JP2013048225A - Copper elemental wire for bonding wire, and manufacturing method thereof - Google Patents

Copper elemental wire for bonding wire, and manufacturing method thereof Download PDF

Info

Publication number
JP2013048225A
JP2013048225A JP2012161473A JP2012161473A JP2013048225A JP 2013048225 A JP2013048225 A JP 2013048225A JP 2012161473 A JP2012161473 A JP 2012161473A JP 2012161473 A JP2012161473 A JP 2012161473A JP 2013048225 A JP2013048225 A JP 2013048225A
Authority
JP
Japan
Prior art keywords
wire
copper
mass
less
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012161473A
Other languages
Japanese (ja)
Other versions
JP5344070B2 (en
Inventor
Tsutomu Kumagai
訓 熊谷
Hitoshi Nakamoto
斉 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012161473A priority Critical patent/JP5344070B2/en
Publication of JP2013048225A publication Critical patent/JP2013048225A/en
Application granted granted Critical
Publication of JP5344070B2 publication Critical patent/JP5344070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/745Apparatus for manufacturing wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

PROBLEM TO BE SOLVED: To provide a copper elemental wire for bonding wire having a low hardness and a high elongation, and further having excellent workability, and to provide a manufacturing method of the copper elemental wire for bonding wire.SOLUTION: The copper elemental wire is used to form a bonding wire having a wire diameter of 180 μm or less. The elemental wire has a diameter between 0.15 mm and 3.0 mm inclusive, and has a composition such that at least one additive element selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements is included in a range between 0.0001 mass% and 0.01 mass% inclusive in total, and the balance consists of copper and inevitable impurities. The special grain boundary ratio (Lσ/L), which is a ratio of the length Lσ of a special grain boundary to the length L of all of crystal grain boundaries measured by EBSD method, is 50% or larger.

Description

本発明は、線径180μm以下のボンディングワイヤを製出する際に使用されるボンディングワイヤ用銅素線及びボンディングワイヤ用銅素線の製造方法に関するものである。   The present invention relates to a copper wire for bonding wire used when producing a bonding wire having a wire diameter of 180 μm or less, and a method for producing a copper wire for bonding wire.

一般に、半導体素子を搭載した半導体装置においては、半導体素子とリードとを、上述のボンディングワイヤによって接続している。従来、ボンディングワイヤとしては、伸線性及び導電性等の観点から主にAu線が使用されている。しかしながら、Auは高価であることから、このAu線を代用するボンディングワイヤとして、Cu製のボンディングワイヤが提供されている。   Generally, in a semiconductor device mounted with a semiconductor element, the semiconductor element and the lead are connected by the above-described bonding wire. Conventionally, as a bonding wire, Au wire is mainly used from the viewpoints of drawability and conductivity. However, since Au is expensive, a bonding wire made of Cu is provided as a bonding wire that substitutes for this Au wire.

ここで、Cuは、Auに比べて硬いため、ボンディング時にワイヤ先端に形成されたボールが、例えばSi半導体素子の表面に形成されたAl配線被膜を破壊してしまうおそれがあった。また、Cuは、Auに比べて伸びが低いため、適正なワイヤループ形状を維持することできないといった問題があった。
そこで、例えば、特許文献1,2には、純度が99.9999質量%以上の超高純度銅(6NCu)を用いたCu製のボンディングワイヤが提案されている。また、特許文献3には、Ti,Zr,Hf,V,Cr及びBを微量添加したCu製のボンディングワイヤが提案されている。
Here, since Cu is harder than Au, the ball formed at the wire tip during bonding may destroy, for example, an Al wiring film formed on the surface of the Si semiconductor element. Moreover, since Cu has a lower elongation than Au, there is a problem that an appropriate wire loop shape cannot be maintained.
Thus, for example, Patent Documents 1 and 2 propose a Cu bonding wire using ultra-high purity copper (6NCu) having a purity of 99.9999% by mass or more. Patent Document 3 proposes a Cu bonding wire to which a small amount of Ti, Zr, Hf, V, Cr and B is added.

特開昭62−111455号公報Japanese Patent Laid-Open No. 62-111455 特開平04−247630号公報Japanese Patent Laid-Open No. 04-247630 特公平04−012623号公報Japanese Examined Patent Publication No. 04-016232

ところで、特許文献1,2に記載されているように、純度が99.9999質量%以上の超高純度銅(6NCu)を用いる場合においては、超高純度銅(6NCu)を得るために精錬処理工程が必要となるため、製造コストが大幅に増加してしまうといった問題があった。
また、特許文献3に記載されたボンディングワイヤにおいては、Auに比べると未だ硬く、かつ、伸びも低いことから、Au線の代用としては特性が不十分であった。
さらに、近年では、Cu線からなるボンディングワイヤの細線化が求められており、ボンディングワイヤ用銅素線には、断線することのない加工性も求められている。
By the way, as described in Patent Documents 1 and 2, when using ultra-high purity copper (6NCu) having a purity of 99.9999% by mass or more, refining treatment is performed to obtain ultra-high purity copper (6NCu). Since a process is required, there is a problem that the manufacturing cost is greatly increased.
Further, the bonding wire described in Patent Document 3 is still harder than Au and has a low elongation, and therefore has insufficient characteristics as a substitute for Au wire.
Furthermore, in recent years, the bonding wire made of Cu wire is required to be thinned, and the copper wire for bonding wire is also required to have workability without disconnection.

この発明は、前述した事情に鑑みてなされたものであって、硬さが低く、かつ、伸びが高く、さらに加工性に優れたボンディングワイヤ用銅素線及びボンディングワイヤ用銅素線の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and has a low hardness, a high elongation, and a process for producing a copper wire for a bonding wire that is excellent in workability. The purpose is to provide.

上記の課題を解決するために、本発明のボンディングワイヤ用銅素線は、線径180μm以下のボンディングワイヤを形成するための銅素線であって、素線径が0.15mm以上3.0mm以下であり、Mg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の添加元素を合計で0.0001質量%以上0.01質量%以下の範囲で含有し、残部が銅及び不可避不純物である組成を有し、EBSD法にて測定された全ての結晶粒界の長さLに対する特殊粒界の長さLσの比率である特殊粒界比率(Lσ/L)が50%以上とされていることを特徴としている。   In order to solve the above problems, the copper wire for bonding wire of the present invention is a copper wire for forming a bonding wire having a wire diameter of 180 μm or less, and the wire diameter is 0.15 mm or more and 3.0 mm. 1 or more additive elements selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements are contained in the range of 0.0001 mass% or more and 0.01 mass% or less in total. And the balance is a special grain boundary ratio (Lσ / L) which is a ratio of the length Lσ of the special grain boundary to the length L of all the grain boundaries measured by the EBSD method. L) is 50% or more.

この構成のボンディングワイヤ用銅素線においては、Mg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の添加元素を合計で0.0001質量%以上0.01質量%以下の範囲で含有し、残部が銅及び不可避不純物である組成とされているので、銅中に含まれるSが上述の元素と反応して化合物を形成することになる。これにより、Sの影響が小さくなり、再結晶温度を低く、かつ、硬さを低くすることができる。
また、EBSD法にて測定した全ての結晶粒界長さLに対する特殊粒界長さLσの比率である特殊粒界比率(Lσ/L)が50%以上とされているので、硬さを低く維持したまま、伸び及び加工性を向上させることが可能となる。
In the copper wire for bonding wire having this configuration, 0.0001% by mass or more of one or more additive elements selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements in total. Since it is contained in the range of 01% by mass or less and the balance is copper and inevitable impurities, S contained in copper reacts with the above-described elements to form a compound. Thereby, the influence of S becomes small, the recrystallization temperature can be lowered, and the hardness can be lowered.
Moreover, since the special grain boundary ratio (Lσ / L), which is the ratio of the special grain boundary length Lσ to the total grain boundary length L measured by the EBSD method, is 50% or more, the hardness is reduced. It is possible to improve elongation and workability while maintaining.

なお、本発明における特殊粒界比率(Lσ/L)は、電界放出型走査電子顕微鏡を用いたEBSD測定装置によって、結晶粒界、特殊粒界を特定し、全ての結晶粒界の長さL及び特殊粒界の長さLσを算出すること得られるものである。
結晶粒界は、二次元断面観察の結果、隣り合う2つの結晶間の配向方位差が15°以上となっている場合の当該結晶間の境界として定義される。
また、特殊粒界とは、結晶学的にCSL理論(Kronberg et al:Trans.Met.Soc.AIME,185,501(1949))に基づき定義されるΣ値で3≦Σ≦29を満たす対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2(D.G.Brandon:Acta.Metallurgica.Vol.14,p.1479,(1966))を満たす結晶粒界であるとして定義される。
Note that the special grain boundary ratio (Lσ / L) in the present invention is determined by specifying the grain boundaries and special grain boundaries with an EBSD measuring apparatus using a field emission scanning electron microscope, and the length L of all crystal grain boundaries. And the length Lσ of the special grain boundary is obtained.
A crystal grain boundary is defined as a boundary between crystals when the orientation difference between two adjacent crystals is 15 ° or more as a result of two-dimensional cross-sectional observation.
The special grain boundary corresponds to a crystallographically defined Σ value based on CSL theory (Kronberg et al: Trans. Met. Soc. AIME, 185, 501 (1949)) satisfying 3 ≦ Σ ≦ 29. The grain boundary and the inherent corresponding site lattice orientation defect Dq at the corresponding grain boundary is Dq ≦ 15 ° / Σ 1/2 (DG Brandon: Acta. Metallurgica. Vol. 14, p. 1479, (1966)).

ここで、前記添加元素の含有量の合計が0.0003質量%以上0.002質量%以下であることが好ましい。
この場合、再結晶温度を確実に低く抑えることができ、硬さを低くすることができる。
Here, the total content of the additive elements is preferably 0.0003 mass% or more and 0.002 mass% or less.
In this case, the recrystallization temperature can be surely kept low, and the hardness can be lowered.

また、前記不可避不純物であるFe,Pb,及びSの含有量が、Fe;0.0001質量%以下、Pb;0.0001質量%以下、及びS;0.005質量%以下であることが好ましい。
前述のように不純物の含有量を規定することにより、再結晶温度を確実に低く抑えることができ、硬さを低くすることができる。
The contents of Fe, Pb, and S, which are inevitable impurities, are preferably Fe; 0.0001% by mass or less, Pb; 0.0001% by mass or less, and S; 0.005% by mass or less. .
By defining the impurity content as described above, the recrystallization temperature can be surely kept low, and the hardness can be lowered.

前記ボンディングワイヤ用銅素線100gを硝酸溶液に加熱溶解して得られる粒径30μm以上の酸不溶解残渣物の個数が1000個以下であることが好ましい。
この場合、ボンディングワイヤ用銅素線の内部に存在する酸不溶解残渣物の粒径が小さく、かつ、個数が少ないことから、ボンディングワイヤを製造する際の伸線加工時における断線の発生を抑制することが可能となる。
The number of acid-insoluble residue having a particle size of 30 μm or more obtained by heating and dissolving 100 g of the copper wire for bonding wire in a nitric acid solution is preferably 1000 or less.
In this case, since the particle size of the acid-insoluble residue present inside the copper wire for bonding wire is small and the number is small, the occurrence of wire breakage during wire drawing when manufacturing a bonding wire is suppressed. It becomes possible to do.

前記ボンディングワイヤ用銅素線を硝酸溶液に加熱溶解して得られる酸不溶解残渣物の量が0.00015質量%以下であることが好ましい。
この場合、ボンディングワイヤ用銅素線の内部に存在する酸不溶解残渣物の存在比率が少なくなり、ボンディングワイヤを製造する際の伸線加工時における断線の発生を抑制することが可能となる。
The amount of the acid-insoluble residue obtained by heating and dissolving the copper wire for bonding wire in a nitric acid solution is preferably 0.00015% by mass or less.
In this case, the presence ratio of the acid-insoluble residue present inside the copper wire for bonding wire is reduced, and it is possible to suppress the occurrence of disconnection during wire drawing when manufacturing the bonding wire.

本発明のボンディングワイヤ用銅素線の製造方法は、前述のボンディングワイヤ用銅素線の製造方法であって、純度99.99質量%以上99.998質量%以下の銅原料にMg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の添加元素を添加し、銅溶湯を生成する銅溶湯生成工程と、前記銅溶湯をベルト・ホイール式連続鋳造機に供給し、鋳塊を連続的に製出する連続鋳造工程と、製出された鋳塊を初期温度800℃以上の条件で連続的に圧延する連続圧延工程と、を備えていることを特徴としている。   The method for producing a copper wire for bonding wire according to the present invention is a method for producing the above-described copper wire for bonding wire, wherein the copper raw material having a purity of 99.99 mass% or more and 99.998 mass% or less is coated with Mg, Ca, One or more additive elements selected from Sr, Ba, Ra, Zr, Ti, and rare earth elements are added to produce a molten copper, and the molten copper is used as a belt-wheel continuous casting machine. A continuous casting step for supplying and continuously producing the ingot; and a continuous rolling step for continuously rolling the produced ingot at a condition of an initial temperature of 800 ° C. or more. Yes.

この構成のボンディングワイヤ用銅素線の製造方法によれば、純度99.99質量%以上99.998質量%以下、いわゆる4NCuの銅原料を用いているので、6NCuを用いる場合比べて、ボンディングワイヤ用銅素線の製造コストを大幅に低減することができる。
さらに、製出された鋳塊を初期温度800℃以上の条件で連続的に圧延する連続圧延工程を備えているので、ボンディングワイヤ用銅素線における特殊粒界比率(Lσ/L)を50%以上とすることができる。
According to the method for manufacturing a copper wire for bonding wire having this structure, since a so-called 4NCu copper raw material having a purity of 99.99 mass% or more and 99.998 mass% or less is used, the bonding wire is compared with the case of using 6NCu. The manufacturing cost of the copper element wire can be greatly reduced.
Furthermore, since the produced ingot is continuously rolled at an initial temperature of 800 ° C. or higher, the special grain boundary ratio (Lσ / L) in the copper wire for bonding wire is 50%. This can be done.

また、本発明のボンディングワイヤ用銅素線の製造方法は、前述のボンディングワイヤ用銅素線の製造方法であって、純度99.99質量%以上99.998質量%以下の銅原料にMg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の添加元素を添加し、銅溶湯を生成する銅溶湯生成工程と、前記銅溶湯を鋳型に注入して鋳塊を製出する鋳造工程と、得られた鋳塊を初期温度800℃以上の条件で押出加工して押出素線を製出する押出工程と、得られた押出素線に対して、圧延加工又は伸線加工のいずれかと焼鈍とを繰り返し実施する加工・焼鈍工程と、圧下率5%以上25%以下で圧延して最終線径0.15mm以上3.0mm以下とする軽圧下工程と、を備えていることを特徴としている。   Moreover, the manufacturing method of the copper strand for bonding wires of this invention is a manufacturing method of the above-mentioned copper strand for bonding wires, Comprising: Mg is added to the copper raw material of purity 99.99 mass% or more and 99.998 mass% or less. One or more additive elements selected from Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements are added, and a molten copper production process for producing a molten copper, and casting the molten copper into a mold A casting process for producing a lump, an extrusion process for producing an extruded wire by extruding the obtained ingot at an initial temperature of 800 ° C. or more, and a rolling process for the obtained extruded wire. Alternatively, a processing / annealing process in which any one of the wire drawing processes and annealing is repeatedly performed, and a light reduction process in which rolling is performed at a reduction ratio of 5% to 25% to obtain a final wire diameter of 0.15 mm to 3.0 mm. It is characterized by having.

この構成のボンディングワイヤ用銅素線の製造方法によれば、純度99.99質量%以上99.998質量%以下、いわゆる4NCuの銅原料を用いているので、6NCuを用いる場合比べて、ボンディングワイヤ用銅素線の製造コストを大幅に低減することができる。
さらに、押出素線に対して圧延加工又は伸線加工と焼鈍とを繰り返し実施する加工・焼鈍工程と、圧下率5%以上25%以下で圧延して最終線径0.15mm以上3.0mm以下とする軽圧下工程と、を備えているので、ボンディングワイヤ用銅素線における特殊粒界比率(Lσ/L)を50%以上とすることができる。
According to the method for manufacturing a copper wire for bonding wire having this structure, since a so-called 4NCu copper raw material having a purity of 99.99 mass% or more and 99.998 mass% or less is used, the bonding wire is compared with the case of using 6NCu. The manufacturing cost of the copper element wire can be greatly reduced.
Furthermore, the final wire diameter is 0.15 mm or more and 3.0 mm or less by rolling at a reduction ratio of 5% or more and 25% or less by repeatedly performing a rolling process or a drawing process and annealing on the extruded wire. The special grain boundary ratio (Lσ / L) in the copper wire for bonding wire can be 50% or more.

本発明によれば、硬さが低く、かつ、伸びが高く、さらに加工性に優れたボンディングワイヤ用銅素線及びボンディングワイヤ用銅素線の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the copper strand for bonding wires which has low hardness, is high elongation, and was excellent in workability, and the copper strand for bonding wires can be provided.

本発明の一実施形態であるボンディングワイヤ用銅素線を製造する際に使用される連続鋳造圧延装置の説明図である。It is explanatory drawing of the continuous casting rolling apparatus used when manufacturing the copper strand for bonding wires which is one Embodiment of this invention. 本発明の一実施形態であるボンディングワイヤ用銅素線の製造方法のフロー図である。It is a flowchart of the manufacturing method of the copper strand for bonding wires which is one Embodiment of this invention. 本発明の他の実施形態であるボンディングワイヤ用銅素線の製造方法のフロー図である。It is a flowchart of the manufacturing method of the copper strand for bonding wires which is other embodiment of this invention. 本発明例1における酸不溶解残渣物の評価結果を示すグラフである。It is a graph which shows the evaluation result of the acid insoluble residue in the example 1 of this invention.

以下に、本発明の一実施形態に係るボンディングワイヤ用銅素線及びボンディングワイヤ用銅素線の製造方法について説明する。   Below, the manufacturing method of the copper strand for bonding wires which concerns on one Embodiment of this invention, and the copper strand for bonding wires is demonstrated.

本実施形態に係るボンディングワイヤ用銅素線は、線径180μm以下、より望ましくは、線径20μm以上180μm以下のワイヤボンディングを製造する際の素材として使用されるものである。
また、本実施形態に係るボンディングワイヤ用銅素線は、その素線径が0.15mm以上3.0mm以下とされている。
The copper wire for bonding wire according to the present embodiment is used as a material for manufacturing wire bonding with a wire diameter of 180 μm or less, more preferably with a wire diameter of 20 μm or more and 180 μm or less.
Moreover, the copper wire for bonding wires according to the present embodiment has a wire diameter of 0.15 mm or more and 3.0 mm or less.

このボンディングワイヤ用銅素線は、Mg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上を合計で0.0001質量%以上0.01質量%以下の範囲で含有し、残部が銅及び不可避不純物である組成を有する。好ましくは、Mg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の含有量の合計は、0.0003質量%以上0.002質量%以下である。
また、前記不可避不純物であるFe,Pb,Sの含有量は、Fe;0.0001質量%以下、Pb;0.0001質量%以下、S;0.005質量%以下である。
ここで、希土類元素とは、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,及びLuのことである。
This copper wire for bonding wire has a total of at least one selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements in a range of 0.0001 mass% to 0.01 mass%. And the balance is copper and inevitable impurities. Preferably, the total content of at least one selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements is 0.0003 mass% or more and 0.002 mass% or less.
The contents of Fe, Pb, and S, which are inevitable impurities, are Fe; 0.0001% by mass or less, Pb; 0.0001% by mass or less, S; 0.005% by mass or less.
Here, the rare earth elements are Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

そして、このボンディングワイヤ用銅素線は、特殊粒界比率(Lσ/L)が50%以上とされている。ここで、特殊粒界比率は、全ての結晶粒界の長さLに対する特殊粒界の長さLσの比率である。電界放出型走査電子顕微鏡を用いたEBSD測定装置によって、結晶粒界、特殊粒界を特定し、全ての結晶粒界の長さL及び特殊粒界の長さLσを算出する。この算出された長さから、特殊粒界比率が得られる。すなわち、本実施形態であるボンディングワイヤ用銅素線は、通常の結晶粒界よりも特殊粒界の方がより多く存在しているのである。
結晶粒界は、二次元断面観察の結果、隣り合う2つの結晶間の配向方位差が15°以上となっている場合の当該結晶間の境界として定義される。
また、特殊粒界とは、結晶学的にCSL理論(Kronberg et al:Trans.Met.Soc.AIME,185,501(1949))に基づき定義されるΣ値で3≦Σ≦29を満たす対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2(D.G.Brandon:Acta.Metallurgica.Vol.14,p.1479,(1966))を満たす結晶粒界であるとして定義される。
This copper wire for bonding wire has a special grain boundary ratio (Lσ / L) of 50% or more. Here, the special grain boundary ratio is a ratio of the length Lσ of the special grain boundary to the length L of all the crystal grain boundaries. A grain boundary and a special grain boundary are specified by an EBSD measuring apparatus using a field emission scanning electron microscope, and the length L of all the grain boundaries and the length Lσ of the special grain boundary are calculated. From this calculated length, the special grain boundary ratio is obtained. That is, the copper wire for bonding wire according to the present embodiment has more special grain boundaries than ordinary crystal grain boundaries.
A crystal grain boundary is defined as a boundary between crystals when the orientation difference between two adjacent crystals is 15 ° or more as a result of two-dimensional cross-sectional observation.
The special grain boundary corresponds to a crystallographically defined Σ value based on CSL theory (Kronberg et al: Trans. Met. Soc. AIME, 185, 501 (1949)) satisfying 3 ≦ Σ ≦ 29. The grain boundary and the inherent corresponding site lattice orientation defect Dq at the corresponding grain boundary is Dq ≦ 15 ° / Σ 1/2 (DG Brandon: Acta. Metallurgica. Vol. 14, p. 1479, (1966)).

また、本実施形態であるボンディングワイヤ用銅素線100gを硝酸溶液に加熱溶解して得られる粒径30μm以上の酸不溶解残渣物の個数が1000個以下である。さらに、上述の酸不溶解残渣物の存在比率が0.00015質量%以下である。
酸不溶解残渣物の評価は、次のような手順で実施される。
まず、表面を洗浄したボンディングワイヤ用銅素線から所定量(100g)の試料をサンプリングし、加熱した硝酸溶液に加熱溶解する。溶解液を室温まで冷却後、フィルタでろ過し、残渣物を捕集する。
残渣物を捕集したフィルタを秤量し、残渣物の残渣質量を測定する。そして、試料(ボンディングワイヤ用銅素線)の量に対する残渣物の量(残渣質量)の割合(質量%)を算出する。以上により、ボンディングワイヤ用銅素線を硝酸溶液に加熱溶解して得られる酸不溶解残渣物の量(存在比率)が測定される。
次いで、残渣物を捕集したフィルタを走査型電子顕微鏡により観察し、SEM写真を撮影する。SEM写真を画像解析し、残渣物の大きさ及び個数を測定する。そして粒径30μm以上の残渣物の個数を求める。以上により、ボンディングワイヤ用銅素線100gを硝酸溶液に加熱溶解して得られる粒径30μm以上の酸不溶解残渣物の個数が測定される。
Further, the number of acid-insoluble residue having a particle diameter of 30 μm or more obtained by heating and dissolving 100 g of the copper wire for bonding wire according to the present embodiment in a nitric acid solution is 1000 or less. Furthermore, the abundance ratio of the acid-insoluble residue is 0.00015% by mass or less.
The acid-insoluble residue is evaluated according to the following procedure.
First, a predetermined amount (100 g) of a sample is sampled from the bonding wire copper wire whose surface has been cleaned, and is heated and dissolved in a heated nitric acid solution. The solution is cooled to room temperature and then filtered through a filter to collect the residue.
The filter which collected the residue is weighed, and the residue mass of the residue is measured. And the ratio (mass%) of the quantity (residue mass) of the residue with respect to the quantity of a sample (copper strand for bonding wires) is calculated. As described above, the amount (existence ratio) of the acid-insoluble residue obtained by heating and dissolving the copper wire for bonding wire in the nitric acid solution is measured.
Subsequently, the filter which collected the residue is observed with a scanning electron microscope, and an SEM photograph is taken. Image analysis is performed on the SEM photograph, and the size and number of residues are measured. The number of residues having a particle size of 30 μm or more is determined. As described above, the number of acid-insoluble residue having a particle diameter of 30 μm or more obtained by heating and dissolving 100 g of copper wire for bonding wire in a nitric acid solution is measured.

次に、本実施形態であるボンディングワイヤ用銅素線の製造方法について説明する。
結晶粒界の全結晶粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が50%以上であるボンディングワイヤ用銅素線は、連続鋳造圧延方法又は鋳塊の押出加工方法によって製造される。
Next, the manufacturing method of the copper wire for bonding wires which is this embodiment is demonstrated.
The copper wire for bonding wire in which the ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L of the crystal grain boundary is 50% or more is a continuous casting and rolling method or casting. Manufactured by mass extrusion process.

本実施形態では、図1に示す連続鋳造圧延装置10を用いた例で説明する。
図1に示す連続鋳造圧延装置10は、溶解炉11と、保持炉12と、鋳造樋13と、ベルト・ホイール式連続鋳造機30と、連続圧延装置15と、コイラー18とを有している。
In the present embodiment, an example using the continuous casting and rolling apparatus 10 shown in FIG. 1 will be described.
A continuous casting and rolling apparatus 10 shown in FIG. 1 includes a melting furnace 11, a holding furnace 12, a casting rod 13, a belt / wheel type continuous casting machine 30, a continuous rolling apparatus 15, and a coiler 18. .

溶解炉11として、本実施形態では、円筒形の炉本体を有するシャフト炉を用いている。炉本体の下部には円周方向に複数のバーナ(図示略)が円周方向に配備され、かつ上下方向に多段状に配備されている。そして、炉本体の上部から原料である電気銅が装入され、前記バーナの燃焼によって電気銅が溶解され、銅溶湯が連続的につくられる。   In this embodiment, a shaft furnace having a cylindrical furnace body is used as the melting furnace 11. A plurality of burners (not shown) are arranged in the circumferential direction at the lower part of the furnace body, and are arranged in multiple stages in the vertical direction. And the electrolytic copper which is a raw material is inserted from the upper part of a furnace main body, an electrolytic copper is melt | dissolved by the combustion of the said burner, and a molten copper is made continuously.

保持炉12は、溶解炉11でつくられた純銅溶湯を、所定の温度で保持したままで一旦貯留し、一定量の銅溶湯を鋳造樋13に送るためのものである。   The holding furnace 12 is for temporarily storing the pure copper molten metal produced in the melting furnace 11 while holding it at a predetermined temperature and sending a certain amount of molten copper to the casting iron 13.

鋳造樋13は、保持炉12から送られた銅溶湯を、ベルト・ホイール式連続鋳造機30の上方に配置されたタンディシュ20まで移送するものである。この鋳造樋13は、例えばAr等の不活性ガス又は還元性ガスでシールされている。なお、この鋳造樋13には、不活性ガスによって銅溶湯を攪拌する攪拌手段(図示なし)が設けられている。   The cast iron 13 is for transferring the molten copper sent from the holding furnace 12 to the tundish 20 disposed above the belt-wheel continuous casting machine 30. The casting rod 13 is sealed with an inert gas such as Ar or a reducing gas, for example. The cast iron 13 is provided with a stirring means (not shown) for stirring the molten copper with an inert gas.

タンディシュ20には、移送された銅溶湯に対して元素を添加する元素添加手段21が設けられている。また、タンディシュ20の銅溶湯の流れ方向終端側には、注湯ノズル22が配置されており、この注湯ノズル22を介してタンディシュ20内の銅溶湯がベルト・ホイール式連続鋳造機30へと供給される。
ベルト・ホイール式連続鋳造機30は、外周面に溝が形成された鋳造輪31と、この鋳造輪31の外周面の一部に接触するように周回移動される無端ベルト32とを有しており、前記溝と無端ベルト32との間に形成された空間に、注湯ノズル22を介して供給された銅溶湯を注入して冷却し、棒状鋳塊40を連続的に鋳造するものである。
The tundish 20 is provided with element addition means 21 for adding elements to the transferred molten copper. Further, a pouring nozzle 22 is disposed on the end side of the tundish 20 in the flow direction of the molten copper, and the molten copper in the tundish 20 is passed to the belt-wheel type continuous casting machine 30 via the pouring nozzle 22. Supplied.
The belt-wheel type continuous casting machine 30 includes a cast wheel 31 having a groove formed on the outer peripheral surface, and an endless belt 32 that is circulated so as to be in contact with a part of the outer peripheral surface of the cast wheel 31. The molten copper supplied through the pouring nozzle 22 is poured into the space formed between the groove and the endless belt 32 and cooled to continuously cast the bar-shaped ingot 40. .

そして、このベルト・ホイール式連続鋳造機30は、連続圧延装置15に連結されている。この連続圧延装置15は、ベルト・ホイール式連続鋳造機30から製出された棒状鋳塊40を連続的に圧延して、所定の外径の銅荒引線50を製出するものである。連続圧延装置15から製出された銅荒引線50は、洗浄冷却装置16および探傷器17を介してコイラー18に巻き取られる。   The belt / wheel continuous casting machine 30 is connected to the continuous rolling device 15. The continuous rolling device 15 continuously rolls the bar-shaped ingot 40 produced from the belt-wheel continuous casting machine 30 to produce a copper roughing wire 50 having a predetermined outer diameter. The copper roughing wire 50 produced from the continuous rolling device 15 is wound around the coiler 18 via the cleaning / cooling device 16 and the flaw detector 17.

次に、構成とされたこのベルト・ホイール式連続鋳造機30を用いたボンディングワイヤ用銅素線の製造方法について、図1、図2を用いて説明する。
まず、溶解炉11に、純度99.99質量%以上99.998質量%以下の銅原料(いわゆる4NCu)を投入して溶解して銅溶湯を得る(溶解工程S01)。この溶解工程S01では、シャフト炉の複数のバーナの空燃比を調整して溶解炉11の内部を還元雰囲気とする。
Next, the manufacturing method of the copper wire for bonding wires using this belt-wheel type continuous casting machine 30 configured will be described with reference to FIGS.
First, a copper raw material (so-called 4NCu) having a purity of 99.99 mass% or more and 99.998 mass% or less is charged into the melting furnace 11 and melted to obtain a molten copper (melting step S01). In this melting step S01, the air-fuel ratio of the plurality of burners of the shaft furnace is adjusted to make the inside of the melting furnace 11 a reducing atmosphere.

溶解炉11によって得られた銅溶湯は、保持炉12及び鋳造樋13を介してタンディシュ20まで移送される。
ここで、不活性ガス又は還元性ガスでシールされた鋳造樋13を通過する銅溶湯は、前述の攪拌手段によって攪拌されることによって、銅溶湯と不活性ガス又は還元性ガスとの反応が促進される。
The molten copper obtained by the melting furnace 11 is transferred to the tundish 20 through the holding furnace 12 and the casting rod 13.
Here, the molten copper passing through the cast iron 13 sealed with an inert gas or a reducing gas is stirred by the aforementioned stirring means, thereby promoting the reaction between the molten copper and the inert gas or the reducing gas. Is done.

次に、元素添加手段21によって、タンディシュ20内の銅溶湯に、Mg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の元素が連続的に添加される(元素添加工程S02)。これにより、Mg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の元素の含有量が合計で0.0001質量%以上0.01質量%以下、より好ましくは、0.0003質量%以上0.002質量%以下に調整された銅溶湯が生成される。   Next, one or more elements selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements are continuously added to the molten copper in the tundish 20 by the element addition means 21. (Element addition step S02). Accordingly, the total content of one or more elements selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements is 0.0001% by mass to 0.01% by mass, and more preferably. Produces a molten copper adjusted to 0.0003 mass% or more and 0.002 mass% or less.

このように成分調整された銅溶湯は、ベルト・ホイール式連続鋳造機30に注湯ノズル22を介して供給され、棒状鋳塊40が連続的に製出される(連続鋳造工程S03)。ここで、連続鋳造工程S03では、鋳造輪31に形成された前記溝と無端ベルト32との間に形成された空間が台形状をなしていることから、断面略台形状をなす棒状鋳塊40が製出されることになる。   The molten copper whose components have been adjusted in this way is supplied to the belt-wheel continuous casting machine 30 via the pouring nozzle 22, and the bar-shaped ingot 40 is continuously produced (continuous casting step S03). Here, in the continuous casting step S03, since the space formed between the groove formed in the casting wheel 31 and the endless belt 32 has a trapezoidal shape, the bar-shaped ingot 40 having a substantially trapezoidal cross section. Will be produced.

この棒状鋳塊40は、連続圧延装置15に供給されてロール圧延加工が施され、所定の外径(本実施形態では直径8mm)の銅荒引線50が製出される(連続圧延工程S04)。この連続圧延工程S04においては、400〜900℃の範囲で圧延が実施される。本実施形態では、圧延の初期温度を800℃以上としている。   The rod-shaped ingot 40 is supplied to the continuous rolling device 15 and subjected to roll rolling, and a copper roughing wire 50 having a predetermined outer diameter (in this embodiment, a diameter of 8 mm) is produced (continuous rolling step S04). In this continuous rolling step S04, rolling is performed in the range of 400 to 900 ° C. In the present embodiment, the initial rolling temperature is set to 800 ° C. or higher.

連続圧延装置15から製出された銅荒引線50は、洗浄冷却装置16および探傷器17を介してコイラー18に巻き取られる。洗浄冷却装置16は、連続圧延装置15から製出された銅荒引線50の表面をアルコール等の洗浄剤で洗浄するとともに冷却するものである。また、探傷器17は、洗浄冷却装置16から送られた銅荒引線50の傷を探知するものである。   The copper roughing wire 50 produced from the continuous rolling device 15 is wound around the coiler 18 via the cleaning / cooling device 16 and the flaw detector 17. The cleaning / cooling device 16 cleans and cools the surface of the copper rough wire 50 produced from the continuous rolling device 15 with a cleaning agent such as alcohol. The flaw detector 17 detects a flaw on the copper roughing wire 50 sent from the cleaning / cooling device 16.

次に、得られた銅荒引線50に対して伸線加工を実施し、最終線径0.15mm以上3.0mm以下(本実施形態では直径0.9mm)とする(伸線加工工程S05)。
そして、上述の伸線加工工程S05の後に、150℃以上250℃以下で再結晶化熱処理を行う(仕上熱処理工程S06)。本実施形態では、220℃で2時間の雰囲気熱処理を実施する。
以上のような手順によって、本実施形態であるボンディングワイヤ用銅素線が製出される。
Next, wire drawing is performed on the obtained copper roughing wire 50 to obtain a final wire diameter of 0.15 mm to 3.0 mm (diameter 0.9 mm in this embodiment) (drawing step S05). .
Then, after the wire drawing step S05 described above, a recrystallization heat treatment is performed at 150 ° C. or more and 250 ° C. or less (finish heat treatment step S06). In this embodiment, atmospheric heat treatment is performed at 220 ° C. for 2 hours.
By the procedure as described above, the copper wire for bonding wire according to the present embodiment is produced.

本実施形態であるボンディングワイヤ用銅素線は、さらに引き抜き加工が施されて直径180μm以下の細線とされ、ボンディングワイヤとして使用される。   The copper wire for bonding wire according to the present embodiment is further drawn into a thin wire having a diameter of 180 μm or less and used as a bonding wire.

このような構成とされた本実施形態であるボンディングワイヤ用銅素線によれば、Mg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の添加元素を合計で0.0001質量%以上0.01質量%以下の範囲で含有し、残部が銅及び不可避不純物である組成を有する。より好ましくは、上記添加元素の含有量の合計は0.0003質量%以上0.002質量%以下である。このため、銅中に含まれるSが上述の添加元素と化合物を形成する。よって、Sの影響が小さくなるため、再結晶温度を低く、かつ硬さを低くすることができる。   According to the bonding wire copper wire of the present embodiment configured as described above, one or more additive elements selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements are added. It contains in the range of 0.0001 mass% or more and 0.01 mass% or less in total, and the remainder has a composition which is copper and an unavoidable impurity. More preferably, the total content of the additive elements is 0.0003 mass% or more and 0.002 mass% or less. For this reason, S contained in copper forms a compound with the above-mentioned additive element. Therefore, since the influence of S becomes small, the recrystallization temperature can be lowered and the hardness can be lowered.

また、本実施形態であるボンディングワイヤ用銅素線の特殊粒界比率(Lσ/L)は50%以上とされている。なお、電界放出型走査電子顕微鏡を用いたEBSD測定装置によって、結晶粒界、特殊粒界を特定し、全ての結晶粒界の長さL及び特殊粒界の長さLσを算出する。そして、この算出された長さから、特殊粒界比率が得られる。この特殊粒界比率が高い場合には、組織全体の結晶粒界の整合性が向上して、転位が蓄積し難くなる。よって、硬さを低く維持したまま、伸び及び加工性を向上させることが可能となる。   Further, the special grain boundary ratio (Lσ / L) of the copper wire for bonding wire according to the present embodiment is set to 50% or more. Note that the grain boundaries and special grain boundaries are specified by an EBSD measuring apparatus using a field emission scanning electron microscope, and the length L of all crystal grain boundaries and the length Lσ of special grain boundaries are calculated. And the special grain boundary ratio is obtained from this calculated length. When this special grain boundary ratio is high, the consistency of crystal grain boundaries in the entire structure is improved, and dislocations are difficult to accumulate. Therefore, it is possible to improve the elongation and workability while maintaining the hardness low.

また、本実施形態であるボンディングワイヤ用銅素線100gを硝酸溶液に加熱溶解して得られる粒径30μm以上の酸不溶解残渣物の個数が1000個以下である。さらに、酸不溶解残渣物の量(存在比率)は0.00015質量%以下である。
このように、酸不溶解残渣物の粒径が小さく、且つ、個数が少なくされており、さらに、その存在比率も抑えられていることから、ボンディングワイヤ用銅素線をボンディングワイヤへと伸線加工する際の断線を抑制することが可能となる。
Further, the number of acid-insoluble residue having a particle diameter of 30 μm or more obtained by heating and dissolving 100 g of the copper wire for bonding wire according to the present embodiment in a nitric acid solution is 1000 or less. Furthermore, the amount (abundance ratio) of the acid-insoluble residue is 0.00015% by mass or less.
Thus, since the particle size of the acid-insoluble residue is small and the number is reduced, and the existence ratio is also suppressed, the copper wire for bonding wire is drawn to the bonding wire. It becomes possible to suppress disconnection at the time of processing.

また、本実施形態であるボンディングワイヤ用銅素線の製造方法によれば、純度99.99質量%以上99.998質量%以下、いわゆる4NCuの銅原料を用いているので、6NCuを用いる場合比べて、ボンディングワイヤ用銅素線の製造コストを大幅に低減することができる。
さらに、ベルト・ホイール式連続鋳造機30を用いて棒状鋳塊40を連続的に製出する連続鋳造工程S03と、製出された棒状鋳塊40を初期温度800℃以上の条件で連続的に圧延する連続圧延工程S04と、を備えているので、製出されるボンディングワイヤ用銅素線の特殊粒界比率(Lσ/L)を50%以上とすることができる。
Moreover, according to the manufacturing method of the copper wire for bonding wires which is this embodiment, since the so-called 4NCu copper raw material having a purity of 99.99 mass% or more and 99.998 mass% or less is used, compared with the case of using 6NCu. Thus, the manufacturing cost of the copper wire for bonding wire can be greatly reduced.
Furthermore, the continuous casting step S03 for continuously producing the bar-shaped ingot 40 using the belt-wheel type continuous casting machine 30, and the produced bar-shaped ingot 40 continuously under the condition of the initial temperature of 800 ° C. or more. And a continuous rolling step S04 for rolling, the special grain boundary ratio (Lσ / L) of the produced copper wire for bonding wire can be 50% or more.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
本実施形態では、ベルト・ホイール式連続鋳造機を用いてボンディングワイヤ用銅素線を製造するものとして説明したが、これに限定されることはない。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
In this embodiment, although demonstrated as what manufactures the copper wire for bonding wires using a belt wheel continuous casting machine, it is not limited to this.

例えば、図3に示すように、銅溶湯生成工程S11と、鋳造工程S12と、熱間押出工程S13と、加工・焼鈍工程S14と、軽圧下工程S15と、を実施することにより、特殊粒界比率(Lσ/L)が50%以上であるボンディングワイヤ用銅素線を製出してもよい。
銅溶湯生成工程S11では、純度99.99質量%以上99.998質量%以下の銅原料(いわゆる4NCu)に、Mg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の添加元素を添加して銅溶湯を得る。
鋳造工程S12では、銅溶湯を鋳型に注湯して直径200mm〜400mmの鋳塊を得る。
熱間押出工程S13では、鋳塊を800℃以上の温度で押出加工して、押出素線を得る。
加工・焼鈍工程S14では、押出素線に対して圧延加工又は伸線加工のいずれかと、焼鈍とを繰り返し実施する。焼鈍は、断面減少率が80%以上となる毎に実施する。
軽圧下工程S15では、圧下率5%以上25%以下で圧延し、最終線径0.15mm以上3.0mm以下とする。
For example, as shown in FIG. 3, a special grain boundary is obtained by performing a molten copper production step S11, a casting step S12, a hot extrusion step S13, a processing / annealing step S14, and a light reduction step S15. A copper wire for bonding wire having a ratio (Lσ / L) of 50% or more may be produced.
In the copper melt generation step S11, a copper raw material (so-called 4NCu) having a purity of 99.99 mass% or more and 99.998 mass% or less is selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements. One or more additional elements are added to obtain a molten copper.
In the casting step S12, molten copper is poured into a mold to obtain an ingot having a diameter of 200 mm to 400 mm.
In hot extrusion process S13, an ingot is extruded at the temperature of 800 degreeC or more, and an extrusion strand is obtained.
In the processing / annealing step S14, either the rolling process or the wire drawing process and the annealing process are repeatedly performed on the extruded element wire. Annealing is performed every time the cross-section reduction rate reaches 80% or more.
In the light reduction step S15, rolling is performed at a reduction rate of 5% or more and 25% or less, so that the final wire diameter is 0.15 mm or more and 3.0 mm or less.

以下に、前述した本実施形態であるボンディングワイヤ用銅素線について評価した評価試験の結果について説明する。
図2のフロー図に示す方法により、本発明例1〜5及び比較例1,2のボンディングワイヤ用銅素線を製出した。詳細には、4NCuに、表1に記載の添加元素を添加して銅溶湯を得た。銅溶湯をベルト・ホイール式連続鋳造機に注湯して連続鋳造圧延を行った。さらに伸線加工及び仕上げ熱処理を実施し、直径0.9mmのボンディングワイヤ用銅素線を製出した。
図3のフロー図に示す方法により、本発明例6〜10及び比較例3,4のボンディングワイヤ用銅素線を製出した。詳細には、4NCuに、表1に記載の添加元素を添加して銅溶湯を得た。銅溶湯を用いて直径240mmの鋳塊を製出した。この鋳塊を800℃で熱間押出加工して直径8mmの押出素線を製出した。この押出素線に対して圧延と焼鈍とを繰り返して線径1mmの銅素線を製出した。その後、この銅素線に対して圧延率10%の圧延を実施した。次いで220℃で仕上げ熱処理を行い、直径0.9mmのボンディングワイヤ用銅素線を製出した。
従来例のボンディングワイヤ用銅素線を以下の方法により製出した。まず、4NCuに、0.0030質量%のZrを添加して銅溶湯を得た。銅溶湯を用いて直径240mmの鋳塊を製出した。この鋳塊を800℃で熱間押出加工して直径8mmの押出素線を製出した。この押出素線に対して伸線加工を実施した。次いで220℃で仕上げ熱処理を行い、直径0.9mmのボンディングワイヤ用銅素線を製出した。
また、得られた本発明例1〜10、比較例1〜4、及び従来例のボンディングワイヤ用銅素線に対して、伸線加工を実施して直径180μmのボンディングワイヤを製出した。
Below, the result of the evaluation test evaluated about the copper strand for bonding wires which is this embodiment mentioned above is demonstrated.
The copper wire for bonding wires of Examples 1 to 5 and Comparative Examples 1 and 2 was produced by the method shown in the flowchart of FIG. Specifically, the additive elements listed in Table 1 were added to 4NCu to obtain a molten copper. The molten copper was poured into a belt-wheel continuous casting machine and continuously cast and rolled. Further, wire drawing and finish heat treatment were performed, and a copper wire for bonding wire having a diameter of 0.9 mm was produced.
By the method shown in the flowchart of FIG. 3, copper wires for bonding wires of Invention Examples 6 to 10 and Comparative Examples 3 and 4 were produced. Specifically, the additive elements listed in Table 1 were added to 4NCu to obtain a molten copper. An ingot having a diameter of 240 mm was produced using molten copper. The ingot was hot extruded at 800 ° C. to produce an extruded wire having a diameter of 8 mm. The extruded strand was repeatedly rolled and annealed to produce a copper strand having a wire diameter of 1 mm. Thereafter, the copper strand was rolled at a rolling rate of 10%. Next, a final heat treatment was performed at 220 ° C. to produce a copper wire for bonding wire having a diameter of 0.9 mm.
A conventional copper wire for bonding wire was produced by the following method. First, 0.0030 mass% Zr was added to 4NCu to obtain a molten copper. An ingot having a diameter of 240 mm was produced using molten copper. The ingot was hot extruded at 800 ° C. to produce an extruded wire having a diameter of 8 mm. The drawn wire was drawn. Next, a final heat treatment was performed at 220 ° C. to produce a copper wire for bonding wire having a diameter of 0.9 mm.
Further, the obtained copper wires for bonding wires of Invention Examples 1 to 10, Comparative Examples 1 to 4, and Conventional Example were drawn to produce a bonding wire having a diameter of 180 μm.

(特殊粒界比率)
得られた本発明例1〜10、比較例1〜4、及び従来例のボンディングワイヤ用銅素線について、特殊粒界比率(Lσ/L)を以下の方法により測定した。
各試料について、耐水研磨紙及びダイヤモンド砥粒を用いて機械研磨を行った。次いで、コロイダルシリカ溶液を用いて仕上げ研磨を行った。
そして、EBSB測定装置(HITACHI社製 S4300−SEM、EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、全ての結晶粒界の長さL及び特殊粒界の長さLσを算出した。これにより、平均結晶粒径及び特殊粒界長さ比率の解析を行った。測定方法の詳細を以下に示す。
まず、走査型電子顕微鏡を用いて、試料表面の測定範囲内の個々の測定点に電子線を照射し、電子線を試料表面に2次元で走査させた。後方散乱電子線回折による方位解析により、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とした。
測定範囲における結晶粒界の全粒界長さ(全ての結晶粒界の長さ)Lを測定した。また隣接する結晶粒の界面が特殊粒界である結晶粒界の位置を決定するとともに、特殊粒界の全粒界長さ(全ての特殊粒界の長さ)Lσを測定した。そして、上記測定した結晶粒界の全粒界長さLに対する特殊粒界の長さLσの比率Lσ/Lを求め、特殊粒界比率(Lσ/L)とした。
(Special grain boundary ratio)
The special grain boundary ratio (Lσ / L) was measured by the following method for the obtained inventive copper inventive wires 1 to 10, comparative examples 1 to 4, and conventional copper wires for bonding wires.
Each sample was mechanically polished using water-resistant abrasive paper and diamond abrasive grains. Next, finish polishing was performed using a colloidal silica solution.
Then, by using an EBSB measuring apparatus (HITACHI S4300-SEM, EDAX / TSL OIM Data Collection) and analysis software (EDAX / TSL OIM Data Analysis ver. 5.2), grain boundaries and special grain boundaries. And the length L of all crystal grain boundaries and the length Lσ of special grain boundaries were calculated. This analyzed the average crystal grain size and the special grain boundary length ratio. Details of the measurement method are shown below.
First, using a scanning electron microscope, each measurement point within the measurement range on the sample surface was irradiated with an electron beam, and the sample surface was scanned in two dimensions. By orientation analysis by backscattered electron beam diffraction, the crystal grain boundary was defined between the measurement points where the orientation difference between adjacent measurement points was 15 ° or more.
The total grain boundary length (length of all crystal grain boundaries) L of the grain boundaries in the measurement range was measured. Further, the position of the crystal grain boundary where the interface between adjacent crystal grains is a special grain boundary was determined, and the total grain boundary length (length of all special grain boundaries) Lσ of the special grain boundary was measured. Then, the ratio Lσ / L of the length Lσ of the special grain boundary to the total grain boundary length L of the crystal grain boundary measured above was determined and used as the special grain boundary ratio (Lσ / L).

(硬さ試験)
次に、得られた本発明例1から10、比較例1から4及び従来例のボンディングワイヤ用銅素線、及び、それらのボンディングワイヤ用銅素線から製出されたボンディングワイヤについて硬さを測定した。
なお、硬さ試験は、AKASHI製のマイクロビッカース試験機MVK−700を用いて、JIS Z 2241に準拠して実施した。
(Hardness test)
Next, the hardness of the obtained copper wires for bonding wires of Examples 1 to 10 of the present invention, comparative examples 1 to 4 and conventional examples, and bonding wires produced from the copper wires for bonding wires were measured. It was measured.
In addition, the hardness test was implemented based on JISZ2241 using the micro Vickers tester MVK-700 made from AKASHI.

(伸び)
次に、得られた本発明例1から10、比較例1から4及び従来例のボンディングワイヤ用銅素線、及び、それらのボンディングワイヤ用銅素線から製出されたボンディングワイヤについて、AKASHI製のアムスラー式竪型引張試験機を用いて引張試験を実施し、伸びを評価した。
(Elongation)
Next, with respect to the obtained copper wires for bonding wires of the present invention examples 1 to 10, comparative examples 1 to 4 and conventional examples, and bonding wires produced from these copper wires for bonding wires, AKASHI made A tensile test was carried out using an Amsler type vertical tensile tester, and the elongation was evaluated.

(加工性)
得られた本発明例1〜10、比較例1〜4、及び従来例のボンディングワイヤ用銅素線に対して、さらに伸線加工を施し、直径が87μm、50μm、又は20μmのワイヤを作製した。伸線加工時の断線回数を評価した。
(Processability)
The obtained copper wires for bonding wires of the present invention examples 1 to 10, comparative examples 1 to 4, and the conventional example were further drawn to produce a wire having a diameter of 87 μm, 50 μm, or 20 μm. . The number of wire breaks during wire drawing was evaluated.

ボンディングワイヤ用素線の特殊粒界比率(Lσ/L)、硬さ、及び伸び、ボンディングワイヤの硬さ及び伸び、並びに伸線加工時の断線回数について、評価した結果を表1に示す。   Table 1 shows the evaluation results of the special grain boundary ratio (Lσ / L), hardness, and elongation of the bonding wire, the hardness and elongation of the bonding wire, and the number of wire breaks during wire drawing.

Figure 2013048225
Figure 2013048225

本発明例1〜10においては、特殊粒界比率(Lσ/L)が50%以上となっていることが確認される。一方、比較例1〜4及び従来例では、特殊粒界比率(Lσ/L)が50%未満であった。本発明例6〜10と従来例とを対比すると、最終線径を有する素線に対して仕上げ熱処理を実施する前に、圧延率10%の加工を実施することで、特殊粒界比率(Lσ/L)を増加させることが可能であることが確認される。
特殊粒界比率(Lσ/L)が50%以上である本発明例1〜10においては、線径180μmのワイヤボンディングの状態で硬さが40Hvと低くなっていることが確認される。
また、本発明例1〜10においては、比較例に比べて、伸線時の断線が抑制されており、細径まで伸線可能であることが確認される。
In Invention Examples 1 to 10, it is confirmed that the special grain boundary ratio (Lσ / L) is 50% or more. On the other hand, in Comparative Examples 1 to 4 and the conventional example, the special grain boundary ratio (Lσ / L) was less than 50%. When the inventive examples 6 to 10 are compared with the conventional examples, the special grain boundary ratio (Lσ) is obtained by performing the processing at a rolling rate of 10% before performing the finish heat treatment on the strand having the final wire diameter. It is confirmed that it is possible to increase / L).
In the inventive examples 1 to 10 in which the special grain boundary ratio (Lσ / L) is 50% or more, it is confirmed that the hardness is as low as 40 Hv in the wire bonding state with a wire diameter of 180 μm.
Moreover, in the inventive examples 1 to 10, it is confirmed that the wire breakage during wire drawing is suppressed as compared with the comparative example, and the wire can be drawn to a small diameter.

次に、本発明例1から本発明例10までのボンディングワイヤ用銅素線を用いて酸不溶解残渣物の残渣量と粒度分布を評価した。
試料を硝酸にてエッチング処理を行い、表面に付着した不純物を除去した。次いで、100gの試料を秤量した。この試料を硝酸溶液に加熱溶解した。加熱温度は60℃とした。この作業を繰り返し行った。
次に、室温まで冷却し、そしてフィルタでろ過して残渣を捕集した。
ここでは、ポリカーボネイトフィルタ(孔径0.4μm)を用いてろ過を行った。この残渣物を捕集したポリカーボネイトフィルタをクリーンルーム内で電子秤を用いて残渣物の残渣質量を測定した。
Next, the residue amount and the particle size distribution of the acid-insoluble residue were evaluated using the copper wires for bonding wires from Invention Example 1 to Invention Example 10.
The sample was etched with nitric acid to remove impurities adhering to the surface. A 100 g sample was then weighed. This sample was dissolved by heating in a nitric acid solution. The heating temperature was 60 ° C. This operation was repeated.
Then it was cooled to room temperature and filtered through a filter to collect the residue.
Here, it filtered using the polycarbonate filter (pore diameter 0.4 micrometer). The residue mass of the residue was measured for the polycarbonate filter which collected this residue using the electronic balance in the clean room.

また、酸不溶解残渣物の粒度分布を測定した。前述の残渣物を捕集したフィルタを走査型電子顕微鏡により観察し、SEM画像を撮影した。画像をパソコンに取り込み、画像解析用ソフト(WinRoofソフト)にて画像を2値化処理の解析を行った。そして、残渣物の投影面積を測定し、この投影面積と同じ面積を有する円の直径(円相当径)を算出した。この円相当径を残渣物の粒径として用いた。また、残渣物の個数を測定した。なお、本発明例1を用いて算出されたデータから粒度分布のグラフを作成した。その結果を図4に示す。   Moreover, the particle size distribution of the acid-insoluble residue was measured. The filter which collected the above-mentioned residue was observed with the scanning electron microscope, and the SEM image was image | photographed. The image was taken into a personal computer, and the image was analyzed for binarization using image analysis software (WinRoof software). Then, the projected area of the residue was measured, and the diameter (circle equivalent diameter) of a circle having the same area as this projected area was calculated. This equivalent circle diameter was used as the particle size of the residue. Further, the number of residues was measured. A graph of particle size distribution was created from the data calculated using Example 1 of the present invention. The result is shown in FIG.

WinRoofソフトの画像解析の結果、本発明例1〜10の試料(ボンディングワイヤ用銅素線)100gを硝酸溶液に加熱溶解した際、粒径30μm以上の酸不溶解残渣物の個数がいずれも1000個以下であることが確認された。また、本発明例1〜10の試料における酸不溶解残渣物の質量比は、上述の方法で残渣物の残渣質量を測定した結果、0.00015質量%以下とされていることが確認された。   As a result of WinRoof software image analysis, when 100 g of the inventive samples 1 to 10 (copper wire for bonding wire) were heated and dissolved in a nitric acid solution, the number of acid-insoluble residue having a particle size of 30 μm or more was 1000 It was confirmed that it was less than the number. Moreover, as a result of measuring the residue mass of the residue by the above-mentioned method, the mass ratio of the acid-insoluble residue in the samples of Invention Examples 1 to 10 was confirmed to be 0.00015% by mass or less. .

30 ベルト・ホイール式連続鋳造機 30 belt-wheel type continuous casting machine

Claims (7)

線径180μm以下のボンディングワイヤを形成するための銅素線であって、
素線径が0.15mm以上3.0mm以下であり、
Mg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の添加元素を合計で0.0001質量%以上0.01質量%以下の範囲で含有し、残部が銅及び不可避不純物である組成を有し、
EBSD法にて測定された全ての結晶粒界の長さLに対する特殊粒界の長さLσの比率である特殊粒界比率(Lσ/L)が50%以上であることを特徴とするボンディングワイヤ用銅素線。
A copper wire for forming a bonding wire having a wire diameter of 180 μm or less,
The wire diameter is 0.15 mm or more and 3.0 mm or less,
Contains one or more additive elements selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements in a total range of 0.0001 mass% to 0.01 mass%, with the balance being Having a composition that is copper and inevitable impurities;
A bonding wire having a special grain boundary ratio (Lσ / L), which is a ratio of the length Lσ of the special grain boundary to the length L of all the grain boundaries measured by the EBSD method, of 50% or more. Copper wire for use.
前記添加元素の含有量の合計が0.0003質量%以上0.002質量%以下であることを特徴とする請求項1に記載のボンディングワイヤ用銅素線。   2. The copper wire for bonding wire according to claim 1, wherein the total content of the additive elements is 0.0003 mass% or more and 0.002 mass% or less. 前記不可避不純物であるFe,Pb,及びSの含有量が、Fe;0.0001質量%以下、Pb;0.0001質量%以下、及びS;0.005質量%以下であることを特徴とする請求項1又は2に記載のボンディングワイヤ用銅素線。   The contents of Fe, Pb, and S, which are inevitable impurities, are Fe; 0.0001% by mass or less, Pb; 0.0001% by mass or less, and S; 0.005% by mass or less. The copper strand for bonding wires according to claim 1 or 2. 前記ボンディングワイヤ用銅素線100gを硝酸溶液に加熱溶解して得られる粒径30μmの酸不溶解残渣物の個数が1000個以下であることを特徴とする請求項1から請求項3のいずれか一項に記載のボンディングワイヤ用銅素線。   4. The number of acid-insoluble residue having a particle size of 30 [mu] m obtained by heating and dissolving 100 g of the copper wire for bonding wire in a nitric acid solution is 1000 or less. The copper wire for bonding wires according to one item. 前記ボンディングワイヤ用銅素線を硝酸溶液に加熱溶解して得られる酸不溶解残渣物の量が0.00015質量%以下であることを特徴とする請求項1から請求項4のいずれか一項に記載のボンディングワイヤ用銅素線。   The amount of the acid-insoluble residue obtained by heating and dissolving the copper wire for bonding wire in a nitric acid solution is 0.00015% by mass or less. Copper wire for bonding wire as described in 1. 請求項1から請求項5のいずれか一項に記載のボンディングワイヤ用銅素線の製造方法であって、
純度99.99質量%以上99.998質量%以下の銅原料にMg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の添加元素を添加し、銅溶湯を生成する銅溶湯生成工程と、
前記銅溶湯をベルト・ホイール式連続鋳造機に供給し、鋳塊を連続的に製出する連続鋳造工程と、
製出された鋳塊を初期温度800℃以上の条件で連続的に圧延する連続圧延工程と、を備えていることを特徴とするボンディングワイヤ用銅素線の製造方法。
It is a manufacturing method of the copper wire for bonding wires according to any one of claims 1 to 5,
One or more additive elements selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements are added to a copper raw material having a purity of 99.99 mass% or more and 99.998 mass% or less, and a molten copper A molten copper production process for producing
Supplying the copper melt to a belt-wheel type continuous casting machine and continuously producing an ingot; and
And a continuous rolling step of continuously rolling the produced ingot at an initial temperature of 800 ° C. or more. A method for producing a copper wire for bonding wire, comprising:
請求項1から請求項5のいずれか一項に記載のボンディングワイヤ用銅素線の製造方法であって、
純度99.99質量%以上99.998質量%以下の銅原料にMg,Ca,Sr,Ba,Ra,Zr,Ti,及び希土類元素から選択される1種以上の添加元素を添加し、銅溶湯を生成する銅溶湯生成工程と、
前記銅溶湯を鋳型に注入して鋳塊を製出する鋳造工程と、
得られた鋳塊を初期温度800℃以上の条件で押出加工して押出素線を製出する押出工程と、
得られた押出素線に対して、圧延加工又は伸線加工のいずれかと焼鈍とを繰り返し実施する加工・焼鈍工程と、
圧下率5%以上25%以下で圧延して最終線径0.15mm以上3.0mm以下とする軽圧下工程と、を備えていることを特徴とするボンディングワイヤ用銅素線の製造方法。
It is a manufacturing method of the copper wire for bonding wires according to any one of claims 1 to 5,
One or more additive elements selected from Mg, Ca, Sr, Ba, Ra, Zr, Ti, and rare earth elements are added to a copper raw material having a purity of 99.99 mass% or more and 99.998 mass% or less, and a molten copper A molten copper production process for producing
A casting process in which the molten copper is poured into a mold to produce an ingot;
An extrusion process in which the obtained ingot is extruded under conditions of an initial temperature of 800 ° C. or more to produce an extruded wire;
For the obtained extruded wire, either a rolling process or a wire drawing process and an annealing process for repeatedly performing annealing, and
A light reduction step of rolling at a reduction rate of 5% to 25% to obtain a final wire diameter of 0.15 mm to 3.0 mm, and a method for producing a copper wire for bonding wires.
JP2012161473A 2011-07-22 2012-07-20 Copper wire for bonding wire and method for manufacturing copper wire for bonding wire Active JP5344070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012161473A JP5344070B2 (en) 2011-07-22 2012-07-20 Copper wire for bonding wire and method for manufacturing copper wire for bonding wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011161036 2011-07-22
JP2011161036 2011-07-22
JP2012161473A JP5344070B2 (en) 2011-07-22 2012-07-20 Copper wire for bonding wire and method for manufacturing copper wire for bonding wire

Publications (2)

Publication Number Publication Date
JP2013048225A true JP2013048225A (en) 2013-03-07
JP5344070B2 JP5344070B2 (en) 2013-11-20

Family

ID=47601004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161473A Active JP5344070B2 (en) 2011-07-22 2012-07-20 Copper wire for bonding wire and method for manufacturing copper wire for bonding wire

Country Status (6)

Country Link
JP (1) JP5344070B2 (en)
KR (1) KR101926215B1 (en)
CN (1) CN103608910B (en)
MY (1) MY171026A (en)
TW (1) TWI586448B (en)
WO (1) WO2013015154A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519075B1 (en) * 2013-12-03 2015-05-21 (주)신동 Electromagnetic wave shielding Fe-Cu wire, rod and Manufacturing method for the same
US11865608B2 (en) 2020-12-28 2024-01-09 Proterial, Ltd. Method of manufacturing wire rod and apparatus of manufacturing wire rod

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175932B2 (en) * 2013-06-24 2017-08-09 三菱マテリアル株式会社 Drawing copper wire, drawing copper wire manufacturing method and cable
JP6056876B2 (en) 2015-01-07 2017-01-11 三菱マテリアル株式会社 Superconducting stabilizer
JP6299803B2 (en) * 2016-04-06 2018-03-28 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP6299802B2 (en) 2016-04-06 2018-03-28 三菱マテリアル株式会社 Superconducting stabilizer, superconducting wire and superconducting coil
CN106119597A (en) * 2016-08-30 2016-11-16 芜湖楚江合金铜材有限公司 The different in nature copper wires of a kind of environment-friendly and high-performance and processing technique thereof
CN106947881A (en) * 2017-05-05 2017-07-14 三门峡宏鑫有色金属有限公司 Multielement rare earth high conductivity Cu alloy material and preparation method thereof
WO2019088080A1 (en) 2017-10-30 2019-05-09 三菱マテリアル株式会社 Superconductivity stabilizing material, superconducting wire, and superconducting coil
WO2019151130A1 (en) * 2018-01-30 2019-08-08 タツタ電線株式会社 Bonding wire
CN111661953A (en) * 2020-06-16 2020-09-15 包头稀土研究院 Method for separating fluorine and phosphorus in mixed rare earth alkaline wastewater and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286212A (en) * 1987-05-16 1988-11-22 Sumitomo Electric Ind Ltd Manufacture of metal wire for wiring of semiconductor
JP2010214400A (en) * 2009-03-16 2010-09-30 Mitsubishi Materials Corp Method and apparatus for manufacturing rough copper wire, and rough copper wire
WO2011086978A1 (en) * 2010-01-12 2011-07-21 三菱マテリアル株式会社 Phosphorous-containing copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2175009B (en) * 1985-03-27 1990-02-07 Mitsubishi Metal Corp Wire for bonding a semiconductor device and process for producing the same
JPH02207541A (en) * 1989-02-07 1990-08-17 Sumitomo Electric Ind Ltd Manufacture of semiconductor element connection wire
JP4501818B2 (en) * 2005-09-02 2010-07-14 日立電線株式会社 Copper alloy material and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286212A (en) * 1987-05-16 1988-11-22 Sumitomo Electric Ind Ltd Manufacture of metal wire for wiring of semiconductor
JP2010214400A (en) * 2009-03-16 2010-09-30 Mitsubishi Materials Corp Method and apparatus for manufacturing rough copper wire, and rough copper wire
WO2011086978A1 (en) * 2010-01-12 2011-07-21 三菱マテリアル株式会社 Phosphorous-containing copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519075B1 (en) * 2013-12-03 2015-05-21 (주)신동 Electromagnetic wave shielding Fe-Cu wire, rod and Manufacturing method for the same
US11865608B2 (en) 2020-12-28 2024-01-09 Proterial, Ltd. Method of manufacturing wire rod and apparatus of manufacturing wire rod

Also Published As

Publication number Publication date
MY171026A (en) 2019-09-23
CN103608910B (en) 2016-03-02
JP5344070B2 (en) 2013-11-20
KR20140050630A (en) 2014-04-29
CN103608910A (en) 2014-02-26
WO2013015154A1 (en) 2013-01-31
TWI586448B (en) 2017-06-11
TW201323104A (en) 2013-06-16
KR101926215B1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP5344070B2 (en) Copper wire for bonding wire and method for manufacturing copper wire for bonding wire
KR101615830B1 (en) Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
JP5962707B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
JP6758746B2 (en) Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and bus bars
JP5975493B2 (en) Method for producing copper alloy wire
WO2021177469A1 (en) Pure copper plate
TWI513833B (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device
JP6984799B1 (en) Pure copper plate, copper / ceramic joint, insulated circuit board
JP5903832B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and electronic equipment parts
JP6780187B2 (en) Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and busbars
EP3375898B1 (en) Copper alloy material
JP7014211B2 (en) Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and bus bars
US20180171437A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5903839B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment and electronic equipment parts
JP2013049893A (en) Conductor for solar cell interconnector, and solar cell interconnector
JP2012167319A (en) Cu-Co-Si-BASED ALLOY, ROLLED COPPER ARTICLE, ELECTRONIC COMPONENT, CONNECTOR, AND METHOD FOR PRODUCING Cu-Co-Si-BASED ALLOY
JP2016125093A (en) Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, terminal and bus bar
TW202212583A (en) Copper alloy, plastically worked copper alloy material, component for electronic/electrical equipment, terminal, and heat dissipation substrate
JP2021138998A (en) Copper alloy material and production method of the same
JP2012046804A (en) Copper alloy material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130422

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130424

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5344070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150