JP2013049602A - Method of manufacturing fine zeolite - Google Patents

Method of manufacturing fine zeolite Download PDF

Info

Publication number
JP2013049602A
JP2013049602A JP2011188254A JP2011188254A JP2013049602A JP 2013049602 A JP2013049602 A JP 2013049602A JP 2011188254 A JP2011188254 A JP 2011188254A JP 2011188254 A JP2011188254 A JP 2011188254A JP 2013049602 A JP2013049602 A JP 2013049602A
Authority
JP
Japan
Prior art keywords
zeolite
fine
solution
amorphous
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011188254A
Other languages
Japanese (ja)
Other versions
JP5805470B2 (en
Inventor
Toru Wakihara
徹 脇原
Junichi Tadami
純一 多々見
Akio Ihara
章夫 井原
Katsutoshi Yoneya
勝利 米屋
Yoshihiro Kubota
好浩 窪田
Satoshi Inagaki
怜史 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2011188254A priority Critical patent/JP5805470B2/en
Publication of JP2013049602A publication Critical patent/JP2013049602A/en
Application granted granted Critical
Publication of JP5805470B2 publication Critical patent/JP5805470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing fine zeolite with no amorphous substance or a very little amount of amorphous substance because when fine zeolite crystal with a particle size of ≤0.5 μm or less is manufactured by crushing zeolite, the zeolite is made amorphous, crystallinity is degraded, and original performance of the zeolite can not be achieved.SOLUTION: The fine zeolite with the particle size of ≤0.5 μm obtained by crushing zeolite once is dispersed in a silicate solution having a specific composition, and is recrystallized to manufacture the fine zeolite with no amorphous substance or a very little amount of amorphous substance. The obtained zeolite fine particle exhibits improved crystallinity, and achieves excellent performance such as catalyst characteristics.

Description

この発明は、微細なゼオライトを製造する方法に関し、より詳細には、非晶質が無い又は非常に少ない微細なゼオライトを製造する方法に関する。   The present invention relates to a method for producing fine zeolites, and more particularly to a method for producing fine zeolites having no or very little amorphous.

ゼオライトはイオン交換特性、吸着特性、触媒特性に優れ、民生、工業分野で幅広く用いられている。通常、イオン交換材、吸着材、触媒として用いられるゼオライトの粒径は0.5〜数μmであるが、対象分子のゼオライト細孔内拡散が各種用途反応の律速となる場合がある。そこで近年、拡散の向上、反応速度向上のため粒径100nm以下のゼオライトナノ粒子合成に関する研究が盛んになされている(例えば、非特許文献1、得られたゼオライトは初期は40-80nm位だが、水熱合成を続けると200-400nmまで粒成長している。)。
従来のゼオライトナノ粒子合成に関する研究は主にボトムアップ法、すなわち4級アンモニウム塩や特殊な有機物を用い、核発生・結晶成長を制御することにより達成されている。しかし、ゼオライト合成は極めて安価な水酸化ナトリウムなどのアルカリ源、ケイ酸ナトリウム、アルミン酸ナトリウムなどを原料とするため、少量であっても有機物の使用は最終コストに大きく影響する。よって、合成時に有機物を使用しない新規ナノゼオライト製造プロセスの確立が望まれている。
このような微粒のゼオライトを製造する方法として、粒径のより大きなゼオライトを粉砕することが行われているが、粉砕の衝撃によりゼオライトが非晶質化して、細孔内拡散が阻害され各種特性が低下する(特許文献1)。このようにして粉砕したゼオライト中の非晶質の割合は通常30%以上に達すると見積もられている。
一方、本発明者らは、ゼオライト表面の非晶質層がアルミノシリケート溶液によって溶解除去されることを確かめている(非特許文献2)。
更に、本発明者らは、粉砕したゼオライトをアルミノシリケート溶液中で再結晶することにより非晶質の少ない微細ゼオライトを得ることができることを発表している(非特許文献3)。
Zeolite has excellent ion exchange characteristics, adsorption characteristics, and catalytic characteristics, and is widely used in the consumer and industrial fields. In general, the particle size of zeolite used as an ion exchange material, an adsorbent, and a catalyst is 0.5 to several μm, but diffusion in the zeolite pores of the target molecule may be rate-limiting for various reactions. Therefore, in recent years, research on synthesis of zeolite nanoparticles having a particle size of 100 nm or less has been actively conducted to improve diffusion and reaction rate (for example, Non-Patent Document 1, the obtained zeolite is initially about 40-80 nm, When hydrothermal synthesis is continued, grains grow to 200-400 nm.)
Research on conventional zeolite nanoparticle synthesis has been achieved mainly by bottom-up methods, that is, using quaternary ammonium salts and special organic substances to control nucleation and crystal growth. However, since zeolite synthesis uses an extremely inexpensive alkali source such as sodium hydroxide, sodium silicate, sodium aluminate or the like as a raw material, the use of organic substances greatly affects the final cost even in a small amount. Therefore, establishment of a novel nanozeolite manufacturing process that does not use organic substances during synthesis is desired.
As a method for producing such a fine zeolite, grinding of a zeolite having a larger particle diameter has been carried out. (Patent document 1). It is estimated that the amorphous ratio in the zeolite thus pulverized usually reaches 30% or more.
On the other hand, the present inventors have confirmed that the amorphous layer on the zeolite surface is dissolved and removed by the aluminosilicate solution (Non-patent Document 2).
Furthermore, the present inventors have announced that fine zeolite with less amorphousness can be obtained by recrystallizing the pulverized zeolite in an aluminosilicate solution (Non-patent Document 3).

特開2003−146649JP 2003-146649 A

Science vol. 283, 958-960 (1999)Science vol. 283, 958-960 (1999) Microporous and Microporous Material 70, 17-13 (2004)Microporous and Microporous Material 70, 17-13 (2004) Cryst. Growth & Design 11, 955-958 (2011)Cryst. Growth & Design 11, 955-958 (2011)

ゼオライトを粉砕して粒径が0.5μm以下の微細なゼオライト結晶を製造しようとすると、非晶質化し、結晶性が低下して、ゼオライト本来の性能を発揮できなくなる。本願発明は、非晶質の無い又は非常に少ない微細なゼオライト結晶を製造する方法を提供する。   If an attempt is made to produce fine zeolite crystals having a particle size of 0.5 μm or less by pulverizing the zeolite, it becomes amorphous and the crystallinity is lowered, and the original performance of the zeolite cannot be exhibited. The present invention provides a method for producing fine zeolite crystals with no or very little amorphous.

本発明者らは、ゼオライトの粉砕などにより得られる粒径が0.5μm以下の微細なゼオライトを、特定組成のシリケート溶液中に分散させ、再結晶化させることにより、非晶質の無い又は非常に少ない微細なゼオライトを製造することができることを見出し、本発明を完成させるに至った。
即ち、本発明は、下記組成式
aM O・bSiO・Al・cMeO
(式中、Mは、アルカリ金属、プロトン、又はアンモニウムイオン(NH )を表し、Meはアルカリ土類金属を表し、a=0.01〜1、b=20〜80、c=0〜1)
で表されるゼオライト(出発物質)を、下記組成式
AM O/BSiO/CH
(式中、Mはアルカリ金属を表し、A/C(モル比)は、0.003〜0.010であり、B/Cは、0.006〜0.025である。)のシリケート溶液に分散させ、再結晶化させることから成る平均粒径が0.01〜0.5μmの微細ゼオライトの製法である。
The present inventors have found that a fine zeolite having a particle size of 0.5 μm or less obtained by pulverization of zeolite or the like is dispersed in a silicate solution having a specific composition and recrystallized, so that there is no amorphous or very It has been found that a very small amount of fine zeolite can be produced, and the present invention has been completed.
That is, the present invention has the following composition formula: aM 1 2 O · bSiO 2 · Al 2 O 3 · cMeO
(In the formula, M 1 represents an alkali metal, proton, or ammonium ion (NH 4 + ), Me represents an alkaline earth metal, and a = 0.01 to 1, b = 20 to 80, c = 0. ~ 1)
Zeolite (starting material) represented by the following composition formula: AM 2 2 O / BSiO 2 / CH 2 O
(Wherein M 2 represents an alkali metal, A / C (molar ratio) is 0.003 to 0.010, and B / C is 0.006 to 0.025). Is a process for producing fine zeolite having an average particle size of 0.01 to 0.5 μm.

実施例1で得られた再結晶化処理後のゼオライトのSEM写真を示す。The SEM photograph of the zeolite after the recrystallization process obtained in Example 1 is shown. 実施例1で粉砕されたゼオライト及び再結晶化処理後のゼオライトのX線回折スペクトルを示す。The X-ray-diffraction spectrum of the zeolite grind | pulverized in Example 1 and the zeolite after a recrystallization process is shown. 実施例1で粉砕されたゼオライト及び再結晶化処理後のゼオライトのTEM写真を示す。斜線に見える部分(斜線部)は再結晶により生成した結晶を示す。The TEM photograph of the zeolite grind | pulverized in Example 1 and the zeolite after a recrystallization process is shown. The shaded portion (shaded portion) indicates a crystal generated by recrystallization.

本発明は、ゼオライト(出発物質)を、特定組成のシリケート溶液に分散させ、再結晶化させることから成る微細ゼオライトの製法である。   The present invention is a process for producing a fine zeolite comprising dispersing a zeolite (starting material) in a silicate solution having a specific composition and recrystallization.

この出発物質であるゼオライトは下記一般式(組成式)で表される。
aM O・bSiO・Al・cMeO
式中、M OとMeOはゼオライト骨格中に電荷補償のため存在しているカチオンを表す。
は、アルカリ金属、プロトン、又はアンモニウムイオン(NH )を表す。アルカリ金属としては、K又はNaが好ましい。
Meはアルカリ土類金属、好ましくはMg、Caを表す。
とMeはゼオライト骨格中に存在するカチオンを表すが、ゼオライト作製時には、原料の関係から、このカチオンはアルカリ金属又はアルカリ土類金属であることが好ましい。このゼオライトを触媒等に使用する場合には、このアルカリ金属やアルカリ土類金属をプロトン(H)やアンモニウムイオン(NH )、好ましくはプロトンに交換して用いる場合が多い。しかし、本願発明の出発物質としては、これらいずれのゼオライトをも使用することができる。
The starting zeolite is represented by the following general formula (composition formula).
aM 1 2 O · bSiO 2 · Al 2 O 3 · cMeO
Wherein, M 1 2 O and MeO represents a cation which is present for charge compensation in the zeolite framework.
M 1 represents an alkali metal, a proton, or an ammonium ion (NH 4 + ). As the alkali metal, K or Na is preferable.
Me represents an alkaline earth metal, preferably Mg or Ca.
M 1 and Me represent cations present in the zeolite skeleton. At the time of producing the zeolite, these cations are preferably alkali metals or alkaline earth metals from the viewpoint of raw materials. When this zeolite is used as a catalyst or the like, the alkali metal or alkaline earth metal is often used after being exchanged for proton (H + ) or ammonium ion (NH 4 + ), preferably proton. However, any of these zeolites can be used as the starting material of the present invention.

aは0.01〜1を表す。
bは20〜80(即ち、Si/Al=10〜40)、好ましくは30〜60(即ち、Si/Al=15〜30)を表す。
Si/Al比が比較的低い(1〜30)ゼオライトの再結晶のためにはアルミノシリケート溶液を用いることが適当であるのに対し(非特許文献3、特願2010-118304)、Si/Al比が比較的高い(10〜40)ゼオライトの再結晶のためにはシリケート溶液を用いるのが適当であると考えられる。
cは0〜1を表す。
このゼオライトの構造には、特に限定は無く、例えば、FAU、CHA、BEA、MFI、MOR、FER(国際ゼオライト協会(International zeolite association)で定められている各ゼオライト構造)のいずれでもよい。
a represents 0.01-1.
b represents 20 to 80 (that is, Si / Al = 10 to 40), preferably 30 to 60 (that is, Si / Al = 15 to 30).
For recrystallization of zeolite having a relatively low Si / Al ratio (1-30), it is appropriate to use an aluminosilicate solution (Non-patent Document 3, Japanese Patent Application No. 2010-118304), whereas Si / Al For recrystallization of zeolites with a relatively high ratio (10-40), it may be appropriate to use a silicate solution.
c represents 0-1.
The structure of the zeolite is not particularly limited, and may be any of FAU, CHA, BEA, MFI, MOR, and FER (each zeolite structure defined by the International zeolite association).

このゼオライトは、同じ組成式で表わされるゼオライトを粉砕したものであってもよいし、異なる組成式で表わされる複数のゼオライトを粉砕したものであってもよい。通常この粉砕前のゼオライトのサイズ(例えば、レーザー回折法で測定した平均粒径)は0.15μm以上、例えば、0.15〜15μm程度である。
この粉砕方法はいかなる方法でもよいが、ボールミル、ビーズミル、遊星ボールミル、ジェットミルなどを用いて行なうことができる。このなかでビーズミルは、ゼオライトの非晶質化を最低限に抑えることができる。ビーズミルは、通常50〜500μmのセラミックビーズを用い、解砕・粉砕を行う装置である。粉砕メディアに微小ビーズを用いるため、ボールミルや遊星ボールミルと異なり、処理する粉末がビーズや他の粒子と衝突する頻度が多く、また一回の衝突の際、粒子に与える力が少ないため、表面を非晶質化させることなく効率よく粉砕できる。しかし、ビーズミルを用いたとしてもゼオライトはある程度非晶質化する。
この粉砕の結果、ゼオライトの平均粒径を0.01〜0.5μm程度にして、本願発明の製法に用いる。
This zeolite may be obtained by pulverizing zeolites represented by the same composition formula, or may be obtained by pulverizing a plurality of zeolites represented by different composition formulas. Usually, the size of the zeolite before pulverization (for example, the average particle diameter measured by a laser diffraction method) is 0.15 μm or more, for example, about 0.15 to 15 μm.
This pulverization method may be any method, but can be performed using a ball mill, a bead mill, a planetary ball mill, a jet mill or the like. Among these, the bead mill can minimize the amorphization of the zeolite. The bead mill is a device that normally uses 50 to 500 μm ceramic beads for crushing and crushing. Because fine beads are used for the grinding media, unlike the ball mill and planetary ball mill, the powder to be processed often collides with the beads and other particles, and the force applied to the particles during a single collision is small, so the surface It can be efficiently pulverized without making it amorphous. However, even if a bead mill is used, the zeolite becomes amorphous to some extent.
As a result of this pulverization, the average particle size of the zeolite is set to about 0.01 to 0.5 μm and used in the production method of the present invention.

本発明の製法においては、このゼオライトを下記組成(溶液中の成分とその混合比を表す。)のシリケート溶液に分散させる。
AM O/BSiO/CH
式中、Mはアルカリ金属、好ましくはK又はNaを表す。
A/C(モル比、以下同じ)は、0.003〜0.01であり、B/Cは、0.006〜0.025である。この範囲外の組成条件では再結晶が困難となる場合がある。
なお、このシリケート溶液は、MOH(式中、Mは上記のとおり。)及びSiOを上記組成を与える混合比で水に溶かすことにより得られる。再結晶化処理は該当するゼオライトが生成する合成温度に近い場合が多いため、水温は100〜230℃程度が好ましい。
In the production method of the present invention, this zeolite is dispersed in a silicate solution having the following composition (representing the components in the solution and the mixing ratio thereof).
AM 2 2 O / BSiO 2 / CH 2 O
In the formula, M 2 represents an alkali metal, preferably K or Na.
A / C (molar ratio, the same applies hereinafter) is 0.003 to 0.01, and B / C is 0.006 to 0.025. Recrystallization may be difficult under composition conditions outside this range.
This silicate solution can be obtained by dissolving M 2 OH (wherein M 2 is as described above) and SiO 2 in water at a mixing ratio that gives the above composition. Since the recrystallization treatment is often close to the synthesis temperature at which the corresponding zeolite is produced, the water temperature is preferably about 100 to 230 ° C.

上記ゼオライトをこのシリケート溶液に分散させると、非晶質層がこの溶液に溶解し(非特許文献2)、溶解したゼオライトが、残ったゼオライト結晶上に再結晶するものと考えられる。
このシリケート溶液処理の条件は以下のとおりである:
温度:100〜230℃
処理時間:1〜24時間、通常2時間程度である。
容器:特に制限は無いが、100℃以上では水分が沸騰するため、密封型オートクレーブを用いることが好ましい。
シリケート溶液中のゼオライトの量は、100mlのシリケート溶液に対し、通常0.5〜10g程度である。例えば、MFI型ゼオライトの場合1〜3g程度が好ましい。
When the zeolite is dispersed in the silicate solution, the amorphous layer is dissolved in the solution (Non-patent Document 2), and the dissolved zeolite is considered to recrystallize on the remaining zeolite crystals.
The conditions for this silicate solution treatment are as follows:
Temperature: 100-230 ° C
Processing time: 1 to 24 hours, usually about 2 hours.
Container: Although there is no restriction | limiting in particular, Since a water | moisture content boils above 100 degreeC, it is preferable to use a sealed autoclave.
The amount of zeolite in the silicate solution is usually about 0.5 to 10 g with respect to 100 ml of the silicate solution. For example, in the case of MFI type zeolite, about 1 to 3 g is preferable.

この処理の結果、得られたゼオライト結晶の非晶質部分は全く無いか又は非常に少なくすることができる。この非晶質部分の消失と再結晶によるゼオライト結晶の増分は、この処理の程度による。その処理を徹底すれば(例えば、処理を長時間行うなど)非晶質部分をほぼ無くして更に再結晶によりゼオライト結晶を増やすことも出来る。一方、非晶質部分をある程度低減することができればよいのであれば、この処理を途中で止めれば(例えば、処理を短時間で止めるなど)よい。   As a result of this treatment, there can be no or very little amorphous parts of the resulting zeolite crystals. The disappearance of this amorphous part and the increment of zeolite crystals due to recrystallization depends on the extent of this treatment. If the treatment is thoroughly performed (for example, the treatment is performed for a long time), the amorphous portion can be substantially eliminated, and the zeolite crystals can be further increased by recrystallization. On the other hand, if it is only necessary to reduce the amorphous portion to some extent, this process may be stopped halfway (for example, the process is stopped in a short time).

生成するゼオライトは出発物質と同様に下記一般式(組成式)で表される。
aM O・bSiO・Al・cMeOで表される。
a〜cは出発物質と同様に定義されるが。以下説明するように出発物質と完全に同じではない。MはMとMの混合したものとなる。また、ゼオライト中に入っていたMeはそのままか、又は溶液に放出され、その一部若しくは全部が再結晶することになるので、cは出発物質のcと同じ又はそれ以下になる。
The generated zeolite is represented by the following general formula (composition formula) as in the case of the starting material.
aM 3 represented by 2 O · bSiO 2 · Al 2 O 3 · cMeO.
a to c are defined as in the starting material. As explained below, it is not exactly the same as the starting material. M 3 is a mixture of M 1 and M 2 . In addition, since Me contained in the zeolite is used as it is or is released into the solution, and a part or all of it is recrystallized, c is equal to or less than c of the starting material.

AlとSiが混在する溶液中でゼオライトを核として再結晶化を行う場合、この溶液中のAlが核のゼオライト結晶と同じ構成になるようにSiを取り込みながら再結晶すると考えられている。
本願発明のように再結晶化のための溶液としてシリケート溶液を用いた場合には、その溶液中に存在するAlは全てゼオライトの非晶質部分が溶解したものであり、溶解した非晶質部分がそのまま再結晶化するものと考えられる。その結果、再結晶化した結晶の組成は、核の結晶の組成に極めて近似したものになり、その結果組成(Si/Al比等)は均一になる。また、微量なりともAlが存在しないと結晶化が進行せず、Siのみがゼオライトに取り込まれながら粒成長することは無い。そのため、溶液中に存在するAlがなくなれば結晶化の進行は止まり、結果として微細なまま結晶化を高めることができるものと考えられる。
一方、再結晶化のための溶液としてアルミノシリケート溶液を用いた場合には、この溶液中には、ゼオライトの非晶質部分が溶解したもの以上のAlが存在するため、過剰なAlがSiを取り込みながら結晶化するため、その組成は、シリケート溶液を用いた場合に比べて、核の結晶の組成よりもAlリッチになる傾向が有り、その結果Si/Al比等の組成が不均一になる(後述の表1参照)。また、溶液中のSiとAlの双方を取り込みながら成長するためサイズもより大きくなる傾向が有ると考えられる。
When recrystallization is performed using zeolite as a nucleus in a solution in which Al and Si are mixed, it is considered that recrystallization is performed while incorporating Si so that the Al in the solution has the same structure as the zeolite crystal of the nucleus.
When a silicate solution is used as a solution for recrystallization as in the present invention, all of the Al present in the solution is a solution of the amorphous part of the zeolite, and the dissolved amorphous part Is considered to recrystallize as it is. As a result, the composition of the recrystallized crystal is very close to the composition of the core crystal, and as a result, the composition (Si / Al ratio, etc.) becomes uniform. Further, if Al is not present at all, the crystallization does not proceed and only Si is taken into the zeolite and no grain growth occurs. For this reason, it is considered that if the Al present in the solution disappears, the progress of crystallization stops, and as a result, the crystallization can be enhanced while being fine.
On the other hand, when an aluminosilicate solution is used as a solution for recrystallization, there is more Al in the solution than that in which the amorphous part of the zeolite is dissolved. Since the crystallization takes place, the composition tends to be Al richer than the composition of the core crystals compared to the case where the silicate solution is used, and as a result, the composition such as the Si / Al ratio becomes non-uniform. (See Table 1 below). Moreover, since it grows taking in both Si and Al in a solution, it is thought that there exists a tendency for a size to become larger.

なお、処理後のゼオライトのSi/Al比は、低すぎると酸点であるAlの量が増えてしまいコーキングにより所望の触媒反応が進まなくなり、また高すぎると副生成物として層状化合物が析出してしまうため、処理前と比較して-15〜+50%以内程度となることが好ましい。また、処理後のゼオライトの結晶化度は、結晶の存在割合と比例するため、処理前と比較して、90%以上であることが望ましい。
また、上記処理の結果得られるゼオライトの平均粒径は、処理前の平均粒径とほぼ同じになる。
If the Si / Al ratio of the zeolite after treatment is too low, the amount of Al, which is an acid point, increases and the desired catalytic reaction does not proceed due to coking. If it is too high, a layered compound precipitates as a by-product. Therefore, it is preferable to be within about -15 to + 50% compared to before treatment. In addition, since the crystallinity of the zeolite after the treatment is proportional to the existence ratio of the crystals, it is desirable that it is 90% or more as compared with that before the treatment.
Further, the average particle size of the zeolite obtained as a result of the above treatment is almost the same as the average particle size before the treatment.

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
なお、X線写真は走査型電子顕微鏡(SEM)((株)日立製作所製S5200)、X線回折(XRD)は自動X線回折装置((株)リガク社製RINT2500)、誘導結合プラズマ分析はIPC発光分析装置((株)島津製作所製ICPE-9000)を用いて測定した。ゼオライトの平均粒径は、ゼオライトを水に分散させて(濃度0.01wt%以下)、レーザー回折粒度分布測定装置((株)島津製作所製SALD-7000)を用いてレーザー回折法により測定した。
The following examples illustrate the invention but are not intended to limit the invention.
The X-ray photograph is a scanning electron microscope (SEM) (S5200, manufactured by Hitachi, Ltd.), the X-ray diffraction (XRD) is an automatic X-ray diffractometer (RINT2500, manufactured by Rigaku Corporation), and the inductively coupled plasma analysis is Measurement was performed using an IPC emission spectrometer (ICPE-9000, manufactured by Shimadzu Corporation). The average particle diameter of the zeolite was measured by a laser diffraction method using a laser diffraction particle size distribution analyzer (SALD-7000, manufactured by Shimadzu Corporation) after dispersing the zeolite in water (concentration 0.01 wt% or less).

実施例1
エタノール100mlに分散剤(中京油脂株式会社製 セルナE503)1.2gを加え、そこにMFI型ゼオライト(NH4Si19AlO40、東ソー株式会社製 840NHA、平均粒径2.5μm)60gを投入し、スラリーを調整した。一方、φ300μmのZrO2ビーズを用いたビーズミル(アシザワファインテック株式会社製 MiniCer)をエタノールで満たし、回転数3000rpmで回転軸を回転させ、上記スラリー432gを8分かけて投入した。投入後30〜480分粉砕処理したスラリーを回収し、磁性皿で150℃で3時間乾燥させ、粉末を回収した。
原料及び得られた粉砕ゼオライトのSEM写真を図1に示す。原料ゼオライトは、120分粉砕後に平均粒径が200nm以下まで、480分粉砕後に平均粒径が50nmまで粉砕された(図1左)。
また原料及び得られた粉砕ゼオライトのX線回折スペクトルを図2に示す。480分粉砕後は、MFI結晶由来のピーク強度(2θ=22〜25度にみられる複数の回折ピーク)が低下している。X線回折スペクトルのピーク面積比からゼオライト中の非晶質の割合は約90wt%と見積もられる。このことから、粉砕時間の進行に伴ってゼオライト粒子の非晶質化が進行していることがわかる。
Example 1
Add 1.2 g of dispersant (Cerna E503, manufactured by Chukyo Yushi Co., Ltd.) to 100 ml of ethanol, and add 60 g of MFI-type zeolite (NH 4 Si 19 AlO 40 , 840NHA manufactured by Tosoh Corporation, average particle size 2.5 μm) to slurry. Adjusted. Meanwhile, a bead mill (MiniCer manufactured by Ashizawa Finetech Co., Ltd.) using ZrO 2 beads having a diameter of 300 μm was filled with ethanol, the rotating shaft was rotated at 3000 rpm, and 432 g of the slurry was charged over 8 minutes. After the addition, the slurry pulverized for 30 to 480 minutes was collected and dried on a magnetic dish at 150 ° C. for 3 hours to collect the powder.
An SEM photograph of the raw material and the obtained pulverized zeolite is shown in FIG. The raw material zeolite was pulverized to an average particle size of 200 nm or less after pulverization for 120 minutes, and pulverized to an average particle size of 50 nm after 480 minutes (FIG. 1 left).
Moreover, the X-ray-diffraction spectrum of a raw material and the obtained ground zeolite is shown in FIG. After 480 minutes of pulverization, the peak intensity derived from the MFI crystal (plural diffraction peaks observed at 2θ = 22 to 25 degrees) is decreased. From the peak area ratio of the X-ray diffraction spectrum, the amorphous ratio in the zeolite is estimated to be about 90 wt%. This shows that the amorphization of the zeolite particles is progressing with the progress of the grinding time.

次に、NaOHとSiO2(いずれも和光純薬工業株式会社製)を水に溶解させて、下記組成の6種類のシリケート溶液を用意した。
0.292Na2O:xSiO2:55.5H2O(S1:x=0.400、S2:x=0.650、S3:x=0.800、S4: x=1.00)
yNa2O:0.650SiO2:55.5H2O(S5:y=0.165, S6:y=0.55)
上記で得た粉砕試料を、このシリケート溶液中で、180℃で2〜24時間、処理した(以下「S処理」という。)。試料を含んだ溶液は、遠心分離器を用いて回転数3500rpmで30分間遠心分離し、沈殿物(ゼオライト)と溶液とを分離した。沈殿物(ゼオライト)を回収し、イオン交換水に分散させ、同様の遠心分離を繰り返すことによって充分に試料を洗浄した。洗浄されたものを300℃で4時間乾燥させ、無水状態にした。
Next, NaOH and SiO 2 (both manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in water to prepare six types of silicate solutions having the following compositions.
0.292Na 2 O: xSiO 2 : 55.5H 2 O (S1: x = 0.400, S2: x = 0.650, S3: x = 0.800, S4: x = 1.00)
yNa 2 O: 0.650SiO 2 : 55.5H 2 O (S5: y = 0.165, S6: y = 0.55)
The pulverized sample obtained above was treated in this silicate solution at 180 ° C. for 2 to 24 hours (hereinafter referred to as “S treatment”). The solution containing the sample was centrifuged at 3500 rpm for 30 minutes using a centrifuge to separate the precipitate (zeolite) from the solution. The precipitate (zeolite) was collected, dispersed in ion-exchanged water, and the sample was sufficiently washed by repeating the same centrifugation. The washed product was dried at 300 ° C. for 4 hours to make it anhydrous.

S2の組成のシリケート溶液を用いて得られたゼオライト(以下「S2ゼオライト」という。)のSEM写真を図1に示す。この写真から粒径が30〜300nm程度、平均で60nmであることが分かる(図1右)。
また、S2ゼオライト微粒子のX線回折スペクトルを図2に示す。ピーク強度(2θ=22〜25度の回折ピーク面積の合計)が上昇しており、再結晶化が進んだことを示している。また、S2ゼオライト微粒子のX線回折スペクトルのピーク面積比(2θ=22〜25度の回折ピーク面積の合計)からゼオライト中の非晶質の割合は2wt%と見積もられ、S処理により非晶質が減少していることが分かる。
また、S2ゼオライトのTEM写真を図3に示す。再結晶化後は、非晶質層が無い又は極めて少ない、結晶性の高い微粒子が得られていることが分かる。
また、得られた原料、480分粉砕サンプル、S2ゼオライトのBET表面積(細孔中の表面積と粒子表面積の合計)を窒素吸着測定により測定したところそれぞれ443 m2g-1、223 m2g-1、497m2g-1であった。粉砕後は微細化により表面積が大きくなるものの細孔が粉砕により非晶質化したため、BET表面積は443 m2g-1から223 m2g-1へと低下したと考えられる。一方、再結晶化後は、非晶質化したゼオライトが結晶に変化したため、BET表面積は223 m2g-1から497m2g-1へと大きくなったと考えられる。
An SEM photograph of a zeolite (hereinafter referred to as “S2 zeolite”) obtained using a silicate solution having the composition of S2 is shown in FIG. From this photograph, it can be seen that the particle size is about 30 to 300 nm and the average is 60 nm (right in FIG. 1).
Further, an X-ray diffraction spectrum of the S2 zeolite fine particles is shown in FIG. The peak intensity (total of diffraction peak areas at 2θ = 22 to 25 degrees) is increased, indicating that recrystallization has progressed. In addition, the ratio of amorphous content in the zeolite is estimated to be 2 wt% from the peak area ratio of X-ray diffraction spectrum of S2 zeolite fine particles (total of diffraction peak areas of 2θ = 22 to 25 degrees). You can see that the quality is decreasing.
A TEM photograph of S2 zeolite is shown in FIG. It can be seen that fine particles with high crystallinity without or very little amorphous layer are obtained after recrystallization.
Further, the BET surface area (total surface area in the pores and the surface area of the particles) of the obtained raw material, 480-minute pulverized sample, and S2 zeolite was measured by nitrogen adsorption measurement to be 443 m 2 g −1 and 223 m 2 g −, respectively. 1 , 497 m 2 g −1 . Although the surface area is increased by pulverization after the pulverization, the BET surface area is considered to have decreased from 443 m 2 g −1 to 223 m 2 g −1 because the pores became amorphous by pulverization. On the other hand, after recrystallization, the amorphous zeolite changed to crystals, and the BET surface area is thought to have increased from 223 m 2 g −1 to 497 m 2 g −1 .

比較例1
Al(OH)3、NaOH及びSiO2(いずれも和光純薬工業株式会社製)を水に溶解させて、下記組成のアルミノシリケート溶液を用意した。
0.292Na2O::0.650SiO2:zAl(OH)3:55.5H2O(AS1:z=0.05、AS2:z=0.10)
次に、実施例1と同様にして得た粉砕ゼオライトを、このアルミノシリケート溶液中で、180℃で2〜24時間、処理し(以下「AS処理」という。)、実施例1と同様にしてゼオライト微粒子を得た。
Comparative Example 1
Al (OH) 3 , NaOH and SiO 2 (all manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in water to prepare an aluminosilicate solution having the following composition.
0.292Na 2 O :: 0.650SiO 2 : zAl (OH) 3 : 55.5H 2 O (AS1: z = 0.05, AS2: z = 0.10)
Next, the pulverized zeolite obtained in the same manner as in Example 1 was treated in this aluminosilicate solution at 180 ° C. for 2 to 24 hours (hereinafter referred to as “AS treatment”). Zeolite fine particles were obtained.

実施例1と比較例1で得たゼオライト微粒子のSi/Al比、回収率、及びX線回折から計算した原料を100%とした相対的な結晶化度を下表に示す。回収率はS処理又はAS処理前後のゼオライトの乾燥重量を比較、計算して求めた。Si/Al比はICP発光分析装置で求めた。
The relative crystallinity of the zeolite fine particles obtained in Example 1 and Comparative Example 1 relative to the Si / Al ratio, the recovery rate, and the raw material calculated from X-ray diffraction as 100% is shown in the table below. The recovery rate was obtained by comparing and calculating the dry weight of the zeolite before and after the S treatment or AS treatment. The Si / Al ratio was determined with an ICP emission spectrometer.

実施例1で得たゼオライトのSi/Al比は、処理時間のほぼすべてに渡って、比較例1で得たゼオライトのSi/Al比よりもより原料ゼオライトに近い。このことは、再結晶により形成されたゼオライト結晶が、粉砕前のゼオライト結晶と結晶構造が同じ又は近似していることを示している。一方アルミノシリケート溶液を用いて再結晶したゼオライトは、粉砕前のゼオライト結晶とは異なるSi/Al比のゼオライトを含み、不均一な結晶構造のゼオライトであると考えられる。   The Si / Al ratio of the zeolite obtained in Example 1 is closer to that of the raw material zeolite than the Si / Al ratio of the zeolite obtained in Comparative Example 1 over almost all the treatment time. This indicates that the zeolite crystal formed by recrystallization has the same or close crystal structure as the zeolite crystal before pulverization. On the other hand, zeolite recrystallized using an aluminosilicate solution contains zeolite having a Si / Al ratio different from that of the zeolite crystals before pulverization, and is considered to be a zeolite having a non-uniform crystal structure.

実施例2
実施例1で得たゼオライト(S2)は、S処理後、Naイオンがゼオライト細孔中に存在している。酸触媒能を評価するため、細孔中に存在するカチオンをすべてH+にイオン交換させた。具体的には、ゼオライト1gを室温の1mol/lの硝酸アンモニウム溶液(和光純薬工業株式会社)中で1時間攪拌させ、遠心分離によりゼオライトを回収した。この操作を3回行った。この攪拌操作後はゼオライト細孔中のカチオンはすべてNH4 +となっているが、これを400度1時間で焼成させることにより下記の反応により、H+カチオンのみが存在するゼオライトを得た。
NH → NH + H
Example 2
In the zeolite (S2) obtained in Example 1, Na ions are present in the zeolite pores after the S treatment. In order to evaluate the acid catalytic ability, all the cations present in the pores were ion exchanged with H + . Specifically, 1 g of zeolite was stirred in a 1 mol / l ammonium nitrate solution (Wako Pure Chemical Industries, Ltd.) at room temperature for 1 hour, and the zeolite was recovered by centrifugation. This operation was performed three times. After this stirring operation, all the cations in the zeolite pores became NH 4 +, and this was calcined at 400 ° C. for 1 hour to obtain a zeolite containing only H + cations by the following reaction.
NH 4 + → NH 3 + H +

このゼオライト(触媒)10mgを反応管につめ、400℃で1時間流量25ccmin-1のヘリウム流通下に静置した。その後触媒の温度を300℃に下げてから、同様のヘリウム流通条件において1.0μlのクメン(和光純薬工業株式会社製)を注入し、クメンのベンゼンとプロピレンへのクラッキング反応(下式)によりゼオライトの触媒特性の評価を行った。
得られたベンゼンをTCDガスクロマトグラフ((株)島津製作所製GC-6A)を使用して追跡し、得られたベンゼンのピーク面積からクメンの転化率を計算した。この操作を10回行い、10回目の反応時のクメン転化率を比較した。
その結果、クメン転化率は95.6%であった。
なお、比較のため、上記ゼオライトの代わりに、実施例1で用いた原料ゼオライト、及び実施例1でこれを480分粉砕したゼオライトを用いて同様の反応を行った。これらのクメン転化率は、原料ゼオライトを用いた場合は70.2%、480分粉砕したゼオライトを用いた場合は68.8%であった。
10 mg of this zeolite (catalyst) was placed in a reaction tube and allowed to stand at 400 ° C. for 1 hour under a flow of helium at a flow rate of 25 ccmin −1 . After that, the temperature of the catalyst is lowered to 300 ° C., and then 1.0 μl of cumene (manufactured by Wako Pure Chemical Industries, Ltd.) is injected under the same helium flow conditions, and the zeolite is cracked into benzene and propylene by the following formula (zeolite). The catalytic properties of were evaluated.
The obtained benzene was traced using a TCD gas chromatograph (GC-6A manufactured by Shimadzu Corporation), and the conversion rate of cumene was calculated from the peak area of the obtained benzene. This operation was performed 10 times, and the cumene conversion rate during the 10th reaction was compared.
As a result, the cumene conversion rate was 95.6%.
For comparison, the same reaction was performed using the raw material zeolite used in Example 1 and the zeolite obtained by pulverizing this in 480 minutes in Example 1 instead of the above zeolite. The conversion rate of cumene was 70.2% when the raw material zeolite was used, and 68.8% when the zeolite pulverized for 480 minutes was used.

比較例2
比較例1で得たゼオライトを用いて実施例2と同様の反応を行った。クメン転化率は83%であった。シリケート溶液を用いて再結晶化させた実施例1の転化率が高く優れた触媒が得られたことが分かる。
このような違いの理由は、以下のように推察される:即ち、上記のように本願発明のシリケート溶液中で再結晶化したゼオライトのSi/Al比等の組成は、バラツキが小さく、核のゼオライトの組成に近い(表1)。このことは、再結晶化したゼオライトの結晶構造はより均一であると考えられる。一方、アルミノシリケート溶液を再結晶のための溶液として用いて得られたゼオライトの組成はより不均一であり、全体としては同じ結晶構造をもっているものの、表層ほどAlを多く含むゼオライトであると考えられる。ゼオライトの触媒活性はゼオライトの結晶構造及び組成に大きく依存しているため、本願発明による組成がより均質で微細なゼオライトの触媒活性は高いと考えられる。
Comparative Example 2
The same reaction as in Example 2 was performed using the zeolite obtained in Comparative Example 1. Cumene conversion was 83%. It can be seen that an excellent catalyst having a high conversion rate of Example 1 obtained by recrystallization using a silicate solution was obtained.
The reason for such a difference is presumed as follows: That is, the composition such as the Si / Al ratio of the zeolite recrystallized in the silicate solution of the present invention as described above has little variation, Close to the composition of the zeolite (Table 1). This is considered that the crystal structure of the recrystallized zeolite is more uniform. On the other hand, the composition of the zeolite obtained by using the aluminosilicate solution as the solution for recrystallization is more heterogeneous, and although it has the same crystal structure as a whole, the surface layer is considered to be a zeolite containing more Al. . Since the catalytic activity of zeolite is largely dependent on the crystal structure and composition of the zeolite, it is considered that the zeolite according to the present invention has a higher homogeneous and fine zeolite.

Claims (2)

下記組成式
aM O・bSiO・Al・cMeO
(式中、Mは、アルカリ金属、プロトン、又はアンモニウムイオン(NH )を表し、Meはアルカリ土類金属を表し、a=0.01〜1、b=20〜80、c=0〜1)
で表されるゼオライト(出発物質)を、下記組成式
AM O/BSiO/CH
(式中、Mはアルカリ金属を表し、A/C(モル比)は、0.003〜0.010であり、B/Cは、0.006〜0.025である。)のシリケート溶液に分散させ、再結晶化させることから成る平均粒径が0.01〜0.5μmの微細ゼオライトの製法。
The following composition formula: aM 1 2 O · bSiO 2 · Al 2 O 3 · cMeO
(In the formula, M 1 represents an alkali metal, proton, or ammonium ion (NH 4 + ), Me represents an alkaline earth metal, and a = 0.01 to 1, b = 20 to 80, c = 0. ~ 1)
Zeolite (starting material) represented by the following composition formula: AM 2 2 O / BSiO 2 / CH 2 O
(Wherein M 2 represents an alkali metal, A / C (molar ratio) is 0.003 to 0.010, and B / C is 0.006 to 0.025). A method for producing a fine zeolite having an average particle size of 0.01 to 0.5 μm, comprising dispersing in a glass and recrystallization.
前記ゼオライト(出発物質)が、平均粒径が0.15μm以上であって上記組成式で表わされるゼオライトを粉砕したものである請求項1に記載の製法。 The process according to claim 1, wherein the zeolite (starting material) is obtained by pulverizing a zeolite having an average particle size of 0.15 µm or more and represented by the above composition formula.
JP2011188254A 2011-08-31 2011-08-31 Production method of fine zeolite Active JP5805470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188254A JP5805470B2 (en) 2011-08-31 2011-08-31 Production method of fine zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188254A JP5805470B2 (en) 2011-08-31 2011-08-31 Production method of fine zeolite

Publications (2)

Publication Number Publication Date
JP2013049602A true JP2013049602A (en) 2013-03-14
JP5805470B2 JP5805470B2 (en) 2015-11-04

Family

ID=48011983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188254A Active JP5805470B2 (en) 2011-08-31 2011-08-31 Production method of fine zeolite

Country Status (1)

Country Link
JP (1) JP5805470B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189476A (en) * 2013-03-28 2014-10-06 Yokohama National Univ Method for manufacturing a fine zeolite
JP2015101506A (en) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 Method for synthesis of chabazite zeolite
JP2015218084A (en) * 2014-05-16 2015-12-07 ユニゼオ株式会社 Beta-type zeolite and production method thereof
JP2016204245A (en) * 2015-04-17 2016-12-08 東ソー株式会社 Microcrystal afx type zeolite
WO2016208728A1 (en) * 2015-06-25 2016-12-29 イビデン株式会社 Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device
WO2016208734A1 (en) * 2015-06-25 2016-12-29 イビデン株式会社 Zeolite production method, zeolite obtained by means of same, and honeycomb catalyst production method
WO2016208733A1 (en) * 2015-06-25 2016-12-29 イビデン株式会社 Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device
US9780334B2 (en) 2014-03-12 2017-10-03 Panasonic Corporation Organic EL device having a hygroscopic layer
WO2017169425A1 (en) * 2016-03-31 2017-10-05 日本碍子株式会社 Production method for zeolite powder
WO2017169427A1 (en) * 2016-03-31 2017-10-05 日本碍子株式会社 Production method for zeolite powder
US9799850B2 (en) 2014-03-12 2017-10-24 Panasonic Corporation Organic EL device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101000A (en) * 1978-01-03 1979-08-09 Fmc Corp Uniform small particle diameter zeolite a crystal and its manufacture
JPS60118626A (en) * 1983-11-30 1985-06-26 Toa Nenryo Kogyo Kk Production of crystalline aluminosilicate
JPH11130424A (en) * 1997-10-26 1999-05-18 Tonen Corp Production of crystalline aluminosilicate
JP2011246292A (en) * 2010-05-24 2011-12-08 Yokohama National Univ Method of manufacturing fine zeolite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101000A (en) * 1978-01-03 1979-08-09 Fmc Corp Uniform small particle diameter zeolite a crystal and its manufacture
JPS60118626A (en) * 1983-11-30 1985-06-26 Toa Nenryo Kogyo Kk Production of crystalline aluminosilicate
JPH11130424A (en) * 1997-10-26 1999-05-18 Tonen Corp Production of crystalline aluminosilicate
JP2011246292A (en) * 2010-05-24 2011-12-08 Yokohama National Univ Method of manufacturing fine zeolite

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189476A (en) * 2013-03-28 2014-10-06 Yokohama National Univ Method for manufacturing a fine zeolite
JP2015101506A (en) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 Method for synthesis of chabazite zeolite
US9799850B2 (en) 2014-03-12 2017-10-24 Panasonic Corporation Organic EL device
US9780334B2 (en) 2014-03-12 2017-10-03 Panasonic Corporation Organic EL device having a hygroscopic layer
JP2015218084A (en) * 2014-05-16 2015-12-07 ユニゼオ株式会社 Beta-type zeolite and production method thereof
JP2016204245A (en) * 2015-04-17 2016-12-08 東ソー株式会社 Microcrystal afx type zeolite
WO2016208733A1 (en) * 2015-06-25 2016-12-29 イビデン株式会社 Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device
WO2016208734A1 (en) * 2015-06-25 2016-12-29 イビデン株式会社 Zeolite production method, zeolite obtained by means of same, and honeycomb catalyst production method
WO2016208728A1 (en) * 2015-06-25 2016-12-29 イビデン株式会社 Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device
WO2017169425A1 (en) * 2016-03-31 2017-10-05 日本碍子株式会社 Production method for zeolite powder
WO2017169427A1 (en) * 2016-03-31 2017-10-05 日本碍子株式会社 Production method for zeolite powder
JPWO2017169425A1 (en) * 2016-03-31 2019-01-17 日本碍子株式会社 Method for producing zeolite powder
US10550004B2 (en) 2016-03-31 2020-02-04 Ngk Insulators, Ltd. Production method for zeolite powder
US10550005B2 (en) 2016-03-31 2020-02-04 Ngk Insulators, Ltd. Production method for zeolite powder

Also Published As

Publication number Publication date
JP5805470B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5805470B2 (en) Production method of fine zeolite
JP5616125B2 (en) Production method of fine zeolite
EP3020687B1 (en) Aei aluminosilicate zeolite containing phosphorus, production method therefor, a catalyst comprising the aei aluminosilicate zeolite and a method for reducing nitrogen oxide using the aei aluminosilicate zeolite
JP6655959B2 (en) Microcrystalline AFX-type aluminosilicate and method for producing the same
EP2394958B1 (en) Ddr-type zeolite powder, and process for the production of ddr-type zeolite powder
EP1725498B1 (en) Synthesis of zsm-48 crystals with heterostructural, non zsm-48, seeding
CN104903234B (en) Small crystals ferrierite and preparation method thereof
US10138199B2 (en) High aspect ratio layered double hydroxide materials and methods for preparation thereof
EP3257813B1 (en) Method for producing beta zeolite
CN111392745A (en) High-silica-alumina ratio ferrierite, and preparation method and application thereof
WO2019022908A1 (en) Small crystal emm-17, its method of making and use
CN101003379A (en) ZSM-35/MCM-22 composite molecular sieve, and preparation method
Gao et al. Protonic titanate derived from Cs x Ti 2− x/2 Mg x/2 O 4 (x= 0.7) with lepidocrocite-type layered structure
Koike et al. Increasing the ion-exchange capacity of MFI zeolites by introducing Zn to aluminosilicate frameworks
US10807874B2 (en) Mordenite zeolite and production method therefor
CN112714750A (en) Fractionated zeolite and process for producing the same
CN101514008B (en) Mordenite/Y zeolite coexisting molecular sieve and method for synthesizing same
TW201127752A (en) Method for synthesizing small crystal grain rare earth-ZSM5/ZSM11 co-crystallized zeolites
CN101514011B (en) Mordenite/beta zeolite/MCM-22 triphase coexisting molecular sieve and method for synthesizing same
JP2019099451A (en) Manufacturing method of zeolite
JP6727884B2 (en) ZSM-5 type zeolite having almond-like shape and method for producing the same
EP3385226A1 (en) Beta zeolite and method for producing same
JP6391986B2 (en) Beta-type zeolite and method for producing the same
EP4393879A1 (en) Gis-type zeolite, adsorbent, and separation method
CN115536036B (en) Modified kaolin, preparation method thereof, method for synthesizing molecular sieve by in-situ crystallization and NaY molecular sieve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250