement value in one step to be held;
A fourth step of unloading the temporary support struts corresponding to the sliding support type seismic isolation device after joining the sliding support type seismic isolation device with the superstructure of the existing building. Seismic isolation method.
軸力伝達部材が杭頭部であることを特徴とする請求項2に記載の既存建物の免震化工法
3. The seismic isolation method for an existing building according to claim 2, wherein the axial force transmission member is a pile head.
軸力伝達部材が柱であることを特徴とする請求項2に記載の既存建物の免震化工法。   The seismic isolation method for an existing building according to claim 2, wherein the axial force transmission member is a pillar.
JP2011190355A 2011-09-01 2011-09-01 Seismic isolation method for existing buildings Active JP5749606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190355A JP5749606B2 (en) 2011-09-01 2011-09-01 Seismic isolation method for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190355A JP5749606B2 (en) 2011-09-01 2011-09-01 Seismic isolation method for existing buildings

Publications (2)

Publication Number Publication Date
JP2013053407A true JP2013053407A (en) 2013-03-21
JP5749606B2 JP5749606B2 (en) 2015-07-15

Family

ID=48130652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190355A Active JP5749606B2 (en) 2011-09-01 2011-09-01 Seismic isolation method for existing buildings

Country Status (1)

Country Link
JP (1) JP5749606B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017369A (en) * 2014-07-10 2016-02-01 西松建設株式会社 Installation method for seismic isolator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197767A (en) * 1987-10-08 1989-04-17 Ohbayashi Corp Earthquakeproof structure
JPH06146659A (en) * 1992-11-13 1994-05-27 Shimizu Corp Installation of sub structure of adaptive type growth structure
JPH10299263A (en) * 1997-04-24 1998-11-10 Takenaka Komuten Co Ltd Construction of vibration isolation structure in existing building
JPH1136608A (en) * 1997-07-17 1999-02-09 Taisei Corp Construction method for foundation base isolation of existing structure
JP2001288928A (en) * 2000-04-07 2001-10-19 Okumura Corp Complex base-isolating mechanism
JP2006090078A (en) * 2004-09-27 2006-04-06 Takenaka Komuten Co Ltd Base-isolated building and construction method for the same
JP2009121043A (en) * 2007-11-12 2009-06-04 Takenaka Komuten Co Ltd Base-isolated building
JP2011149193A (en) * 2010-01-21 2011-08-04 Takenaka Komuten Co Ltd Method of installing base isolation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197767A (en) * 1987-10-08 1989-04-17 Ohbayashi Corp Earthquakeproof structure
JPH06146659A (en) * 1992-11-13 1994-05-27 Shimizu Corp Installation of sub structure of adaptive type growth structure
JPH10299263A (en) * 1997-04-24 1998-11-10 Takenaka Komuten Co Ltd Construction of vibration isolation structure in existing building
JPH1136608A (en) * 1997-07-17 1999-02-09 Taisei Corp Construction method for foundation base isolation of existing structure
JP2001288928A (en) * 2000-04-07 2001-10-19 Okumura Corp Complex base-isolating mechanism
JP2006090078A (en) * 2004-09-27 2006-04-06 Takenaka Komuten Co Ltd Base-isolated building and construction method for the same
JP2009121043A (en) * 2007-11-12 2009-06-04 Takenaka Komuten Co Ltd Base-isolated building
JP2011149193A (en) * 2010-01-21 2011-08-04 Takenaka Komuten Co Ltd Method of installing base isolation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017369A (en) * 2014-07-10 2016-02-01 西松建設株式会社 Installation method for seismic isolator

Also Published As

Publication number Publication date
JP5749606B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
US20180106473A1 (en) Structure for seismic isolation, steel support structure, and method for seismic isolation of existing steel support structures
US20120131789A1 (en) Installing method for anchor cage and installing method for industrial equipment
JP2014114581A (en) Aseismic base isolation bearing mechanism and aseismic base isolation building
CN105839516A (en) Transverse anti-drop-beam device for bridge and construction method thereof
JP5749606B2 (en) Seismic isolation method for existing buildings
KR20150138785A (en) Vertical expansion remodeling method of existing building with seperate load path
CN220014085U (en) Construction structure for installation of building friction pendulum vibration isolation support
JP2011012464A (en) Method of constructing base isolating structure, and temporary supporting structure for base isolating device
JP4187887B2 (en) Seismic isolation method for existing buildings and the seismic isolation mechanism used therefor
CN103174231A (en) Hybrid controlled damping structure construction method
JP6066849B2 (en) Seismic isolation method for existing buildings
JP2005220947A (en) Structure of base isolation part using base isolation device in building and method for replacing base isolation device of base isolation part
JP6404013B2 (en) Construction method of seismic isolation building
JP6302778B2 (en) How to install seismic isolation devices
JP6832495B2 (en) How to replace the seismic isolation device
JP2002309593A (en) Method of base-isolating existing building
JP2017071955A (en) Construction method for structure
JP2015175170A (en) Temporary support method of foundation
JP7049961B2 (en) How to add equipment mount
JP7003381B2 (en) Structure relocation method
JP6546755B2 (en) Seismic isolation repair method
JP2007284969A (en) Base isolation structure of building and its construction method
JP2018178628A (en) Seismic isolation support system and method for replacing seismic isolation device
JP4844930B2 (en) Extension method of seismic isolation building
JP6296498B2 (en) Seismic isolation method for automatic warehouse racks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150