JP2013052327A - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP2013052327A
JP2013052327A JP2011190788A JP2011190788A JP2013052327A JP 2013052327 A JP2013052327 A JP 2013052327A JP 2011190788 A JP2011190788 A JP 2011190788A JP 2011190788 A JP2011190788 A JP 2011190788A JP 2013052327 A JP2013052327 A JP 2013052327A
Authority
JP
Japan
Prior art keywords
surfactant
foaming
water treatment
amount
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011190788A
Other languages
Japanese (ja)
Other versions
JP5796420B2 (en
Inventor
Eiju Nakada
栄寿 中田
Kazuyuki Taguchi
和之 田口
Yosuke Hanai
洋輔 花井
Keigo Yasuda
圭吾 安田
Hiroyuki Toyama
広幸 當山
Kazuyoshi Itokawa
和芳 糸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011190788A priority Critical patent/JP5796420B2/en
Priority to CN201210320694.8A priority patent/CN102963997B/en
Publication of JP2013052327A publication Critical patent/JP2013052327A/en
Application granted granted Critical
Publication of JP5796420B2 publication Critical patent/JP5796420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment apparatus capable of maintaining the membrane filteration efficiency of a membrane module over a long period of time.SOLUTION: The water treatment apparatus includes: a foaming tank 1 where wastewater containing oil flows in; a foam detector 21 that detects an amount of foam in the foaming tank 1; a surfactant supply device that supplies a surfactant to the foaming tank 1; a controller 30 that controls the supply quantity of the surfactant to increase the addition amount of the surfactant when the amount of foam in foaming tank 1 does not exceed an predetermined value, and to decrease the addition amount of the surfactant when the amount of foam exceeds a predetermined value; and the membrane module 5 disposed in the downstream of the foaming tank 1.

Description

本発明は、油分を含む廃水の水処理方法及び水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus for wastewater containing oil.

水処理方法の一つとして、廃水を、活性汚泥処理槽に導入して活性汚泥処理して有機物等を除去し、次いで、逆浸透(RO)膜、限外ろ過(UF)膜、精密ろ過(MF)膜、中空糸(HF)膜等の濾過膜を備えた膜モジュールを通過させて、浮遊微生物やその他の浮遊物質(SSと略称される)や爽雑物を膜濾過処理して固液分離する、膜分離活性汚泥法(Membrane BioReactor)がある。   As one of the water treatment methods, waste water is introduced into an activated sludge treatment tank and treated with activated sludge to remove organic matter, etc., then reverse osmosis (RO) membrane, ultrafiltration (UF) membrane, microfiltration ( MF) Membrane modules, hollow fiber (HF) membranes and other membrane modules equipped with filtration membranes are passed through and subjected to membrane filtration treatment for suspended microorganisms, other suspended substances (abbreviated as SS), and other impurities. There is a membrane separation activated sludge method (Membrane BioReactor) to separate.

膜分離活性汚泥法は、膜モジュールを用いて固液分離を行うため、最終沈殿地を省略でき、装置を小型化できるというメリットがある。   The membrane separation activated sludge method has the merit that the final sedimentation site can be omitted and the apparatus can be miniaturized because solid-liquid separation is performed using a membrane module.

しかしながら、油分を含む廃水を膜濾過処理すると、油分が膜に付着して目詰まりが生じ、膜モジュールの洗浄頻度が大きくなって、水処理効率が低下する問題があった。   However, when wastewater containing oil is subjected to membrane filtration, there is a problem that the oil adheres to the membrane and clogs, the frequency of washing the membrane module increases, and water treatment efficiency decreases.

特許文献1には、含油廃水に凝集剤を添加して、廃水中の油分と有機物とを凝集沈殿させて油分を低減し、膜の目詰まりを抑制することが開示されている。   Patent Document 1 discloses that a flocculant is added to oil-containing wastewater to coagulate and precipitate the oil and organic matter in the wastewater to reduce the oil and suppress clogging of the membrane.

特開平2−268893号公報JP-A-2-268893 特公平6−59478号公報Japanese Patent Publication No. 6-59478

しかしながら、特許文献1に開示された方法では、汚泥が大量に発生するので、汚泥処理コストが嵩む問題があった。また、この方法であっても、廃水の性状によっては、油分を十分に低減出来ないまま膜モジュールに供されることがあり、膜の目詰まりを十分に抑制出来ないことがあった。   However, in the method disclosed in Patent Document 1, a large amount of sludge is generated, and there is a problem that the sludge treatment cost increases. Even with this method, depending on the properties of the waste water, the oil component may not be sufficiently reduced and may be used in the membrane module, and clogging of the membrane may not be sufficiently suppressed.

よって、本発明の目的は、膜モジュールにおける膜濾過効率を長期にわたって維持できる水処理方法及び水処理装置を提供することにある。   Therefore, the objective of this invention is providing the water treatment method and water treatment apparatus which can maintain the membrane filtration efficiency in a membrane module over a long period of time.

上記目的を達成するため、本発明の水処理方法は、油分を含む廃水を発泡槽に導入し、前記発泡槽で前記廃水に界面活性剤を添加混合し、前記廃水を膜モジュールに通して膜濾過処理する水処理方法であって、前記発泡槽での発泡量を検出して、該発泡量が所定値を超えない場合には前記界面活性剤の添加量を増加させ、該発泡量が所定値を超える場合には前記界面活性剤の添加量を減少させるように、前記界面活性剤の添加量を制御することを特徴とする。   In order to achieve the above object, the water treatment method of the present invention introduces wastewater containing oil into a foaming tank, adds a surfactant to the wastewater in the foaming tank, and mixes the wastewater with a membrane module to form a membrane. A water treatment method for filtration, wherein the amount of foaming in the foaming tank is detected, and when the amount of foaming does not exceed a predetermined value, the addition amount of the surfactant is increased so that the amount of foaming is predetermined. When the value is exceeded, the addition amount of the surfactant is controlled so as to decrease the addition amount of the surfactant.

本発明の水処理方法によれば、油分を含む廃水を発泡槽に導入し、発泡槽にて油分を含む廃水と界面活性剤とを混合する。その際、発泡槽での発泡量に基づいて界面活性剤の添加量を制御するので、廃水中の油分をミセル化するのに必要とされる界面活性剤をほぼ過不足なく供給できる。このため、廃水に含まれる油分をほぼ完全にミセル化して乳化分散でき、膜に油分が付着することを防止できる。また、界面活性剤の添加量を最適化できるので、薬剤コストを低減できる。   According to the water treatment method of the present invention, waste water containing oil is introduced into a foaming tank, and the waste water containing oil and the surfactant are mixed in the foaming tank. At that time, since the addition amount of the surfactant is controlled on the basis of the foaming amount in the foaming tank, the surfactant required for micellizing the oil in the wastewater can be supplied almost without excess or deficiency. For this reason, it is possible to emulsify and disperse the oil contained in the waste water almost completely into micelles and prevent the oil from adhering to the membrane. Further, since the addition amount of the surfactant can be optimized, the drug cost can be reduced.

本発明の水処理方法は、前記膜濾過処理中、連続的又は間欠的に前記膜モジュールの膜面に向けて界面活性剤を噴射することが好ましい。この態様によれば、膜モジュール近傍もしくは膜モジュールに付着していた油分が、膜面に向けて噴射された界面活性剤との反応によりミセルを形成するので、膜の目詰まりを効率よく防止できる。更には、界面活性剤によって、蛋白質等の有機物が変性して膨潤するので、油分以外の固形物等の膜への付着を防止できる。   In the water treatment method of the present invention, it is preferable that the surfactant is sprayed toward the membrane surface of the membrane module continuously or intermittently during the membrane filtration treatment. According to this aspect, since the oil component that has adhered to or near the membrane module forms micelles by the reaction with the surfactant injected toward the membrane surface, clogging of the membrane can be efficiently prevented. . Furthermore, since the organic substance such as protein is denatured and swelled by the surfactant, it is possible to prevent the solid matter other than oil from adhering to the film.

本発明の水処理方法は、前記発泡槽における発泡量を、光学的手法、電気的手法及び画像的手法から選ばれる方法により検出することが好ましい。   In the water treatment method of the present invention, the amount of foaming in the foaming tank is preferably detected by a method selected from an optical method, an electrical method, and an image method.

本発明の水処理方法は、前記界面活性剤として、生分解性界面活性剤を用いることが好ましい。この態様によれば、周囲への環境に及ぼす影響を低減できる。   In the water treatment method of the present invention, a biodegradable surfactant is preferably used as the surfactant. According to this aspect, the influence on the environment to the surroundings can be reduced.

本発明の水処理方法は、前記発泡槽を通過した廃水を、活性汚泥処理槽に導入して活性汚泥処理した後、前記膜モジュールを通して膜濾過処理することが好ましい。この態様によれば、活性汚泥処理槽にて、有機物や、ミセル化した油分を処理でき、より清浄な処理水を得ることができる。   In the water treatment method of the present invention, it is preferable that the waste water that has passed through the foaming tank is introduced into an activated sludge treatment tank and treated with activated sludge, and then subjected to membrane filtration through the membrane module. According to this aspect, in the activated sludge treatment tank, organic matter and micellized oil can be treated, and cleaner treated water can be obtained.

また、本発明の水処理装置は、油分を含む廃水が流入される発泡槽と、前記発泡槽内の発泡量を検知する発泡検知器と、前記発泡槽に界面活性剤を供給する界面活性剤供給装置と、前記発泡槽内の発泡量が所定値を超えない場合には前記界面活性剤の添加量を増加させ、該発泡量が所定値を超える場合には前記界面活性剤の添加量を減少させるように前記界面活性剤の供給量を制御する制御装置と、前記発泡槽の下流に配置された膜モジュールとを備えることを特徴とする。   Further, the water treatment apparatus of the present invention includes a foaming tank into which waste water containing oil is introduced, a foam detector that detects the amount of foaming in the foaming tank, and a surfactant that supplies a surfactant to the foaming tank. When the foaming amount in the foaming tank does not exceed a predetermined value, the addition amount of the surfactant is increased, and when the foaming amount exceeds the predetermined value, the addition amount of the surfactant is increased. It is characterized by comprising a control device for controlling the supply amount of the surfactant so as to decrease, and a membrane module disposed downstream of the foaming tank.

本発明の水処理装置によれば、油分を含む廃水を発泡槽に導入し、発泡槽にて油分を含む廃水と界面活性剤とを混合するが、発泡槽での発泡量に基づいて界面活性剤の添加量が制御されるので、廃水中の油分をミセル化するのに必要とされる界面活性剤がほぼ過不足なく供給される。このため、廃水に含まれる油分がほぼ完全にミセル化して乳化分散するので、膜モジュール似て膜濾過処理するに当たり膜に油分が付着して目詰まりすることを防止できる。また、界面活性剤の添加量を最適化できるので、薬剤コストを低減できる。   According to the water treatment apparatus of the present invention, waste water containing oil is introduced into a foaming tank, and the waste water containing oil and the surfactant are mixed in the foaming tank, but the surface activity is based on the amount of foaming in the foaming tank. Since the addition amount of the agent is controlled, the surfactant required for micellizing the oil in the wastewater is supplied almost without excess or deficiency. For this reason, since the oil contained in the waste water is almost completely micelle and emulsified and dispersed, it is possible to prevent the oil from adhering to the membrane and clogging during membrane filtration treatment similar to the membrane module. Further, since the addition amount of the surfactant can be optimized, the drug cost can be reduced.

本発明の水処理装置は、前記膜モジュールの膜面に向けて界面活性剤を噴射する界面活性剤噴射装置を備えることが好ましい。この態様によれば、膜近傍もしくは膜に付着していた油分が、界面活性剤噴射装置から噴射される界面活性剤との反応によりミセルを形成するので、膜の目詰まりを効率よく防止できる。更には、界面活性剤によって、蛋白質等の有機物が変性して膨潤するので、油分以外の固形物等の膜への付着を防止できる。   The water treatment apparatus of the present invention preferably includes a surfactant injection device that injects a surfactant toward the membrane surface of the membrane module. According to this aspect, the oil component adhering to or near the membrane forms micelles by the reaction with the surfactant injected from the surfactant injection device, so that clogging of the membrane can be efficiently prevented. Furthermore, since the organic substance such as protein is denatured and swelled by the surfactant, it is possible to prevent the solid matter other than oil from adhering to the film.

本発明の水処理装置は、前記発泡槽の上流に配置された油膜センサを備えることが好ましい。そして、前記油膜センサにて油膜が検出されなかった廃水を、前記発泡槽をバイパスさせて下流に流すバイパスラインを更に備えることが好ましい。この態様によれば、油分を含まない廃水への界面活性剤の添加を防止できるので、界面活性剤の使用量をより低減できる。   The water treatment device of the present invention preferably includes an oil film sensor disposed upstream of the foaming tank. And it is preferable to provide further the bypass line which bypasses the said foaming tank and flows the waste water from which the oil film was not detected with the said oil film sensor. According to this aspect, since the addition of the surfactant to the waste water containing no oil can be prevented, the amount of the surfactant used can be further reduced.

本発明の水処理装置は、前記発泡検知器が、光学的手法、電気的手法及び画像的手法から選ばれる方法により発泡量を検知するように構成されたものであることが好ましい。   In the water treatment apparatus of the present invention, it is preferable that the foam detector is configured to detect the foam amount by a method selected from an optical method, an electrical method, and an image method.

本発明の水処理装置は、前記界面活性剤が、生分解性界面活性剤であることが好ましい。この態様によれば、周囲への環境に及ぼす影響を低減できる。   In the water treatment apparatus of the present invention, the surfactant is preferably a biodegradable surfactant. According to this aspect, the influence on the environment to the surroundings can be reduced.

本発明の水処理装置は、活性汚泥処理槽を備え、該活性汚泥処理槽の下流、又は該活性汚泥処理槽内に、前記膜濾過処理装置が配設されていることが好ましい。この態様によれば、活性汚泥処理槽にて、有機物や、ミセル化した油分を処理でき、より清浄な処理水を得ることができる。   The water treatment apparatus of the present invention preferably includes an activated sludge treatment tank, and the membrane filtration apparatus is disposed downstream of the activated sludge treatment tank or in the activated sludge treatment tank. According to this aspect, in the activated sludge treatment tank, organic matter and micellized oil can be treated, and cleaner treated water can be obtained.

本発明によれば、発泡槽での発泡量に基づいて界面活性剤の添加量を制御するので、廃水中の油分をミセル化するのに必要とされる界面活性剤をほぼ過不足なく供給できる。このため、廃水に含まれる油分をほぼ完全にミセル化でき、膜に油分が付着することを防止できる。また、界面活性剤の添加量を最適化できるので、薬剤コストを低減できる。   According to the present invention, since the addition amount of the surfactant is controlled based on the foaming amount in the foaming tank, the surfactant required for micellization of the oil content in the wastewater can be supplied almost without excess or deficiency. . For this reason, the oil contained in the wastewater can be almost completely micelle, and the oil can be prevented from adhering to the membrane. Further, since the addition amount of the surfactant can be optimized, the drug cost can be reduced.

本発明の水処理装置の第1の実施形態の概略構成図である。It is a schematic block diagram of 1st Embodiment of the water treatment apparatus of this invention. 同水処理装置の制御装置での制御フローチャートである。It is a control flowchart in the control apparatus of the water treatment apparatus. 本発明の水処理装置の第2の実施形態の概略構成図である。It is a schematic block diagram of 2nd Embodiment of the water treatment apparatus of this invention. 本発明の水処理装置の第3の実施形態の概略構成図である。It is a schematic block diagram of 3rd Embodiment of the water treatment apparatus of this invention. 同水処理装置の制御装置での制御フローチャートである。It is a control flowchart in the control apparatus of the water treatment apparatus.

図1を用いて、本発明の水処理装置の第1の実施形態を説明する。   A first embodiment of the water treatment apparatus of the present invention will be described with reference to FIG.

廃水原から伸びた配管L1が、発泡槽1に接続している。   A pipe L1 extending from the wastewater field is connected to the foaming tank 1.

発泡槽1には、発泡検知器21と、攪拌装置2が配置されている。発泡検知器21としては、特に限定は無い。光学的手法、電気的手法及び画像的手法から選ばれる方法により発泡量を検知するように構成されたものを用いることができる。光学的手法により発泡量を検知する装置としては、光(レーザー)レベルセンサ、ガンマ線レベルセンサ等が挙げられる。電気的手法により発泡量を検知する装置としては、泡レベル検知計、誘電率式レベルスイッチなどのように泡が接触した際の電位の変化を検出する装置等が挙げられる。画像的手法により発泡量を検知する装置としては、カメラなどの映像自動認識装置等が挙げられる。発泡検知器21の測定結果は、制御装置30に入力される。   A foaming detector 21 and a stirring device 2 are arranged in the foaming tank 1. The foam detector 21 is not particularly limited. An apparatus configured to detect the amount of foaming by a method selected from an optical method, an electrical method, and an image method can be used. Examples of the device that detects the foaming amount by an optical method include a light (laser) level sensor and a gamma ray level sensor. Examples of the device that detects the amount of foaming by an electrical method include a device that detects a change in potential when bubbles come into contact, such as a bubble level detector and a dielectric constant level switch. As an apparatus for detecting the foaming amount by an image technique, an automatic video recognition apparatus such as a camera can be cited. The measurement result of the foam detector 21 is input to the control device 30.

また、発泡槽1の上部には、界面活性剤貯留槽3から伸びた配管L2が接続している。配管L2には、ポンプP1が介装されている。ポンプP1は、制御装置30によって駆動が制御されている。この実施形態では、界面活性剤貯留槽3、配管L2及びポンプP1が、本発明における「界面活性剤供給装置」に相当する。   A pipe L <b> 2 extending from the surfactant storage tank 3 is connected to the upper part of the foaming tank 1. A pump P1 is interposed in the pipe L2. The drive of the pump P1 is controlled by the control device 30. In this embodiment, the surfactant storage tank 3, the pipe L2, and the pump P1 correspond to the “surfactant supply device” in the present invention.

発泡槽1の下流には、活性汚泥処理槽4が配置されている。発泡槽1と活性汚泥処理槽4とは、配管L3を介して接続されている。   An activated sludge treatment tank 4 is disposed downstream of the foaming tank 1. The foaming tank 1 and the activated sludge treatment tank 4 are connected via a pipe L3.

活性汚泥処理槽4は、槽内に微生物を含む活性汚泥が滞留し、微生物の作用によって有機物を分解して活性汚泥処理できる処理槽であれば特に限定はない。例えば、アンモニア酸化菌や亜硝酸酸化菌などの好気性微生物を含む曝気槽、亜硝酸酸化菌などの好気性微生物と脱窒菌などの嫌気性微生物を含む間欠曝気槽などを用いることができる。活性汚泥処理槽の下部からは、汚泥引き抜き用の配管L4が伸びている。   The activated sludge treatment tank 4 is not particularly limited as long as the activated sludge containing microorganisms stays in the tank and the activated sludge treatment can be performed by decomposing organic matter by the action of microorganisms. For example, an aeration tank containing aerobic microorganisms such as ammonia oxidizing bacteria and nitrite oxidizing bacteria, an intermittent aeration tank containing anaerobic microorganisms such as nitrite oxidizing bacteria and anaerobic microorganisms such as denitrifying bacteria can be used. A sludge extraction pipe L4 extends from the lower part of the activated sludge treatment tank.

この実施形態では、膜モジュール5は、活性汚泥処理槽4内であって、槽内の処理液に浸漬されて配置されている。   In this embodiment, the membrane module 5 is disposed in the activated sludge treatment tank 4 so as to be immersed in the treatment liquid in the tank.

膜モジュール5の二次側(濾過された処理水が流通する側)からは、ポンプP2が介装された配管L5が伸びており、ポンプP2を作動することで、槽内の処理水が膜モジュール5で膜濾過処理される。   From the secondary side of the membrane module 5 (the side through which the filtered treated water circulates), a pipe L5 intervening with the pump P2 extends, and the treated water in the tank is converted into a membrane by operating the pump P2. The membrane 5 is subjected to membrane filtration.

膜モジュール5に用いる濾過膜としては、一般的な濾過膜であれば全て使用できる。例えば、逆浸透(RO)膜、限外ろ過(UF)膜、精密ろ過(MF)膜、中空糸(HF)膜等が挙げられる。また、濾過膜の材質としては、ポリアクリロニトリル、ポリイミド、ポリエーテルスルホン、ポリフェニレンスルフィドスルホン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレンなどが挙げられる。また、膜モジュール5の形態としては、特に限定は無く、中空糸膜モジュール、平膜型モジュール、スパイラル型モジュール、管型モジュール等が挙げられる。   As a filtration membrane used for the membrane module 5, any general filtration membrane can be used. For example, a reverse osmosis (RO) membrane, an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a hollow fiber (HF) membrane, etc. are mentioned. Examples of the material for the filtration membrane include polyacrylonitrile, polyimide, polyethersulfone, polyphenylene sulfide sulfone, polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, and polyethylene. The form of the membrane module 5 is not particularly limited, and examples thereof include a hollow fiber membrane module, a flat membrane type module, a spiral type module, and a tubular module.

膜モジュール5の下方には、曝気(バブリング)装置6が配置され、所定時間毎に曝気して膜モジュール5の目詰まりを防止するようにしている。   Below the membrane module 5, an aeration (bubbling) device 6 is arranged, and aeration is performed every predetermined time to prevent the membrane module 5 from being clogged.

なお、この実施形態では、膜モジュール5は、活性汚泥処理槽4内に配置されているが、活性汚泥処理槽4の槽外に配置してもよい。   In this embodiment, the membrane module 5 is disposed in the activated sludge treatment tank 4, but may be disposed outside the activated sludge treatment tank 4.

次に、図1に示す水処理装置を用いて、本発明の水処理方法の第1の実施形態について説明する。なお、本発明の水処理方法の処理対象となる廃水としては、油分を含んだ廃水であればよく、特に限定は無い。例えば、化学工場や食品工場から排出される工場廃水等が挙げられる。   Next, 1st Embodiment of the water treatment method of this invention is described using the water treatment apparatus shown in FIG. In addition, as wastewater used as the process target of the water treatment method of this invention, what is necessary is just wastewater containing oil, and there is no limitation in particular. For example, factory waste water discharged from a chemical factory or a food factory.

まず、廃水を発泡槽1に供給し、攪拌装置2を作動させて槽内に供給された廃水を攪拌する。そして、ポンプP1を作動させて界面活性剤を所定量供給し、廃水中の油分をミセル化する。   First, waste water is supplied to the foaming tank 1 and the stirring device 2 is operated to stir the waste water supplied into the tank. Then, the pump P1 is operated to supply a predetermined amount of the surfactant, and the oil content in the wastewater is micellized.

界面活性剤としては、特に限定は無い。例えば、脂肪酸ナトリウム、アルキル硫酸エステルナトリウム、アルファオレフィンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ラウレス硫酸ナトリウム、ココイルグルタミン酸ナトリウム、ココイルメチルアラニンナトリウム、スルホコハク酸ラウリル2ナトリウム等の陰イオン界面活性剤、ステアルトリモニウムクロリド、セトリモニウムクロリド等の陽イオン界面活性剤、ココベタイン、ラウロアンホ酢酸ナトリウム、ココアンホ酢酸ナトリウム、ラウリルヒドロキシスルタイン、ラウラミドプロピルベタイン、コカミドプロピルベタイン等の両性界面活性剤等が挙げられる。なかでも、自然界への蓄積がなく、環境負荷が小さくできるので、脂肪酸ナトリウム、アルキル硫酸エステルナトリウム、アルファオレフィンスルホン酸ナトリウム等の生分解性界面活性剤が好ましく用いられる。   There is no limitation in particular as surfactant. For example, anionic surfactants such as sodium fatty acid, sodium alkyl sulfate ester, sodium alpha olefin sulfonate, sodium lauryl sulfate, sodium laureth sulfate, sodium cocoyl glutamate, sodium cocoyl methylalanine, disodium lauryl sulfosuccinate, steartrimonium chloride And cationic surfactants such as cetrimonium chloride, amphoteric surfactants such as cocobetaine, sodium lauroamphoacetate, sodium cocoamphoacetate, laurylhydroxysultain, lauramidopropylbetaine, and cocamidopropylbetaine. Among these, biodegradable surfactants such as fatty acid sodium, sodium alkyl sulfate ester, sodium alpha olefin sulfonate and the like are preferably used because they do not accumulate in nature and can reduce the environmental burden.

発泡槽1にて界面活性剤を添加混合して発泡させた廃水は、活性汚泥処理槽4に供給して活性汚泥処理する。そして、活性汚泥処理後の処理水を、膜モジュール5にて膜濾過処理し、濾過水を排水系に送り、塩素などを添加して系外に排水する。また、活性汚泥処理槽4の底部に体積した汚泥は、定期的に配管L3から引き抜いて図示しない汚泥処理系に送り、乾燥処理や脱水処理を行って処理する。   The waste water foamed by adding and mixing the surfactant in the foaming tank 1 is supplied to the activated sludge treatment tank 4 to be treated with activated sludge. Then, the treated water after the activated sludge treatment is subjected to membrane filtration treatment by the membrane module 5, and the filtered water is sent to a drainage system, and chlorine and the like are added to drain out of the system. In addition, the sludge that has accumulated at the bottom of the activated sludge treatment tank 4 is periodically extracted from the pipe L3, sent to a sludge treatment system (not shown), and processed by performing a drying process and a dehydrating process.

このようにして水処理を行うが、本発明では、ポンプP1の作動を、制御装置30にて以下のように制御して界面活性剤の供給量を調整する。   Although water treatment is performed in this way, in the present invention, the operation amount of the pump P1 is controlled by the control device 30 as follows to adjust the supply amount of the surfactant.

以下、制御装置30における制御について、図2のフローチャートを用いて説明する。   Hereinafter, the control in the control device 30 will be described with reference to the flowchart of FIG.

ステップS1にて、発泡検知器21にて検出された発泡量が閾値以上であるか判断する。   In step S1, it is determined whether the amount of foam detected by the foam detector 21 is greater than or equal to a threshold value.

発泡検知器21にて検出された発泡量が下限閾値未満である場合は、廃水中の油分を完全にミセル化するのに必要とされる界面活性剤が不足しているので、ステップS2にて、界面活性剤の添加量を増加させるべく指令をポンプP1に出力し、ステップS1に戻る。   When the foaming amount detected by the foaming detector 21 is less than the lower limit threshold, the surfactant required to completely micelle the oil in the wastewater is insufficient, so in step S2 Then, a command is output to the pump P1 to increase the addition amount of the surfactant, and the process returns to step S1.

一方、発泡検知器21にて検出された発泡量が下限閾値以上である場合は、次に、ステップS3にて、上限閾値以上であるか判断する。   On the other hand, if the amount of foam detected by the foam detector 21 is equal to or greater than the lower limit threshold value, it is next determined in step S3 whether it is equal to or greater than the upper limit threshold value.

上限閾値未満であれば、廃水中の油分を完全にミセル化するのに必要とされる界面活性剤がほぼ過不足なく供給されていると判断でき、制御終了となる。   If it is less than the upper limit threshold value, it can be determined that the surfactant required for completely micellizing the oil in the wastewater is supplied almost in excess and deficiency, and the control ends.

一方、上限閾値以上の場合は、廃水中の油分を完全にミセル化するのに必要とされる界面活性剤が過剰に供給されているので、ステップS4にて、界面活性剤の添加量を低減すべく指令をポンプP1に出力し、制御終了となる。   On the other hand, if it is equal to or greater than the upper threshold value, the amount of surfactant added in step S4 is reduced because the surfactant required for complete micellization of the oil in the wastewater is supplied in excess. A command is output to the pump P1 and the control is terminated.

本発明によれば、発泡槽1での発泡量に基づいて界面活性剤の添加量を制御するので、廃水中の油分をミセル化するのに必要とされる界面活性剤をほぼ過不足なく供給できる。このため、廃水に含まれる油分をほぼ完全にミセル化でき、膜モジュール5の膜に油分が付着することを防止できる。更には、油分がミセル化して廃水中に乳化分散することにより、活性汚泥処理槽4において油分が活性汚泥処理され易くなり、膜モジュール5の膜に油分がより付着し難くできる。このため、膜モジュール5の洗浄頻度や交換頻度を抑えることができる。また、界面活性剤の添加量を最適化できるので、薬剤コストを低減できる。   According to the present invention, since the addition amount of the surfactant is controlled based on the foaming amount in the foaming tank 1, the surfactant required for micellizing the oil content in the wastewater is supplied almost without excess or deficiency. it can. For this reason, the oil contained in the wastewater can be almost completely micelle, and the oil can be prevented from adhering to the membrane of the membrane module 5. Furthermore, when the oil component is micellized and emulsified and dispersed in the wastewater, the oil component is easily treated in the activated sludge treatment tank 4, and the oil component can be more difficult to adhere to the membrane of the membrane module 5. For this reason, the cleaning frequency and replacement frequency of the membrane module 5 can be suppressed. Further, since the addition amount of the surfactant can be optimized, the drug cost can be reduced.

本発明の水処理装置の第2の実施形態について、図3を用いて説明する。なお、第1の実施形態と実質的に同一箇所には、同一符号を付して、その説明を省略する。   A second embodiment of the water treatment apparatus of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the location substantially the same as 1st Embodiment, and the description is abbreviate | omitted.

この実施形態の水処理装置は、活性汚泥処理槽4内に、膜モジュール5の膜の一次側(被濾過水が供給される側)に向けて界面活性剤を噴射する噴射口7が配置されている。噴射口7は、界面活性剤貯留槽3から伸びた、ポンプP3が介装された配管L6が接続している。ポンプP3は、ポンプP2と同期して、あるいは、ポンプP2が作動している間、所定のタイミングで間欠的に作動するようにタイマー制御されている。すなわち、膜モジュール5での膜濾過処理中、連続的又は間欠的に作動するように制御されている。   In the water treatment apparatus of this embodiment, an injection port 7 for injecting a surfactant toward the primary side of the membrane of the membrane module 5 (the side to which filtered water is supplied) is disposed in the activated sludge treatment tank 4. ing. The injection port 7 is connected to a pipe L6 extending from the surfactant storage tank 3 and provided with a pump P3. The timer of the pump P3 is controlled so as to operate intermittently at a predetermined timing in synchronization with the pump P2 or while the pump P2 is operating. In other words, the membrane module 5 is controlled so as to operate continuously or intermittently during the membrane filtration process.

なお、この実施形態では、噴射口7、界面活性剤貯留槽3、配管L6及びポンプP3が、本発明における「界面活性剤噴射装置」に相当する。   In this embodiment, the injection port 7, the surfactant storage tank 3, the pipe L6, and the pump P3 correspond to the “surfactant injection device” in the present invention.

この水処理装置によれば、膜モジュール5にて廃水を膜濾過処理している間、噴射口7から、膜モジュール5の膜の一次側に向けて界面活性剤が噴射されるので、膜モジュール5の膜近傍もしくは膜モジュール5に付着していた油分が、膜面に向けて噴射された界面活性剤との反応によりミセルを形成するので、膜の目詰まりを効率よく防止できる。更には、界面活性剤によって、蛋白質等の有機物が変性して膨潤するので、油分以外の固形物等の膜への付着を防止できる。   According to this water treatment apparatus, the surfactant is jetted from the jet port 7 toward the primary side of the membrane of the membrane module 5 while the wastewater is being membrane-filtered by the membrane module 5. Since the oil component adhering to the vicinity of the membrane 5 or to the membrane module 5 reacts with the surfactant sprayed toward the membrane surface to form micelles, the clogging of the membrane can be efficiently prevented. Furthermore, since the organic substance such as protein is denatured and swelled by the surfactant, it is possible to prevent the solid matter other than oil from adhering to the film.

本発明の水処理装置の第3の実施形態について、図4を用いて説明する。なお、第1、第2の実施形態と実質的に同一箇所には、同一符号を付して、その説明を省略する。   A third embodiment of the water treatment apparatus of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the location substantially the same as 1st, 2nd embodiment, and the description is abbreviate | omitted.

この水処理装置は、廃水原から伸びた配管L1aに、配管L1a内を流通する廃水の油膜の油膜を検知する油膜センサ22と、切換え弁V1とが配置されている。切換え弁V1からは、発泡槽1に接続する配管L1bと、活性汚泥槽4に接続する配管L7が伸びている。油膜センサ22としては、特に限定はなく、従来公知のものを用いることができる。例えば、レーザー走査式、偏光解析式、または、UV光照射式などの油膜検知センサ等が挙げられる。油膜センサ22の測定結果は、制御装置31に入力される。   In this water treatment apparatus, an oil film sensor 22 for detecting an oil film of an oil film of wastewater flowing through the pipe L1a and a switching valve V1 are arranged in a pipe L1a extending from the wastewater source. A pipe L1b connected to the foaming tank 1 and a pipe L7 connected to the activated sludge tank 4 extend from the switching valve V1. The oil film sensor 22 is not particularly limited, and a conventionally known oil film sensor can be used. For example, an oil film detection sensor such as a laser scanning type, an ellipsometric type, or a UV light irradiation type may be used. The measurement result of the oil film sensor 22 is input to the control device 31.

以下、制御装置31における制御について、図5のフローチャートを用いて説明する。   Hereinafter, the control in the control device 31 will be described with reference to the flowchart of FIG.

ステップS11にて、油膜センサ22により油膜が検出されたかどうか判断する。   In step S11, it is determined whether an oil film is detected by the oil film sensor 22.

油膜が検出されなかった場合は、ステップS12にて、切換え弁V1により、配管L1aと配管L1bとの接続を切り離し、配管L1aと配管L7を接続し、ポンプP3の作動を完全停止して、制御終了となる。   If no oil film is detected, the connection between the pipe L1a and the pipe L1b is disconnected by the switching valve V1, the pipe L1a and the pipe L7 are connected, and the operation of the pump P3 is completely stopped at step S12. End.

一方、油膜が検出された場合、ステップS13にて、切換え弁V1により、配管L1aと配管L7との接続を切り離し、配管L1aと配管L1bを接続する。また、ポンプP3を起動させ、作動させる。なお、ポンプP3は、ポンプP2と同期して、あるいは、ポンプP2が作動している間、所定のタイミングで間欠的に作動するようにタイマー制御されている。   On the other hand, when the oil film is detected, in step S13, the connection between the pipe L1a and the pipe L7 is disconnected by the switching valve V1, and the pipe L1a and the pipe L1b are connected. Moreover, the pump P3 is started and operated. The pump P3 is controlled by a timer so as to operate intermittently at a predetermined timing in synchronization with the pump P2 or while the pump P2 is operating.

次に、ステップS14にて、発泡検知器21にて検出された発泡量が閾値以上であるか判定する。   Next, in step S14, it is determined whether the foam amount detected by the foam detector 21 is equal to or greater than a threshold value.

発泡検知器21にて検出された発泡量が下限閾値未満である場合は、廃水中の油分を完全にミセル化するのに必要とされる界面活性剤が不足しているので、ステップS15にて、界面活性剤の添加量を増加させるべく指令をポンプP1に出力し、ステップS14に戻る。   If the amount of foam detected by the foam detector 21 is less than the lower limit threshold, the surfactant required to completely micelle the oil in the wastewater is insufficient, so in step S15 Then, a command is output to the pump P1 to increase the addition amount of the surfactant, and the process returns to step S14.

一方、発泡検知器21にて検出された発泡量が下限閾値以上である場合は、次に、ステップS16にて、上限閾値以上であるか判定する。   On the other hand, if the amount of foam detected by the foam detector 21 is equal to or greater than the lower limit threshold value, it is then determined in step S16 whether it is equal to or greater than the upper limit threshold value.

上限閾値未満であれば、廃水中の油分を完全にミセル化するのに必要とされる界面活性剤がほぼ過不足なく供給されていると判断でき、制御終了となる。   If it is less than the upper limit threshold value, it can be determined that the surfactant required for completely micellizing the oil in the wastewater is supplied almost in excess and deficiency, and the control ends.

一方、上限閾値以上の場合は、廃水中の油分を完全にミセル化するのに必要とされる界面活性剤が過剰に供給されているので、ステップS17にて、界面活性剤の添加量を低減すべく指令をポンプP1に出力し、制御終了となる。   On the other hand, if the amount is equal to or greater than the upper threshold value, the amount of surfactant added in step S17 is reduced because the surfactant required to completely micelle the oil in the wastewater is supplied. A command is output to the pump P1 and the control is terminated.

この実施形態の水処理装置によれば、油分を含まない廃水については、発泡槽をバイパスして直接活性汚泥処理槽4に供給できるので、界面活性剤の使用量をより最適化でき、効率よく水処理できる。   According to the water treatment apparatus of this embodiment, wastewater that does not contain oil can be directly supplied to the activated sludge treatment tank 4 by bypassing the foaming tank, so that the amount of surfactant used can be optimized more efficiently and efficiently. Can treat water.

1:発泡槽
2:攪拌装置
3:界面活性剤貯留槽
4:活性汚泥処理槽
5:膜モジュール
21:発泡検出器
22:油膜センサ
30、31:制御装置
L1〜L7:配管
P1〜P3:ポンプ
1: Foaming tank 2: Stirring device 3: Surfactant storage tank 4: Activated sludge treatment tank 5: Membrane module 21: Foam detector 22: Oil film sensor 30, 31: Control devices L1 to L7: Piping P1 to P3: Pump

Claims (12)

油分を含む廃水を発泡槽に導入し、前記発泡槽で前記廃水に界面活性剤を添加混合し、前記廃水を膜モジュールに通して膜濾過処理する水処理方法であって、
前記発泡槽での発泡量を検出して、該発泡量が所定値を超えない場合には前記界面活性剤の添加量を増加させ、該発泡量が所定値を超える場合には前記界面活性剤の添加量を減少させるように、前記界面活性剤の添加量を制御することを特徴とする水処理方法。
A water treatment method for introducing waste water containing oil into a foaming tank, adding and mixing a surfactant to the waste water in the foaming tank, and passing the waste water through a membrane module for membrane filtration,
The amount of foaming in the foaming tank is detected, and when the foaming amount does not exceed a predetermined value, the addition amount of the surfactant is increased, and when the foaming amount exceeds the predetermined value, the surfactant is increased. A water treatment method, wherein the amount of the surfactant added is controlled so as to reduce the amount of the surfactant added.
前記膜濾過処理中、連続的又は間欠的に前記膜モジュールの膜面に向けて界面活性剤を噴射する請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the surfactant is sprayed continuously or intermittently toward the membrane surface of the membrane module during the membrane filtration treatment. 前記発泡槽における発泡量を、光学的手法、電気的手法及び画像的手法から選ばれる方法により検出する請求項1又は2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein the foaming amount in the foaming tank is detected by a method selected from an optical method, an electrical method, and an image method. 前記界面活性剤として、生分解性界面活性剤を用いる請求項1〜3のいずれか1項に記載の水処理方法。   The water treatment method according to claim 1, wherein a biodegradable surfactant is used as the surfactant. 前記発泡槽を通過した廃水を、活性汚泥処理槽に導入して活性汚泥処理した後、前記膜モジュールを通して膜濾過処理する請求項1〜4のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein the wastewater that has passed through the foaming tank is introduced into an activated sludge treatment tank and treated with activated sludge, and then subjected to membrane filtration through the membrane module. 油分を含む廃水が流入される発泡槽と、
前記発泡槽内の発泡量を検知する発泡検知器と、
前記発泡槽に界面活性剤を供給する界面活性剤供給装置と、
前記発泡槽内の発泡量が所定値を超えない場合には前記界面活性剤の添加量を増加させ、該発泡量が所定値を超える場合には前記界面活性剤の添加量を減少させるように前記界面活性剤の供給量を制御する制御装置と、
前記発泡槽の下流に配置された膜モジュールとを備えることを特徴とする水処理装置。
A foaming tank into which wastewater containing oil is introduced;
A foam detector for detecting the amount of foam in the foaming tank;
A surfactant supply device for supplying a surfactant to the foaming tank;
When the foaming amount in the foaming tank does not exceed a predetermined value, the addition amount of the surfactant is increased, and when the foaming amount exceeds a predetermined value, the addition amount of the surfactant is decreased. A control device for controlling the supply amount of the surfactant;
A water treatment apparatus comprising: a membrane module disposed downstream of the foaming tank.
更に、前記膜モジュールの膜面に向けて界面活性剤を噴射する界面活性剤噴射装置を備える請求項6に記載の水処理装置。   Furthermore, the water treatment apparatus of Claim 6 provided with the surfactant injection apparatus which injects surfactant toward the film | membrane surface of the said membrane module. 更に、前記発泡槽の上流に配置された油膜センサを備える請求項6又は7に記載の水処理装置。   Furthermore, the water treatment apparatus of Claim 6 or 7 provided with the oil film sensor arrange | positioned upstream of the said foaming tank. 更に、前記油膜センサにて油膜が検出されなかった廃水を、前記発泡槽をバイパスさせて下流に流すバイパスラインを備える請求項8に記載の水処理装置。   Furthermore, the water treatment apparatus of Claim 8 provided with the bypass line which bypasses the said foaming tank and flows the waste water by which the oil film was not detected by the said oil film sensor. 前記発泡検知器が、光学的手法、電気的手法及び画像的手法から選ばれる方法により発泡量を検知するように構成されたものである請求項6〜9のいずれか1項に記載の水処理装置。   The water treatment according to any one of claims 6 to 9, wherein the foam detector is configured to detect a foam amount by a method selected from an optical method, an electrical method, and an image method. apparatus. 前記界面活性剤が、生分解性界面活性剤である請求項6〜10のいずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 6 to 10, wherein the surfactant is a biodegradable surfactant. 更に、活性汚泥処理槽を備え、該活性汚泥処理槽の下流、又は該活性汚泥処理槽内に、前記膜濾過処理装置が配設されている請求項6〜11のいずれか1項に記載の水処理装置。   Furthermore, the activated sludge processing tank is provided, The said membrane filtration processing apparatus is arrange | positioned in the downstream of this activated sludge processing tank, or in this activated sludge processing tank. Water treatment equipment.
JP2011190788A 2011-09-01 2011-09-01 Water treatment method and water treatment apparatus Expired - Fee Related JP5796420B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011190788A JP5796420B2 (en) 2011-09-01 2011-09-01 Water treatment method and water treatment apparatus
CN201210320694.8A CN102963997B (en) 2011-09-01 2012-08-31 Water treatment method and water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190788A JP5796420B2 (en) 2011-09-01 2011-09-01 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2013052327A true JP2013052327A (en) 2013-03-21
JP5796420B2 JP5796420B2 (en) 2015-10-21

Family

ID=47794470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190788A Expired - Fee Related JP5796420B2 (en) 2011-09-01 2011-09-01 Water treatment method and water treatment apparatus

Country Status (2)

Country Link
JP (1) JP5796420B2 (en)
CN (1) CN102963997B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052359A (en) * 2011-09-05 2013-03-21 Fuji Electric Co Ltd Water treatment method and water treatment apparatus
JP2014188453A (en) * 2013-03-27 2014-10-06 Sumitomo Heavy Ind Ltd Water treatment system and water treatment method
CN107162105A (en) * 2017-06-01 2017-09-15 苏州市玄天环保科技有限公司 A kind of sewage pre-treatment device of water-oil separating
CN112694171A (en) * 2020-12-22 2021-04-23 上海上实龙创智能科技股份有限公司 Aeration control method and device for sewage treatment, electronic equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840641B (en) * 2019-05-16 2023-03-14 日曹工程股份有限公司 Continuous phase separation system and device based on membrane and suitable for small flow

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724500U (en) * 1993-08-25 1995-05-09 栗田工業株式会社 Sludge agglomeration state detection device
JP2001129303A (en) * 1999-11-01 2001-05-15 Zenken:Kk Oil-containing liquid treatment apparatus
JP2001246366A (en) * 2000-03-08 2001-09-11 Toshiaki Maruyama Process for removing oily component in wastewater
JP2005288287A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Organic wastewater treatment method
JP2006289313A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Apparatus and method for treating organic waste water
JP2010162518A (en) * 2009-01-19 2010-07-29 Sharp Corp Water treatment apparatus and water treatment method
JP2010234224A (en) * 2009-03-31 2010-10-21 Kubota Corp Apparatus and method for cleaning membrane module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277423A (en) * 2001-03-16 2002-09-25 Osaka Gas Co Ltd Control unit for conrolling concentration of surfactant and heat transfer system equipped therewith
JP4750344B2 (en) * 2002-12-18 2011-08-17 株式会社ササクラ Oil-water separator for treated water containing emulsified oil
JP2005329300A (en) * 2004-05-19 2005-12-02 Japan Organo Co Ltd Method and apparatus for preparing ballast water for ship
JP3890063B2 (en) * 2005-03-03 2007-03-07 シャープ株式会社 Waste water treatment apparatus and waste water treatment method
US9675938B2 (en) * 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
JP5138206B2 (en) * 2006-11-22 2013-02-06 ダイセン・メンブレン・システムズ株式会社 Oil-containing wastewater treatment method
CN100569666C (en) * 2006-12-13 2009-12-16 上海宝钢工程技术有限公司 Cold rolling oily(waste)water membrane bioreactor and treatment process thereof
CN201485304U (en) * 2009-07-30 2010-05-26 孟广祯 Membrane strengthened air floatation precipitation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724500U (en) * 1993-08-25 1995-05-09 栗田工業株式会社 Sludge agglomeration state detection device
JP2001129303A (en) * 1999-11-01 2001-05-15 Zenken:Kk Oil-containing liquid treatment apparatus
JP2001246366A (en) * 2000-03-08 2001-09-11 Toshiaki Maruyama Process for removing oily component in wastewater
JP2005288287A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Organic wastewater treatment method
JP2006289313A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Apparatus and method for treating organic waste water
JP2010162518A (en) * 2009-01-19 2010-07-29 Sharp Corp Water treatment apparatus and water treatment method
JP2010234224A (en) * 2009-03-31 2010-10-21 Kubota Corp Apparatus and method for cleaning membrane module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052359A (en) * 2011-09-05 2013-03-21 Fuji Electric Co Ltd Water treatment method and water treatment apparatus
JP2014188453A (en) * 2013-03-27 2014-10-06 Sumitomo Heavy Ind Ltd Water treatment system and water treatment method
CN107162105A (en) * 2017-06-01 2017-09-15 苏州市玄天环保科技有限公司 A kind of sewage pre-treatment device of water-oil separating
CN112694171A (en) * 2020-12-22 2021-04-23 上海上实龙创智能科技股份有限公司 Aeration control method and device for sewage treatment, electronic equipment and storage medium
CN112694171B (en) * 2020-12-22 2022-08-05 上海上实龙创智能科技股份有限公司 Aeration control method and device for sewage treatment, electronic equipment and storage medium

Also Published As

Publication number Publication date
CN102963997A (en) 2013-03-13
JP5796420B2 (en) 2015-10-21
CN102963997B (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5796420B2 (en) Water treatment method and water treatment apparatus
US8557114B2 (en) Water purification apparatus and method for using pressure filter and pore control fiber filter
JP4910322B2 (en) Water treatment equipment using fine bubbles
US7578942B2 (en) Wastewater treatment equipment and method of wastewater treatment
JP6432914B2 (en) Water treatment method and water treatment apparatus
JP4635666B2 (en) Water treatment method
KR101956383B1 (en) Method of treating organic waste water by membrane separator activated sludge device
KR20180008175A (en) Pressurized membrane water treatment apparatus
JP2011062632A (en) Method and apparatus for treating water using fine air bubbles
CN110709153B (en) Cleaning device and cleaning method for water treatment membrane and water treatment system
JP2782566B2 (en) Membrane filtration device
JP5782931B2 (en) Water treatment method and water treatment apparatus
JP2007061697A (en) Separation film cleaning method and organic wastewater treatment system
JP2014061506A (en) Liquid treatment facility
JPWO2011136043A1 (en) Waste water treatment apparatus and waste water treatment method
JP2016016397A (en) Filtration membrane cleaning method and membrane filtration apparatus
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
WO2020240666A1 (en) Membrane separation activated sludge system and membrane cleaning device
KR20150046093A (en) Water production method
KR101610599B1 (en) the watertreatment device to improve the flexibility of submerged membrane system installed with Dissolved air floatation in high turbidity and algae-rich conditions and the method thereof
JP2007196126A (en) Membrane filtration system
JP2013039572A (en) Method and apparatus for treating water using fine bubble
JP2005081237A (en) Method for reducing volume of sludge
JP2004305926A (en) Immersion membrane separation type activated sludge treatment method
AU2011203015B2 (en) Wastewater treatment system and wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent or registration of utility model

Ref document number: 5796420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees