JP2013050640A - Temperature controller - Google Patents

Temperature controller Download PDF

Info

Publication number
JP2013050640A
JP2013050640A JP2011189442A JP2011189442A JP2013050640A JP 2013050640 A JP2013050640 A JP 2013050640A JP 2011189442 A JP2011189442 A JP 2011189442A JP 2011189442 A JP2011189442 A JP 2011189442A JP 2013050640 A JP2013050640 A JP 2013050640A
Authority
JP
Japan
Prior art keywords
temperature
housing
casing
optical element
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011189442A
Other languages
Japanese (ja)
Other versions
JP5811702B2 (en
Inventor
Kazuya Inoue
和哉 井上
Mamoru Hisamitsu
守 久光
Kazutomo Kadokura
一智 門倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2011189442A priority Critical patent/JP5811702B2/en
Publication of JP2013050640A publication Critical patent/JP2013050640A/en
Application granted granted Critical
Publication of JP5811702B2 publication Critical patent/JP5811702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Control Of Temperature (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature controller capable of accurately controlling temperature in the center part of an optical element.SOLUTION: A temperature controller for an optical element having a first main surface and a second main surface opposing to the first main surface includes: a first housing having contact with the first main surface with a fixed contact thermal resistance; a second housing having contact with the second main surface with a fixed contact thermal resistance in an area equal to a contact area between the first housing and the first main surface; a temperature adjustment element for adjusting the temperature of the first housing; a first temperature measurement element for measuring the temperature of the first housing; a second temperature measurement element for measuring the temperature of the second housing; and a controller for defining an average value between the measured temperature of the first housing measured by the first temperature measurement element and the measured temperature of the second housing measured by the second temperature measurement element as the temperature of the optical element, and controlling the temperature adjustment element to adjust the temperature of the first housing thereby to allow the average value to be a predetermined setting value.

Description

本発明は、光学素子の温度を制御する温度制御装置に関する。   The present invention relates to a temperature control device that controls the temperature of an optical element.

波長変換素子などの光学素子の温度を制御する方法として、熱電素子などを光学素子に接触させる方法が採られている。例えば、光学素子を熱伝導率の良い筐体で挟んで固定し、熱電素子によって一方の筐体の温度を制御することによって、光学素子の温度を制御する方法が提案されている(例えば、特許文献1参照。)。   As a method of controlling the temperature of an optical element such as a wavelength conversion element, a method of bringing a thermoelectric element or the like into contact with the optical element is employed. For example, a method for controlling the temperature of an optical element by fixing the optical element by sandwiching it with a casing having good thermal conductivity and controlling the temperature of one casing by a thermoelectric element has been proposed (for example, patents). Reference 1).

特開2001−305592号公報JP 2001-305592 A

しかしながら、上記方法は一方の筐体の温度をモニタしているにすぎず、周囲の環境温度などによっては光学素子の下面の温度と上面の温度に大きなズレが生じるおそれがある。これは、一方の筐体の温度をモニタするだけでは、対流などの影響を考慮することが困難であり、光学素子の中心温度を精度よく制御することができないためである。光学素子の一方の面のみの温度をモニタした場合に生じるモニタ温度と光学素子の実際の温度とのズレは、光学素子の特性に大きな影響を及ぼす。   However, the above method only monitors the temperature of one casing, and there is a possibility that a large deviation occurs between the temperature of the lower surface of the optical element and the temperature of the upper surface depending on the ambient environmental temperature. This is because it is difficult to consider the effects of convection and the like, and the center temperature of the optical element cannot be controlled with high accuracy by simply monitoring the temperature of one casing. The deviation between the monitoring temperature and the actual temperature of the optical element that occurs when the temperature of only one surface of the optical element is monitored greatly affects the characteristics of the optical element.

上記問題点に鑑み、本発明は、光学素子の中心部分の温度を精度よく制御できる温度制御装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a temperature control device that can accurately control the temperature of the central portion of an optical element.

本発明の一態様によれば、第1の主面及び第1の主面と対向する第2の主面を有する光学素子の温度制御装置であって、(イ)第1の主面に一定の接触熱抵抗で接する第1の筐体と、(ロ)第1の筐体と第1の主面とが接する面積と等しい面積で、第2の主面に一定の接触熱抵抗で接する第2の筐体と、(ハ)第1の筐体の温度を調整する温度調整素子と、(ニ)第1の筐体の温度を測定する第1の温度測定素子と、(ホ)第2の筐体の温度を測定する第2の温度測定素子と、(ヘ)第1の温度測定素子により測定された第1の筐体の測定温度と第2の温度測定素子により測定された第2の筐体の測定温度との平均値を光学素子の温度として、平均値が予め設定された設定値であるように温度調整素子を制御して第1の筐体の温度を調整させる制御装置とを備える温度制御装置が提供される。   According to one aspect of the present invention, there is provided a temperature control device for an optical element having a first main surface and a second main surface opposite to the first main surface, and (a) constant on the first main surface. A first casing that contacts with the first main surface, and (b) an area that is equal to an area where the first casing and the first main surface are in contact with each other and is in contact with the second main surface with a constant contact thermal resistance. 2) (c) a temperature adjusting element that adjusts the temperature of the first casing; (d) a first temperature measuring element that measures the temperature of the first casing; and (e) a second. A second temperature measuring element that measures the temperature of the first housing, and (f) a measured temperature of the first casing measured by the first temperature measuring element and a second measured by the second temperature measuring element. The temperature of the first housing is adjusted by controlling the temperature adjustment element so that the average value of the measured temperature of the housing is the temperature of the optical element and the average value is a preset value. Temperature control device and a control device is provided.

本発明によれば、光学素子の中心部分の温度を精度よく制御できる温度制御装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the temperature control apparatus which can control the temperature of the center part of an optical element accurately can be provided.

本発明の実施形態に係る温度制御装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the temperature control apparatus which concerns on embodiment of this invention. 環境温度と第1の筐体の温度差と、第1の筐体と第2の筐体の温度差との関係を示すグラフである。It is a graph which shows the relationship between environmental temperature, the temperature difference of a 1st housing | casing, and the temperature difference of a 1st housing | casing and a 2nd housing | casing. 第1の筐体と第2の筐体の温度差を説明するためのモデルを示す模式図である。It is a schematic diagram which shows the model for demonstrating the temperature difference of a 1st housing | casing and a 2nd housing | casing. 光学素子のSHG光出力の温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the SHG light output of an optical element. 本発明の実施形態の変形例に係る温度制御装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the temperature control apparatus which concerns on the modification of embodiment of this invention.

図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係等は現実のものとは異なることに留意すべきである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions is different from the actual one. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。この発明の実施形態は、特許請求の範囲において、種々の変更を加えることができる。   Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the material, shape, structure, arrangement, etc. of components. Is not specified as follows. The embodiment of the present invention can be variously modified within the scope of the claims.

本発明の実施形態に係る光学素子の温度制御装置10は、第1の主面101及び第1の主面101と対向する第2の主面102を有する光学素子100の温度制御装置である。図1に示すように、温度制御装置10は、光学素子100の第1の主面101に接する第1の筐体11と、光学素子100の第2の主面102に接する第2の筐体12と、第1の筐体11の温度を調整する温度調整素子13と、第1の筐体11の温度を測定する第1の温度測定素子14と、第2の筐体12の温度を測定する第2の温度測定素子15と、温度調整素子13を制御する制御装置16とを備える。制御装置16は、第1の温度測定素子14により測定された第1の筐体11の測定温度と第2の温度測定素子15により測定された第2の筐体12の測定温度との平均値を光学素子100の温度として、この平均値が予め設定された設定値であるように温度調整素子13を制御して第1の筐体11の温度を調整させる。この設定値は、例えば光学素子100の温度特性に応じて最も特性がよい温度などに設定される。光学素子100は、例えば波長変換素子などである。   The temperature control apparatus 10 for an optical element according to an embodiment of the present invention is a temperature control apparatus for an optical element 100 having a first main surface 101 and a second main surface 102 facing the first main surface 101. As shown in FIG. 1, the temperature control device 10 includes a first casing 11 that contacts the first main surface 101 of the optical element 100 and a second casing that contacts the second main surface 102 of the optical element 100. 12, a temperature adjustment element 13 that adjusts the temperature of the first casing 11, a first temperature measurement element 14 that measures the temperature of the first casing 11, and the temperature of the second casing 12. A second temperature measuring element 15 and a control device 16 for controlling the temperature adjusting element 13. The control device 16 determines the average value of the measured temperature of the first casing 11 measured by the first temperature measuring element 14 and the measured temperature of the second casing 12 measured by the second temperature measuring element 15. The temperature of the first casing 11 is adjusted by controlling the temperature adjustment element 13 so that the average value is a preset value. This set value is set to a temperature having the best characteristics according to the temperature characteristics of the optical element 100, for example. The optical element 100 is, for example, a wavelength conversion element.

第1の筐体11は、第1の主面101に一定の接触熱抵抗h1で接する。また、第2の筐体12は、第1の筐体11と第1の主面101とが接する面積と等しい面積で、第2の主面102に一定の接触熱抵抗h2で接する。そして、接触熱抵抗h1と接触熱抵抗h2とが等しいように、光学素子100が第1の筐体11と第2の筐体12とで挟まれて支持される。 The first housing 11 is in contact with the first main surface 101 with a constant contact thermal resistance h 1 . The second housing 12 is in area equal to the area of the first housing 11 and the first major surface 101 is in contact, in contact with a constant contact thermal resistance h 2 to the second major surface 102. The optical element 100 is sandwiched and supported by the first casing 11 and the second casing 12 so that the contact thermal resistance h 1 and the contact thermal resistance h 2 are equal.

第1の筐体11と第2の筐体12は、熱伝導率の高い例えば同一の材料からなる。第1の筐体11と第2の筐体12には、アルミニウム(Al)合金材や黄銅などを採用可能である。   The first casing 11 and the second casing 12 are made of, for example, the same material having a high thermal conductivity. An aluminum (Al) alloy material, brass, or the like can be used for the first housing 11 and the second housing 12.

第1の筐体11の内部又は表面に第1の温度測定素子14が配置され、第1の温度測定素子14によって第1の筐体11の温度が測定される。第1の温度測定素子14によって測定される第1の筐体11の測定温度を、以下において「第1の測定温度TM1」という。同様に、第2の筐体12の内部又は表面に第2の温度測定素子15が配置され、第2の温度測定素子15によって第2の筐体12の温度が測定される。第2の温度測定素子15によって測定される第2の筐体12の測定温度を、以下において「第2の測定温度TM2」という。例えば、第1の筐体11や第2の筐体12に孔をあけてサーミスタを挿入することにより、中心部分の温度を測定できるようにする。 The first temperature measuring element 14 is disposed inside or on the surface of the first casing 11, and the temperature of the first casing 11 is measured by the first temperature measuring element 14. The measured temperature of the first housing 11 measured by the first temperature measuring element 14 is hereinafter referred to as “first measured temperature T M1 ”. Similarly, the second temperature measuring element 15 is disposed inside or on the surface of the second casing 12, and the temperature of the second casing 12 is measured by the second temperature measuring element 15. The measured temperature of the second housing 12 measured by the second temperature measuring element 15 is hereinafter referred to as “second measured temperature T M2 ”. For example, the temperature of the central portion can be measured by making a hole in the first housing 11 or the second housing 12 and inserting a thermistor.

第1の筐体11と第2の筐体12の熱伝導率は高いため、光学素子100の第1の主面101の温度は第1の測定温度TM1に等しく、光学素子100の第2の主面102の温度は第2の測定温度TM2に等しいとみなすことができる。 Since the thermal conductivity of the first casing 11 and the second casing 12 is high, the temperature of the first main surface 101 of the optical element 100 is equal to the first measurement temperature T M1 , and the second of the optical element 100 It can be considered that the temperature of the main surface 102 is equal to the second measured temperature T M2 .

温度調整素子13には、例えばペルチェ素子などの熱電素子を採用可能である。熱電素子を温度調整素子13に使用した場合、図1に示すように、電流コントローラ131によって温度調整素子13に供給される電流ST大きさに応じて、第1の筐体11の温度が調整される。制御装置16は、第1の測定温度TM1と第2の測定温度TM2に基づいて、温度調整素子13に供給される電流STを信号Scによってコントロールし、光学素子100の温度を制御する。 As the temperature adjustment element 13, a thermoelectric element such as a Peltier element can be employed. When using the thermoelectric element to the temperature adjusting element 13, as shown in FIG. 1, according to the current S T magnitude supplied to the temperature regulation element 13 by the current controller 131, the temperature of the first housing 11 is adjusted Is done. Controller 16, the first measured temperature T M1 on the basis of the second measured temperature T M2, controls the current S T supplied to the temperature regulation element 13 by the signal Sc, controls the temperature of the optical element 100 .

温度制御装置10では、第1の筐体11と第2の筐体12を同一材料で形成し、第1の筐体11と第2の筐体12のそれぞれが光学素子100に接触する面積を等しくする。このとき、第1の筐体11と光学素子100の第1の主面101との接触熱抵抗h1と、第2の筐体12と光学素子100の第2の主面102との接触熱抵抗h2とが等しくなるように温度制御装置10を設計することにより、第1の測定温度TM1と第2の測定温度TM2の平均値が光学素子100の膜厚方向の中心部分の温度とみなせる。接触熱抵抗h1と接触熱抵抗h2が等しくなるようにするには、例えば第1の筐体11と第2の筐体12の光学素子100に接する面の面精度と表面粗さを等しくすればよい。 In the temperature control device 10, the first casing 11 and the second casing 12 are formed of the same material, and the area where each of the first casing 11 and the second casing 12 contacts the optical element 100 is determined. Make equal. At this time, the contact thermal resistance h 1 between the first housing 11 and the first main surface 101 of the optical element 100 and the contact heat between the second housing 12 and the second main surface 102 of the optical element 100 are shown. By designing the temperature control device 10 so that the resistance h 2 is equal, the average value of the first measurement temperature T M1 and the second measurement temperature T M2 is the temperature of the central portion of the optical element 100 in the film thickness direction. Can be considered. In order to make the contact thermal resistance h 1 and the contact thermal resistance h 2 equal, for example, the surface accuracy and the surface roughness of the surfaces of the first casing 11 and the second casing 12 that are in contact with the optical element 100 are equal. do it.

第1の筐体11と第2の筐体12のそれぞれが光学素子100に接触する面積を等しくし、且つ、接触熱抵抗h1と接触熱抵抗h2とを等しくすることにより、制御装置16は、第1の測定温度TM1と第2の測定温度TM2との平均値を光学素子100の温度として用いて温度調整素子13を制御し、光学素子100の温度を所望の設定値に調整できる。例えば、第1の測定温度TM1と第2の測定温度TM2との平均値が光学素子100の性能が最もよく発揮される温度になるように、制御装置16は温度調整素子13を制御する。 By making the areas where the first housing 11 and the second housing 12 contact the optical element 100 equal, and making the contact thermal resistance h 1 and the contact thermal resistance h 2 equal, the control device 16 Controls the temperature adjustment element 13 using the average value of the first measurement temperature T M1 and the second measurement temperature T M2 as the temperature of the optical element 100, and adjusts the temperature of the optical element 100 to a desired set value. it can. For example, the control device 16 controls the temperature adjustment element 13 so that the average value of the first measurement temperature T M1 and the second measurement temperature T M2 becomes a temperature at which the performance of the optical element 100 is best exhibited. .

以下に、本発明の実施形態に係る温度制御装置10による光学素子100の温度制御の効果について説明する。   Below, the effect of the temperature control of the optical element 100 by the temperature control apparatus 10 according to the embodiment of the present invention will be described.

図2に示したグラフは、制御装置16による光学素子100の温度制御を行わない場合における、第1の筐体11と第2の筐体12の温度差ΔT12と、第1の筐体11の温度と環境温度Taの温度差ΔT1aとの関係を示す。ここで「環境温度」とは温度測定時の光学素子100及び温度制御装置10の周囲の温度であり、例えば室内空気の温度である。このとき、光学素子100の大きさは長さ15mm、幅2mm、厚み1mmである。第1の筐体11と第2の筐体12の材質はAl合金からなり、第2の筐体12の大きさは長さ20mm、幅30mm、厚み3mmであり、第1の筐体11は第2の筐体12に対して十分に大きいとする。 The graph shown in FIG. 2 shows the temperature difference ΔT 12 between the first casing 11 and the second casing 12 when the temperature control of the optical element 100 is not performed by the control device 16, and the first casing 11. And the temperature difference ΔT 1a between the ambient temperature Ta and the ambient temperature Ta. Here, the “environment temperature” is the temperature around the optical element 100 and the temperature control device 10 at the time of temperature measurement, for example, the temperature of room air. At this time, the size of the optical element 100 is 15 mm in length, 2 mm in width, and 1 mm in thickness. The material of the first casing 11 and the second casing 12 is made of an Al alloy. The second casing 12 has a length of 20 mm, a width of 30 mm, and a thickness of 3 mm. It is assumed that it is sufficiently large with respect to the second housing 12.

図2に示した温度差ΔT12が生じる要因は、第1の筐体11と第2の筐体12間の熱伝導・熱伝達によるものと、周囲の対流によるものがある。この点について、図3に示すモデルを用いて以下に説明する。なお、光学素子内部には熱源が無いとする。 The factors causing the temperature difference ΔT 12 shown in FIG. 2 are due to heat conduction and heat transfer between the first housing 11 and the second housing 12 and due to surrounding convection. This point will be described below using the model shown in FIG. It is assumed that there is no heat source inside the optical element.

図3に示したモデルには、第1の筐体11Mにのみ温度測定素子14Mが配置され、第2の筐体12Mには温度測定素子が配置されていない。つまり、第2の筐体12Mの温度はモニタされず、第1の筐体11Mの温度のみがモニタされる。図3において、熱量Qの流れを矢印で示した。   In the model shown in FIG. 3, the temperature measuring element 14M is arranged only in the first casing 11M, and the temperature measuring element is not arranged in the second casing 12M. That is, the temperature of the second housing 12M is not monitored, and only the temperature of the first housing 11M is monitored. In FIG. 3, the flow of the heat quantity Q is indicated by an arrow.

光学素子100Mの周囲の流体、例えば空気の温度を環境温度Ta、光学素子100Mの膜厚方向の中心部分の温度を中心温度Tsとすれば、環境温度Taと中心温度Tsが等しくない場合、光学素子100Mと流体との間に熱伝達が起こる。簡単のために一次元モデルで説明する。   If the temperature of the fluid around the optical element 100M, for example, the air, is the environmental temperature Ta, and the temperature of the central portion of the optical element 100M in the film thickness direction is the central temperature Ts, the optical temperature is not equal to the central temperature Ts. Heat transfer occurs between the element 100M and the fluid. For simplicity, a one-dimensional model is used for explanation.

光学素子100Mを貫通する熱量Qは、第1の主面101の温度をTS1、第2の主面102の温度をTS2、光学素子100の半分の厚みでの熱抵抗をhsとして、以下の式(1)で表される:

Q=(TS1−TS2)/2hs ・・・(1)

一方、第1の筐体11Mと第2の筐体12Mとの温度差ΔT12は、第1の筐体11Mの温度をT1、第2の筐体12Mの温度をT2として式(2)で表される:

ΔT12=T1−T2=Q×(h1+h2+2hs) ・・・(2)

式(2)で、h1は第1の筐体11Mと光学素子100Mの第1の主面101との接触熱抵抗、h2は第2の筐体12Mと光学素子100Mの第2の主面102との接触熱抵抗である。なお、第1の筐体11Mと第2の筐体12Mは熱伝導率の高い材料からなるため、第1の筐体11Mと第2の筐体12Mの温度はそれぞれ一様である。
The amount of heat Q penetrating the optical element 100M is defined as follows: the temperature of the first main surface 101 is T S1 , the temperature of the second main surface 102 is T S2 , and the thermal resistance at half the thickness of the optical element 100 is h s . It is represented by the following formula (1):

Q = (T S1 −T S2 ) / 2h s (1)

On the other hand, the temperature difference ΔT 12 between the first casing 11M and the second casing 12M is expressed by Equation (2), where T1 is the temperature of the first casing 11M and T2 is the temperature of the second casing 12M. expressed:

ΔT 12 = T1−T2 = Q × (h 1 + h 2 + 2h s ) (2)

In Formula (2), h 1 is the contact thermal resistance between the first casing 11M and the first main surface 101 of the optical element 100M, and h 2 is the second main resistance of the second casing 12M and the optical element 100M. It is a contact thermal resistance with the surface 102. Note that, since the first casing 11M and the second casing 12M are made of a material having high thermal conductivity, the temperatures of the first casing 11M and the second casing 12M are uniform.

第1の筐体11Mの温度T1と流体の温度である環境温度Taとの温度差ΔT1aとの関係は、第2の筐体12Mと流体間の熱抵抗をhaとして式(3)で表される:

ΔT1a=T1−Ta=Q×(h1+h2+2hs+ha) ・・・(3)

熱抵抗haは、層流領域では小さく、乱流領域では大きい。式(2)、(3)から、以下の式(4)が求まる:

T1−T2={(h1+h2+2hs)/(h1+h2+2hs+ha)}×(T1−Ta) ・・・(4)

1、h2、hsは定数なので、h1+h2+2hs=Aとして式(5)が得られる:

T1−T2={1/(1+ha/A)}×(T1−Ta) ・・・(5)

式(5)に示すように、流体と第1の筐体11との温度差が小さい層流領域では、熱抵抗haが小さいため、第1の筐体11の温度T1と流体の温度である環境温度Taとの温度差ΔT1aに対する第1の筐体11と第2の筐体12との温度差ΔT12の傾きが大きい。一方、流体と第1の筐体11との温度差が大きい乱流領域では、熱抵抗haが大きいため、温度差ΔT1aに対する温度差ΔT12の傾きが小さい(図2参照。)。なお、環境温度Taと第1の筐体11の温度T1との温度差が大きい乱流領域で温度差ΔT12のばらつきがあるのは、乱流による揺らぎが影響しているためである。
Relationship between the temperature difference [Delta] T 1a of the ambient temperature Ta is the temperature of the temperature T1 and the fluid in the first housing 11M, the table in equation (3) the thermal resistance between the second housing 12M fluid as ha Is:

ΔT 1a = T1-Ta = Q × (h 1 + h 2 + 2h s + ha) (3)

The thermal resistance ha is small in the laminar flow region and large in the turbulent region. From equations (2) and (3), the following equation (4) is obtained:

T1−T2 = {(h 1 + h 2 + 2h s ) / (h 1 + h 2 + 2h s + ha)} × (T 1 −Ta) (4)

Since h 1 , h 2 , and h s are constants, equation (5) is obtained as h 1 + h 2 + 2h s = A:

T1-T2 = {1 / (1 + ha / A)} × (T1-Ta) (5)

As shown in Expression (5), in the laminar flow region where the temperature difference between the fluid and the first casing 11 is small, the thermal resistance ha is small, and therefore, the temperature T1 of the first casing 11 and the temperature of the fluid. The inclination of the temperature difference ΔT 12 between the first casing 11 and the second casing 12 with respect to the temperature difference ΔT 1a with the environmental temperature Ta is large. On the other hand, in the turbulent flow region where the temperature difference between the fluid and the first housing 11 is large, the thermal resistance ha is large, so that the gradient of the temperature difference ΔT 12 with respect to the temperature difference ΔT 1a is small (see FIG. 2). The reason why the temperature difference ΔT 12 varies in the turbulent flow region where the temperature difference between the environmental temperature Ta and the temperature T1 of the first housing 11 is large is that fluctuation due to turbulent flow has an effect.

上記のように、第2の筐体12の温度をモニタせずに第1の筐体11の温度をモニタするだけでは、対流などの影響を考慮することが困難である。その結果、光学素子100の中心部分の温度を正確に把握し、精度よく温度を制御することができない。この場合は、光学素子100の特性に大きな影響が及ぶ。例えば、波長変換素子から得られる光出力は、波長変換素子の温度変化に大きく影響を受ける。一例として、素子長15mmのMgLN波長変換素子の場合、図4に示すように、位相整合温度(波長変換素子から得られる光出力が最大となる温度)から1℃ずれただけで、光学素子の第二高調波発生光(SHG光)の出力が半分に低下する。このように、光学素子100の温度を正確に制御できない場合、十分な性能が得られない。   As described above, it is difficult to consider the influence of convection and the like only by monitoring the temperature of the first housing 11 without monitoring the temperature of the second housing 12. As a result, it is impossible to accurately grasp the temperature of the central portion of the optical element 100 and control the temperature with high accuracy. In this case, the characteristics of the optical element 100 are greatly affected. For example, the optical output obtained from the wavelength conversion element is greatly affected by the temperature change of the wavelength conversion element. As an example, in the case of an MgLN wavelength conversion element having an element length of 15 mm, as shown in FIG. The output of the second harmonic generation light (SHG light) is reduced to half. Thus, sufficient performance cannot be obtained when the temperature of the optical element 100 cannot be accurately controlled.

これに対し、図1に示した光学素子100の温度制御装置10では、h1=h2である。このため、式(2)から:

T1−T2=2Q×(h1+hs) ・・・(6)

が成立する。なお、T1=TM1、T2=TM2である。また、第1の筐体11と光学素子100の膜厚方向の中心部分での中心温度Tsとの温度差T1−Tsは、式(7)で表される:

T1−Ts=Q×(h1+hs) ・・・(7)

よって、以下の式(8)が成立する:

Ts=(T1+T2)/2=(TM1+TM2)/2 ・・・(8)

式(8)に示されるように、中心温度Tsは熱抵抗haに依存しない。つまり、図2に示した層流領域においても、乱流領域で揺らぎが生じている場合においても、第1の測定温度TM1と第2の測定温度TM2の平均値が光学素子100の中心部分の温度である。
On the other hand, in the temperature control device 10 of the optical element 100 shown in FIG. 1, h 1 = h 2 . For this reason, from equation (2):

T1−T2 = 2Q × (h 1 + h s ) (6)

Is established. Note that T1 = T M1 and T2 = T M2 . Further, the temperature difference T1-Ts between the first casing 11 and the central temperature Ts in the central portion of the optical element 100 in the film thickness direction is expressed by the following equation (7):

T1−Ts = Q × (h 1 + h s ) (7)

Thus, the following equation (8) holds:

Ts = (T1 + T2) / 2 = (T M1 + T M2 ) / 2 (8)

As shown in Expression (8), the center temperature Ts does not depend on the thermal resistance ha. That is, even in the laminar flow region shown in FIG. 2, even when fluctuation occurs in the turbulent region, the average value of the first measurement temperature T M1 and the second measurement temperature T M2 is the center of the optical element 100. The temperature of the part.

第2の筐体12の温度T2は環境温度Taに依存するが、例えば0℃〜50℃程度である。第1の筐体11の温度T1は温度調整素子13の性能に依存するが、例えば20℃〜200℃程度に設定できるようにする。第1の筐体11の温度T1を設定する温度調整素子13の性能は、環境温度Taや光学素子100の性能を発揮させる温度によって決定される。   The temperature T2 of the second housing 12 depends on the environmental temperature Ta, but is about 0 ° C. to 50 ° C., for example. The temperature T1 of the first housing 11 depends on the performance of the temperature adjustment element 13, but can be set to about 20 ° C. to 200 ° C., for example. The performance of the temperature adjustment element 13 that sets the temperature T1 of the first housing 11 is determined by the environmental temperature Ta and the temperature at which the performance of the optical element 100 is exhibited.

温度制御装置10によれば光学素子100の中心付近の温度を制御できるが、環境温度Taによっては光学素子100自体に温度分布が生じるおそれがある。例えば周囲の温度と光学素子100に所望の温度との差が大きい場合などである。しかし、例えば図2に示すように光学素子100の厚みが1mmであるときの温度差は1℃であり、光のビーム径は一般に200μm程度であるため、実際にビームが通過する範囲では0.2℃程度しか温度差は生じない。このため、光学素子100自体に温度分布が生じた場合に、光学素子100の特性に大きな影響はない。   Although the temperature control device 10 can control the temperature in the vicinity of the center of the optical element 100, there is a possibility that temperature distribution may occur in the optical element 100 itself depending on the environmental temperature Ta. For example, when the difference between the ambient temperature and the temperature desired for the optical element 100 is large. However, for example, as shown in FIG. 2, the temperature difference when the thickness of the optical element 100 is 1 mm is 1 ° C., and the beam diameter of light is generally about 200 μm. Only a temperature difference of about 2 ° C. occurs. For this reason, when temperature distribution arises in optical element 100 itself, there is no big influence on the characteristic of optical element 100.

以上に説明したように、本発明の実施形態に係る温度制御装置10によれば、環境温度Taや対流の影響によらず、光学素子100の中心部分の温度を精度よく制御できる。その結果、光学素子100の性能を十分に発揮させることができる。なお、温度制御装置10では温度調整素子13を1個しか使用しないため、小型化が可能である。   As described above, according to the temperature control apparatus 10 according to the embodiment of the present invention, the temperature of the central portion of the optical element 100 can be accurately controlled regardless of the environmental temperature Ta or the influence of convection. As a result, the performance of the optical element 100 can be exhibited sufficiently. In addition, since the temperature control device 10 uses only one temperature adjusting element 13, it can be downsized.

また、温度制御装置10が光学素子100の2つの面のみに接する構成であるため、第1の筐体11と第2の筐体12の間隔を可変にすることにより、任意の大きさの光学素子100を支持し、光学素子100の温度を制御することが可能である。例えば図5に示すように、第1の筐体11と第2の筐体12との間にバネ17を配置し、ピン18によってバネ17を第1の筐体11及び第2の筐体12に固定する。   Further, since the temperature control device 10 is in contact with only two surfaces of the optical element 100, an optical of an arbitrary size can be obtained by changing the distance between the first housing 11 and the second housing 12. It is possible to support the element 100 and control the temperature of the optical element 100. For example, as shown in FIG. 5, a spring 17 is disposed between the first casing 11 and the second casing 12, and the spring 17 is connected to the first casing 11 and the second casing 12 by a pin 18. Secure to.

上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。   As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

上記の説明では、光学素子100や温度制御装置10の周囲が空気であったが、空気以外であっても、例えば窒素(N2)ガス中などのように周囲に対流が生じる環境である場合において、温度制御装置10によれば光学素子100の温度を精度よく制御することができる。 In the above description, the surroundings of the optical element 100 and the temperature control device 10 are air. However, even if the surroundings are other than air, for example, in an environment in which convection occurs in the surroundings, such as in nitrogen (N 2 ) gas. The temperature control device 10 can control the temperature of the optical element 100 with high accuracy.

上記のように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

10…温度制御装置
11…第1の筐体
12…第2の筐体
13…温度調整素子
14…第1の温度測定素子
15…第2の温度測定素子
16…制御装置
100…光学素子
101…第1の主面
102…第2の主面
131…電流コントローラ
DESCRIPTION OF SYMBOLS 10 ... Temperature control apparatus 11 ... 1st housing | casing 12 ... 2nd housing | casing 13 ... Temperature adjustment element 14 ... 1st temperature measurement element 15 ... 2nd temperature measurement element 16 ... Control apparatus 100 ... Optical element 101 ... 1st main surface 102 ... 2nd main surface 131 ... Current controller

Claims (3)

第1の主面及び前記第1の主面と対向する第2の主面を有する光学素子の温度制御装置であって、
前記第1の主面に一定の接触熱抵抗で接する第1の筐体と、
前記第1の筐体と前記第1の主面とが接する面積と等しい面積で、前記第2の主面に前記一定の接触熱抵抗で接する第2の筐体と、
前記第1の筐体の温度を調整する温度調整素子と、
前記第1の筐体の温度を測定する第1の温度測定素子と、
前記第2の筐体の温度を測定する第2の温度測定素子と、
前記第1の温度測定素子により測定された前記第1の筐体の測定温度と前記第2の温度測定素子により測定された前記第2の筐体の測定温度との平均値を前記光学素子の温度として、前記平均値が予め設定された設定値であるように前記温度調整素子を制御して前記第1の筐体の温度を調整させる制御装置と
を備えることを特徴とする温度制御装置。
A temperature control device for an optical element having a first main surface and a second main surface opposite to the first main surface,
A first housing that is in contact with the first main surface with a constant contact thermal resistance;
A second casing that is in contact with the second main surface with the constant contact thermal resistance, in an area equal to an area in which the first casing and the first main surface are in contact with each other;
A temperature adjusting element for adjusting the temperature of the first housing;
A first temperature measuring element for measuring the temperature of the first housing;
A second temperature measuring element for measuring the temperature of the second housing;
The average value of the measured temperature of the first casing measured by the first temperature measuring element and the measured temperature of the second casing measured by the second temperature measuring element is the value of the optical element. A temperature control device comprising: a control device configured to control the temperature adjustment element so as to adjust the temperature of the first casing so that the average value is a preset setting value.
前記温度調整素子が熱電素子であって、前記制御装置が前記温度調整素子に供給される電流を制御することによって前記第1の筐体の温度を調節させることを特徴とする請求項1に記載の温度制御装置。   2. The temperature adjustment device according to claim 1, wherein the temperature adjustment element is a thermoelectric element, and the control device controls the temperature of the first housing by controlling a current supplied to the temperature adjustment element. Temperature control device. 前記第1の筐体と前記第2の筐体の間隔が可変であることを特徴とする請求項1又は2に記載の温度制御装置。   The temperature control apparatus according to claim 1, wherein a distance between the first casing and the second casing is variable.
JP2011189442A 2011-08-31 2011-08-31 Temperature control device Expired - Fee Related JP5811702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189442A JP5811702B2 (en) 2011-08-31 2011-08-31 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189442A JP5811702B2 (en) 2011-08-31 2011-08-31 Temperature control device

Publications (2)

Publication Number Publication Date
JP2013050640A true JP2013050640A (en) 2013-03-14
JP5811702B2 JP5811702B2 (en) 2015-11-11

Family

ID=48012693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189442A Expired - Fee Related JP5811702B2 (en) 2011-08-31 2011-08-31 Temperature control device

Country Status (1)

Country Link
JP (1) JP5811702B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195916A (en) * 2012-03-22 2013-09-30 Nippon Telegr & Teleph Corp <Ntt> Holding mechanism of light deflector
JP2014215528A (en) * 2013-04-26 2014-11-17 株式会社島津製作所 Wavelength conversion element and temperature controller
JP2015125439A (en) * 2013-12-27 2015-07-06 日本電信電話株式会社 Dielectric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326970A (en) * 1998-05-18 1999-11-26 Mitsubishi Electric Corp Nonlinear crystal holder
JP2000089006A (en) * 1998-09-11 2000-03-31 Mitsubishi Electric Corp Solid optical element mount cell
JP2003090992A (en) * 2001-09-19 2003-03-28 Ricoh Co Ltd Optical deflection device, picture display device using optical deflection device and method for controlling optical deflection device
JP2004220051A (en) * 2000-12-14 2004-08-05 Mitsubishi Electric Corp Wavelength conversion method, wavelength conversion device, and laser working machine
JP2009181083A (en) * 2008-02-01 2009-08-13 Panasonic Corp Module of periodic polarization inverse element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326970A (en) * 1998-05-18 1999-11-26 Mitsubishi Electric Corp Nonlinear crystal holder
JP2000089006A (en) * 1998-09-11 2000-03-31 Mitsubishi Electric Corp Solid optical element mount cell
JP2004220051A (en) * 2000-12-14 2004-08-05 Mitsubishi Electric Corp Wavelength conversion method, wavelength conversion device, and laser working machine
JP2003090992A (en) * 2001-09-19 2003-03-28 Ricoh Co Ltd Optical deflection device, picture display device using optical deflection device and method for controlling optical deflection device
JP2009181083A (en) * 2008-02-01 2009-08-13 Panasonic Corp Module of periodic polarization inverse element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195916A (en) * 2012-03-22 2013-09-30 Nippon Telegr & Teleph Corp <Ntt> Holding mechanism of light deflector
JP2014215528A (en) * 2013-04-26 2014-11-17 株式会社島津製作所 Wavelength conversion element and temperature controller
JP2015125439A (en) * 2013-12-27 2015-07-06 日本電信電話株式会社 Dielectric device

Also Published As

Publication number Publication date
JP5811702B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP4868305B2 (en) Differential scanning calorimeter
JP5509195B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
JP4945581B2 (en) Flowmeter
CN107389206B (en) Thermopile sensor and control method thereof
JP4831487B2 (en) Differential scanning calorimeter
JP5811702B2 (en) Temperature control device
JP2008032697A (en) Temperature sensor, temperature conditioning device, and temperature control device and method
KR100308439B1 (en) Method and device for effecting temperature compensation in load detector
JP4859107B2 (en) Thermal flow meter
JP2003031884A (en) Apparatus and method for controlling temperature of semiconductor module
JP5379760B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
JP2006226876A (en) Burn-in apparatus for semiconductor laser device
US20220136988A1 (en) Concentration measurement device
JP2020134237A (en) Device and method for measuring seebeck coefficient
US7954993B2 (en) Measuring apparatus comprising a Peltier-Seebeck detector
Cerimovic et al. Bidirectional micromachined flow sensor featuring a hot film made of amorphous germanium
JP2013210356A (en) Temperature measurement device
KR101230492B1 (en) System and method for controlling temperature in thermoelectric element evaluation apparatus
RU2009102544A (en) INSTALLATION FOR MEASURING THE TAPE TEMPERATURE IN THE FURNACE FOR PLANE GLASS ANNEALING AND THE OPERATION METHOD FOR THE ANNEALING FURNACE
Hubble et al. Development and evaluation of the time-resolved heat and temperature array
JP5812609B2 (en) Heating device
CN101038312A (en) Method for measuring surface temperature of micro-hotplate
JP2004053252A (en) Formed part for precision equipment, and method and device for measuring its coefficient of linear expansion
JP7106073B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
KR101885854B1 (en) Thermal flow rate sensor with the membrane breakage prevention structure and the method of manufacturing of thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R151 Written notification of patent or utility model registration

Ref document number: 5811702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees