JP2013046932A - Shielding gas for mag welding, method for mag welding, and weld structure - Google Patents

Shielding gas for mag welding, method for mag welding, and weld structure Download PDF

Info

Publication number
JP2013046932A
JP2013046932A JP2012230761A JP2012230761A JP2013046932A JP 2013046932 A JP2013046932 A JP 2013046932A JP 2012230761 A JP2012230761 A JP 2012230761A JP 2012230761 A JP2012230761 A JP 2012230761A JP 2013046932 A JP2013046932 A JP 2013046932A
Authority
JP
Japan
Prior art keywords
welding
gas
less
mag
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230761A
Other languages
Japanese (ja)
Inventor
Yasuhito Kamijo
康仁 上條
Satoru Asai
知 浅井
Katsunori Wada
勝則 和田
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Taiyo Nippon Sanso Corp
Original Assignee
Toshiba Corp
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Taiyo Nippon Sanso Corp filed Critical Toshiba Corp
Priority to JP2012230761A priority Critical patent/JP2013046932A/en
Publication of JP2013046932A publication Critical patent/JP2013046932A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a shielding gas for metal active gas (MAG) welding, a method for MAG welding and a weld structure, in which quality in welding a narrow bevel is improved.SOLUTION: The shielding gas for MAG welding welds a high chromium steel containing 8-13 wt.% Cr using a solid wire containing 8-13 wt.% Cr in a one pass per layer manner to weld a narrow bevel in which a ratio of a gap W1 of the bevel between base metals to a thickness H1 of the pair of base metals is 0.4 or less and an angle θ1 of the bevel is 10° or less. The shielding gas for MAG welding is formed of a three-component mixture gas composed of: 5-17 vol% carbon dioxide gas; 30-80 vol% helium gas; and the balance argon gas.

Description

本発明は,高Cr鋼のマグ溶接用シールドガス,マグ溶接方法,および溶接構造物に関する。   The present invention relates to a shielding gas for MAG welding of high Cr steel, a MAG welding method, and a welded structure.

近年,発電用タービン,ボイラ等の発電機器は,熱効率の向上のため,高温・高圧下で使用される傾向にある。このため,発電機器の構成材料として,高温での強度に優れた高Cr鋼(例えば,9Cr鋼,12Cr鋼)が開発されている。
そして,発電機器の製造に溶接が有用であることから,高Cr鋼の溶接技術が開発されている。例えば,高Cr鋼をマグ溶接するための溶接材料に希土類金属を含有させることで,溶接時のアークの安定性を向上させる技術が開示されている(特許文献1参照)。
In recent years, power generation equipment such as power generation turbines and boilers tend to be used under high temperature and high pressure in order to improve thermal efficiency. For this reason, high Cr steel (for example, 9Cr steel, 12Cr steel) excellent in strength at high temperatures has been developed as a constituent material of power generation equipment.
And because welding is useful for the production of power generation equipment, welding technology for high Cr steel has been developed. For example, a technique for improving the arc stability during welding by incorporating a rare earth metal into a welding material for mag-welding high Cr steel is disclosed (see Patent Document 1).

特開2001−219292号公報JP 2001-219292 A

しかし,上述の溶接材料は,好適な希土類金属含有量での製造が必ずしも容易ではなく,一般的な高Cr鋼マグ溶接材料と比較し,高コストとなる上,狭開先溶接での品質の確保が困難である。
本発明は,狭開先溶接での品質の向上を図った,マグ溶接用シールドガス,マグ溶接方法,および溶接構造物を提供することを目的とする。
However, the above-mentioned welding materials are not always easy to manufacture with a suitable rare earth metal content, and are more expensive than general high Cr steel mag welding materials. It is difficult to secure.
An object of this invention is to provide the shielding gas for MAG welding, the MAG welding method, and the welded structure which aimed at the quality improvement in narrow groove welding.

本発明の一態様に係るマグ溶接用シールドガスは,8重量%以上,13重量%以下のCrを含有する高Cr鋼を,8重量%以上,13重量%以下のCrを含有するソリッドワイヤを用いて,1層1パスで,一対の母材の厚さH1とこれら母材間の開先の間隔W1の比(W1/H)が0.4以下,この開先の角度θ1が10°以下の狭開先を溶接するためのマグ溶接用シールドガスであって,5容量%以上,17容量%以下の炭酸ガス,30容量%以上,80容量%以下のヘリウムガス,残部がアルゴンガスの3種混合ガスからなる。   The shielding gas for mag welding according to one aspect of the present invention is a high-Cr steel containing 8 wt% or more and 13 wt% or less of Cr, and a solid wire containing 8 wt% or more and 13 wt% or less of Cr. The ratio (W1 / H) of the thickness H1 of the pair of base materials to the gap interval W1 between these base materials (W1 / H) is 0.4 or less, and the groove angle θ1 is 10 °. Shielding gas for MAG welding for welding the following narrow gaps, which is 5% to 17% by volume carbon dioxide, 30% to 80% by volume helium gas, and the balance is argon gas. It consists of 3 kinds of mixed gas.

本発明によれば,狭開先溶接での品質の向上を図った,マグ溶接用シールドガス,マグ溶接方法,および溶接構造物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the shielding gas for MAG welding, the MAG welding method, and the welded structure which aimed at the quality improvement by narrow groove welding can be provided.

狭開先の形状の一例を表す断面図である。It is sectional drawing showing an example of the shape of a narrow groove. 一般開先の形状の一例を表す断面図である。It is sectional drawing showing an example of the shape of a general groove. 狭開先での溶接状態を表す断面図である。It is sectional drawing showing the welding state in a narrow groove | channel. 本発明の実施例3(He−Ar−COの3元系シールドガスで溶接)の試験体の断面を表す写真である。It is a photograph showing the cross section of the test body of Example 3 (welding with ternary shielding gas of He—Ar—CO 2 ) of the present invention. 本発明の比較例1(Ar−COの2元系シールドガスで溶接)の試験体の断面を表す写真である。Is a photograph showing a cross section of the test body (welding binary shielding gas Ar-CO 2) Comparative Example 1 of the present invention.

以下,本発明の実施形態を説明する。
本発明者らは,高Cr鋼のマグ溶接用シールドガスについて,検討を行った。その結果,He−Ar−COの3元系のシールドガスを用いることで,狭開先内においてもアーク安定性,溶接金属の濡れ性,開先端部の溶け込みに優れるマグ溶接が可能となることが判った。
Hereinafter, embodiments of the present invention will be described.
The present inventors examined a shielding gas for mag welding of high Cr steel. As a result, by using a ternary shielding gas of He—Ar—CO 2 , it becomes possible to perform MAG welding with excellent arc stability, weld metal wettability, and penetration of the open tip even in a narrow groove. I found out.

マグ溶接は,アーク溶接の一種である。アーク溶接では,母材と電極(溶接ワイヤ)間でアーク放電を発生させて,アークの高温によって母材と溶接ワイヤを溶解させて接合する。マグ溶接では,電極(溶接ワイヤ)から発生させたアークを不活性ガスと炭酸ガスを混合したシールドガスで覆う。この結果、アークが安定され、かつ溶融金属への大気の混入が防止される。   Mag welding is a type of arc welding. In arc welding, an arc discharge is generated between a base material and an electrode (welding wire), and the base material and the welding wire are melted and joined by the high temperature of the arc. In MAG welding, an arc generated from an electrode (welding wire) is covered with a shielding gas in which inert gas and carbon dioxide gas are mixed. As a result, the arc is stabilized and the atmosphere is prevented from entering the molten metal.

狭開先(ナロウギャップ)溶接は,例えば,厚板の端部を板厚に比し小さな間隔で,対向または接触させた小さい角度を有する間隙(開先)をアーク溶接することをいう。ここでは,特に,狹開先を各層1パスで多層溶接することを考える。なお,多層溶接(多層肉盛溶接)は、複数層の溶接ビードを重ねてゆく溶接である。   Narrow groove welding means, for example, arc welding of a gap (groove) having a small angle facing or contacting the end of a thick plate at a small interval compared to the plate thickness. Here, in particular, it is considered to perform multi-layer welding of the cleaves with one pass for each layer. Multi-layer welding (multi-layer welding) is welding in which a plurality of layers of weld beads are stacked.

図1は,狭開先の形状の一例を表す断面図である。厚板等の母材11,12の端面が間隙(開先(ギャップ))13を有して,下端が接触するように配置される。母材11,12の厚さH1(例えば,50mm)に対して,間隙13の底部での母材11,12の間隔W1(例えば,20mm以下)が小さい(W1<H1)。
また,間隙13の壁面(母材11,12の端面)のなす角度θ1は小さく,例えば,10°以下とする。
FIG. 1 is a cross-sectional view showing an example of the shape of a narrow groove. The end surfaces of the base materials 11 and 12 such as thick plates have a gap (gap) 13 and are arranged so that their lower ends are in contact with each other. The distance W1 (for example, 20 mm or less) between the base materials 11 and 12 at the bottom of the gap 13 is smaller than the thickness H1 (for example, 50 mm) of the base materials 11 and 12 (W1 <H1).
Further, the angle θ1 formed by the wall surface of the gap 13 (end surfaces of the base materials 11 and 12) is small, for example, 10 ° or less.

図2は,一般開先の形状の一例を表す断面図である。厚板等の母材21,22の端面が間隙(ギャップ)23を有して,対向するように配置される。この例では,間隙23の壁面(母材21,22の端面)のなす角度はθ21,θ22と2段階に変化している。   FIG. 2 is a cross-sectional view illustrating an example of the shape of a general groove. End surfaces of the base materials 21 and 22 such as thick plates are arranged so as to face each other with a gap (gap) 23. In this example, the angle formed by the wall surface of the gap 23 (end surfaces of the base materials 21 and 22) changes in two stages, θ21 and θ22.

ここでは,図1において,母材11,12の厚さH1と間隔W1の比(W1/H1)が0.4以下,角度θ1が10°以下のものを狭開先と呼ぶこととする。
また,これに加えて,厚さH1と間隔W1が次の条件も満たしても良い。
H1≦200mmの場合,W1≦20mm
H1>200mmの場合,W1≦30mm
Here, in FIG. 1, the ratio between the thickness H1 of the base materials 11 and 12 and the interval W1 (W1 / H1) is 0.4 or less and the angle θ1 is 10 ° or less is called a narrow groove.
In addition to this, the thickness H1 and the interval W1 may satisfy the following conditions.
When H1 ≦ 200mm, W1 ≦ 20mm
When H1> 200mm, W1 ≦ 30mm

なお,図2に示すように,角度θ1が一定でない場合(例えば,複数段階で変化する場合),実質的に最大の角度を角度θ1とする。なお,図1では,母材11,12の下端が接触しているが,母材11,12の下端が接触していなくても狭開先として差し支えない。   As shown in FIG. 2, when the angle θ1 is not constant (for example, when the angle θ1 changes in a plurality of stages), the substantially maximum angle is set as the angle θ1. In FIG. 1, the lower ends of the base materials 11 and 12 are in contact with each other. However, even if the lower ends of the base materials 11 and 12 are not in contact with each other, there is no problem as a narrow groove.

図3は,狭開先での溶接状態を表す断面図である。厚板等の母材31,32の端面が間隙(開先(ギャップ))33を有して,配置される。母材31,32の下部に裏当て板34が配置される。間隙33内に溶接ビード41〜44が配置される。溶接ビード41〜44が1層に1つ(紙面上下方向に)配置されていることから,この溶接は各層1パスの3層溶接である。   FIG. 3 is a cross-sectional view showing a welding state in a narrow groove. End surfaces of the base materials 31 and 32 such as thick plates are disposed with a gap (gap) 33. A backing plate 34 is disposed below the base materials 31 and 32. The weld beads 41 to 44 are disposed in the gap 33. Since one weld bead 41 to 44 is arranged per layer (in the vertical direction on the paper surface), this welding is a three-layer welding with one pass for each layer.

母材31,32の間隔W30に対して,ビード41〜44の幅W31が十分大きければ,母材31,32での溶接の溶け込み深さが十分であると考えられる。   If the width W31 of the beads 41 to 44 is sufficiently large with respect to the interval W30 between the base materials 31 and 32, it is considered that the penetration depth of welding in the base materials 31 and 32 is sufficient.

高Cr鋼は,鉄を主成分とし,比較的高濃度(8〜13質量%)のCrを含む合金材料である。Crは,金属材料の耐食性,耐酸化性及びクリープ強度を向上させるために重要な元素である。8重量%未満のCrでは耐食性等への効果が少ない。また,13重量%以上のCrを含有させた場合,δフェライトが晶出し,強度,脆性が低下する。故に,発電機器(発電用ボイラ,タービン部品)等の高温,高圧下で使用される高Cr鋼は,一般に,8〜13重量%のCrを含有する。   High Cr steel is an alloy material containing iron as a main component and containing a relatively high concentration (8 to 13% by mass) of Cr. Cr is an important element for improving the corrosion resistance, oxidation resistance and creep strength of a metal material. Less than 8% by weight of Cr has little effect on corrosion resistance. Further, when 13 wt% or more of Cr is contained, δ ferrite is crystallized and the strength and brittleness are lowered. Therefore, high Cr steels used at high temperatures and high pressures such as power generation equipment (power generation boilers, turbine parts) generally contain 8 to 13% by weight of Cr.

なお,高Cr鋼として,より望ましいCr含有量は8.5〜11重量%である。後述する本実施形態に係るマグ溶接用シールドガスは,8.5〜11重量%のCrを含有する高Cr鋼でのマグ溶接に好ましく適用できる。   In addition, as high Cr steel, more desirable Cr content is 8.5 to 11% by weight. The shield gas for mag welding according to the present embodiment, which will be described later, can be preferably applied to mag welding with high Cr steel containing 8.5 to 11% by weight of Cr.

高Cr鋼の溶接に,共金(同種の金属)である8〜13重量%(あるいは,8.5〜11重量%)のCrを含有するワイヤ(溶接用ワイヤ)が用いられる(共金溶接)。   A wire (welding wire) containing 8 to 13% by weight (or 8.5 to 11% by weight) of Cr, which is a common metal (same type of metal), is used for welding high Cr steel (common metal welding). ).

しかしながら,低炭素鋼等と比較して,高Cr鋼の溶接は必ずしも容易ではなく,狭開先溶接(特に,狭開先での多層(肉盛)溶接)が困難である。一般的なマグ溶接用シールドガス(アルゴンガスに炭酸ガスを20容量%含有した混合ガス)を用いて,高Cr鋼を狭開先溶接することを考える。この場合,高Cr鋼のスラグが硬く,開先端部でのスラグ除去が困難であるため,次パス溶接時にスラグが浮上せず,開先端部でのスラグ巻き込みが発生し易い。また,ビードの濡れ性が悪いため,凸ビードになりやすく,融合不良等の溶接欠陥が発生し易い。   However, compared with low carbon steel, etc., welding of high Cr steel is not always easy, and narrow groove welding (especially, multi-layer (overlay) welding in a narrow groove) is difficult. Let us consider narrow-groove welding of high Cr steel using a general shielding gas for mag welding (a mixed gas containing 20% by volume of carbon dioxide in argon gas). In this case, the slag of high Cr steel is hard and it is difficult to remove the slag at the open tip, so the slag does not float during the next pass welding, and the slag is likely to be caught at the open tip. Further, since the bead wettability is poor, it tends to be a convex bead, and welding defects such as poor fusion are likely to occur.

本実施形態に係るマグ溶接用シールドガスは,5容量%以上,17容量%以下の炭酸ガス,30容量%以上,80容量%以下のヘリウムガス,残部がアルゴンガスの3種混合ガスからなる。
以下,マグ溶接用シールドガスの成分限定理由を述べる。
The shielding gas for mag welding according to the present embodiment is composed of three mixed gases of 5 volume% or more and 17 volume% or less of carbon dioxide gas, 30 volume% or more and 80 volume% or less of helium gas, and the balance is argon gas.
The reasons for limiting the components of shield gas for MAG welding are described below.

マグ溶接のアーク安定性において,酸素または炭酸ガスといった酸化性ガスがシールドガス中に含まれることが重要である。マグ溶接においてアークが安定するためには,アークの陰極点が安定的に形成されることが重要であるが,陰極側に酸化物が存在すると,陰極点がより生成され易くなる。シールドガスがアルゴンガスもしくはヘリウムガスなどの不活性ガスのみで構成されている場合,陰極側雰囲気中に酸化性ガスが無いため,溶融池表面およびその近傍において酸化物の生成が乏しく,陰極点が安定し難い。その結果,アークが過剰に広がったり,ふらついたりする等のアーク不安定挙動が生じる。特に,狭開先では,アークの過剰な広がりや開先壁へのアークのはい上がりが生じ,アークが不安定になり易い。アークが不安定になることで,開先端部の融合不良,ビード形状不良,スパッタ発生などといった溶接欠陥や不具合を生じることとなる。   In the arc stability of MAG welding, it is important that an oxidizing gas such as oxygen or carbon dioxide is included in the shielding gas. In order to stabilize the arc in MAG welding, it is important that the arc spot of the arc is stably formed. However, if an oxide is present on the cathode side, the cathode spot is more easily generated. When the shield gas is composed only of inert gas such as argon gas or helium gas, there is no oxidizing gas in the cathode side atmosphere, so oxide formation is poor on and around the molten pool surface, and the cathode spot is It is difficult to stabilize. As a result, arc instability behavior such as excessive arc spreading or wobbling occurs. In particular, in a narrow groove, the arc tends to become unstable due to an excessive spread of the arc and an arc rising to the groove wall. As the arc becomes unstable, welding defects and defects such as poor fusion at the open end, bead shape failure, and spattering will occur.

シールドガスが炭酸ガスを含有することで,炭酸ガスの酸化力により,陰極点の元となる酸化物が生成し,陰極点は安定する。また炭酸ガスを含有することで,アーク自体が熱的ピンチ効果により緊縮し,アークの硬直性,指向性も向上する。従って,シールドガスが炭酸ガスを含有することで,アークの安定性が向上し,スパッタの発生が低減するとともに,開先端部を効果的に溶融できるようになる。   When the shielding gas contains carbon dioxide, the oxide that becomes the source of the cathode spot is generated by the oxidizing power of the carbon dioxide gas, and the cathode spot is stabilized. By containing carbon dioxide, the arc itself contracts due to the thermal pinch effect, and the rigidity and directivity of the arc are improved. Therefore, since the shielding gas contains carbon dioxide, the stability of the arc is improved, the generation of spatter is reduced, and the open tip can be effectively melted.

炭酸ガス濃度は5容量%未満ではアーク安定性が十分ではなく,17容量%を超えるとスパッタが増加するので好ましくない。即ち,炭酸ガスの含有量が多すぎると,アークの緊縮が過剰となり,溶接ワイヤからの溶滴の離脱が阻害されて,アークが不安定となり,スパッタが増加する。本実施形態に係るシールドガスは,一般的なマグ溶接用シールドガス(アルゴンガスに炭酸ガスを20容量%含有した混合ガス)と比較して,炭酸ガスの含有量が少ない。このため,シールドガスの酸化力が若干弱くなり,ビードの酸化およびビード表面でのスラグの発生が低減する。   If the carbon dioxide concentration is less than 5% by volume, the arc stability is not sufficient, and if it exceeds 17% by volume, spatter increases, which is not preferable. That is, if the carbon dioxide content is too high, the arc becomes too tight and the detachment of the droplets from the welding wire is hindered, making the arc unstable and increasing spatter. The shield gas according to the present embodiment has a lower carbon dioxide content than a general MAG welding shield gas (a mixed gas containing 20% by volume of carbon dioxide in argon gas). For this reason, the oxidizing power of the shielding gas is slightly weakened, and bead oxidation and generation of slag on the bead surface are reduced.

なお,酸化性ガスに酸素を用いると,その酸化力が過剰であり,溶接の外観,母材への溶け込みが必ずしも良くない。このため,本実施形態に係るマグ溶接用シールドガスの酸化性ガスとして酸素を採用していない。   If oxygen is used as the oxidizing gas, its oxidizing power is excessive, and the appearance of welding and the penetration into the base metal are not always good. For this reason, oxygen is not employed as the oxidizing gas of the shield gas for mag welding according to the present embodiment.

ヘリウムガスはアルゴンガスと比較して電位傾度が大きいため,溶接時のアーク電圧が高くなり,アークによる発熱が増加する。その結果,母材への入熱が大きくなるため,母材の溶融が促進され,母材の溶融量が増加し,溶け込みも深くなる。狭開先の場合,開先端部も,十分に溶融することが可能となり,十分な溶け込みが得られ,融合不良が減少する。また母材の溶融量が増加することで,溶融池からのアーク安定性向上に有効な金属蒸気の発生も促進されるから,アーク安定性もやや向上する。また,アークによる発熱が増加することで,熱伝導によっても母材は加熱され,さらにヘリウムガスの密度が小さいことによるアーク時のガス圧低下も作用し,溶接金属(ビード)の濡れ性が向上する。   Since helium gas has a higher potential gradient than argon gas, the arc voltage during welding increases, and heat generation by the arc increases. As a result, since the heat input to the base material increases, the melting of the base material is accelerated, the amount of melting of the base material increases, and the penetration becomes deep. In the case of a narrow groove, the open tip can be sufficiently melted, sufficient penetration is obtained, and poor fusion is reduced. In addition, the increase in the amount of the base metal melted promotes the generation of metal vapor effective in improving the arc stability from the molten pool, so the arc stability is also slightly improved. In addition, the heat generated by the arc increases, so that the base metal is heated by heat conduction, and the gas pressure during arcing decreases due to the low helium gas density, improving the wettability of the weld metal (bead). To do.

ヘリウムガスの濃度が30容量%未満では溶け込み増加,濡れ性向上が十分ではない。一方,ヘリウムガスの濃度が80容量%を超えると,溶接開始時にアークが発生し難くなる(アークスタート性の悪化)とともに,ヘリウムガスが低密度であることに起因して,大気からのシールド性が劣化する(溶融金属に大気が混入し易くなる)。   When the concentration of helium gas is less than 30% by volume, the increase in penetration and the improvement of wettability are not sufficient. On the other hand, if the concentration of helium gas exceeds 80% by volume, arcing is difficult to occur at the start of welding (deterioration of arc start performance) and shielding properties from the atmosphere due to the low density of helium gas. Deteriorates (atmosphere easily enters molten metal).

以上のように,高Cr鋼を狭開先溶接するためのシールドガスとしては,5容量%から17容量%の炭酸ガス,30容量%から80容量%のヘリウムガス,残部がアルゴンガスからなる3種混合ガスが適している。   As described above, the shielding gas for the narrow gap welding of high Cr steel is 5 to 17 volume% carbon dioxide gas, 30 to 80 volume% helium gas, and the balance is argon gas 3 A seed gas mixture is suitable.

この3種混合ガスを用いて,高Cr鋼を狭開先マグ溶接することができる。
このとき,ピーク電流が350〜500A,ベース電流が40〜100A,パルス周波数が100〜400Hzの溶接条件にてパルスマグ溶接することが好ましい。パルスマグ溶接を使用することで,スパッタ及びヒュームを低減できる。
Narrow groove mag welding of high Cr steel can be performed using these three mixed gases.
At this time, it is preferable to perform pulsed MAG welding under welding conditions in which the peak current is 350 to 500 A, the base current is 40 to 100 A, and the pulse frequency is 100 to 400 Hz. Sputtering and fume can be reduced by using pulsed mag welding.

ピーク電流は,電磁ピンチ力を確保し,溶接用ワイヤからの溶滴の離脱に寄与する。ピーク電流が350A未満であると,電磁ピンチ力が弱いため,溶滴が大塊となるまで溶接用ワイヤから離脱し難くなる。この結果,1パルス1溶滴移行から外れ,スパッタ及びヒュームが多量発生する可能性がある。また,ピーク電流が500Aを超えると,溶滴を押し上げるアーク力が強くなりすぎ,溶接用ワイヤからの規則的な溶滴離脱が困難となり,1パルス複数溶滴移行となる。   The peak current secures the electromagnetic pinch force and contributes to the detachment of the droplets from the welding wire. When the peak current is less than 350 A, the electromagnetic pinch force is weak, so that it is difficult to separate from the welding wire until the droplet becomes a large mass. As a result, there is a possibility that a large amount of spatters and fumes are generated because the transition from one pulse to one droplet is lost. On the other hand, when the peak current exceeds 500 A, the arc force that pushes up the droplets becomes too strong, and regular droplet detachment from the welding wire becomes difficult, resulting in one-pulse multiple droplet transfer.

ベース電流は,アークを継続させ,溶滴の安定整形に寄与する。ベース電流が40A未満であると,アーク切れ,短絡が発生しやすくなる。また,ベース電流が100Aを超えると,溶滴の移行に寄与するアーク力が大きくなり,溶滴がふらつき,溶滴の安定整形が困難となる。   The base current continues the arc and contributes to the stable shaping of the droplets. If the base current is less than 40 A, arc breaks and short circuits are likely to occur. On the other hand, when the base current exceeds 100 A, the arc force that contributes to the transfer of the droplet increases, and the droplet fluctuates, making it difficult to stably shape the droplet.

パルス周波数は,1パルスあたりの溶滴の大きさ及びパルスと溶滴移行との同期率に影響を与える。パルス周波数が100Hz未満であると,1パルスあたりの溶滴が大きくなりすぎ,溶滴と溶融池との間で短絡が発生しやすくなる。また,パルス周波数が400Hzを超えると,1パルス1溶滴移行から外れ,パルスに同期しない溶滴移行となる。   The pulse frequency affects the droplet size per pulse and the synchronization rate between the pulse and droplet transfer. If the pulse frequency is less than 100 Hz, the droplets per pulse become too large, and a short circuit is likely to occur between the droplets and the molten pool. Further, when the pulse frequency exceeds 400 Hz, the droplet transfer deviates from one pulse / one droplet transfer and does not synchronize with the pulse.

パルス溶接条件は,溶滴移行形態,ひいては,スパッタ及びヒュームの発生,溶接欠陥の発生に影響を与える。すなわち,平均電流が小さすぎると,狭開先溶接において,開先端部の溶け込みが甘くなり,融合不良等が発生する。また,平均電流が大きすぎると,溶融池の冷却速度が遅くなり,高温割れが発生する。   Pulse welding conditions affect the droplet transfer mode, and in turn, spatter and fume generation and weld defects. In other words, if the average current is too small, the penetration of the open tip becomes unsatisfactory in narrow groove welding, resulting in poor fusion. On the other hand, if the average current is too large, the cooling rate of the weld pool is slowed down and hot cracking occurs.

以上のように,高Cr鋼のパルスマグ溶接条件としては,ピーク電流が350〜500A,ベース電流が40〜100A,パルス周波数が100〜400Hzが適している。   As described above, the peak current is 350 to 500 A, the base current is 40 to 100 A, and the pulse frequency is 100 to 400 Hz as pulse mag welding conditions for high Cr steel.

ここで,3種混合ガスを用いることで,高Cr鋼のマグ溶接において,溶接姿勢を全姿勢とすることが容易となる。全姿勢は,下向姿勢、横向姿勢、立向姿勢、上向姿勢の全ての総称である。
一般に,横向姿勢,立向姿勢,上向姿勢,特に,上向姿勢では,溶融池が重力により垂れ,濡れ性が悪化し,ビードの形状が凸型になりやすい。多層盛溶接の場合,凸型のビードの上に溶接すると,融合不良等の溶接欠陥の発生を誘発する。そこで,3種混合ガスを用いることで,全姿勢溶接においても,溶接金属の濡れ性を損なう事無く溶接することが可能となる。
Here, by using the three kinds of mixed gases, it becomes easy to set the welding posture to all postures in the mag welding of high Cr steel. The total posture is a general term for all of the downward posture, the horizontal posture, the vertical posture, and the upward posture.
In general, in a horizontal posture, a vertical posture, an upward posture, and particularly in an upward posture, the molten pool hangs down due to gravity, wettability deteriorates, and the bead shape tends to be convex. In multi-layer welding, welding on a convex bead induces welding defects such as poor fusion. Therefore, by using the three types of mixed gas, it is possible to perform welding without impairing the wettability of the weld metal even in all-position welding.

以上のように,8〜13重量%のCrを含有する高Cr鋼を,8〜13重量%のCrを含有するソリッドワイヤを用いて,1層1パスで狭開先溶接する場合,5〜17容量%の炭酸ガス,30容量%〜80容量%のヘリウムガス,残部がアルゴンガスからなる3種混合ガスをシールドガスとして用いることが好ましい。狭開先内においてもアーク安定性,溶接金属の濡れ性,開先端部の溶け込みに優れた溶接施工が可能となる。   As described above, when high-Cr steel containing 8 to 13% by weight of Cr is subjected to narrow gap welding with one layer and one pass using a solid wire containing 8 to 13% by weight of Cr, It is preferable to use a three-mixed gas composed of 17% by volume carbon dioxide gas, 30% by volume to 80% by volume helium gas, and the balance argon gas as the shielding gas. Even in narrow gaps, it is possible to perform welding with excellent arc stability, weld metal wettability, and penetration at the open end.

本実施形態に係る高Cr鋼のマグ溶接用に適したシールドガスについて,実施例を説明する。   An example is described about the shielding gas suitable for the mag welding of the high Cr steel which concerns on this embodiment.

[実施例1]
本実施形態に係るシールドガスの特徴・効果を確認するため,各種特性の確認試験を行った。
9Cr鋼板を用いて,狭開先内でマグ溶接を行った。このとき,シールドガスとして,Heガス,COガス及びArガスの3種混合ガスを用い,その組成(容量%)を変化させた。アーク安定性,酸化の度合い,スラグ発生量,濡れ性,スパッタ発生量,溶け込み深さを評価した。
本試験での溶接条件は以下の通りである。
[Example 1]
In order to confirm the characteristics and effects of the shielding gas according to this embodiment, confirmation tests of various characteristics were performed.
Using a 9Cr steel plate, mag welding was performed in a narrow groove. At this time, a mixed gas of He gas, CO 2 gas and Ar gas was used as the shielding gas, and the composition (volume%) was changed. Arc stability, degree of oxidation, slag generation, wettability, spatter generation, and penetration depth were evaluated.
The welding conditions in this test are as follows.

<溶接条件>
・溶接方法:狭開先マグ溶接 1pass/layer
・溶接母材:A182 F91相当品(ASTM)
・溶接ワイヤ:AWS A5.28 ER90S−B9相当品,φ1.2
・ピーク電流:400〜500A
・ベース電流:50〜70A
・パルス周波数:100〜200Hz
・溶接電圧:28〜32V
<Welding conditions>
・ Welding method: narrow groove mag welding 1pass / layer
-Welding base material: A182 F91 equivalent (ASTM)
-Welding wire: AWS A5.28 ER90S-B9 equivalent, φ1.2
・ Peak current: 400-500A
・ Base current: 50-70A
・ Pulse frequency: 100-200Hz
・ Welding voltage: 28-32V

本実施形態に係るシールドガスによるマグ溶接で得られる特性を明確にするため,比較例として,従来マグ溶接のシールドガスとして用いられているArガスベースにCOガス20容量%含有した混合ガス及びAr−Heの2元系混合ガスを用いて溶接を行った。 In order to clarify the characteristics obtained by the mag welding with the shielding gas according to the present embodiment, as a comparative example, a mixed gas containing 20% by volume of CO 2 gas in an Ar gas base conventionally used as a shielding gas for mag welding, and Welding was performed using a binary mixed gas of Ar—He.

次のように,各試験項目を評価し,極めて良好(「◎」),良好(「○」),どうにか良(「△」),悪い(「×」)の4段階に区分した。   Each test item was evaluated as follows, and was divided into four stages: extremely good (“◎”), good (“○”), somehow good (“△”), and bad (“×”).

(1)アーク安定性
溶接時にアークを目視観察し,アークの時間的変化状態から判定した。
(2)酸化の度合い
溶接後のビード外観を目視観察し,ビードの変色の程度から判定した。
(3)スラグ発生量
溶接後のビード外観を目視観察し,ビードに対しスラグの占める面積から判定した。
(4)濡れ性
溶接後のビード外観を目視観察し,開先内でのビードの形状から判定した。ビードが凹形状であれば,開先内でのビードの濡れ性は良く,ビードが凸形状(凸ビード)であれば,開先内でのビードの濡れ性は良く無い。
(5)スパッタ発生量
溶接後のビード外観を目視観察し,ビードに対しスパッタの占める面積から判定した。
(6)溶け込み深さ
図3での母材31,32の間隔W30に対する,ビード41〜44の幅W31の比(W31/W30)の比に基づいて,溶け込み深さを4段階に評価した。幅W31は,ビード41,42の境界の水平方向の幅とした。
以上の結果を表1に表す。
(1) Arc stability The arc was visually observed during welding and judged from the temporal change state of the arc.
(2) Degree of oxidation The appearance of the bead after welding was visually observed and judged from the degree of bead discoloration.
(3) Slag generation amount The appearance of the bead after welding was visually observed and judged from the area occupied by the slag with respect to the bead.
(4) Wettability The appearance of the bead after welding was visually observed and judged from the shape of the bead in the groove. If the bead is concave, the wettability of the bead in the groove is good, and if the bead is convex (convex bead), the wettability of the bead in the groove is not good.
(5) Spatter generation amount The appearance of the bead after welding was visually observed and judged from the area occupied by spatter with respect to the bead.
(6) Penetration depth Based on the ratio of the width W31 of the beads 41 to 44 (W31 / W30) to the interval W30 between the base materials 31 and 32 in FIG. 3, the penetration depth was evaluated in four stages. The width W31 is the horizontal width of the boundary between the beads 41 and 42.
The above results are shown in Table 1.

Figure 2013046932
Figure 2013046932

本実施形態に係るHe−Ar−COの3元系シールドガスの方が,Ar−Heの2元系シールドガスよりも炭酸ガスを添加している分,アークの安定性が向上した。Ar−Heの2元系シールドガスは,酸化性ガスを含まないため酸化の度合い,スラグ発生量は良好であるが,陰極点が不安定となり,アークが安定性せず,スパッタも著しく多い。 The He—Ar—CO 2 ternary shield gas according to the present embodiment has improved arc stability because carbon dioxide gas is added to the ternary shield gas of Ar—He. Since the Ar-He binary shield gas does not contain an oxidizing gas, the degree of oxidation and the amount of slag generation are good, but the cathode spot becomes unstable, the arc is not stable, and there is a significant amount of sputtering.

3容量%程度の炭酸ガスではアーク安定性が不十分であり,5容量%以上の炭酸ガスでアーク安定性は良好となった。また,本実施形態に係るHe−Ar−COの3元系シールドガスは炭酸ガスの含有量が15容量%以下であり,80容量%Ar−20容量%COのシールドガスに比較して酸素量が少なく,酸化の度合い,スラグ発生量,スパッタ発生量が低減した。スパッタ発生量が多い状態では,品質が悪いのみならず,コンタクトチップやシールドガスノズル等の消耗が激しく,交換頻度が増加し,製造上好ましくない。 The arc stability was insufficient with about 3% carbon dioxide, and the arc stability was good with more than 5% carbon dioxide. Further, the ternary shielding gas of He—Ar—CO 2 according to the present embodiment has a carbon dioxide gas content of 15% by volume or less, compared with a shielding gas of 80% by volume Ar-20% by volume CO 2. The amount of oxygen was small, and the degree of oxidation, slag generation, and spatter generation were reduced. When the amount of spatter generated is large, not only the quality is poor, but also the contact tip, shield gas nozzle, and the like are consumed heavily, and the replacement frequency increases, which is not preferable in production.

さらに,Heは不活性ガスのため,溶接金属の機械的性質に与える影響は小さく,溶接金属の引張強度は80容量%Ar−20容量%COガスで施工したものと同等であり,本実施形態に係るHe−Ar−COの3元系シールドガスの方が,酸素量が少ない分,一般的に靭性は向上すると言える。 Furthermore, He because of the inert gas, reduced effect on the mechanical properties of the weld metal, the tensile strength of the weld metal is equivalent to that applied by 80 volume% Ar-20 volume% CO 2 gas, present It can be said that the toughness is generally improved by the He—Ar—CO 2 ternary shielding gas according to the embodiment because the amount of oxygen is small.

図4,図5はそれぞれ,本発明の実施例3(He−Ar−COの3元系シールドガス)と比較例1(Ar−COの2元系シールドガス)で溶接した試験体の断面を表す写真である。実施例3および比較例1それぞれで,1層1パスで3層のビードB01〜B03,B11〜B13が形成されている。 FIGS. 4 and 5 show test specimens welded in Example 3 (He—Ar—CO 2 ternary shielding gas) of the present invention and Comparative Example 1 (Ar—CO 2 binary shielding gas), respectively. It is a photograph showing a cross section. In each of Example 3 and Comparative Example 1, three layers of beads B01 to B03 and B11 to B13 are formed by one layer and one pass.

図4に示すように,実施例3では,濡れ性が良好であり(ビードB03の形状が上に凹),スラグ巻き込みが見あたらず,溶け込み深さも良好である。図5から,比較例1では,濡れ性が不良であり(ビードB13の形状が上に凸型),開先端部にスラグ巻き込みの溶接欠陥S1,S2が発生し,開先の溶け込みも良好とは言えない。図5のようにビードの形状が凸であると(濡れ性が良くないと),ビートの外周部A1に凹みが形成され,スラグ巻き込み等の溶接不良の要因となる。これに対して,図4のようにビードの形状が凹であると(濡れ性が良いと),ビートの外周部A0に凹みが形成され難く,スラグ巻き込み等の溶接欠陥が生じ難い。   As shown in FIG. 4, in Example 3, the wettability is good (the shape of the bead B03 is concave upward), the slag is not found, and the penetration depth is also good. From FIG. 5, in Comparative Example 1, the wettability is poor (bead B13 shape is convex upward), welding defects S1 and S2 involving slag are generated at the open tip, and the penetration of the groove is good. I can't say that. If the bead shape is convex as shown in FIG. 5 (if the wettability is not good), a dent is formed in the outer peripheral portion A1 of the beat, which causes a welding failure such as slag entrainment. On the other hand, when the bead shape is concave as shown in FIG. 4 (when wettability is good), it is difficult to form a dent in the outer peripheral portion A0 of the beat, and welding defects such as slag entrainment are unlikely to occur.

[実施例2]
次に,本実施形態に係るHe−Ar−COの3元系シールドガスを用いて,発電用ボイラ及びタービンを代表とする構造物の溶接施工の実施例を示す。
近年,発電用タービン,ボイラ等の発電機器は,熱効率の向上のため,高温・高圧下で使用される傾向にある。このため,発電機器の構成材料として,高温での強度に優れた高Cr鋼(例えば,9Cr鋼,12Cr鋼)が開発されている。発電機器の構成部材の代表例として,ボイラで発生した高温・高圧の蒸気の通路となるタービン配管,バルブ類,及びタービンノズル等が挙げられる。
[Example 2]
Next, an example of welding construction of a structure typified by a power generation boiler and a turbine will be described using the He—Ar—CO 2 ternary shield gas according to the present embodiment.
In recent years, power generation equipment such as power generation turbines and boilers tend to be used under high temperature and high pressure in order to improve thermal efficiency. For this reason, high Cr steel (for example, 9Cr steel, 12Cr steel) excellent in strength at high temperatures has been developed as a constituent material of power generation equipment. Typical examples of components of power generation equipment include turbine piping, valves, and turbine nozzles that serve as passages for high-temperature and high-pressure steam generated in a boiler.

従来,これらの高Cr鋼製溶接構造物は,工場製造時,現地据付時含め,溶接作業性及び品質の良好な被覆アーク溶接やティグ溶接にて施工される事が多いが,これらの溶接方法はマグ溶接に比べ,溶接効率が劣る。そこで,本実施形態に係るHe−Ar−COの3元系シールドガスを用いることで,これらの高Cr鋼製構造物を溶接作業性及び品質の良好なマグ溶接で施工することが可能となり,製造コストを削減することができる。また,さらに開先を狭開先設計として,製造コストをさらに削減できる。 Conventionally, these high Cr steel welded structures are often constructed by coated arc welding or TIG welding with good welding workability and quality, including during factory production and on-site installation. Compared with MAG welding, welding efficiency is inferior. Therefore, by using the He—Ar—CO 2 ternary shielding gas according to this embodiment, it becomes possible to construct these high Cr steel structures by mag welding with good welding workability and quality. , Manufacturing cost can be reduced. In addition, the manufacturing cost can be further reduced by using a narrow groove design for the groove.

製造コスト削減の定量的評価として,タービン配管の全姿勢溶接を例にとり提示する。溶接プロセスは,被覆アーク溶接,自動ティグ溶接及び本実施形態に係るHe−Ar−COの3元系シールドガスを用いた自動マグ溶接を選定し,これら3プロセスでの比較をした。タービン配管のサイズは,主蒸気リード管等で用いられる500A,肉厚50tとした。表2に,溶接施工時間算出に用いたパラメータ値を示す。 As a quantitative evaluation of manufacturing cost reduction, we present an example of all-position welding of turbine piping. As the welding process, covered arc welding, automatic TIG welding, and automatic mag welding using He—Ar—CO 2 ternary shielding gas according to the present embodiment were selected, and comparison was made among these three processes. The size of the turbine pipe was 500 A used for the main steam reed pipe and the wall thickness was 50 t. Table 2 shows the parameter values used for calculating the welding time.

Figure 2013046932
Figure 2013046932

この実施例における狭開先,一般開先はそれぞれ,図1,図2において,角度θ1=1〜6°,θ21=60〜90°,θ22=10〜30°,間隔W1=4〜12mm,W2=2〜6mm,厚さH1=H2=50mmとした。狭開先(図1),一般開先(図2)それぞれでの開先断面積は,約500mm,約1500mmである。 The narrow groove and the general groove in this embodiment are shown in FIGS. 1 and 2, respectively, with an angle θ1 = 1 to 6 °, θ21 = 60 to 90 °, θ22 = 10 to 30 °, an interval W1 = 4 to 12 mm, W2 = 2 to 6 mm and thickness H1 = H2 = 50 mm. The groove cross-sectional areas of the narrow groove (FIG. 1) and the general groove (FIG. 2) are about 500 mm 2 and about 1500 mm 2 , respectively.

ティグ溶接においては,全姿勢自動ティグ配管溶接において広く用いられている狭開先を選定した。また,マグ溶接においても,ティグ溶接同様の狭開先を選定した(従来,高Cr鋼の狭開先での全姿勢自動溶接は,濡れ性,開先端部の溶け込みが不良となるため,困難を極めたが,本実施形態に係るHe−Ar−COの3元系シールドガスを用いることで,狭開先溶接が可能となる)。被覆アーク溶接の開先断面積は,狭開先断面積の3倍とした。また,溶着量,溶着効率及びアークタイム率は,本溶接施工での各溶接プロセスにおける一般的な値を選定した。 For TIG welding, a narrow groove widely used in all-position automatic TIG pipe welding was selected. In addition, narrow gaps similar to TIG welding were selected for MAG welding (conventionally, automatic welding in all positions with high Cr steel narrow gaps is difficult due to poor wettability and penetration at the open end. However, by using the He—Ar—CO 2 ternary shielding gas according to the present embodiment, narrow gap welding is possible). The groove cross-sectional area of the coated arc welding was three times the narrow groove cross-sectional area. For welding amount, welding efficiency and arc time rate, general values were selected for each welding process in the main welding process.

表3に,表2のパラメータを用いて算出した溶接施工時間を示す。必要溶接量mmを算出する際に用いた溶接線長は,約800mmとした。 Table 3 shows the welding time calculated using the parameters in Table 2. The weld line length used in calculating the required welding amount mm 3 was about 800 mm.

Figure 2013046932
Figure 2013046932

表3に示すように、本実施形態に係るHe−Ar−COの3元系シールドガスを用いた自動マグ溶接の適用により、被覆アーク溶接の約13分の1、ティグ溶接の約4分の1の時間での溶接施工が可能となる。 As shown in Table 3, by applying automatic mag welding using He—Ar—CO 2 ternary shielding gas according to the present embodiment, it is about one-third of clad arc welding and about four minutes of TIG welding. It is possible to perform welding in one time.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

11,12 母材
13 間隙
31,32 母材
33 間隙
34 裏当て板
41-44 溶接ビード
11, 12 Base material 13 Gap 31, 32 Base material 33 Gap 34 Backing plate 41-44 Weld bead

Claims (6)

8重量%以上,13重量%以下のCrを含有する高Cr鋼を,8重量%以上,13重量%以下のCrを含有するソリッドワイヤを用いて,1層1パスで,一対の母材の厚さH1とこれら母材間の開先の間隔W1の比(W1/H)が0.4以下,この開先の角度θ1が10°以下の狭開先を溶接するためのマグ溶接用シールドガスであって,
5容量%以上,17容量%以下の炭酸ガス,30容量%以上,80容量%以下のヘリウムガス,残部がアルゴンガスの3種混合ガスからなる
ことを特徴とするマグ溶接用シールドガス。
A high-Cr steel containing 8% by weight or more and 13% by weight or less of Cr, and a solid wire containing 8% by weight or more and 13% by weight or less of Cr, in one pass and one pass, A shield for mag welding for welding a narrow groove having a ratio (W1 / H) of the gap H1 between the thickness H1 and the base metal of 0.4 or less and an angle θ1 of the groove of 10 ° or less. Gas,
A shielding gas for mag welding characterized by consisting of a mixed gas of 5 volume% or more and 17 volume% or less of carbon dioxide gas, 30 volume% or more and 80 volume% or less of helium gas, and the balance argon gas.
5容量%以上,17容量%以下の炭酸ガス,30容量%以上,80容量%以下のヘリウムガス,残部がアルゴンガスの3種混合ガスからなるシールドガス,および8重量%以上,13重量%以下のCrを含有するソリッドワイヤを用いて,8重量%以上,13重量%以下のCrを含有する高Cr鋼の一対の母材の厚さH1とこれら母材間の開先の間隔W1の比(W1/H)が0.4以下,この開先の角度θ1が10°以下の狭開先を溶接する
ことを特徴とするマグ溶接方法。
5% by volume or more and 17% by volume or less of carbon dioxide gas, 30% by volume or more and 80% by volume or less of helium gas, the shielding gas composed of three kinds of mixed gas of argon gas, and 8% by weight or more and 13% by weight or less The ratio of the thickness H1 of a pair of high Cr steels containing 8 wt% or more and 13 wt% or less of Cr and the gap interval W1 between the base metals using a solid wire containing Cr A magnet welding method characterized by welding a narrow groove having (W1 / H) of 0.4 or less and an angle θ1 of the groove of 10 ° or less.
1層1パスで多層肉盛溶接する
ことを特徴とする請求項2記載のマグ溶接方法。
The mag welding method according to claim 2, wherein multilayer overlay welding is performed in one pass and one pass.
350A以上,500A以下のピーク電流,40A以上,100A以下のベース電流,100Hz以上,400Hz以下のパルス周波数の溶接条件でパルスマグ溶接する
ことを特徴とする請求項2または3に記載のマグ溶接方法。
4. The mag welding method according to claim 2, wherein pulse mag welding is performed under welding conditions of a peak current of 350 A or more and 500 A or less, a base current of 40 A or more and 100 A or less, and a pulse frequency of 100 Hz or more and 400 Hz or less.
溶接姿勢が,全姿勢である
ことを特徴とする請求項2乃至4のいずれか1項に記載のマグ溶接方法。
The mag welding method according to any one of claims 2 to 4, wherein the welding posture is an all posture.
請求項1に記載のマグ溶接用シールドガスまたは請求項2乃至5のいずれか1項に記載のマグ溶接方法を用いて作製された溶接構造物。   A welding structure produced using the shielding gas for mag welding according to claim 1 or the mag welding method according to any one of claims 2 to 5.
JP2012230761A 2012-10-18 2012-10-18 Shielding gas for mag welding, method for mag welding, and weld structure Pending JP2013046932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230761A JP2013046932A (en) 2012-10-18 2012-10-18 Shielding gas for mag welding, method for mag welding, and weld structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230761A JP2013046932A (en) 2012-10-18 2012-10-18 Shielding gas for mag welding, method for mag welding, and weld structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010090731A Division JP5319595B2 (en) 2010-04-09 2010-04-09 MAG welding shield gas, MAG welding method, and welded structure

Publications (1)

Publication Number Publication Date
JP2013046932A true JP2013046932A (en) 2013-03-07

Family

ID=48010265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230761A Pending JP2013046932A (en) 2012-10-18 2012-10-18 Shielding gas for mag welding, method for mag welding, and weld structure

Country Status (1)

Country Link
JP (1) JP2013046932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186544A1 (en) * 2014-06-02 2015-12-10 Jfeスチール株式会社 Vertical narrow gap gas shielded arc welding method
CN114131154A (en) * 2021-11-04 2022-03-04 中广核研究院有限公司 Welding method for low alloy steel adapter tube of reactor main equipment
KR20230003531A (en) 2020-06-29 2023-01-06 가부시키가이샤 고베 세이코쇼 Gas shielded arc welding method, structure manufacturing method and shield gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144274A (en) * 1984-12-18 1986-07-01 Kawasaki Steel Corp Narrow gap mig arc welding method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144274A (en) * 1984-12-18 1986-07-01 Kawasaki Steel Corp Narrow gap mig arc welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186544A1 (en) * 2014-06-02 2015-12-10 Jfeスチール株式会社 Vertical narrow gap gas shielded arc welding method
KR20230003531A (en) 2020-06-29 2023-01-06 가부시키가이샤 고베 세이코쇼 Gas shielded arc welding method, structure manufacturing method and shield gas
CN114131154A (en) * 2021-11-04 2022-03-04 中广核研究院有限公司 Welding method for low alloy steel adapter tube of reactor main equipment

Similar Documents

Publication Publication Date Title
JP5450293B2 (en) Fillet welded joint and gas shielded arc welding method
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP5019781B2 (en) MIG arc welding method using gas shielded arc welding flux cored wire
JP4256879B2 (en) Method of joining iron-based material and aluminum-based material and joint
JP2008161932A (en) Wire, flux and process of welding steel cotaining nickel in high content
US6596971B1 (en) Process for the MIG welding of nickel and nickel alloys with a shielding gas based on argon and CO2
JP2007289965A (en) Flux-cored wire for gas shielded arc welding and welding method
JP5283993B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP5319595B2 (en) MAG welding shield gas, MAG welding method, and welded structure
JP2011131243A (en) Arc welding method and arc weld joint of galvanized steel plate
TW201217544A (en) Welding process and corrosion-resistant filler alloy and consumables therefor
JP2019025524A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP2006035293A (en) Welding method of galvanized steel plate having excellent corrosion resistance and zinc embrittlement cracking resistance of weld
JP3529359B2 (en) Flux-cored wire for welding galvanized steel sheet with excellent pit and blow hole resistance
JP2013046932A (en) Shielding gas for mag welding, method for mag welding, and weld structure
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding
JP6875232B2 (en) Multi-electrode gas shield arc single-sided welding method
JP4806299B2 (en) Flux cored wire
KR102197134B1 (en) Ni based alloy flux cored wire
WO2020012925A1 (en) Flux-cored wire for two-phase stainless steel welding, welding method and welding metal
JP2019025525A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP2006035294A (en) Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion
JP2011255403A (en) Method for joining aluminum plate material
JP2007024609A (en) Manufacturing method of spent fuel storage rack
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304