JP2013051047A - Membrane electrode assembly manufacturing method - Google Patents

Membrane electrode assembly manufacturing method Download PDF

Info

Publication number
JP2013051047A
JP2013051047A JP2011186921A JP2011186921A JP2013051047A JP 2013051047 A JP2013051047 A JP 2013051047A JP 2011186921 A JP2011186921 A JP 2011186921A JP 2011186921 A JP2011186921 A JP 2011186921A JP 2013051047 A JP2013051047 A JP 2013051047A
Authority
JP
Japan
Prior art keywords
ionomer
membrane
catalyst layer
electrode
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011186921A
Other languages
Japanese (ja)
Inventor
Akira Morita
亮 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011186921A priority Critical patent/JP2013051047A/en
Publication of JP2013051047A publication Critical patent/JP2013051047A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a membrane electrode assembly, by which gas permeability of ionomer contained in an electrode catalyst layer can be improved.SOLUTION: Using a catalyst ink including ionomer and a catalyst carrier that has already carried a catalyst, an anode 52 and a cathode 53 that are electrode catalyst layers are formed on both membrane faces of an electrolyte membrane 51 to produce MEA. Then, the MEA is subject to gas permeability improving processing (step S300). This gas permeability improving processing is a processing to reduce a dense region because the ionomer of the electrode catalyst layer exhibits a crystal phase, and increase a coarse region that is coarse and has high gas permeability because the ionomer exhibits an amorphous phase. In such a method, an inside of the electrode catalyst layer of the MEA is impregnated with water, and the impregnated water is frozen. Thereafter, the water is thawed and dry-removed. An orientation of molecules in the crystal phase is disturbed by expansion of the water during freezing, and the crystal phase is made coarse as is similar to the amorphous phase.

Description

本発明は、プロトン伝導性を有する電解質膜の膜面に電極触媒層を接合した膜電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly in which an electrode catalyst layer is joined to a membrane surface of an electrolyte membrane having proton conductivity.

燃料ガスと酸化剤ガスとの電気化学反応によって発電する燃料電池がエネルギー源として注目されている。この燃料電池には、電解質膜として固体高分子膜を用いた固体高分子型燃料電池がある。こうした固体高分子型燃料電池では、一般に、プロトン伝導性を有する電解質膜の両面に電極触媒層を接合した膜電極接合体(MEA:Membrane−Electrode Assembly)が用いられる。   A fuel cell that generates electricity by an electrochemical reaction between a fuel gas and an oxidant gas has attracted attention as an energy source. As this fuel cell, there is a solid polymer fuel cell using a solid polymer membrane as an electrolyte membrane. In such a polymer electrolyte fuel cell, generally, a membrane-electrode assembly (MEA) in which an electrode catalyst layer is bonded to both surfaces of an electrolyte membrane having proton conductivity is used.

膜電極接合体は、一般に、電解質膜の両面にいわゆる触媒インクを塗工することによって製造される。触媒インクは、触媒を担持した導電性の触媒担体(例えば、カーボン粒子)と、プロトン伝導性を有するアイオノマーとを含み、これらを分散媒に分散させている。   A membrane electrode assembly is generally manufactured by applying a so-called catalyst ink on both surfaces of an electrolyte membrane. The catalyst ink includes a conductive catalyst carrier (for example, carbon particles) carrying a catalyst and an ionomer having proton conductivity, and these are dispersed in a dispersion medium.

燃料電池のアノードとカソードに供給された燃料ガスと酸化剤ガスは、膜電極接合体の電極触媒層において、触媒の作用により電気化学反応に供される。この電気化学反応は、ガスの流路と、アイオノマーと、触媒担持済みの触媒担体とが接する、いわゆる三相界面で、触媒を介して起こる。このため、触媒を三相界面上に存在させて触媒へのガス接触機会を増やすべく、高分子有機化合物粒子の除去を経て電極触媒層に空隙を形成して触媒近傍でのアイオノマーの表面積を増大させることが提案されている(例えば、特許文献1)。   The fuel gas and oxidant gas supplied to the anode and cathode of the fuel cell are subjected to an electrochemical reaction by the action of the catalyst in the electrode catalyst layer of the membrane electrode assembly. This electrochemical reaction occurs via the catalyst at a so-called three-phase interface where the gas flow path, the ionomer, and the catalyst carrier on which the catalyst is loaded are in contact. For this reason, in order to increase the chance of gas contact with the catalyst by allowing the catalyst to exist on the three-phase interface, the surface area of the ionomer in the vicinity of the catalyst is increased by forming voids in the electrode catalyst layer through removal of the polymer organic compound particles. Has been proposed (for example, Patent Document 1).

特開2011−28978号公報JP 2011-28978 A

ところで、空隙形成のために配合される高分子有機化合物粒子は、その除去前においてアイオノマーに覆われ、その覆われた箇所を、除去後において空隙とする。このため、高分子有機化合物粒子の除去を経て電極触媒層に形成される空隙の大きさは、その化合物粒子の大きさに依存するので、空隙の微細化には限界がある。また、こうして形成された空隙は、電極触媒層全体としてのガス透過性には寄与するものの、触媒およびその担体を被覆するアイオノマーにおけるガス透過性についてはさほど影響しない。上記した特許文献では、こうしたアイオノマーにおけるガス透過性の向上についての配慮がないことから、アイオノマーのガス透過性の向上を図る手法が要請されるに到った。   By the way, the polymer organic compound particles blended for forming the voids are covered with an ionomer before the removal, and the covered portions are defined as voids after the removal. For this reason, since the size of the voids formed in the electrode catalyst layer through the removal of the polymer organic compound particles depends on the size of the compound particles, there is a limit to the miniaturization of the voids. In addition, although the voids thus formed contribute to the gas permeability of the entire electrode catalyst layer, the gas permeability of the ionomer covering the catalyst and its support is not so much affected. In the above-mentioned patent documents, since there is no consideration about the improvement of gas permeability in such an ionomer, a technique for improving the gas permeability of the ionomer has been requested.

本発明は、上記した課題を踏まえ、電極触媒層に含まれるアイオノマーのガス透過性の向上が可能な新たな膜電極接合体の製造手法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a new method for producing a membrane electrode assembly capable of improving the gas permeability of an ionomer contained in an electrode catalyst layer.

上記した目的の少なくとも一部を達成するために、本発明は、以下の適用例として実施することができる。   In order to achieve at least a part of the above object, the present invention can be implemented as the following application examples.

[適用例1:膜電極接合体の製造方法]
プロトン伝導性を有する電解質膜の膜面に電極触媒層を接合した膜電極接合体の製造方法であって、
触媒を担持した導電性の触媒担体とプロトン伝導性を有するアイオノマーとを含む触媒インクを用いた前記電極触媒層を前記電解質膜の膜面に形成するに当たり、前記電極触媒層において前記アイオノマーの分子の配向が揃うことで前記アイオノマーが結晶相を呈し、密となる密領域を減少させる密減少工程を実行する
ことを要旨とする。
[Application Example 1: Manufacturing method of membrane electrode assembly]
A method for producing a membrane electrode assembly in which an electrode catalyst layer is joined to a membrane surface of an electrolyte membrane having proton conductivity,
In forming the electrode catalyst layer on the membrane surface of the electrolyte membrane using a catalyst ink including a conductive catalyst carrier carrying a catalyst and an ionomer having proton conductivity, the ionomer molecules in the electrode catalyst layer are formed. The gist is to execute a density reduction process for reducing the dense region where the ionomer exhibits a crystalline phase and becomes dense due to the alignment.

触媒インクを用いて電解質膜の膜面に形成済みの電極触媒層に含まれるアイオノマーは、その高分子樹脂としての性質から、分子の配向が揃うことで結晶相を呈して密な密領域のアイオノマーと、配向があまり揃わずに非晶質相を呈して疎な疎領域のアイオノマーに分けられる。そして、結晶相を呈する故に密な密領域と非晶質相を呈する故に疎な疎領域の割合は、アイオノマーの分子鎖構造等に依存した分子配向の状況により定まるものの、密領域は形成済み電極触媒層のアイオノマーに必然的に含まれる。   The ionomer contained in the electrode catalyst layer already formed on the membrane surface of the electrolyte membrane using catalyst ink is a dense ionomer that exhibits a crystalline phase by aligning the molecular orientation due to its properties as a polymer resin. In other words, it is divided into ionomers in a sparse and sparse region that exhibits an amorphous phase with little alignment. The ratio of the dense region due to the crystalline phase and the sparse region due to the amorphous phase is determined by the molecular orientation depending on the molecular chain structure of the ionomer. It is necessarily included in the ionomer of the catalyst layer.

この適用例1の膜電極接合体の製造方法では、上記のように電極触媒層のアイオノマーの密領域を減少させるので、その分、非晶質相を呈する故に疎な疎領域が増える。結晶相と非晶質相とでは、非晶質相の方がガス透過性に優れるので、適用例1の膜電極接合体の製造方法によれば、電極触媒層に含まれるアイオノマーのガス透過性を高めることが可能となる。   In the manufacturing method of the membrane electrode assembly of Application Example 1, since the ionomer dense region of the electrode catalyst layer is reduced as described above, the sparse and sparse region increases because of the amorphous phase. Since the amorphous phase is superior in gas permeability between the crystalline phase and the amorphous phase, the gas permeability of the ionomer contained in the electrode catalyst layer is obtained according to the method of manufacturing the membrane electrode assembly of Application Example 1. Can be increased.

上記した適用例1の高圧ガスタンクの膜電極接合体は、次のような態様とすることができる。例えば、密減少工程を、前記触媒インクを用いて前記電解質膜の膜面に前記電極触媒層を形成済みの状況で実行することが簡便である。この際の一手法は、前記電解質膜の膜面に形成済みの前記電極触媒層の層内部に水を含浸させて、その含浸させた水を、凍結させた後に解凍して乾燥除去する。電極触媒層内部に含浸した水は、アイオノマーの結晶相の中或いはその周辺に行き渡り、当該箇所にて凍結する。この凍結の際、水は膨張を起こすので、凍結の過程で分子の配向を乱し、結晶相を非晶質相と同じような疎とする。そして、凍結した水の解凍・除去後には、結晶相を呈していた密領域において微細な空隙が残るので、アイオノマーのガス透過性が高まる。この場合、非晶質相においても上記した現象が起きることから、疎領域にあっても微細な空隙が形成されるので、高い実効性でアイオノマーのガス透過性を高めることができる。   The membrane electrode assembly of the high-pressure gas tank of Application Example 1 described above can be configured as follows. For example, it is convenient to perform the density reduction step in a situation where the electrode catalyst layer is already formed on the membrane surface of the electrolyte membrane using the catalyst ink. In this case, one method is to impregnate the inside of the electrode catalyst layer formed on the membrane surface of the electrolyte membrane with water, freeze the thawed impregnated water, and then thaw and dry remove it. The water impregnated in the electrode catalyst layer spreads in or around the crystal phase of the ionomer and freezes at that location. During this freezing, the water expands, so that the orientation of the molecules is disturbed during the freezing process, and the crystal phase is made sparse like the amorphous phase. Then, after thawing and removing the frozen water, fine voids remain in the dense region that exhibited the crystal phase, so that the gas permeability of the ionomer is increased. In this case, since the phenomenon described above also occurs in the amorphous phase, fine voids are formed even in the sparse region, and the gas permeability of the ionomer can be enhanced with high effectiveness.

また、前記電解質膜の膜面に形成済みの前記電極触媒層を、前記アイオノマーの溶解を来す溶媒を含むガスに晒して、該ガスに含まれる前記溶媒を前記電極触媒層の層内部に導き、この導いた溶媒を除去するようにすることもできる。電極触媒層内部に導かれた溶媒は、アイオノマーの結晶相の中或いその周辺に行き渡り、当該箇所のアイオノマーを溶解して分子の配向を乱し、結晶相を非晶質相と同じような疎とする。このため、溶媒の除去後にあっては、結晶相を呈していた故に密であった密領域は疎な状況となるので、アイオノマーのガス透過性が高まる。この場合、アイオノマーの溶解を来す溶媒を、アイオノマーの結晶質と親和性を有するものとすれば、アイオノマーの結晶相について、これを非晶質相と同じような疎とするようにできる。結晶質との親和性が少ない溶媒であれば、非晶質相においても上記した現象が起きることから、疎領域にあってもその疎な状況が増すので、高い実効性でアイオノマーのガス透過性を高めることができる。   Further, the electrode catalyst layer already formed on the membrane surface of the electrolyte membrane is exposed to a gas containing a solvent that causes dissolution of the ionomer, and the solvent contained in the gas is guided to the inside of the electrode catalyst layer. The guided solvent can also be removed. The solvent introduced into the electrode catalyst layer spreads in or around the crystalline phase of the ionomer, dissolves the ionomer at that location, disturbs the molecular orientation, and makes the crystalline phase similar to the amorphous phase. Sparse. For this reason, after the removal of the solvent, the dense region that was dense because it exhibited a crystalline phase becomes sparse, and the gas permeability of the ionomer increases. In this case, if the solvent that causes the ionomer to be dissolved has an affinity for the crystalline quality of the ionomer, the ionomer crystal phase can be made sparse as in the amorphous phase. If the solvent has a low affinity with the crystalline material, the above phenomenon occurs even in the amorphous phase, so the sparse situation increases even in the sparse region, so the ionomer gas permeability is highly effective. Can be increased.

また、前記電解質膜の膜面に形成済みの前記電極触媒層の層内部に、前記アイオノマーの前記結晶相を解くイオンを含む溶液を含浸させ、その含浸した溶液を前記イオンと共に除去するようにすることもできる。電極触媒層内部に導かれた溶液に含まれるイオンは、アイオノマーの結晶相の中或いその周辺に行き渡り、当該箇所のアイオノマーの結晶相を解く。このため、溶液の除去後にあっては、結晶相を呈していた故に密であった密領域は疎な状況となるので、アイオノマーのガス透過性が高まる。   Further, the electrode catalyst layer already formed on the membrane surface of the electrolyte membrane is impregnated with a solution containing ions that dissolve the crystalline phase of the ionomer, and the impregnated solution is removed together with the ions. You can also. Ions contained in the solution introduced into the electrode catalyst layer are distributed in or around the crystal phase of the ionomer, and the crystal phase of the ionomer at that location is solved. For this reason, after removal of the solution, the dense region that is dense because it exhibits a crystalline phase becomes sparse, so that the gas permeability of the ionomer is increased.

本発明は、上記した膜電極接合体の製造方法の他、上記した膜電極接合体の製造方法で製造した膜電極接合体を備える燃料電池およびこの燃料電池の製造方法としても、適用できる。   The present invention can be applied to a fuel cell including a membrane electrode assembly manufactured by the above-described method for manufacturing a membrane electrode assembly, and a method for manufacturing the fuel cell, in addition to the above-described method for manufacturing a membrane electrode assembly.

本発明の一実施例としての燃料電池40を断面視にて概略的に示す説明図である。It is explanatory drawing which shows roughly the fuel cell 40 as one Example of this invention by sectional view. 燃料電池40の製造工程の概略を示す説明図である。4 is an explanatory diagram showing an outline of a manufacturing process of the fuel cell 40. FIG. アイオノマーを含む触媒インクを用いて得られた膜−電極接合体(MEA)の電極触媒層においてアイオノマーが呈する結晶相・非晶質相の様子を概念的に示す説明図である。It is explanatory drawing which shows notionally the mode of the crystalline phase and amorphous phase which an ionomer exhibits in the electrode catalyst layer of the membrane-electrode assembly (MEA) obtained using the catalyst ink containing an ionomer. 評価測定の一手法を示す説明図である。It is explanatory drawing which shows one method of evaluation measurement. ガス透過性向上処置に処した実施例(電極触媒層擬製薄葉片)とガス透過性向上処置が未実施の比較例(既存MEA/電極触媒層擬製薄葉片)とについての酸素還元電流値と電極電位との関係を示すグラフである。Oxygen reduction current values and electrodes for the examples subjected to the gas permeability improvement treatment (electrode catalyst layer pseudo-thin leaf pieces) and the comparative examples (existing MEA / electrode catalyst layer pseudo-thin leaf pieces) not subjected to the gas permeability improvement treatment It is a graph which shows the relationship with an electric potential. 第2実施例におけるガス透過性向上処置の様子を概略的に示す説明図である。It is explanatory drawing which shows roughly the mode of the gas permeability improvement treatment in 2nd Example. 第2実施例のガス透過性向上処置に処した実施例の膜−電極−拡散層接合体(MEGA)とガス透過性向上処置が未実施の比較例MEGA(既存MEGA)とについてのX線照射角度とその反射強度との関係を示すグラフである。X-ray irradiation of the membrane-electrode-diffusion layer assembly (MEGA) of the example subjected to the gas permeability improvement treatment of the second example and the comparative example MEGA (existing MEGA) that has not been subjected to the gas permeability improvement treatment It is a graph which shows the relationship between an angle and its reflection intensity. 第2実施例のガス透過性向上処置に処した実施例MEGAとガス透過性向上処置が未実施の比較例MEGA(既存MEGA)とについての電流とセル電圧およびセル抵抗の関係を示すグラフである。It is a graph which shows the relationship of the electric current, cell voltage, and cell resistance about Example MEGA processed to the gas-permeability improvement process of 2nd Example, and comparative example MEGA (existing MEGA) which has not performed the gas-permeability improvement process. . 第3実施例における化学式1で表されるフッ素系アイオノマー(パーフルオロスルホン酸樹脂)のフッ素を種々のイオンに置換した場合のガラス転移温度と誘電正接との関係を示すグラフである。It is a graph which shows the relationship between the glass transition temperature and dielectric loss tangent at the time of substituting the fluorine of the fluorine-type ionomer (perfluorosulfonic acid resin) represented by Chemical formula 1 in 3rd Example by various ions.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の一実施例としての燃料電池40を断面視にて概略的に示す説明図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing a fuel cell 40 as an embodiment of the present invention in a sectional view.

図示するように、燃料電池40は、水素と酸素との電気化学反応によって発電する電池セルユニットとして構成され、当該ユニットを図示しない一対のエンドプレートの間に複数積層させたスタック構造とされている。この場合、電池セルユニット積層数は、燃料電池40に要求される出力に応じて任意に設定可能である。   As shown in the drawing, the fuel cell 40 is configured as a battery cell unit that generates electricity by an electrochemical reaction between hydrogen and oxygen, and has a stack structure in which a plurality of the units are stacked between a pair of end plates (not shown). . In this case, the number of stacked battery cell units can be arbitrarily set according to the output required for the fuel cell 40.

燃料電池40は、発電単位となる電池セル50を対向するセパレーター41で挟持する。電池セル50は、図1に示すように、電解質膜51の両側にアノード52とカソード53の両電極を備える。電解質膜51は、固体高分子材料、例えばフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。アノード52およびカソード53は、例えば白金、あるいは白金合金等の触媒を担持した導電性粒子、例えばカーボン粒子(以下、触媒担持カーボン粒子と称する)を、プロトン伝導性を有するアイオノマーで被覆して構成された電極触媒層であり、電解質膜51の両膜面に接合され電解質膜51と共に膜電極接合体(Membrane Electrode Assembly/MEA)を形成する。通常、アイオノマーは、電解質膜51と同質の固体高分子材料である高分子電解質樹脂(例えばフッ素系樹脂)であり、その有するイオン交換基によりプロトン伝導性を有する。   The fuel cell 40 sandwiches battery cells 50 serving as a power generation unit with opposing separators 41. As shown in FIG. 1, the battery cell 50 includes both electrodes of an anode 52 and a cathode 53 on both sides of an electrolyte membrane 51. The electrolyte membrane 51 is a proton-conductive ion exchange membrane formed of a solid polymer material, for example, a fluorine-based resin, and exhibits good electrical conductivity in a wet state. The anode 52 and the cathode 53 are configured by coating conductive particles carrying a catalyst such as platinum or a platinum alloy, for example, carbon particles (hereinafter referred to as catalyst-carrying carbon particles) with an ionomer having proton conductivity. The electrode catalyst layer is joined to both membrane surfaces of the electrolyte membrane 51 to form a membrane electrode assembly (MEA) together with the electrolyte membrane 51. Usually, the ionomer is a polymer electrolyte resin (for example, a fluororesin) that is a solid polymer material of the same quality as the electrolyte membrane 51, and has proton conductivity due to its ion exchange group.

この他、電池セル50は、電極形成済みの電解質膜51をその両側からアノード側ガス拡散層54とカソード側ガス拡散層55にて挟持する。セパレーター41は、この両ガス拡散層の外側に位置し、ガス拡散層を含んで電池セル50を挟持する。アノード側ガス拡散層54とカソード側ガス拡散層55は、ガス透過性を有する導電性部材、例えば、カーボンペーパやカーボンクロスによって形成される。   In addition, the battery cell 50 sandwiches the electrolyte membrane 51 with electrodes formed between the anode gas diffusion layer 54 and the cathode gas diffusion layer 55 from both sides. The separator 41 is located outside both the gas diffusion layers, and sandwiches the battery cell 50 including the gas diffusion layers. The anode side gas diffusion layer 54 and the cathode side gas diffusion layer 55 are formed of a conductive member having gas permeability, such as carbon paper or carbon cloth.

セパレーター41は、電池セル50ごとに反応ガス(水素ガスを含有する燃料ガス又は酸素を含有する酸化ガス)が流れるガス流路を形成する部材であって、水素透過性が低く導電性の良好な材料で形成される。例えば、樹脂に導電材料を混入して成形したプレート状の導電性複合材や金属鋼板などがセパレーター41の形成に用いられる。セパレーター41は、電池セル50の各電極へのガス給排を行うべく、その表裏面に、セル内水素ガス流路42とセル内エアー流路43とを備える。本実施例では、セル内水素ガス流路42とセル内エアー流路43とは、セル面内(電極面内)において直交配列された流路とされ、セル内水素ガス流路42は図において上下に延びる多列の直線状流路とされている。燃料電池40の電池セル50は、これらセル内流路を経てアノード52とカソード53に水素ガスと空気の供給を受け、水素と酸素の電気化学反応を起こして発電する。   The separator 41 is a member that forms a gas flow path through which a reaction gas (a fuel gas containing hydrogen gas or an oxidizing gas containing oxygen) flows for each battery cell 50, and has low hydrogen permeability and good conductivity. Formed of material. For example, a plate-shaped conductive composite material or metal steel plate formed by mixing a conductive material into resin is used for forming the separator 41. The separator 41 includes an in-cell hydrogen gas flow path 42 and an in-cell air flow path 43 on the front and back surfaces thereof in order to supply and discharge gas to and from each electrode of the battery cell 50. In this embodiment, the in-cell hydrogen gas flow path 42 and the in-cell air flow path 43 are flow paths that are orthogonally arranged in the cell plane (in the electrode plane). It is set as the multi-row linear flow path extended up and down. The battery cell 50 of the fuel cell 40 receives the supply of hydrogen gas and air to the anode 52 and the cathode 53 through these in-cell flow paths, and generates electricity by causing an electrochemical reaction between hydrogen and oxygen.

次に、上記した燃料電池40の製造工程について説明する。図2は燃料電池40の製造工程の概略を示す説明図である。   Next, the manufacturing process of the fuel cell 40 described above will be described. FIG. 2 is an explanatory diagram showing an outline of the manufacturing process of the fuel cell 40.

図2に示すように、燃料電池40を製造するに当たり、本実施例では、MEAの製造、これを用いたMEGA(電池セル50)の製造と進んで燃料電池40を得るようにした。MEAの製造に際しては、まず、固体高分子電解質膜としての電解質膜51(図1参照、以下、同じ)を準備する(ステップS100)。この場合、電解質膜51については、製膜生成済みの電解質膜51を購入したり、膜形成材料の高分子電解質樹脂から製膜生成することができる。本実施例では、この電解質膜51をプロトン伝導性を有するナフィオン膜とした(ナフィオンは登録商標、以下同じ)。   As shown in FIG. 2, in manufacturing the fuel cell 40, in this embodiment, the fuel cell 40 is obtained by proceeding with the manufacture of MEA and the manufacture of MEGA (battery cell 50) using the MEA. In manufacturing the MEA, first, an electrolyte membrane 51 (see FIG. 1, the same applies hereinafter) as a solid polymer electrolyte membrane is prepared (step S100). In this case, as for the electrolyte membrane 51, the electrolyte membrane 51 that has already been formed can be purchased, or can be formed from a polymer electrolyte resin that is a film forming material. In this embodiment, the electrolyte membrane 51 is a Nafion membrane having proton conductivity (Nafion is a registered trademark, the same applies hereinafter).

次に、電極触媒層であるアノード52およびカソード53の形成用の触媒インクを調合する(ステップS120)。このステップでは、白金合金を触媒とし、その触媒粒子を担持したカーボン粒子(触媒担持カーボン粒子/触媒担体)と、プロトン伝導性を有するアイオノマーと、これらの分散媒(純水、および、有機溶媒)とを、適宜な攪拌機器によって混合・攪拌することによって、触媒インクを調合する。カーボン粒子としては種々のものを選択可能であり、例えば、カーボンブラックやグラファイトの他、カーボンナノチューブ、カーボンナノホーン、カーボンナノファイバー等を用いることができる。   Next, the catalyst ink for forming the anode 52 and the cathode 53 which are electrode catalyst layers is prepared (step S120). In this step, carbon particles (catalyst-carrying carbon particles / catalyst carrier) supporting the catalyst particles using platinum alloy as a catalyst, ionomers having proton conductivity, and a dispersion medium (pure water and organic solvent) thereof are used. Are mixed and stirred with an appropriate stirring device to prepare a catalyst ink. Various types of carbon particles can be selected. For example, carbon nanotubes, carbon nanohorns, carbon nanofibers and the like can be used in addition to carbon black and graphite.

触媒担持に際しては、通常採用されている手法、例えば、含浸法や共沈法、あるいはイオン交換法を行えばよい。また、触媒担持済みのカーボン粒子として流通しているものを入手することもできる。触媒担持カーボン粒子の分散に際しては、超音波ホモジナイザーを用いた。なお、上記の分散媒における純水と有機溶媒の混合比は、適宜決定できる。   When the catalyst is supported, a generally employed method such as an impregnation method, a coprecipitation method, or an ion exchange method may be performed. Moreover, what is distribute | circulating as the carbon particle by which catalyst support was carried out can also be obtained. An ultrasonic homogenizer was used for dispersing the catalyst-supporting carbon particles. The mixing ratio of pure water and organic solvent in the above dispersion medium can be determined as appropriate.

アイオノマーとしては、例えば、下記の化学式1で表されるフッ素系アイオノマー(パーフルオロスルホン酸樹脂)を用いることとした。図3はアイオノマーを含む触媒インクを用いて得られた膜−電極接合体(MEA)の電極触媒層においてアイオノマーが呈する結晶相・非晶質相の様子を概念的に示す説明図である。   As the ionomer, for example, a fluorine-based ionomer (perfluorosulfonic acid resin) represented by the following chemical formula 1 is used. FIG. 3 is an explanatory diagram conceptually showing a state of a crystalline phase / amorphous phase exhibited by an ionomer in an electrode catalyst layer of a membrane-electrode assembly (MEA) obtained using a catalyst ink containing an ionomer.

Figure 2013051047
Figure 2013051047

このアイオノマーは、側鎖におけるスルホン酸基にてプロトン伝導性と親水性を呈し、含フッ素ビニル化合物に基づく繰り返し単位を主鎖構造とする。このため、触媒インク調合の上での上記した混合・攪拌および後述の製膜の過程で、主鎖分子の配向が揃った領域では結晶相を呈し、配向があまり揃わない領域では非晶質相を呈する。そして、アイオノマーは、結晶相を呈するが故に密な密領域と、非晶質相を呈するが故に疎な疎領域に分けられ、この図では、非晶質相のスルホン酸基が取り囲む領域で、水素イオンの透過移動によるプロトン伝導性と親水性を呈する様子が示されている。なお、図3では、触媒担持カーボン粒子が描かれていないが、図示する結晶質或いは非晶質相を呈するアイオノマーにて、触媒担持カーボン粒子が覆われている、もしくは隣り合うカーボン粒子がこのアイオノマーにてバインドされていることとなる。   This ionomer exhibits proton conductivity and hydrophilicity at a sulfonic acid group in the side chain, and has a repeating unit based on a fluorine-containing vinyl compound as a main chain structure. For this reason, in the mixing / stirring process described above in preparation of the catalyst ink and the film forming process described later, a crystalline phase is exhibited in a region where the main chain molecules are aligned, and an amorphous phase is formed in a region where the alignment is not very uniform. Presents. The ionomer is divided into a dense region because it exhibits a crystalline phase and a sparse region because it exhibits an amorphous phase. In this figure, the region surrounded by sulfonic acid groups in the amorphous phase The state of proton conductivity and hydrophilicity due to the permeation transfer of hydrogen ions is shown. In FIG. 3, the catalyst-carrying carbon particles are not depicted, but the catalyst-carrying carbon particles are covered with the illustrated ionomer exhibiting a crystalline or amorphous phase, or the adjacent carbon particles are the ionomers. It will be bound by.

上記した触媒インクの調合に続いては、この触媒インクを用いて膜−電極接合体(MEA)を作製する(ステップS200)。つまり、調合済みの触媒インクを、ステップS100で得た電解質膜51の表裏面にドクターブレード法やスクリーン印刷手法等の膜形成手法により塗布することで、電解質膜51の両側に電極触媒層であるアノード52、カソード53を形成する。或いは、調合済みの触媒インクを用いて膜成形してシートを作製し、このシートを電解質膜51上にプレスすることによってアノード52、カソード53を電解質膜51に接合して形成しても良い。また、調合済みの触媒インクを剥離性を有するシート(例えば、テフロンシート:テフロンは登録商標)に塗布して乾燥させ、調合済みの触媒インクから電極転写シートを作製する。そして、この2枚のテフロンシートで、電極転写シートが電解質膜51の両側に接合するよう、電解質膜51を挟み、所定温度・圧力で熱プレスした後にテフロンシートを剥離させ、電極転写シートを電解質膜51の両側に転写して接合するようにすることもできる。こうして得られたMEAでは、その電極触媒層であるアノード52、カソード53において、図3に示すようにアイオノマーが触媒担持カーボン粒子を覆ったりバインドすることになる。   Following the preparation of the catalyst ink described above, a membrane-electrode assembly (MEA) is produced using this catalyst ink (step S200). That is, the prepared catalyst ink is applied to the front and back surfaces of the electrolyte membrane 51 obtained in step S100 by a film formation method such as a doctor blade method or a screen printing method, so that electrode catalyst layers are formed on both sides of the electrolyte membrane 51. An anode 52 and a cathode 53 are formed. Alternatively, a sheet may be formed by forming a film using the prepared catalyst ink, and the anode 52 and the cathode 53 may be bonded to the electrolyte film 51 by pressing the sheet on the electrolyte film 51. Further, the prepared catalyst ink is applied to a sheet having releasability (for example, Teflon sheet: Teflon is a registered trademark) and dried to prepare an electrode transfer sheet from the prepared catalyst ink. Then, the two Teflon sheets are sandwiched between the electrolyte membrane 51 so that the electrode transfer sheet is bonded to both sides of the electrolyte membrane 51, heat-pressed at a predetermined temperature and pressure, the Teflon sheet is peeled off, and the electrode transfer sheet is made into an electrolyte. It is also possible to transfer and bond to both sides of the film 51. In the MEA thus obtained, the ionomer covers or binds the catalyst-supporting carbon particles as shown in FIG. 3 at the anode 52 and the cathode 53 which are the electrode catalyst layers.

MEAの作製に続いては、得られたMEAを電極触媒層のガス透過性向上処置に処する(ステップS300)。このガス透過性向上処置では、まず、得られたMEAを室温にて純水に浸漬し、MEAの電極触媒層であるアノード52、カソード53の層内部に水を含浸させる。次いで、含水済みMEAを−30℃の低温環境下に1時間に亘って置いて、含浸した水を凍結させる。その後、例えば、室温乾燥或いは温風乾燥等の乾燥処理にMEAを処して、水を解凍して乾燥除去する。   Following the production of the MEA, the obtained MEA is subjected to a gas permeability improvement treatment of the electrode catalyst layer (step S300). In this gas permeability improving treatment, first, the obtained MEA is immersed in pure water at room temperature, and water is impregnated into the anode 52 and cathode 53 layers which are MEA electrode catalyst layers. The impregnated water is then frozen by placing the hydrated MEA in a low temperature environment of −30 ° C. for 1 hour. Thereafter, for example, the MEA is subjected to a drying process such as room temperature drying or hot air drying, and water is thawed and removed by drying.

続いて、アノード側ガス拡散層54とカソード側ガス拡散層55の両ガス拡散層を準備して(ステップS400)、この両ガス拡散層にてMEAを挟持するよう、
アノード52にアノード側ガス拡散層54を、カソード53にカソード側ガス拡散層55をそれぞれ接合させる(ステップS500)。これにより、MEAGAとしての電池セル50が得られる。ガス拡散層の接合は、適宜な接合手法、例えばホットプレスにより行なうことができる。このように、熱および圧力を加えることで、アノード52とカソード53を構成する触媒アイオノマーが熱により軟化し、軟化したアイオノマーがアノード・カソードのガス拡散層の多孔質な表面全体に馴染んで接触面積が増加しつつ、両者が圧着される。
Subsequently, both the gas diffusion layers of the anode side gas diffusion layer 54 and the cathode side gas diffusion layer 55 are prepared (step S400), and the MEA is sandwiched between the gas diffusion layers.
The anode side gas diffusion layer 54 is joined to the anode 52 and the cathode side gas diffusion layer 55 is joined to the cathode 53 (step S500). Thereby, the battery cell 50 as MEAGA is obtained. The gas diffusion layer can be bonded by an appropriate bonding method, for example, hot pressing. As described above, by applying heat and pressure, the catalyst ionomer constituting the anode 52 and the cathode 53 is softened by heat, and the softened ionomer is adapted to the entire porous surface of the gas diffusion layer of the anode / cathode. While increasing, both are pressure-bonded.

次に、得られたMEAGAとしての電池セル50の両側のガス拡散層にセパレーター41を接合させつつ(ステップS600)、これらを所定の順序で(図1のセルが繰り返し形成されるように)所定数積層してスタック構造を組み立て、積層方向に所定の押圧力を加えて全体構造を保持する(ステップS700)。これにより、燃料電池40が完成する。   Next, the separator 41 is bonded to the gas diffusion layers on both sides of the battery cell 50 as the obtained MEAGA (step S600), and these are predetermined in a predetermined order (so that the cells in FIG. 1 are repeatedly formed). A stack structure is assembled by stacking several layers, and a predetermined pressing force is applied in the stacking direction to hold the entire structure (step S700). Thereby, the fuel cell 40 is completed.

次に、ステップS300でのガス透過性向上処置で得られる効果について説明する。図4は評価測定の一手法を示す説明図である。評価測定に当たっては、既述したステップS120で調合した触媒インクにて、MEAの電極触媒層であるアノード52、カソード53の形成に用いる膜成形シートを作製する。その作製した膜成形シートについて、これを、既述したステップS300のガス透過性向上処置に処す前と、当該処置に処した後とにおいて、性能評価を行った。既述したステップS300のガス透過性向上処置に処す前の膜成形シートは、既存のMEAにおける電極触媒層を擬製した薄葉片となり、ステップS300のガス透過性向上処置に処した膜成形シートは、本実施例のMEAにおける電極触媒層(アノード52、カソード53)を擬製した薄葉片となる。   Next, the effect obtained by the gas permeability improvement process in step S300 will be described. FIG. 4 is an explanatory diagram showing one method of evaluation measurement. In the evaluation measurement, a film-formed sheet used for forming the anode 52 and the cathode 53, which are the MEA electrode catalyst layers, is prepared using the catalyst ink prepared in step S120 described above. About the produced film-forming sheet, performance evaluation was performed before and after this was subjected to the gas permeability improvement treatment of Step S300 described above. The membrane-molded sheet before being subjected to the gas permeability improving treatment in step S300 described above becomes a thin leaf piece imitating the electrode catalyst layer in the existing MEA, and the membrane-molded sheet subjected to the gas permeability improving procedure in step S300 is This is a thin leaf piece in which the electrode catalyst layers (the anode 52 and the cathode 53) in the MEA of the present example are forged.

まず、図4に示すように、電解質膜51を対極側と参照極側に間を隔てて配置した上で、各極の白金(Pt)電極に接合させる。電極触媒層擬製薄葉片については、ガス透過性向上処置に処す前の状態にて、これを隣り合う電解質膜51を跨ぐように配置して作用極のPt電極に接合させる。その上で、薄葉片裏面側には、隣り合う電解質膜51の間を塞ぐように乾燥濾紙を配置し、当該濾紙およびその左右の電解質膜51の裏面側に、80℃で相対湿度80%の酸素含有ガス(例えば空気)を吹き付け供給する。この酸素供給の間において、作用極のPt電極における酸素還元電流値を対極・参照極の電極電位ごとに計測する。同様の電流値計測を、ガス透過性向上処置に処した電極触媒層擬製薄葉片についても行い、これを対比した。図5はガス透過性向上処置に処した実施例(電極触媒層擬製薄葉片)とガス透過性向上処置が未実施の比較例(既存MEA/電極触媒層擬製薄葉片)とについての酸素還元電流値と電極電位との関係を示すグラフである。   First, as shown in FIG. 4, the electrolyte membrane 51 is disposed on the counter electrode side and the reference electrode side with a space therebetween, and then joined to the platinum (Pt) electrode of each electrode. The electrode catalyst layer pseudo-made thin leaf piece is disposed so as to straddle the adjacent electrolyte membrane 51 and bonded to the Pt electrode of the working electrode before being subjected to the gas permeability improvement treatment. In addition, on the back side of the thin leaf piece, a dry filter paper is disposed so as to block between the adjacent electrolyte membranes 51. On the back side of the filter paper and the left and right electrolyte membranes 51 at 80 ° C. and a relative humidity of 80%. An oxygen-containing gas (for example, air) is supplied by spraying. During this oxygen supply, the oxygen reduction current value at the Pt electrode of the working electrode is measured for each electrode potential of the counter electrode and the reference electrode. The same current value measurement was performed on the electrocatalyst layer pseudo-thin leaf pieces subjected to the gas permeability improvement treatment, and this was compared. FIG. 5 shows oxygen reduction currents of the example (electrode catalyst layer pseudo-thin leaf piece) subjected to the gas permeability improvement treatment and the comparative example (existing MEA / electrode catalyst layer pseudo-thin leaf piece) not subjected to the gas permeability improvement treatment. It is a graph which shows the relationship between a value and electrode potential.

図5に示すように、実施例MEAを擬製した薄葉片では、既存MEAを擬製した薄葉片に比して、卑な低電極電位の領域において、酸素還元電流値が約1.5倍程度向上している。図4に示すように測定した酸素還元電流値は、電極触媒層擬製薄葉片を濾紙の側から作用極のPt電極まで透過する酸素が多いほど高まる。そうすると、実施例MEAを擬製した薄葉片では、既存MEAを擬製した薄葉片に比して、ガス透過性において優れていると言える。しかも、卑な電極電位の領域は、ガス供給が律速となる高発電領域と対応することから、実施例MEAを擬製した薄葉片では、既存MEAを擬製した薄葉片に比して、高発電領域においてもガス透過性において優れていると言える。   As shown in FIG. 5, the thin leaf pieces that were made by simulating the example MEA improved the oxygen reduction current value by about 1.5 times in the base low electrode potential region as compared with the thin leaf pieces that were made by simulating the existing MEA. doing. The oxygen reduction current value measured as shown in FIG. 4 increases as the amount of oxygen passing through the electrode catalyst layer pseudo-made thin leaf piece from the filter paper side to the Pt electrode of the working electrode increases. Then, it can be said that the thin leaf piece in which the example MEA is forged is superior in gas permeability compared to the thin leaf piece in which the existing MEA is forged. In addition, since the base electrode potential region corresponds to the high power generation region where the gas supply is rate-determining, the thin leaf piece in which the embodiment MEA is forged is compared with the thin leaf piece in which the existing MEA is forged. It can also be said that the gas permeability is excellent.

ガス透過性が相違する実施例MEAを擬製した薄葉片と既存MEAを擬製した薄葉片とでは、ステップS300のガス透過性向上処置に処す・処さないでしか相違しない。よって、本実施例のガス透過性向上処置は、電極触媒層のガス透過性の向上をもたらす処置と言え、次のように説明できる。   The thin leaf piece that is a pseudo-made example MEA having different gas permeability and the thin leaf piece that is a pseudo-made example of the existing MEA are different only in whether or not they are subjected to the gas permeability improvement treatment in step S300. Therefore, it can be said that the gas permeability improvement treatment of this embodiment is a treatment that brings about the improvement of gas permeability of the electrode catalyst layer, and can be explained as follows.

実施例MEAを擬製した薄葉片では、この薄葉片の内部、詳しくは電極触媒層擬製薄葉片の内部に含浸した水は、図3に示すアイオノマーの結晶相の中或いはその周辺に行き渡り、当該箇所にて凍結する。この凍結の際、水は膨張を起こすので、凍結の過程で結晶相における分子の配向を乱し、結晶相を非晶質相と同じような疎とする。そして、凍結した水の解凍・除去後には、結晶相を呈していた密領域において微細な空隙が残るので、アイオノマーのガス透過性が高まったと言える。つまり、アノード52およびカソード53の電極触媒層を構成するアイオノマーの密領域を減少させて、その分、非晶質相を呈する故に疎な疎領域の増大をもたらす。しかも、こうした現象は、非晶質相においても起きることから、非晶質相を呈する故に疎な疎領域にあっても微細な空隙が形成される。これらの結果、ステップS300のガス透過性向上処置に処された実施例MEAを有する燃料電池40では、アノード52およびカソード53の両電極触媒層に含まれるアイオノマー自体の高いガス透過性により、発電性能についてもこれを向上させることができる。そして、本実施例の製造プロセスによれば、高いガス透過性を有するMEA、延いては高い発電性能を有する燃料電池40を、MEA形成済みの状況でのステップS300のガス透過性向上処置により簡便に製造できる。   In the thin leaf piece imitating Example MEA, the water impregnated inside the thin leaf piece, specifically, the inside of the electrode catalyst layer pseudo thin leaf piece, spreads in or around the crystal phase of the ionomer shown in FIG. Freeze at. During this freezing, the water expands, so that the orientation of molecules in the crystalline phase is disturbed during the freezing process, and the crystalline phase becomes sparse like the amorphous phase. And after thawing / removing frozen water, fine voids remain in the dense region where the crystal phase was present, and it can be said that the gas permeability of the ionomer has increased. In other words, the ionomer dense regions constituting the electrode catalyst layers of the anode 52 and the cathode 53 are reduced, and the sparse region increases due to the amorphous phase. Moreover, since such a phenomenon also occurs in the amorphous phase, fine voids are formed even in a sparse and sparse region because of the amorphous phase. As a result, in the fuel cell 40 having the embodiment MEA that has been subjected to the gas permeability improvement treatment in step S300, the power generation performance is improved due to the high gas permeability of the ionomer itself contained in both the electrode catalyst layers of the anode 52 and the cathode 53. This can also be improved. Then, according to the manufacturing process of the present embodiment, the MEA having high gas permeability, and hence the fuel cell 40 having high power generation performance can be simplified by the gas permeability improvement treatment in step S300 in the state where the MEA has been formed. Can be manufactured.

次に、他の実施例について説明する。この第2実施例では、ステップS300のガス透過性向上処置において、MEAを構成するアノード52とカソード53の電極触媒層をアイオノマーの溶解を来す溶媒を含むガスに晒す点に特徴がある。図6は第2実施例におけるガス透過性向上処置の様子を概略的に示す説明図である。   Next, another embodiment will be described. This second embodiment is characterized in that the electrode catalyst layers of the anode 52 and the cathode 53 constituting the MEA are exposed to a gas containing a solvent that causes the ionomer to be dissolved in the gas permeability improvement treatment in step S300. FIG. 6 is an explanatory view schematically showing the state of the gas permeability improvement treatment in the second embodiment.

図示するように、ガス透過性向上処置の被処置対象となるMEAともう一つのMEA(次回以降の被処置対象)とを、カソード側ガス拡散層55とアノード側ガス拡散層54(図示略)を接合済みの電池セル50(MEGA)の状態で準備する。つまり、第2実施例では、図2の製造プロセスにおけるステップS300のガス透過性向上処置をステップS500のガス拡散層接合後に行うこととした。   As shown in the drawing, the MEA to be treated for the gas permeability improvement treatment and another MEA (the treatment target for the next and subsequent times) include a cathode side gas diffusion layer 55 and an anode side gas diffusion layer 54 (not shown). Is prepared in the state of the battery cell 50 (MEGA) that has been joined. In other words, in the second embodiment, the gas permeability improvement treatment in step S300 in the manufacturing process of FIG. 2 is performed after the gas diffusion layer bonding in step S500.

次いで、準備した被処置MEAと他のMEAとを、電源とスイッチとを含む回路60に接続する。この際、被処置MEAを含む被処置MEGAのカソード側ガス拡散層55(或いは、アノード側ガス拡散層54)をマイナス電極側に接続し、他のMEAを含むMEGAのガス拡散層については、これを対極側(プラス電極)に接続する。その上で、被処置MEGAのカソード側ガス拡散層55と対極側のMEGAのガス拡散層に、それぞれ以下のガスを80℃で相対湿度100%の状態で供給しつつ、両ガス拡散層に1.0Acm2以下の電流密度で10minに亘って通電する。この場合、被処置MEGAのカソード側ガス拡散層55には、アイオノマーの溶解を来す溶媒であるエタノールを総量で10mg/cm2含む水素ガスが250cc/minの流量で供給され、対極側のMEGAのガス拡散層には、水素ガス或いは不活性ガス(例えば、窒素ガス)が250cc/minの流量で供給される。 Next, the prepared MEA to be treated and another MEA are connected to a circuit 60 including a power source and a switch. At this time, the cathode-side gas diffusion layer 55 (or anode-side gas diffusion layer 54) of the treatment MEGA including the treatment MEA is connected to the negative electrode side, and the MEGA gas diffusion layer including other MEAs is connected to this. Is connected to the counter electrode side (positive electrode). Then, while supplying the following gases to the cathode gas diffusion layer 55 of the MEGA to be treated and the gas diffusion layer of the MEGA on the counter electrode side at 80 ° C. and a relative humidity of 100%, both gas diffusion layers 1 Current is supplied for 10 min at a current density of 0.0 Acm 2 or less. In this case, the gas diffusion layer 55 of the MEGA to be treated is supplied with hydrogen gas containing 10 mg / cm 2 in total of ethanol, which is a solvent for dissolving the ionomer, at a flow rate of 250 cc / min. The gas diffusion layer is supplied with hydrogen gas or inert gas (for example, nitrogen gas) at a flow rate of 250 cc / min.

こうしたガス供給下での通電を受け、被処置MEGAでは、そのカソード側ガス拡散層55を経てMEAの電極触媒層であるカソード53がエタノール含有の水素ガスに晒され、エタノールはカソード層内に導かれる。この現象は次のように説明できる。被処置MEGAでは、水素ガスに含まれるエタノールがカソード側ガス拡散層55を経由して電極触媒層であるカソード53のアイオノマーに導かれて層内に拡散するとはいえ、こうしたエタノールの拡散は電解質膜51の側まで進まないと予想される。ところが、回路60のスイッチが閉状態とされて電源からカソード側ガス拡散層55に電子が流れ込むと、この電子によりカソード側ガス拡散層55の側ではエタノールおよび水素の分解消費が起こり、エタノールの濃度に差が生じる。このように濃度差がある状況下でエタノール含有の水素ガスの供給が続くので、上記した通電の間においては、濃度差を解消するようカソード53におけるアイオノマーでのエタノールの拡散が起きることから、エタノールは電解質膜51の側まで拡散することになる。   In the MEGA to be treated under such a gas supply, the cathode 53, which is the MEA electrode catalyst layer, is exposed to ethanol-containing hydrogen gas through the cathode-side gas diffusion layer 55, and the ethanol is introduced into the cathode layer. It is burned. This phenomenon can be explained as follows. In the MEGA to be treated, ethanol contained in the hydrogen gas is led to the ionomer of the cathode 53 as the electrode catalyst layer via the cathode side gas diffusion layer 55 and diffuses into the layer. It is expected not to go to the 51 side. However, when the switch of the circuit 60 is closed and electrons flow from the power source into the cathode side gas diffusion layer 55, ethanol and hydrogen are decomposed and consumed on the cathode side gas diffusion layer 55 side by the electrons, and the concentration of ethanol is increased. There will be a difference. Since the supply of ethanol-containing hydrogen gas continues in such a situation where there is a difference in concentration, ethanol diffusion in the ionomer at the cathode 53 occurs during the above energization so as to eliminate the concentration difference. Will diffuse to the electrolyte membrane 51 side.

エタノールは、アイオノマーの結晶質と親和性を有するので、電極触媒層の層内に拡散したエタノールは、図3に示すアイオノマーの結晶相の中或いその周辺に行き渡る。このため、通電の期間と通電停止後の養生期間において、エタノールは、その行き渡った箇所のアイオノマーを溶解して分子の配向を乱し、結晶相を非晶質相と同じような疎とする。そして、養生期間経過の後に、被処置MEGAごとその電極触媒層を純水にて水洗して残留エタノールを除去し、乾燥させれば、結晶相を呈していた故に密であったアイオノマーの密領域は疎な状況となるので、カソード53におけるアイオノマーのガス透過性を高めることができる。つまり、エタノールによるアイオノマーの溶解を図る第2実施例にあっても、アノード52やカソード53の電極触媒層を構成するアイオノマーの密領域を減少させて、その分、非晶質相を呈する故に疎な疎領域の増大をもたらすことになる。しかも、こうした現象は、非晶質相においても起き得ることから、疎領域にあってもその疎な状況が増すので、高い実効性でアイオノマーのガス透過性を高めることができる。そして、こうしたガス透過性の向上は、エタノールによるアイオノマーの溶解とその溶解を起こしたエタノールの除去の結果であることから、エタノールが行き渡った箇所においては、アイオノマーの分子間に微小な隙間ができたことによるとも言える。   Since ethanol has an affinity for the crystalline quality of the ionomer, the ethanol diffused in the electrode catalyst layer spreads in or around the crystalline phase of the ionomer shown in FIG. For this reason, in the energization period and the curing period after the energization is stopped, ethanol dissolves the ionomer at the site where the energization has occurred, disturbs the orientation of the molecules, and makes the crystal phase sparse like the amorphous phase. Then, after the curing period, the electrocatalyst layer together with the treated MEGA is washed with pure water to remove residual ethanol, and if dried, a dense region of ionomer that was dense because it exhibited a crystalline phase Therefore, the ionomer gas permeability at the cathode 53 can be increased. In other words, even in the second embodiment in which the ionomer is dissolved by ethanol, the dense region of the ionomer constituting the electrode catalyst layer of the anode 52 and the cathode 53 is reduced, and the amorphous phase is generated accordingly. Will lead to an increase in sparse areas. Moreover, since such a phenomenon can occur even in an amorphous phase, the sparse state increases even in a sparse region, so that the gas permeability of the ionomer can be enhanced with high effectiveness. And this improvement in gas permeability is the result of the dissolution of the ionomer with ethanol and the removal of the ethanol that caused the dissolution, so there were minute gaps between the ionomer molecules where ethanol spread. It can be said that it depends.

この場合、カソード側ガス拡散層55を回路60に接続して上記したガス供給と通電および養生の後、同じ被処置MEGAにおけるアノード側ガス拡散層54を回路60に接続して上記したガス供給と通電および養生を行うことで、同じ被処置MEGAのアノード側とカソード側の両電極触媒層におけるアイオノマーのガス透過性を向上させることができる。また、エタノールによるアイオノマー溶解を介した上記したガス透過性向上処置を既に受けた被処置MEGAを回路60から取り除き、新たな被処置MEGAを回路60に接続して、上記したガス供給と通電を行えば、ガス透過性の向上した電極触媒層を有するMEGAを順次、作製できる。   In this case, the cathode side gas diffusion layer 55 is connected to the circuit 60 and the gas supply and energization and curing described above are followed by the anode side gas diffusion layer 54 in the same MEGA to be treated connected to the circuit 60 and the gas supply and the gas supply layer. By performing energization and curing, the gas permeability of the ionomer in both the anode-side and cathode-side electrode catalyst layers of the same MEGA to be treated can be improved. In addition, the MEGA that has already undergone the above-described gas permeability improvement treatment through ionomer dissolution with ethanol is removed from the circuit 60, and a new MEGA to be treated is connected to the circuit 60 to supply and energize the gas. For example, MEGAs having electrode catalyst layers with improved gas permeability can be sequentially produced.

次に、上記した第2実施例のガス透過性向上処置で得られる効果について説明する。評価判定として、小角X線を照射してその反射強度から結晶構造を解析するX線解析を行った。このX線解析に当たっては、既述した図2のステップS120で調合した触媒インクにて形成した電極触媒層であるアノード52、カソード53を有するMEAを作製し(ステップS200)、このMEAからMEGA(電池セル50)を作製する(ステップS400〜500)。その作製したMEGAについて、これを、エタノールによるアイオノマー溶解を経た上記のガス透過性向上処置に処す前と、当該処置に処した後とにおいて、X線解析を行った。上記のガス透過性向上処置に処す前のMEGAは、既存のMEGAに相当し、上記のガス透過性向上処置に処したMEGAは、本実施例のMEGAとなる。図7は第2実施例のガス透過性向上処置に処した実施例の膜−電極−拡散層接合体(MEGA)とガス透過性向上処置が未実施の比較例MEGA(既存MEGA)とについてのX線照射角度とその反射強度との関係を示すグラフである。   Next, the effect obtained by the gas permeability improvement treatment of the second embodiment will be described. As an evaluation judgment, X-ray analysis was performed to analyze the crystal structure from the reflection intensity by irradiating small angle X-rays. In this X-ray analysis, an MEA having an anode 52 and a cathode 53, which are electrode catalyst layers formed of the catalyst ink prepared in step S120 of FIG. 2 described above, is produced (step S200). The battery cell 50) is produced (steps S400 to S500). The produced MEGA was subjected to X-ray analysis before and after being subjected to the above-described gas permeability improvement treatment through ionomer dissolution with ethanol. The MEGA before being subjected to the gas permeability improvement treatment corresponds to an existing MEGA, and the MEGA subjected to the gas permeability improvement treatment is the MEGA of the present embodiment. FIG. 7 shows the membrane-electrode-diffusion layer assembly (MEGA) of the example subjected to the gas permeability improvement treatment of the second example and the comparative example MEGA (existing MEGA) in which the gas permeability improvement treatment is not implemented. It is a graph which shows the relationship between an X-ray irradiation angle and its reflection intensity.

図7に示すように、ガス透過性向上処置が未実施の既存MEGAでは、アイオノマーの結晶相に対応した照射角度において顕著な反射強度が観察されるのに対し、実施例MEGAでは、上記の照射角度前後において、反射強度が大きく低下している。この図7のX線解析結果から、エタノールによるアイオノマー溶解を起こすガス透過性向上処置に処すことで、電極触媒層を構成するアイオノマーの結晶相を非晶質相と同じような疎として密領域を減少させることができると言える。   As shown in FIG. 7, in the existing MEGA that has not been subjected to the gas permeability improvement treatment, a remarkable reflection intensity is observed at an irradiation angle corresponding to the crystal phase of the ionomer, whereas in the example MEGA, the above-described irradiation is performed. The reflection intensity greatly decreases before and after the angle. From the X-ray analysis result of FIG. 7, the ionomer crystalline phase constituting the electrode catalyst layer is made sparse as in the amorphous phase by subjecting it to gas permeability improvement treatment that causes ionomer dissolution by ethanol. It can be said that it can be reduced.

次に、この第2実施例のMEGAとしての電池セル50の性能向上について説明する。図8は第2実施例のガス透過性向上処置に処した実施例MEGAとガス透過性向上処置が未実施の比較例MEGA(既存MEGA)とについての電流とセル電圧およびセル抵抗の関係を示すグラフである。セル電圧とセル抵抗の測定に当たっては、図1に示す電池セル50の構成とした上で、アノード52には272cc/minの流量で水素ガスを、カソード53には866cc/minの流量で空気を供給して発電を行い、その発電の際にセル電圧とセル抵抗を測定した。なお、ガス供給は、共に80℃で相対湿度100%の状態で行った。   Next, the performance improvement of the battery cell 50 as MEGA of this 2nd Example is demonstrated. FIG. 8 shows the relationship between the current, cell voltage, and cell resistance of Example MEGA subjected to the gas permeability improvement treatment of the second example and Comparative Example MEGA (existing MEGA) not subjected to the gas permeability improvement treatment. It is a graph. In measuring the cell voltage and cell resistance, the battery cell 50 shown in FIG. 1 is used, and the anode 52 is supplied with hydrogen gas at a flow rate of 272 cc / min, and the cathode 53 is supplied with air at a flow rate of 866 cc / min. Power was supplied to generate power, and the cell voltage and cell resistance were measured during the power generation. The gas supply was performed at 80 ° C. and a relative humidity of 100%.

図8に示すように、エタノールによるアイオノマー溶解を起こすガス透過性向上処置に処した実施例MEGAでは、セル電圧およびセル抵抗が向上した。これは、既述したようにアノード52とカソード53の電極触媒層におけるガス透過性の向上により、電気化学反応が活性化したことによると言える。そして、エタノールによるアイオノマー溶解を起こす第2実施例のガス透過性向上処置によっても、既述した実施例と同様の効果を奏することができる。特に、この第2実施例では、エタノール含有の水素ガスにアノード52とカソード53の電極触媒層に晒すので、エタノール溶液にMEA或いはMEGAを浸漬させる手法に比べ、次の利点がある。エタノール溶液に浸漬させる手法では、電解質膜51を構成する電解質高分子樹脂についてまで、これをエタノールにより溶解させることが危惧されるが、エタノール含有の水素ガスに電極触媒層に晒す第2実施例の手法では、電解質膜51を構成する電解質高分子樹脂をエタノールにより溶解させてしまうことを防止できる。   As shown in FIG. 8, the cell voltage and the cell resistance were improved in Example MEGA subjected to the gas permeability improvement treatment that caused the ionomer dissolution with ethanol. It can be said that this is because the electrochemical reaction is activated by improving the gas permeability in the electrode catalyst layers of the anode 52 and the cathode 53 as described above. The same effects as those of the above-described embodiments can be obtained by the gas permeability improvement treatment of the second embodiment that causes ionomer dissolution by ethanol. In particular, in the second embodiment, since the electrode catalyst layer of the anode 52 and the cathode 53 is exposed to ethanol-containing hydrogen gas, there are the following advantages compared with the method in which MEA or MEGA is immersed in an ethanol solution. In the method of immersing in an ethanol solution, it is feared that the electrolyte polymer resin constituting the electrolyte membrane 51 is dissolved by ethanol, but the method of the second embodiment in which the electrode catalyst layer is exposed to ethanol-containing hydrogen gas. Then, it is possible to prevent the electrolyte polymer resin constituting the electrolyte membrane 51 from being dissolved by ethanol.

次に、第3実施例について説明する。この第3実施例では、ステップS300のガス透過性向上処置において、MEAを構成するアノード52とカソード53の電極触媒層をアイオノマーの結晶相をイオンにて解く点に特徴がある。図9は第3実施例における化学式1で表されるフッ素系アイオノマー(パーフルオロスルホン酸樹脂)のフッ素を種々のイオンに置換した場合のガラス転移温度と誘電正接との関係を示すグラフである。なお、図9は、Macromolecules 2000,33,6031に基づくグラフである。   Next, a third embodiment will be described. The third embodiment is characterized in that the ionomer crystal phase is solved by ions in the electrode catalyst layers of the anode 52 and the cathode 53 constituting the MEA in the gas permeability improvement treatment in step S300. FIG. 9 is a graph showing the relationship between the glass transition temperature and the dielectric loss tangent when fluorine of the fluorine ionomer (perfluorosulfonic acid resin) represented by Chemical Formula 1 in the third example is substituted with various ions. FIG. 9 is a graph based on Macromolecules 2000, 33, 6031.

図示する種々のイオンを置換すると、そのイオンに基づく誘電正接のピーク値は、低温度に推移する。図9の横軸は、アイオノマーのガラス転移温度であることから、置換イオン種によりアイオノマーのガラス転移温度を低温側に推移させることができる。その一方、アイオノマーの結晶相が解かれて溶液状態となってアイオノマーが疎となれば、結晶相が低減することによりアイオノマーのガラス転移温度は低下する。よって、アイオノマーのガラス転移温度を低温側に推移させるイオンを、例えばイオン交換法にて置換すれば、アイオノマーの結晶相を置換済みイオンにて解いてアイオノマーの結晶相を疎とできる。この性質を利用して、第3実施例では、アイオノマーのガラス転移温度の低温化が可能なイオンを、MEAを構成する電極触媒層のアイオノマーに置換させる手法(イオン交換法)を採用した。   When the various ions shown in the figure are replaced, the peak value of the dielectric loss tangent based on the ions changes to a low temperature. Since the horizontal axis of FIG. 9 is the glass transition temperature of the ionomer, the glass transition temperature of the ionomer can be shifted to the low temperature side by the substituted ion species. On the other hand, when the crystalline phase of the ionomer is dissolved and the ionomer becomes sparse, the glass transition temperature of the ionomer decreases due to the reduction of the crystalline phase. Therefore, if ions that cause the glass transition temperature of the ionomer to transition to a low temperature side are replaced by, for example, an ion exchange method, the ionomer crystal phase can be solved by the substituted ions to loosen the ionomer crystal phase. Utilizing this property, the third embodiment employs a technique (ion exchange method) in which ions capable of lowering the glass transition temperature of the ionomer are replaced with ionomers in the electrode catalyst layer constituting the MEA.

この第3実施例では、図2のステップS300において、MEAを、例えばテトラブチルアンモニウムイオン(TBA+)を含む溶液に浸漬して、或いは当該溶液を噴霧等の手法でアノード52やカソード53の電極触媒層に付着させる。溶液に含まれるテトラブチルアンモニウムイオンは、アイオノマーの結晶質と親和性を有するので、アイオノマーの結晶相の中或いその周辺に行き渡り、アイオノマーのフッ素と置換する。こうしたイオン交換法にて置換されたテトラブチルアンモニウムイオンは、後述するようにその除去がなされるまでの間において、置換箇所であるアイオノマーの結晶相を解いて溶液状態として、その結晶相を非晶質相と同じような疎とし、アイオノマーのガラス転移温度を図9に示すように低下させる。そして、イオン置換後の養生期間の経過後に、塩酸等の酸溶液へのMEAの浸漬、純水によるMEAの洗浄、およびその後の乾燥を行う。これにより、テトラブチルアンモニウムイオンは、MEAの電極触媒層から除去される。 In the third embodiment, in step S300 in FIG. 2, the MEA is immersed in a solution containing, for example, tetrabutylammonium ion (TBA + ), or the electrode of the anode 52 or the cathode 53 is sprayed or the like. Adhere to the catalyst layer. Since the tetrabutylammonium ion contained in the solution has an affinity for the crystalline quality of the ionomer, it spreads in or around the crystalline phase of the ionomer and is replaced with the fluorine of the ionomer. The tetrabutylammonium ion substituted by such an ion exchange method is in a solution state by dissolving the crystalline phase of the ionomer, which is the substitution site, until it is removed as described later. The sparseness is the same as the mass phase, and the glass transition temperature of the ionomer is lowered as shown in FIG. And after progress of the curing period after ion substitution, MEA is immersed in an acid solution such as hydrochloric acid, MEA is washed with pure water, and then dried. Thereby, tetrabutylammonium ions are removed from the electrode catalyst layer of MEA.

こうしたテトラブチルアンモニウムイオンの置換を経たMEAでは、上記したようなテトラブチルアンモニウムイオンによりアイオノマーの結晶相が解かれたものとなるので、結晶相を呈していた故に密であった密領域は疎な状況となり、アイオノマーのガス透過性が高まる。つまり、テトラブチルアンモニウムイオンによりアイオノマーの結晶相を解いて溶液状態とする第3実施例にあっても、アノード52やカソード53の電極触媒層を構成するアイオノマーの密領域を減少させて、その分、非晶質相を呈する故に疎な疎領域の増大をもたらすことになる。そして、こうしたガス透過性の向上は、テトラブチルアンモニウムイオンがアイオノマーの結晶相を解いて溶液状態としたこととその溶液状態とした起こしたテトラブチルアンモニウムイオンの除去の結果であることから、テトラブチルアンモニウムイオンが置換された箇所においては、アイオノマーの分子が解かれて微小な隙間ができたことによるとも言える。   In the MEA that has undergone such substitution of tetrabutylammonium ions, the ionomer crystal phase has been solved by the tetrabutylammonium ions as described above, and thus the dense region that was dense because it exhibited the crystal phase is sparse. Situation increases and ionomer gas permeability increases. That is, even in the third embodiment in which the ionomer crystal phase is released with tetrabutylammonium ions to form a solution state, the ionomer dense regions constituting the electrode catalyst layers of the anode 52 and the cathode 53 are reduced, and accordingly, In this case, since the amorphous phase is exhibited, the sparse region increases. And this improvement in gas permeability is the result of the removal of tetrabutylammonium ions caused by the tetrabutylammonium ions dissolving the ionomer crystal phase into a solution state and the resulting solution. It can also be said that the ionomer molecule was dissolved at the place where the ammonium ion was replaced, and a minute gap was formed.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、上記の実施例では、アノード52とカソード53の両電極触媒層において、当該触媒層を構成するアイオノマーのガス透過性の向上を図ったが、いずれか一方の電極触媒層についてガス透過性向上処置を行うようにすることもできる。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, in the above embodiment, in both the electrode catalyst layers of the anode 52 and the cathode 53, the gas permeability of the ionomer constituting the catalyst layer is improved, but the gas permeability of either one of the electrode catalyst layers is improved. Treatment can also be performed.

また、第2実施例におけるガス透過性向上処置では、水素ガスに含有させたエタノールにてアイオノマーの溶解を図ったが、エタノール以外の溶媒を用いることもできる。アイオノマーの結晶相との親和性が高くない溶媒を用いることもでき、その溶媒によれば、非晶質相についてもより疎としてガス透過性の向上が可能となる。この他、第2実施例では、MEAの状態でエタノールによるアイオノマーの溶解を図ることもできる。この場合には、図6に示す回路60の両側電極を、カソード側ガス拡散層55のようにガス透過性と導電性を有する平板状電極とし、当該電極にMEAを接合すればよい。   Moreover, in the gas permeability improvement treatment in the second embodiment, the ionomer is dissolved with ethanol contained in hydrogen gas, but a solvent other than ethanol can also be used. A solvent that does not have high affinity with the crystalline phase of the ionomer can also be used. According to the solvent, the amorphous phase can be made more sparse and gas permeability can be improved. In addition, in the second embodiment, the ionomer can be dissolved by ethanol in the state of MEA. In this case, both side electrodes of the circuit 60 shown in FIG. 6 may be plate-like electrodes having gas permeability and conductivity like the cathode side gas diffusion layer 55, and the MEA may be joined to the electrodes.

また、MEA或いはMEGAをガス透過性向上処置に処するようにしたが、アイオノマーを触媒担持担体と共に含む触媒インクの調合の際に、アイオノマーの結晶相を解くような手法も可能である。   In addition, although MEA or MEGA is subjected to a gas permeability improvement treatment, a method of solving the crystal phase of the ionomer when preparing a catalyst ink containing the ionomer together with the catalyst support is also possible.

40…燃料電池
41…セパレーター
42…セル内水素ガス流路
43…セル内エアー流路
50…電池セル(MEA)
51…電解質膜
52…アノード
53…カソード
54…アノード側ガス拡散層
55…カソード側ガス拡散層
60…回路
DESCRIPTION OF SYMBOLS 40 ... Fuel cell 41 ... Separator 42 ... In-cell hydrogen gas flow path 43 ... In-cell air flow path 50 ... Battery cell (MEA)
DESCRIPTION OF SYMBOLS 51 ... Electrolyte membrane 52 ... Anode 53 ... Cathode 54 ... Anode side gas diffusion layer 55 ... Cathode side gas diffusion layer 60 ... Circuit

Claims (6)

プロトン伝導性を有する電解質膜の膜面に電極触媒層を接合した膜電極接合体の製造方法であって、
触媒を担持した導電性の触媒担体とプロトン伝導性を有するアイオノマーとを含む触媒インクを用いた前記電極触媒層を前記電解質膜の膜面に形成するに当たり、前記電極触媒層において前記アイオノマーの分子の配向が揃うことで前記アイオノマーが結晶相を呈し、密となる密領域を減少させる密減少工程を実行する
膜電極接合体の製造方法。
A method for producing a membrane electrode assembly in which an electrode catalyst layer is joined to a membrane surface of an electrolyte membrane having proton conductivity,
In forming the electrode catalyst layer on the membrane surface of the electrolyte membrane using a catalyst ink including a conductive catalyst carrier carrying a catalyst and an ionomer having proton conductivity, the ionomer molecules in the electrode catalyst layer are formed. A method for producing a membrane electrode assembly, wherein a density reduction step is performed in which the ionomer exhibits a crystal phase and the density of dense regions is reduced by aligning the orientation.
前記密減少工程は、前記触媒インクを用いて前記電解質膜の膜面に前記電極触媒層を形成済みの状況で実行される請求項1に記載の膜電極接合体の製造方法。   The method for producing a membrane electrode assembly according to claim 1, wherein the density reduction step is executed in a state where the electrode catalyst layer is already formed on the membrane surface of the electrolyte membrane using the catalyst ink. 請求項2に記載の膜電極接合体の製造方法であって、
前記密減少工程は、
前記電解質膜の膜面に形成済みの前記電極触媒層の層内部に水を含浸させる工程と、
該含浸した水を凍結させる工程と、
前記凍結した水を解凍して乾燥除去する工程とを含む膜電極接合体の製造方法。
It is a manufacturing method of the membrane electrode assembly according to claim 2,
The density reduction step includes:
Impregnating water inside the electrode catalyst layer formed on the membrane surface of the electrolyte membrane; and
Freezing the impregnated water;
A method for producing a membrane electrode assembly, comprising the step of thawing the frozen water and removing it by drying.
請求項2に記載の膜電極接合体の製造方法であって、
前記密減少工程は、
前記電解質膜の膜面に形成済みの前記電極触媒層を、前記アイオノマーの溶解を来す溶媒を含むガスに晒して、該ガスに含まれる前記溶媒を前記電極触媒層の層内部に導く工程と、
前記導いた溶媒を除去する工程とを含む膜電極接合体の製造方法。
It is a manufacturing method of the membrane electrode assembly according to claim 2,
The density reduction step includes:
Exposing the electrode catalyst layer formed on the membrane surface of the electrolyte membrane to a gas containing a solvent that causes dissolution of the ionomer, and introducing the solvent contained in the gas into the electrode catalyst layer; ,
A method for producing a membrane electrode assembly, comprising the step of removing the introduced solvent.
請求項2に記載の膜電極接合体の製造方法であって、
前記密減少工程は、
前記電解質膜の膜面に形成済みの前記電極触媒層の層内部に、前記アイオノマーの前記結晶相を解くイオンを含む溶液を含浸させる工程と、
該含浸した溶液を前記イオンと共に除去する工程とを含む膜電極接合体の製造方法。
It is a manufacturing method of the membrane electrode assembly according to claim 2,
The density reduction step includes:
Impregnating the electrode catalyst layer already formed on the membrane surface of the electrolyte membrane with a solution containing ions that dissolve the crystalline phase of the ionomer;
And a step of removing the impregnated solution together with the ions.
プロトン伝導性を有する電解質膜の膜面に電極触媒層を接合した膜電極接合体を備える燃料電池の製造方法であって、
前記膜電極接合体を準備する工程と、
該準備した膜電極接合体を、ガス透過性と導電性を有するガス拡散部材で挟持する工程とを含み、
前記膜電極接合体は、
触媒を担持した導電性の触媒担体とプロトン伝導性を有するアイオノマーとを含む触媒インクを用いた前記電極触媒層を前記電解質膜の膜面に形成するに当たり、前記電極触媒層において前記アイオノマーの分子の配向が揃うことで前記アイオノマーが結晶相を呈し、密となる密領域を減少させる密減少工程を受けている
燃料電池の製造方法。
A method for producing a fuel cell comprising a membrane electrode assembly in which an electrode catalyst layer is joined to a membrane surface of an electrolyte membrane having proton conductivity,
Preparing the membrane electrode assembly;
A step of sandwiching the prepared membrane electrode assembly with a gas diffusion member having gas permeability and conductivity,
The membrane electrode assembly is
In forming the electrode catalyst layer on the membrane surface of the electrolyte membrane using a catalyst ink including a conductive catalyst carrier carrying a catalyst and an ionomer having proton conductivity, the ionomer molecules in the electrode catalyst layer are formed. A method of manufacturing a fuel cell, wherein the ionomer exhibits a crystal phase by aligning the orientation, and is subjected to a density reduction step of reducing a dense area where the ionomer becomes dense.
JP2011186921A 2011-08-30 2011-08-30 Membrane electrode assembly manufacturing method Withdrawn JP2013051047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186921A JP2013051047A (en) 2011-08-30 2011-08-30 Membrane electrode assembly manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186921A JP2013051047A (en) 2011-08-30 2011-08-30 Membrane electrode assembly manufacturing method

Publications (1)

Publication Number Publication Date
JP2013051047A true JP2013051047A (en) 2013-03-14

Family

ID=48012956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186921A Withdrawn JP2013051047A (en) 2011-08-30 2011-08-30 Membrane electrode assembly manufacturing method

Country Status (1)

Country Link
JP (1) JP2013051047A (en)

Similar Documents

Publication Publication Date Title
Yang et al. A novel approach to fabricate membrane electrode assembly by directly coating the Nafion ionomer on catalyst layers for proton-exchange membrane fuel cells
Chi et al. Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer
EP2164122B1 (en) Membrane electrode assembly and process for producing membrane electrode assembly
Alaefour et al. The role of flow-field layout on the conditioning of a proton exchange membrane fuel cell
Wang et al. Degradation study of Membrane Electrode Assembly with PTFE/Nafion composite membrane utilizing accelerated stress technique
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2011238485A (en) Electrode for fuel cell, manufacturing method thereof, and fuel cell
JP2005025974A (en) High polymer fuel cell and its manufacturing method
Lee et al. Dual exchange membrane fuel cell with sequentially aligned cation and anion exchange membranes for non-humidified operation
JP6819688B2 (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly manufactured from now on, and fuel cell containing this
JP2007128665A (en) Electrode catalyst layer for fuel cell, and manufacturing method of membrane-electrode assembly using it
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
JP5870643B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
Scott Membrane electrode assemblies for polymer electrolyte membrane fuel cells
JP2020057516A (en) Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell
Wuttikid et al. Analysis of catalyst ink compositions for fabricating membrane electrode assemblies in PEM fuel cells
US12009525B2 (en) Coaxial nanowire electrode
Choi et al. Optimization of hydrophobic additives content in microporous layer for air breathing PEMFC
JP2007115637A (en) Noble metal catalyst for fuel cell, electrode catalyst for fuel cell, manufacturing method of electrode catalyst for fuel cell, and membrane electrode assembly for fuel cell
JP5057798B2 (en) Fuel cell electrode and fuel cell
KR100705553B1 (en) Process for forming catalyst layers on a proton exchange membrane within membrane electrode assembly for fuel cell
JP2013051047A (en) Membrane electrode assembly manufacturing method
Gagliardi et al. An efficient composite membrane to improve the performance of PEM reversible fuel cells
JP4062133B2 (en) Method for producing gas diffusion layer of membrane-electrode assembly, membrane-electrode assembly, and fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104