JP2013044573A - Active carbon breakthrough monitoring device of pcb treatment facility, and prediction method of active carbon breakthrough of gas purification device - Google Patents

Active carbon breakthrough monitoring device of pcb treatment facility, and prediction method of active carbon breakthrough of gas purification device Download PDF

Info

Publication number
JP2013044573A
JP2013044573A JP2011180927A JP2011180927A JP2013044573A JP 2013044573 A JP2013044573 A JP 2013044573A JP 2011180927 A JP2011180927 A JP 2011180927A JP 2011180927 A JP2011180927 A JP 2011180927A JP 2013044573 A JP2013044573 A JP 2013044573A
Authority
JP
Japan
Prior art keywords
monitoring
activated carbon
pcb
breakthrough
purification device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011180927A
Other languages
Japanese (ja)
Other versions
JP5619695B2 (en
Inventor
Keigo Baba
恵吾 馬場
Chisato Tsukahara
千幸人 塚原
Ryuichiro Tanaka
隆一郎 田中
Shinsaku Dobashi
晋作 土橋
Misato Katayama
美里 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011180927A priority Critical patent/JP5619695B2/en
Publication of JP2013044573A publication Critical patent/JP2013044573A/en
Application granted granted Critical
Publication of JP5619695B2 publication Critical patent/JP5619695B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an active carbon breakthrough monitoring device of a PCB treatment facility, and a prediction method of active carbon breakthrough of a gas purification device.SOLUTION: The active carbon breakthrough monitoring device includes: a purification device 110 for monitoring, which is interposed in an exhaust line Lfor monitoring, has active carbon 102B for monitoring of a prescribed volume smaller than a filled volume of active carbon 102A of a purification device 103, and adsorbing/removing PCB in a branch gas 101a by the active carbon 102B for monitoring; and a wake flow side aliphatic hydrocarbon detector 112 which is provided on a wake flow side of the purification device 110 for monitoring and detects aliphatic hydrocarbon in a discharged monitor discharge gas 101b. The aliphatic hydrocarbon is saturated and adsorbed by the active carbon 102B for monitoring beforehand. The aliphatic hydrocarbon saturated and adsorbed by the active carbon 102B for monitoring and the PCB are replaced and adsorbed, a concentration of the aliphatic hydrocarbon replaced with the PCB and desorbed by replacement adsorption is obtained in the wake flow side aliphatic hydrocarbon detector 112, and the breakthrough of the active carbon 102A is predicted from the obtained aliphatic hydrocarbon concentration.

Description

本発明は、PCB処理設備の活性炭破過モニタリング装置、ガス浄化装置の活性炭破過の予測方法及びガス浄化設備に関する。   The present invention relates to an activated carbon breakthrough monitoring device for a PCB processing facility, an activated carbon breakthrough prediction method for a gas purification device, and a gas purification facility.

PCB(Polychlorinated biphenyl, ポリ塩化ビフェニル:ビフェニルの塩素化異性体の総称)は、熱媒体に用いたものは絶縁油として使用されていたものが、厳重に保管されているが、PCB処理設備が各地において稼動されてきており、現在完全無害化への処理が進められている(PCB処理設備として、日本環境安全事業株式会社(JESCO)が設立され、国の監督のもと、全国数ヶ所にPCB廃棄物処理施設を設置し、処理事業が行われている(非特許文献1)。   PCBs (polychlorinated biphenyls: a general term for polychlorinated biphenyls: chlorinated isomers of biphenyls) were used as insulating oils for the heat transfer medium, but are strictly stored. (Japan Environmental Safety Corporation (JESCO) has been established as a PCB treatment facility, and PCBs have been installed in several locations throughout the country under the supervision of the country. A waste treatment facility is installed and a treatment business is carried out (Non-Patent Document 1).

近年では、このような絶縁油などに使用されているPCBを処理する技術が種々提案されている((財)産業廃棄物処理事業振興財団の「財団におけるPCB処理技術の評価方法及び評価済み技術について」:非特許文献2)。   In recent years, various technologies for processing PCBs used in such insulating oils have been proposed ("Industry Waste Disposal Business Promotion Foundation's" Method and Evaluation Technology for PCB Processing Technology in Foundations " About ": Non-patent document 2).

本出願人は、先にPCB処理技術として水熱酸化分解処理装置を提案し、無害化に向けてPCB処理を行っている(特許文献1又は2)。   The present applicant has previously proposed a hydrothermal oxidative decomposition treatment apparatus as a PCB treatment technique, and performs PCB treatment for detoxification (Patent Document 1 or 2).

特開平9−79531号公報JP-A-9-79531 特開2003−285041号公報JP 2003-285041 A 特開2003−139741号公報JP 2003-139741 A 特開2003−14726号公報JP 2003-14726 A

「JESCOの事業の枠組みと特徴」http://www.jesconet.co.jp/business/contents/characteristics/index.html"JESCO Business Framework and Features" http://www.jesconet.co.jp/business/contents/characteristics/index.html 「財団におけるPCB処理技術の評価方法及び評価済み技術について」http://www.jesconet.co.jp/business/pcb_technology/pdf/PCB_shori.pdf“Evaluation methods and evaluated technologies for PCB processing technology at the Foundation” http://www.jesconet.co.jp/business/pcb_technology/pdf/PCB_shori.pdf

ところで、PCB処理設備において発生する排気は、活性炭を有する浄化装置を用いて活性炭処理を実施の上、施設外に排気される構造となっているが、この活性炭の寿命については、浄化装置における入口条件(PCB処理設備内でのPCB放出量の多寡)により左右され、PCB処理設備の活性炭破過のタイミングを把握することが困難である、という問題がある。   By the way, the exhaust gas generated in the PCB processing facility is structured to be exhausted outside the facility after performing the activated carbon treatment using the purification device having activated carbon. There is a problem that it is difficult to grasp the timing of the activated carbon breakthrough of the PCB processing facility, depending on the conditions (the amount of PCB discharge in the PCB processing facility).

そこで、従来では、活性炭の寿命評価を一律に設定することが困難であったので、きわめて尤度の高い設計(破過想定の例えば約10倍の量の活性炭を準備)を余儀なくされ、施設維持コストの低廉化を図ることが切望されている。   Therefore, in the past, it was difficult to uniformly set the life evaluation of activated carbon, so it was forced to design with extremely high likelihood (preparing approximately 10 times the amount of activated carbon that was assumed to be broken through, for example), and maintaining the facility There is an urgent need to reduce costs.

また、活性炭後流側に迅速分析可能な質量分析計にてオンライン分析することも検討されている(特許文献3又は4参照)。
しかしながら、特許文献3で開示するオンライン分析装置として用いた場合、芳香族化合物を主体に計測することになるため、活性炭破過を瞬時に検知した場合、活性炭破過を事前に予見することは困難である、という問題がある。
In addition, on-line analysis using a mass spectrometer capable of rapid analysis on the downstream side of activated carbon is also being studied (see Patent Document 3 or 4).
However, when used as an on-line analyzer disclosed in Patent Document 3, since aromatic compounds are mainly measured, it is difficult to predict activated carbon breakthrough in advance when activated carbon breakthrough is detected instantaneously. There is a problem that.

さらに、活性炭破過を予測するために炭化水素類(鎖状炭化水素類)を計測した場合、そのイオン化波長を発生するシステムが非常に大掛かりになるため、質量分析計自体がコスト・メンテナンスの面で問題となる。   In addition, when measuring hydrocarbons (chain hydrocarbons) to predict activated carbon breakthrough, the system that generates the ionization wavelength becomes very large, so the mass spectrometer itself is a cost and maintenance aspect. It becomes a problem.

以上の状況から、活性炭を有する浄化装置における入口条件のPCB濃度の変化によっても、活性炭の破過を的確に予測することができる手段の出現が切望されている。   From the above situation, there is an urgent need for the emergence of means capable of accurately predicting breakthrough of activated carbon even by changes in the PCB concentration of the inlet condition in the purification apparatus having activated carbon.

本発明は、前記問題に鑑み、入口条件のPCB濃度の変化によっても、活性炭の破過を的確に予測することができるPCB処理設備の活性炭破過モニタリング装置、ガス浄化装置の活性炭破過の予測方法及びガス浄化設備を提供することを課題とする。   In view of the above-mentioned problems, the present invention predicts activated carbon breakthrough monitoring apparatus for PCB processing equipment and activated carbon breakthrough for gas purification apparatus that can accurately predict breakthrough of activated carbon even by changes in PCB concentration at inlet conditions. It is an object to provide a method and a gas purification facility.

上述した課題を解決するための本発明の第1の発明は、PCB処理設備から排出ガスラインを介して排気される排出ガス中のPCBを含む有機化合物を活性炭Aで浄化するガス浄化装置の活性炭破過を予測する活性炭破過モニタリング装置であって、前記排出ガスラインから分岐され、排出ガスの一部を分岐する監視用排出ガスラインと、前記監視用排気ラインに介装され、前記ガス浄化装置の前記活性炭の充填容積よりも小さい所定容積のモニタ用活性炭を有し、該モニタ用活性炭により分岐ガス中のPCBを吸着・除去する前記監視用浄化装置と、前記監視用浄化装置の後流側に設けられ、該監視用浄化装置から排出されるモニタ排出ガス中の脂肪族炭化水素を検出する後流側脂肪族炭化水素検知器とを具備すると共に、前記モニタ用活性炭に予め脂肪族炭化水素を飽和吸着してなり、前記監視用浄化装置のモニタ用活性炭に飽和吸着していた脂肪族炭化水素とPCBとを置換吸着させ、置換吸着によりPCBと置換して脱離した脂肪族炭化水素濃度を前記後流側の脂肪族炭化水素検知器で求め、求めた脂肪族炭化水素濃度からガス浄化装置の活性炭の破過を予測してなることを特徴とするPCB処理設備の活性炭破過モニタリング装置にある。   The first invention of the present invention for solving the above-mentioned problems is activated carbon of a gas purification device for purifying an organic compound containing PCB in exhaust gas exhausted from a PCB processing facility through an exhaust gas line with activated carbon A. An activated carbon breakthrough monitoring apparatus for predicting breakthrough, wherein the gas purification is provided in a monitoring exhaust gas line branched from the exhaust gas line and branching a part of the exhaust gas, and the monitoring exhaust line. A monitoring purifier having a predetermined volume smaller than a filling volume of the activated carbon of the apparatus, and adsorbing / removing PCB in the branch gas by the activated carbon for monitoring, and a wake of the monitoring purifier And a wake-side aliphatic hydrocarbon detector for detecting aliphatic hydrocarbons in the monitor exhaust gas discharged from the monitoring and purifying device. Saturated adsorption of aliphatic hydrocarbons on charcoal in advance, and substitution adsorption of aliphatic hydrocarbons and PCB that have been saturated adsorption on the activated carbon for monitoring of the monitoring purification device, and substitution with PCB by substitution adsorption and desorption. A PCB process characterized in that the separated aliphatic hydrocarbon concentration is obtained by the downstream-side aliphatic hydrocarbon detector, and the breakthrough of the activated carbon of the gas purifier is predicted from the obtained aliphatic hydrocarbon concentration. It is in the activated carbon breakthrough monitoring device of the facility.

第2の発明は、第1の発明において、前記監視用浄化装置の前流側に介装され、該監視用浄化装置に導入されるモニタ排出ガス中の脂肪族炭化水素を検出する前流側の脂肪族炭化水素検知器を有することを特徴とするPCB処理設備の活性炭破過モニタリング装置にある。   According to a second aspect of the present invention, in the first aspect of the invention, the upstream side that detects aliphatic hydrocarbons in the monitor exhaust gas that is interposed on the upstream side of the monitoring purification device and is introduced into the monitoring purification device. It is in the activated carbon breakthrough monitoring apparatus of the PCB processing equipment characterized by having the aliphatic hydrocarbon detector of this.

第3の発明は、第1又は2の発明において、前記監視用浄化装置の後流側に介装され、該監視用浄化装置から排出されるPCBを検出する芳香族炭化水素検知器を有することを特徴とするPCB処理設備の活性炭破過モニタリング装置にある。   A third invention is the first or second invention, comprising an aromatic hydrocarbon detector that is disposed downstream of the monitoring purification device and detects PCB discharged from the monitoring purification device. It is in the activated carbon breakthrough monitoring device of the PCB processing facility characterized by

第4の発明は、第1乃至3のいずれか一つのPCB処理設備の活性炭破過モニタリング装置を用い、監視用浄化装置のモニタ用活性炭に飽和吸着していた脂肪族炭化水素とPCBとが置換吸着する工程と、監視用浄化装置から排出される排出ガス中のPCBと置換して脱離した脂肪族炭化水素濃度を前記後流側の脂肪族炭化水素検知器で求め、その積算値より、所定の脱離脂肪族炭化水素濃度であるか否かを判定する工程と、前記判定工程において、所定閾値以下であれば、そのまま浄化装置での浄化を継続可能と判断し、所定値以上であれば、前記浄化装置のPCBを吸着・除去する活性炭の交換時期と判断する工程とを含むことを特徴とするPCB処理設備のガス浄化装置の活性炭破過の予測方法にある。   The fourth invention uses the activated carbon breakthrough monitoring device of any one of the first to third PCB processing facilities, and the aliphatic hydrocarbon and the PCB that are saturated and adsorbed on the activated carbon for monitoring of the monitoring purification device are replaced. The process of adsorbing, the aliphatic hydrocarbon concentration desorbed by substituting PCB in the exhaust gas discharged from the monitoring purification apparatus is determined by the aliphatic hydrocarbon detector on the downstream side, and from the integrated value, In the step of determining whether or not the concentration of the desorbed aliphatic hydrocarbon is predetermined, and in the determination step, if it is equal to or less than a predetermined threshold value, it is determined that the purification in the purification device can be continued as it is, For example, the present invention provides a method for predicting activated carbon breakthrough of a gas purification device of a PCB processing facility, comprising the step of determining the time for replacement of activated carbon to adsorb and remove PCB of the purification device.

第5の発明は、第4の発明において、前記判定工程は、前記前流側の脂肪族炭化水素検知器で求めたモニタ排出ガス中の脂肪族炭化水素を求め、後流側の脂肪族炭化水素検知器で求めた値より減じ、積算することを特徴とするPCB処理設備のガス浄化装置の活性炭破過の予測方法にある。   In a fifth aspect based on the fourth aspect, the determination step determines an aliphatic hydrocarbon in the monitor exhaust gas determined by the upstream-side aliphatic hydrocarbon detector, and determines a downstream-side aliphatic carbonization. This is a method for predicting breakthrough of activated carbon in a gas purification device of a PCB processing facility, characterized in that it is subtracted from the value obtained by a hydrogen detector and integrated.

第6の発明は、第4又は5の発明において、前記警告工程は、前記監視用浄化装置から排出されるPCBを検出し、所定閾値に達成した場合、前記浄化装置のPCBを吸着・除去する活性炭の交換時期と判断することを特徴とするPCB処理設備のガス浄化装置の活性炭破過の予測方法にある。   According to a sixth aspect of the present invention, in the fourth or fifth aspect of the invention, the warning step detects the PCB discharged from the monitoring purification device, and adsorbs and removes the PCB of the purification device when the predetermined threshold is reached. It is in the prediction method of the activated carbon breakthrough of the gas purification apparatus of the PCB processing facility characterized by the replacement time of the activated carbon.

第7の発明は、PCB処理設備から排気される排出ガス中のPCBを含む有機化合物を活性炭で浄化するガス浄化装置と、第1乃至3のいずれか一つのPCB処理設備の活性炭破過モニタリング装置とを具備することを特徴とするPCB処理設備のガス浄化設備にある。   According to a seventh aspect of the present invention, there is provided a gas purification device for purifying an organic compound containing PCB in exhaust gas exhausted from a PCB processing facility with activated carbon, and an activated carbon breakthrough monitoring device for any one of the first to third PCB processing facilities. It is in the gas purification equipment of the PCB processing equipment characterized by comprising.

本発明によれば、浄化装置における入口条件(PCB処理設備内でのPCB放出量の多寡)のPCB濃度の変化によっても、活性炭の破過を的確に予測することができるものとなる。   According to the present invention, it is possible to accurately predict the breakthrough of activated carbon also by the change in the PCB concentration in the inlet condition (the amount of PCB released in the PCB processing facility) in the purification apparatus.

図1は、実施例1に係るPCB処理設備の活性炭破過モニタリング装置の概略図である。FIG. 1 is a schematic diagram of an activated carbon breakthrough monitoring device for a PCB processing facility according to a first embodiment. 図2は、活性炭の吸着時間と炭化水素積算値との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the adsorption time of activated carbon and the integrated hydrocarbon value. 図3は、実施例2に係るPCB処理設備の活性炭破過モニタリング装置の概略図である。FIG. 3 is a schematic diagram of an activated carbon breakthrough monitoring device for a PCB processing facility according to the second embodiment. 図4は、実施例3に係るPCB処理設備の活性炭破過モニタリング装置の概略図である。FIG. 4 is a schematic diagram of an activated carbon breakthrough monitoring device for a PCB processing facility according to the third embodiment. 図5は、実施例3に係る活性炭の吸着時間と炭化水素積算値との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the adsorption time of activated carbon and the integrated hydrocarbon value according to Example 3. 図6は、実施例4に係るPCB処理設備の活性炭破過モニタリング装置の概略図である。FIG. 6 is a schematic diagram of an activated carbon breakthrough monitoring device for a PCB processing facility according to a fourth embodiment. 図7は、実施例4に係る他のPCB処理設備の活性炭破過モニタリング装置の概略図である。FIG. 7 is a schematic diagram of an activated carbon breakthrough monitoring device of another PCB processing facility according to the fourth embodiment. 図8は、PCB処理設備の概略を示す図である。FIG. 8 is a diagram showing an outline of the PCB processing facility.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係るPCB処理設備の活性炭破過モニタリング装置について、図面を参照して説明する。図1は、実施例1に係るPCB処理設備の活性炭破過モニタリング装置の概略図である。図2は、活性炭の吸着時間と炭化水素積算値との関係を示すグラフである。
図1に示すように、本実施例に係るPCB処理設備の活性炭破過モニタリング装置100Aは、PCB処理設備10から排出ガスラインL1を介して排気される排出ガス101中のPCBを含む有機化合物(例えば炭化水素類、絶縁油、トリクロロベンゼン、イソプロピルアルコール等)を活性炭102Aで浄化するガス浄化装置(浄化装置)103の活性炭破過を予測する活性炭破過モニタリング装置であって、前記排出ガスラインL1から分岐され、排出ガス101の一部101aを分岐する監視用排出ガスラインL2と、前記監視用排気ラインL2に介装され、前記ガス浄化装置103の前記活性炭102Aの充填容積よりも小さい所定容積のモニタ用活性炭102Bを有し、該モニタ用活性炭102Bにより分岐ガス101a中のPCBを吸着・除去する前記監視用浄化装置110と、前記監視用浄化装置110の後流側に設けられ、該監視用浄化装置110から排出されるモニタ排出ガス101b中の脂肪族炭化水素を検出する後流側脂肪族炭化水素検知器112とを具備すると共に、前記モニタ用活性炭102Bに予め脂肪族炭化水素を飽和吸着してなり、前記監視用浄化装置110のモニタ用活性炭102Bに飽和吸着していた脂肪族炭化水素とPCBとを置換吸着させ、置換吸着によりPCBと置換して脱離した脂肪族炭化水素濃度を前記後流側の脂肪族炭化水素検知器112で求め、求めた脂肪族炭化水素濃度からガス浄化装置103の活性炭102Aの破過を予測してなるものである。
An activated carbon breakthrough monitoring apparatus for PCB processing equipment according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of an activated carbon breakthrough monitoring device for a PCB processing facility according to a first embodiment. FIG. 2 is a graph showing the relationship between the adsorption time of activated carbon and the integrated hydrocarbon value.
As shown in FIG. 1, an activated carbon breakthrough monitoring apparatus 100A for a PCB processing facility according to the present embodiment is an organic compound containing PCB in exhaust gas 101 exhausted from the PCB processing facility 10 through an exhaust gas line L 1 . An activated carbon breakthrough monitoring device for predicting activated carbon breakthrough of a gas purification device (purification device) 103 for purifying (for example, hydrocarbons, insulating oil, trichlorobenzene, isopropyl alcohol, etc.) with activated carbon 102A, wherein the exhaust gas line From the filling volume of the activated carbon 102A of the gas purification device 103, which is interposed in the monitoring exhaust gas line L 2 branched from L 1 and branching a part 101a of the exhaust gas 101, and the monitoring exhaust line L 2 Has a small predetermined volume of activated carbon 102B for monitoring, and the activated carbon 102B for monitoring causes the PC in the branch gas 101a to The monitoring and purifying device 110 for adsorbing / removing gas and the monitoring and purifying device 110 are provided on the downstream side of the monitoring and purifying device 110 to detect aliphatic hydrocarbons in the monitor exhaust gas 101b discharged from the monitoring and purifying device 110. And a downstream-side aliphatic hydrocarbon detector 112, and saturated adsorption of aliphatic hydrocarbons on the monitoring activated carbon 102B in advance, and saturated adsorption on the monitoring activated carbon 102B of the monitoring purification device 110. The aliphatic hydrocarbon desorbed by substitution adsorption of PCB and PCB by substitution adsorption is determined by the aliphatic hydrocarbon detector 112 on the downstream side, and the determined aliphatic carbonization is obtained. The breakthrough of the activated carbon 102A of the gas purification apparatus 103 is predicted from the hydrogen concentration.

ここで、PCB処理設備10としては、例えば高圧トランス、高圧コンデンサ、低圧トランス・コンデンサ、柱上トランス等、廃PCB(熱媒体に用いた絶縁油、洗浄に用いた灯油)等のPCB含有物を処理する設備であり、詳細は後述する。
このPCB処理設備10から排出される排出ガス101中には、PCBが微量に含まれている場合があるので、PCBを吸着する活性炭102Aを有する浄化装置103が設けられている。
Here, as the PCB processing equipment 10, for example, a high-voltage transformer, a high-voltage capacitor, a low-voltage transformer / condenser, a pole transformer, etc., a PCB-containing material such as waste PCB (insulating oil used for a heat medium, kerosene used for cleaning) or the like This is equipment to be processed, and details will be described later.
Since the exhaust gas 101 discharged from the PCB processing facility 10 may contain a small amount of PCB, a purification device 103 having activated carbon 102A that adsorbs PCB is provided.

本発明では、監視用排気ラインL2に介装され、分岐ガス101a中のPCBを吸着・除去する活性炭102Bを有する監視用浄化装置110を用いて、活性炭に予め飽和吸着されている脂肪族炭化水素(例えばデカン(C1022))と芳香族炭化水素であるPCBとの相互置換作用を用いて、本設の浄化装置103の活性炭102Aの劣化度合いを予測するものである。 In the present invention, the aliphatic carbonization that is saturated and adsorbed in advance on the activated carbon using the monitoring purification device 110 that is interposed in the monitoring exhaust line L 2 and has activated carbon 102B that adsorbs and removes PCB in the branch gas 101a. The degree of deterioration of the activated carbon 102A of the purification apparatus 103 of this installation is predicted using the mutual substitution action of hydrogen (for example, decane (C 10 H 22 )) and PCB which is an aromatic hydrocarbon.

ここで、PCB処理設備10から排出ガス101中のPCBを除去する活性炭102Aは、その容量により、浄化持続時間が異なるが、PCBの吸着が不能となる破過までの時間は、その処理ガス中のPCB量により変動するので、一定ではない。
よって、従来では、きわめて尤度の高い設計(破過想定の例えば10倍の量の活性炭を準備するなど)をして対応していたが、本発明により、その破過の予知が可能となり、浄化装置103における入口条件(PCB処理設備10内でのPCB放出量の多寡)のPCB濃度の変化によっても、活性炭の破過を的確に予測することができるものとなる。
Here, activated carbon 102A that removes PCB in exhaust gas 101 from PCB processing facility 10 has a different purification duration depending on its capacity, but the time until breakthrough when PCB adsorption becomes impossible is in the processing gas. Since it fluctuates depending on the amount of PCB, it is not constant.
Therefore, in the past, it was supported by a design with extremely high likelihood (for example, preparing activated carbon of 10 times the amount of breakthrough assumption), but the present invention makes it possible to predict the breakthrough, The breakthrough of the activated carbon can be accurately predicted also by the change in the PCB concentration in the inlet condition (a large amount of PCB discharge amount in the PCB processing facility 10) in the purification apparatus 103.

監視用浄化装置110の充填するモニタ用活性炭102Bは、浄化装置103の活性炭102Aの容量の例えば1/10〜1/20等の所定の容積とすると共に、後流側の監視用浄化装置110への分岐ガス101aの流速等を浄化装置103への排出ガス101と同一条件としている。   The monitoring activated carbon 102B filled in the monitoring purification device 110 has a predetermined volume, for example, 1/10 to 1/20 of the capacity of the activated carbon 102A of the purification device 103, and to the monitoring purification device 110 on the downstream side. The flow rate of the branched gas 101 a is the same as that of the exhaust gas 101 to the purification device 103.

本設の浄化用の活性炭102Aを充填した浄化装置103へ排出ガス101を導入する排出ガスラインL1から監視用排気ラインL2を分岐させ、監視用浄化装置110を介装すると共に、該監視用浄化装置110内に監視用の活性炭102Bを充填する。
この監視用の活性炭102Bには、予め脂肪族炭化水素類(例えばデカン(C1022))を飽和吸着させておく。
The monitoring exhaust line L 2 is branched from the exhaust gas line L 1 for introducing the exhaust gas 101 to the purification apparatus 103 filled with the activated carbon 102A for purification, and the monitoring purification apparatus 110 is interposed, and the monitoring is performed. The purifying apparatus 110 is filled with monitoring activated carbon 102B.
An aliphatic hydrocarbon (for example, decane (C 10 H 22 )) is saturated and adsorbed in advance on the activated carbon 102B for monitoring.

ここで、本実施例においては、監視用の活性炭102Bに予め吸着させる脂肪族炭化水素として、デカン(C1022)を例示しているが、本願発明はこれに限定されるものではなく、例えばC8〜C18までの鎖状炭化水素を用いることができる。
また、飽和吸着された炭化水素の量を予め把握しておく。
Here, in this example, decane (C 10 H 22 ) is exemplified as the aliphatic hydrocarbon that is preliminarily adsorbed on the activated carbon 102B for monitoring, but the present invention is not limited to this, For example, C 8 to C 18 chain hydrocarbons can be used.
In addition, the amount of saturated and adsorbed hydrocarbon is grasped in advance.

監視用浄化装置110の後流側には、脂肪族炭化水素を検出する脂肪族炭化水素検知器112を設置しておく。
ここで、脂肪族炭化水素検知器としては、本発明では特に限定されるものではなく、例えば1)非分散型赤外ガス分析計、2)GC-FID(ガスクロマトグラフ/水素イオン化検出器)装置、3)FT-IR(フーリエ変換赤外分光法)装置、4)四重極型質量分析計等を用いることができる。
An aliphatic hydrocarbon detector 112 for detecting aliphatic hydrocarbons is installed on the downstream side of the monitoring purification device 110.
Here, the aliphatic hydrocarbon detector is not particularly limited in the present invention. For example, 1) a non-dispersive infrared gas analyzer, 2) a GC-FID (gas chromatograph / hydrogen ionization detector) device. 3) An FT-IR (Fourier transform infrared spectroscopy) apparatus, 4) a quadrupole mass spectrometer or the like can be used.

なお、監視用浄化装置110の活性炭102Bへの排気の分岐量は、浄化装置103の活性炭102Aと監視用浄化装置110の活性炭102Bの重量比と同等としておく。
また、浄化装置103及び監視用浄化装置110を経由した排出ガス101、101bは、PCBが吸着除去されているので、共にプラント外へ排出される。
Note that the branching amount of the exhaust gas to the activated carbon 102B of the monitoring purification device 110 is set to be equal to the weight ratio of the activated carbon 102A of the purification device 103 and the activated carbon 102B of the monitoring purification device 110.
Further, the exhaust gases 101 and 101b that have passed through the purification device 103 and the monitoring purification device 110 are both discharged out of the plant because the PCB is adsorbed and removed.

本発明においては、監視用浄化装置110の活性炭102Bに対して、予め脂肪族炭化水素を飽和吸着させ、この脂肪族炭化水素とPCBとの置換吸着作用という現象を利用している。この置換吸着作用は、活性炭の吸着サイトに吸着している脂肪族炭化水素を脱離させて、PCBが活性炭の吸着サイトへ吸着する現象である。例えば「有機洗浄溶媒共存下におけるPCB蒸気の活性炭吸着特性」(廃棄物学会論文、Vol.18(2007),No.3 pp.167−174参照)。   In the present invention, saturated hydrocarbon is saturated and adsorbed in advance on the activated carbon 102B of the monitoring purification apparatus 110, and a phenomenon of substitution adsorption action of this aliphatic hydrocarbon and PCB is utilized. This displacement adsorption action is a phenomenon in which the aliphatic hydrocarbon adsorbed on the adsorption site of the activated carbon is desorbed and the PCB is adsorbed on the adsorption site of the activated carbon. For example, “Characteristics of activated carbon adsorption of PCB vapor in the presence of an organic cleaning solvent” (Refer to the Japan Society of Waste Science, Vol. 18 (2007), No. 3 pp. 167-174).

この置換吸着作用は、PCBが芳香族炭化水素であるため、例えばデカン等の脂肪族炭化水素よりも活性炭に吸着する能力が高いので、該PCBが監視用の活性炭102Bに導入された場合、予め吸着されたデカンが脱離され、その代わりにPCBが吸着される。
よって、飽和吸着されているデカンの量を予め計測し、破過時における置換放出される全量を100として、デカンの積算値を求めて、破過までの推移を求めて、破過に至る前にアラームを発するようにしている。
This substitution adsorption action is because, since PCB is an aromatic hydrocarbon, it has a higher ability to adsorb to activated carbon than aliphatic hydrocarbons such as decane. Therefore, when PCB is introduced into activated carbon 102B for monitoring, The adsorbed decane is desorbed and PCB is adsorbed instead.
Therefore, the amount of saturated decane is measured in advance, and the total amount of substitution released at the time of breakthrough is set to 100, the integrated value of decane is obtained, the transition to breakthrough is obtained, and before the breakthrough is reached An alarm is issued.

<破過検知の方法>
監視用浄化装置110の監視用の活性炭102Bにデカンを飽和吸着させておき、その飽和吸着量を確認する。
<Method of detecting breakthrough>
Decan is saturatedly adsorbed on the monitoring activated carbon 102B of the monitoring purification apparatus 110, and the saturated adsorption amount is confirmed.

次いで、浄化装置103及び監視用浄化装置110へ、排出ガス101、分岐ガス101aを通気させ、これらのガス中のPCBを吸着する。
この際、監視用浄化装置110の後流側にて、PCBと置換吸着により放出された脂肪族炭化水素(デカン)の濃度を、後流側の脂肪族炭化水素検知器112で分析する。
この検知の計測時間tは検出精度を向上させるために、短いほうが好ましい。例えば検知時間としては、10分以内に1回、より好適には1分に1回行うのが好ましい。
なお、例えば後流側の脂肪族炭化水素検知器112を用いて、光分析を用いる場合には、波長は3μm程度とするのが好適である。
Next, exhaust gas 101 and branch gas 101a are passed through purification device 103 and monitoring purification device 110, and PCBs in these gases are adsorbed.
At this time, the concentration of the aliphatic hydrocarbon (decane) released by the PCB and the substitutional adsorption is analyzed by the downstream hydrocarbon detector 112 on the downstream side of the monitoring purification device 110.
The detection time t is preferably shorter in order to improve the detection accuracy. For example, the detection time is preferably once within 10 minutes, more preferably once per minute.
For example, in the case where optical analysis is performed using the aliphatic hydrocarbon detector 112 on the wake side, the wavelength is preferably about 3 μm.

そして、計測した濃度(C)を(C)i、ガス流量をFiとする。
各分析ごとの濃度にガス流量を乗じた積算値Σ(C)i×Fi×tiを算出する。
なお、ガス流量が一定の場合は、Fをtに置き換えるようにしても良い。
tも常時一定であれば、総計測時間をTとし、T/tとしてもよい。
積算値をプロットする(図2参照)。
図2中、横軸は時間を示し、縦軸は、破過時の積算値ΣCi×Fi×tiを100としたものを示す。
The measured concentration (C) is (C) i, and the gas flow rate is Fi.
An integrated value Σ (C) i × Fi × ti is calculated by multiplying the concentration for each analysis by the gas flow rate.
When the gas flow rate is constant, F may be replaced with t.
If t is always constant, the total measurement time may be T and T / t.
The integrated values are plotted (see FIG. 2).
In FIG. 2, the horizontal axis represents time, and the vertical axis represents the integrated value ΣC i × Fi × ti at breakthrough as 100.

本実施例の活性炭破過モニタリング装置100Aを用い、浄化装置103の活性炭102Aの破過を予測する方法は、下記の工程により実施される。
1) 監視用浄化装置110の活性炭102Bに飽和吸着していた脂肪族炭化水素(デカン)とPCBとが置換吸着する。
2)監視用浄化装置110から排出されるモニタ排出ガス101b中のPCBと置換して脱離した脂肪族炭化水素(デカン)の濃度を、前記後流側の脂肪族炭化水素検知器112で求め、その積算値より、所定の脱離脂肪族炭化水素濃度であるか否かを判定する。
3)前記判定工程において、所定閾値以下であれば、そのまま浄化装置での浄化を継続可能と判断し、所定値以上であれば、前記浄化装置103のPCBを吸着・除去する活性炭102Aの交換時期と判断する。
4)例えば破過時の積算値を100とし、この100に対し、例えば50の場合を第1の警報閾値と設定した場合、この50の値を超えた際にプレアラームを発し、75を超えた場合にアラームを発するように設定することで、活性炭破過の検知を確実に予測することができる。
A method for predicting breakthrough of the activated carbon 102A of the purification device 103 using the activated carbon breakthrough monitoring device 100A of the present embodiment is performed by the following steps.
1) Aliphatic hydrocarbon (decane) and PCB that have been saturated and adsorbed on the activated carbon 102B of the monitoring purification device 110 are substituted and adsorbed.
2) The concentration of aliphatic hydrocarbon (decane) desorbed by substitution with PCB in the monitor exhaust gas 101b exhausted from the monitoring purification apparatus 110 is obtained by the aliphatic hydrocarbon detector 112 on the downstream side. From the integrated value, it is determined whether or not a predetermined desorbed aliphatic hydrocarbon concentration is obtained.
3) In the determination step, if it is equal to or less than the predetermined threshold, it is determined that the purification by the purification device can be continued as it is, and if it is equal to or greater than the predetermined value, the replacement time of the activated carbon 102A that adsorbs and removes the PCB of the purification device 103 Judge.
4) For example, assuming that the integrated value at the time of breakthrough is 100, and for example, when 50 is set as the first warning threshold, a pre-alarm is issued when the value exceeds 50 and exceeds 75 By setting so as to issue an alarm in case, detection of activated carbon breakthrough can be reliably predicted.

以上、本実施例によれば、浄化装置103における入口条件(PCB処理設備内でのPCB放出量の多寡)が変化した場合でも、PCB処理設備10の活性炭102Aの破過のタイミングを確実に把握することができることとなる。   As described above, according to the present embodiment, the timing of breakthrough of the activated carbon 102 </ b> A of the PCB processing facility 10 can be reliably grasped even when the inlet condition (a large amount of PCB discharge amount in the PCB processing facility) in the purification device 103 changes. Will be able to.

これにより、浄化装置103の活性炭102Aの破過を事前に予測することができることとなる。   Thereby, the breakthrough of the activated carbon 102 </ b> A of the purification device 103 can be predicted in advance.

また、PCB処理設備10から排気される排出ガス101中のPCBを含む有機化合物を活性炭102Aで浄化するガス浄化装置103と、前述したPCB処理設備の活性炭破過モニタリング装置100Aとを具備するPCB処理設備のガス浄化設備とすることで、PCB処理設備から排気される排出ガスを浄化するガス浄化装置の活性炭の破過を監視できるガス浄化設備を提供することができる。   Further, a PCB treatment comprising a gas purification device 103 for purifying an organic compound containing PCB in the exhaust gas 101 exhausted from the PCB treatment facility 10 with activated carbon 102A, and the activated carbon breakthrough monitoring device 100A for the PCB treatment facility described above. By using the gas purification equipment of the equipment, it is possible to provide a gas purification equipment that can monitor the breakthrough of activated carbon of the gas purification device that purifies the exhaust gas exhausted from the PCB processing equipment.

本発明による実施例2に係るPCB処理設備のPCBモニタリング装置について、図面を参照して説明する。図3は、実施例2に係るPCB処理設備の活性炭破過モニタリング装置の概略図である。実施例1に係るPCB処理設備の活性炭破過モニタリング装置の構成部材と同一部材については、同一符号を付してその説明は省略する。
図3に示すように、本実施例に係るPCB処理設備の活性炭破過モニタリング装置100Bは、実施例1に係るPCB処理設備10の活性炭破過モニタリング装置100Aにおいて、さらに、前記監視用浄化装置110の前流側に介装され、該監視用浄化装置110に導入されるモニタ排出ガス101b中の脂肪族炭化水素(例えばデカン)を検出する前流側の脂肪族炭化水素検知器113を有するものである。
A PCB monitoring apparatus for a PCB processing facility according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram of an activated carbon breakthrough monitoring device for a PCB processing facility according to the second embodiment. The same members as those of the activated carbon breakthrough monitoring device for the PCB processing facility according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
As shown in FIG. 3, the activated carbon breakthrough monitoring device 100B for the PCB processing facility according to the present embodiment is the same as the activated carbon breakthrough monitoring device 100A for the PCB treatment facility 10 according to the first embodiment. Having a front-stream side aliphatic hydrocarbon detector 113 for detecting an aliphatic hydrocarbon (for example, decane) in the monitor exhaust gas 101b introduced into the monitoring purification device 110. It is.

実施例1においては、PCB処理設備10で処理する薬剤として、脂肪族炭化水素を含有しない場合(例えば絶縁油)等を用いる場合には、排出ガス101中に脂肪族炭化水素が含有しないので、後流側の脂肪族炭化水素検知器112における検出は、全量がPCBと置換吸着された脱離された脂肪族炭化水素となる。
しかしながら、PCB処理設備10で使用する薬剤として、脂肪族炭化水素を含むような場合には、排出ガス101中に脂肪族炭化水素の影響があるので、これを除去する必要がある。
ここで、脂肪族炭化水素を含む薬剤としては、例えば「NSクリーン100(商品名)」(JX日鉱日石エネルギー社製)を挙げることができる。
In Example 1, when using a case where aliphatic hydrocarbons are not contained (for example, insulating oil) as a chemical agent to be processed by the PCB treatment facility 10, since the aliphatic hydrocarbons are not contained in the exhaust gas 101, The detection by the aliphatic hydrocarbon detector 112 on the wake side becomes desorbed aliphatic hydrocarbons whose total amount is substituted and adsorbed by PCB.
However, when an aliphatic hydrocarbon is included as a chemical used in the PCB processing facility 10, the exhaust gas 101 has an influence of the aliphatic hydrocarbon, and thus it is necessary to remove it.
Here, as a chemical | medical agent containing an aliphatic hydrocarbon, "NS clean 100 (brand name)" (made by JX Nippon Mining & Energy Corporation) can be mentioned, for example.

そのために、本実施例では、監視用浄化装置110の前流側にモニタ排出ガス101b中の脂肪族炭化水素(例えばデカン)を検出する前流側の脂肪族炭化水素検知器113を設置して、その影響を排除している。   For this purpose, in this embodiment, an upstream-side aliphatic hydrocarbon detector 113 for detecting aliphatic hydrocarbons (for example, decane) in the monitor exhaust gas 101b is installed on the upstream side of the monitoring purification device 110. , Eliminating the effect.

この場合、図2に示す縦軸の炭化水素積算値は、Σ(Cb(後流側の脂肪族炭化水素濃度)−Ca(前流側の脂肪族炭化水素濃度))i×Fi×tiを100としたものとなる。   In this case, the integrated value of hydrocarbons on the vertical axis shown in FIG. 2 is Σ (Cb (aliphatic hydrocarbon concentration on the downstream side) −Ca (aliphatic hydrocarbon concentration on the upstream side)) i × Fi × ti. 100.

本実施例によれば、PCB処理設備において、使用する薬剤中に脂肪族炭化水素が含有されていてもその影響を考慮して、排出ガス中のPCB吸着用の活性炭の破過を予測することができるものとなる。   According to this example, in the PCB processing facility, even if aliphatic hydrocarbons are contained in the chemicals used, the breakthrough of activated carbon for PCB adsorption in the exhaust gas is predicted in consideration of the effect. Will be able to.

本発明による実施例3に係るPCB処理設備の活性炭破過モニタリング装置について、図面を参照して説明する。図4は、実施例3に係るPCB処理設備の活性炭破過モニタリング装置の概略図である。実施例1に係るPCB処理設備の活性炭破過モニタリング装置の構成部材と同一部材については、同一符号を付してその説明は省略する。
図4に示すように、本実施例に係るPCB処理設備の活性炭破過モニタリング装置100Cは、実施例1に係るPCB処理設備の活性炭破過モニタリング装置100Aにおいて、さらに、前記監視用浄化装置110の後流側に介装され、該監視用浄化装置から排出される芳香族炭化水素(PCBを含む)を検出する芳香族炭化水素検知器115を有するものである。
An activated carbon breakthrough monitoring device for a PCB processing facility according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a schematic diagram of an activated carbon breakthrough monitoring device for a PCB processing facility according to the third embodiment. The same members as those of the activated carbon breakthrough monitoring device for the PCB processing facility according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
As shown in FIG. 4, the activated carbon breakthrough monitoring apparatus 100C for the PCB processing facility according to the present embodiment is the same as the activated carbon breakthrough monitoring apparatus 100A for the PCB treatment facility according to the first embodiment. It has an aromatic hydrocarbon detector 115 that is disposed on the downstream side and detects aromatic hydrocarbons (including PCB) discharged from the monitoring and purifying apparatus.

PCB処理設備10において、処理条件により多量にPCBが発生する場合がある。このような場合、置換吸着作用でデカンを放出することによる検知では、追従できない場合がある。
よって、本実施例では、後流側の脂肪族炭化水素検知器112の後流側に芳香族炭化水素検知器115を設置して、芳香族炭化水素であるPCBを直接検出するようにしている。
In the PCB processing facility 10, a large amount of PCB may be generated depending on processing conditions. In such a case, the detection by releasing decane by the displacement adsorption action may not be able to follow.
Therefore, in the present embodiment, the aromatic hydrocarbon detector 115 is installed on the downstream side of the aliphatic hydrocarbon detector 112 on the downstream side so that PCB which is an aromatic hydrocarbon is directly detected. .

ここで、芳香族炭化水素検知器115としては、例えば紫外線励起の蛍光分析装置、簡易質量分析装置等を用いることができる。
例えば蛍光分析装置を芳香族炭化水素検知器115として用いる場合、紫外光(波長:250〜300nm)を照射し、発生した蛍光強度から、芳香族化合物の濃度Ccを求め、芳香族積算値 Σ(Cc)i×Fi×tiを算出する。
そして、予め芳香族量の閾値を設定し、この閾値を超えた場合、活性炭102Aの破過と判断し、活性炭破過のアラームを発報する。
これにより、急激に芳香族成分の吸着が起こった場合、芳香族成分が活性炭より排出されてしまう場合があり、それを検知することができる。これによって破過検知精度が向上する。
Here, as the aromatic hydrocarbon detector 115, for example, an ultraviolet-excited fluorescence analyzer, a simple mass spectrometer, or the like can be used.
For example, when the fluorescence analyzer is used as the aromatic hydrocarbon detector 115, ultraviolet light (wavelength: 250 to 300 nm) is irradiated, the concentration Cc of the aromatic compound is obtained from the generated fluorescence intensity, and the aromatic integrated value Σ ( Cc) i × Fi × ti is calculated.
Then, a threshold value of the aromatic amount is set in advance, and when this threshold value is exceeded, it is determined that the activated carbon 102A is broken, and an activated carbon breakthrough alarm is issued.
Thereby, when adsorption | suction of an aromatic component abruptly occurs, an aromatic component may be discharged | emitted from activated carbon, and it can be detected. This improves breakthrough detection accuracy.

図5においては、脂肪族炭化水素の曲線が急激に立ち上がり、積算値が50を超えた場合プレアラームを発することとなるが、この時点ではまだPCBは十分吸着されており、破過に達していないこととなる。
そして、芳香族量の閾値を超えた場合、初めて活性炭の破過と確認することができ、まだ十分に吸着できる活性炭102Aを廃棄することによるロスの低減を図ることができる。
In FIG. 5, a pre-alarm is issued when the aliphatic hydrocarbon curve suddenly rises and the integrated value exceeds 50, but at this point, the PCB is still sufficiently adsorbed and has reached breakthrough. It will not be.
And when it exceeds the threshold of the amount of aromatics, it can be confirmed that the activated carbon is broken through for the first time, and loss can be reduced by discarding the activated carbon 102A that can still be sufficiently adsorbed.

このように、本発明では、監視用浄化装置の活性炭に飽和吸着していた脂肪族炭化水素とPCBとが置換吸着する工程と、監視用浄化装置から排出される排出ガス中のPCBと置換して脱離した脂肪族炭化水素濃度を前記後流側の脂肪族炭化水素検知器で求め、その積算値より、所定の脱離脂肪族炭化水素濃度であるか否かを判定する工程と、前記判定工程において、所定閾値以下であれば、そのまま浄化装置での浄化を継続可能と判断し、所定値以上であれば、前記浄化装置のPCBを吸着・除去する活性炭の交換時期と判断する工程とにより、活性炭破過の予測を確実に行うことができる。   Thus, according to the present invention, the aliphatic hydrocarbon and PCB that have been saturated and adsorbed on the activated carbon of the monitoring purification apparatus are substituted and adsorbed, and the PCB in the exhaust gas discharged from the monitoring purification apparatus is replaced. Determining the concentration of the desorbed aliphatic hydrocarbon with the aliphatic hydrocarbon detector on the downstream side, and determining whether the concentration is a predetermined desorbed aliphatic hydrocarbon concentration from the integrated value; In the determination step, if it is equal to or less than a predetermined threshold value, it is determined that purification by the purification device can be continued as it is, and if it is equal to or greater than a predetermined value, it is determined that it is time to replace the activated carbon to adsorb and remove PCB of the purification device By this, it is possible to reliably predict activated carbon breakthrough.

また、前記判定工程において、前記前流側の脂肪族炭化水素検知器で求めたモニタ排出ガス中の脂肪族炭化水素を求め、後流側の脂肪族炭化水素検知器で求めた値より減じ、積算するようにしてもよい。   Further, in the determination step, to determine the aliphatic hydrocarbon in the monitor exhaust gas determined by the front-stream side aliphatic hydrocarbon detector, subtracted from the value determined by the rear-stream side aliphatic hydrocarbon detector, You may make it integrate.

また、前記警告工程において、前記監視用浄化装置から排出される芳香族炭化水素(PCBを含む)を検出し、所定閾値に達成した場合、前記浄化装置のPCBを吸着・除去する活性炭の交換時期と判断するようにしてもよい。   Further, in the warning step, when the aromatic hydrocarbon (including PCB) discharged from the monitoring purification device is detected and the predetermined threshold is reached, the replacement time of the activated carbon that adsorbs and removes the PCB of the purification device You may make it judge.

本発明による実施例4に係るPCB処理設備の活性炭破過モニタリング装置について、図面を参照して説明する。図6は、実施例4に係るPCB処理設備の活性炭破過モニタリング装置の概略図である。実施例1に係るPCB処理設備の活性炭破過モニタリング装置の構成部材と同一部材については、同一符号を付してその説明は省略する。
図6は、本実施例に係るPCB処理設備の活性炭破過モニタリング装置100Aを用いて、連続してPCB処理設備の浄化を行う様子を示す。
図6に示すように、PCB処理設備からの排出ガスラインL1に2台の第1及び第2浄化装置103−1、103−2を設置しており、この排出ガスラインL1から分岐される監視用排気ラインL2に監視用浄化装置110を1台設置している。
An activated carbon breakthrough monitoring apparatus for a PCB processing facility according to a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a schematic diagram of an activated carbon breakthrough monitoring device for a PCB processing facility according to a fourth embodiment. The same members as those of the activated carbon breakthrough monitoring device for the PCB processing facility according to the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
FIG. 6 shows a state in which the PCB processing equipment is continuously purified using the activated carbon breakthrough monitoring device 100A of the PCB processing equipment according to the present embodiment.
As shown in FIG. 6, two first and second purification apparatuses 103-1 and 103-2 are installed in the exhaust gas line L 1 from the PCB processing facility, and are branched from the exhaust gas line L 1. that the monitoring vacuum line L 2 are installed one for monitoring purification device 110.

また、排出ガスラインL1に介装した第1浄化装置103−1の前後に、バルブV1、V2を介装しており、第2浄化装置103−2の前後に、バルブV3、V4を介装しており、先ず、左側の第1浄化装置103−1を用いて、浄化を行う。
この際、V1及びV2を開とし、バルブV3、V4を閉とする。
そして、第1浄化装置103−1で浄化を行い、活性炭破過モニタリング装置100Aの計測結果より、第1浄化装置103−1の活性炭102Aが破過付近となった場合、第2浄化装置103−2のバルブV3、V4を開き、その後第1浄化装置103−1のバルブV1及びV2を閉鎖し、その後活性炭を交換しておき、次の浄化に備えておく。
Further, valves V 1 and V 2 are interposed before and after the first purification device 103-1 interposed in the exhaust gas line L 1 , and valves V 3 and V are disposed before and after the second purification device 103-2. V 4 is interposed a first, using the first purifying apparatus 103-1 to the left, to purify.
At this time, V 1 and V 2 are opened, and valves V 3 and V 4 are closed.
Then, the first purification device 103-1 performs purification, and when the activated carbon 102A of the first purification device 103-1 becomes near breakthrough from the measurement result of the activated carbon breakthrough monitoring device 100A, the second purification device 103- The second valves V 3 and V 4 are opened, and then the valves V 1 and V 2 of the first purification device 103-1 are closed. Thereafter, the activated carbon is replaced to prepare for the next purification.

これにより2台の第1及び第2の浄化装置103−1、103−2を用いて、連続しての浄化を安定して行うことができる。   Thereby, continuous purification can be stably performed using the two first and second purification apparatuses 103-1 and 103-2.

また、図7に示すように、監視用排気ラインL2にも監視用浄化装置110−1、110−2を2台設置して、第1及び第2の浄化装置103−1、103−2と対応した監視を行うようにしてもよい。
すなわち、図7の実施例においては、第1浄化装置103−1の監視を第1活性炭破過モニタリング装置100A−1で監視し、第2浄化装置103−2の監視を第2活性炭破過モニタリング装置100A−2で監視するようにしている。
そして、第1浄化装置103−1を監視する第1活性炭破過モニタリング装置100A−1により破過付近となった場合、前述したように、第2浄化装置103−2へ系統を切替え、この切替と同時に、バルブV5及びV6も切替て、第1活性炭破過モニタリング装置100A−1から第2活性炭破過モニタリング装置100A−2の監視に切替る。
In addition, as shown in FIG. 7, two monitoring purification apparatuses 110-1 and 110-2 are also installed in the monitoring exhaust line L2, and the first and second purification apparatuses 103-1 and 103-2 are installed. Monitoring corresponding to the above may be performed.
That is, in the embodiment of FIG. 7, the first purification device 103-1 is monitored by the first activated carbon breakthrough monitoring device 100A-1, and the second purification device 103-2 is monitored by the second activated carbon breakthrough monitoring. Monitoring is performed by the apparatus 100A-2.
And when it becomes near breakthrough by the 1st activated carbon breakthrough monitoring apparatus 100A-1 which monitors the 1st purification apparatus 103-1, as above-mentioned, a system is switched to the 2nd purification apparatus 103-2, and this switching At the same time, the valves V 5 and V 6 are switched to switch from the first activated carbon breakthrough monitoring device 100A-1 to the monitoring of the second activated carbon breakthrough monitoring device 100A-2.

これにより2台の浄化装置103−1、103−2及び2台の活性炭破過モニタリング装置100A−1、100A−2を用いて、連続しての浄化を安定して行うことができる。   Thus, continuous purification can be stably performed using the two purification apparatuses 103-1 and 103-2 and the two activated carbon breakthrough monitoring apparatuses 100A-1 and 100A-2.

本発明による実施例5に係るPCB処理設備について説明する。
図8は、PCB処理設備の概略を示す図である。
ここでは、PCBを含有する被処理物としてトランスを例にして説明する。
図8に示すように、本実施例にかかるPCB処理設備10は、被処理物であるトランス30からPCB21を液抜きする前処理手段である液抜き手段22と、前処理した後に、トランスを分離、破砕、洗浄等する容器処理システム23と、容器処理システム23から排出される分離品又は洗浄液又は有害物質をそのまま水熱分解処理で処理する有害物質処理手段である水熱酸化分解装置(以下、「水熱分解装置」ともいう)11とを、具備する。
A PCB processing facility according to the fifth embodiment of the present invention will be described.
FIG. 8 is a diagram showing an outline of the PCB processing facility.
Here, a transformer will be described as an example of an object to be processed containing PCB.
As shown in FIG. 8, the PCB processing facility 10 according to the present embodiment separates the transformer after the pretreatment with the liquid draining means 22 which is the pretreatment means for draining the PCB 21 from the transformer 30 which is the object to be processed. , Crushing, cleaning, etc., and a hydrothermal oxidative decomposition apparatus (hereinafter referred to as “hazardous substance treatment means”) for treating a separated product or a cleaning liquid discharged from the container processing system 23 or a harmful substance as it is by a hydrothermal decomposition process. 11) (also referred to as “hydrothermal decomposition apparatus”).

上記容器処理システム23の概略構成は、トランス30内のPCB21をPCB液抜き手段22で液抜き後のトランス30を、該トランスを構成する構成材である容器32とコア33とに分別処理する分別手段34と、該分別手段34により分別されたコア33を構成する鉄心35とコイル36とに分離するコア分離手段37と、該分離されたコイル36を銅線38と紙・木39とに分離するコイル分離手段40と、分離された紙・木39等の有機物を粉砕処理してスラリー41とする微粉砕手段42と、層状の鉄心35を破砕する鉄心破砕手段43と、容器32、破砕した鉄心片44、上記分離された銅線38等の無機物を洗浄液45で洗浄する洗浄装置46とを具備する。   The schematic configuration of the container processing system 23 is a separation process in which the PCB 21 in the transformer 30 is separated by the PCB liquid draining means 22 and the transformer 30 is separated into a container 32 and a core 33 which are constituent members of the transformer. Means 34, core separating means 37 for separating the core 33 and the coil 36 constituting the core 33 separated by the separating means 34, and the separated coil 36 into a copper wire 38 and paper / wood 39 The coil separating means 40, the finely pulverizing means 42 for pulverizing the separated organic matter such as paper / wood 39, the slurry 41, the iron core crushing means 43 for crushing the layered iron core 35, and the container 32. And a cleaning device 46 for cleaning an inorganic substance such as the separated copper wire 38 with a cleaning liquid 45.

また、一方の水熱酸化分解装置11の概略構成は、上記液抜きされたPCB21又はスラリー41又は洗浄廃液47等の被処理物25,油26,水酸化ナトリウム(NaOH)27,純水28,及び酸素(O2 )29を投入する筒形状の一次反応塔12と、配管を巻いた構成の二次反応塔13と、冷却器14及び反応器の減圧弁15を備えている。また、減圧弁15の下流には、排水(H2O,NaCl)19と排気ガス(CO2 )18とに分離する気液分離器16が配置されている。なお、上記二次反応器13は必要に応じて省略することもできる。 Further, the schematic configuration of one hydrothermal oxidative decomposition apparatus 11 is as follows: the PCB 21 or the slurry 41 or the waste liquid 47 to be treated 25, oil 26, sodium hydroxide (NaOH) 27, pure water 28, And a cylindrical primary reaction tower 12 into which oxygen (O 2 ) 29 is charged, a secondary reaction tower 13 having a structure in which a pipe is wound, a cooler 14, and a pressure reducing valve 15 for the reactor. A gas-liquid separator 16 that separates waste water (H 2 O, NaCl) 19 and exhaust gas (CO 2 ) 18 is disposed downstream of the pressure reducing valve 15. In addition, the said secondary reactor 13 can also be abbreviate | omitted as needed.

上記装置において、図示しない加圧ポンプによる加圧により一次反応塔12内は、例えば26MPaまで昇圧される。また、一次反応塔12内には酸素が噴出しており、内部の反応熱により350℃〜400℃まで(好適には370℃まで)昇温する。この段階までに、一次反応塔12の内部では酸化分解反応を起こし、被処理物25に含まれたPCBはCO2およびH2Oに分解されている。つぎに、冷却器14では、二次反応塔13からの流体を100℃程度までに冷却すると共に後段の減圧弁14にて大気圧まで減圧する。そして、気液分離器16によりCO2および水蒸気と処理液とが分離され、CO2および水蒸気の排ガス18は、活性炭を有する浄化装置103を通過して環境中に排出される。 In the above apparatus, the pressure in the primary reaction column 12 is increased to, for example, 26 MPa by pressurization by a pressure pump (not shown). Further, oxygen is spouted into the primary reaction tower 12, and the temperature is raised to 350 ° C. to 400 ° C. (preferably up to 370 ° C.) by the heat of reaction inside. By this stage, an oxidative decomposition reaction has occurred inside the primary reaction column 12, and the PCB contained in the workpiece 25 has been decomposed into CO 2 and H 2 O. Next, in the cooler 14, the fluid from the secondary reaction tower 13 is cooled to about 100 ° C., and the pressure is reduced to atmospheric pressure by the subsequent pressure reducing valve 14. Then, the gas / liquid separator 16 separates CO 2 and water vapor from the treatment liquid, and the CO 2 and water vapor exhaust gas 18 passes through the purification device 103 having activated carbon and is discharged into the environment.

本実施例のPCB処理設備においては、PCB液抜き手段22の設備から排出される排ガス、容器処理システム23から排出される排ガス及び水熱酸化分解装置から排出される排ガス18を浄化装置103で浄化するとともに、実施例1〜3で説明した活性炭破過モニタリング装置100(100A〜100C)により監視しているので、PCB処理設備の浄化システムにおいて、入口条件のPCB濃度の変化によっても、活性炭の破過を的確に予測することができ、破過に至る前の無用な活性炭の廃棄を無くすことが可能となり、浄化処理におけるランニングコストの低廉を図ることができる。   In the PCB processing facility of this embodiment, the exhaust gas discharged from the PCB liquid draining means 22, the exhaust gas discharged from the container processing system 23, and the exhaust gas 18 discharged from the hydrothermal oxidative decomposition apparatus are purified by the purifier 103. In addition, since the activated carbon breakthrough monitoring apparatus 100 (100A to 100C) described in Examples 1 to 3 is used for monitoring, the activated carbon breakage is also caused by the change in the PCB concentration in the inlet condition in the purification system of the PCB processing facility. Therefore, it is possible to accurately predict the excess, and it is possible to eliminate the disposal of useless activated carbon before reaching the breakthrough, thereby reducing the running cost in the purification process.

100、100A〜100C 活性炭破過モニタリング装置
101 排出ガス
102A、102B 活性炭
103 浄化装置
110 監視用浄化装置
101a 分岐ガス
101b モニタ排出ガス
112 後流側脂肪族炭化水素検知器
113 前流側脂肪族炭化水素検知器
115 芳香族炭化水素検知器
100, 100A to 100C Activated carbon breakthrough monitoring device 101 Exhaust gas 102A, 102B Activated carbon 103 Purification device 110 Purifying device for monitoring 101a Branch gas 101b Monitor exhaust gas 112 Back-stream side aliphatic hydrocarbon detector 113 Front-stream side aliphatic hydrocarbon Detector 115 Aromatic hydrocarbon detector

Claims (7)

PCB処理設備から排出ガスラインを介して排気される排出ガス中のPCBを含む有機化合物を活性炭Aで浄化するガス浄化装置の活性炭破過を予測する活性炭破過モニタリング装置であって、
前記排出ガスラインから分岐され、排出ガスの一部を分岐する監視用排出ガスラインと、
前記監視用排気ラインに介装され、前記ガス浄化装置の前記活性炭の充填容積よりも小さい所定容積のモニタ用活性炭を有し、該モニタ用活性炭により分岐ガス中のPCBを吸着・除去する前記監視用浄化装置と、
前記監視用浄化装置の後流側に設けられ、該監視用浄化装置から排出されるモニタ排出ガス中の脂肪族炭化水素を検出する後流側脂肪族炭化水素検知器とを具備すると共に、
前記モニタ用活性炭に予め脂肪族炭化水素を飽和吸着してなり、
前記監視用浄化装置のモニタ用活性炭に飽和吸着していた脂肪族炭化水素とPCBとを置換吸着させ、置換吸着によりPCBと置換して脱離した脂肪族炭化水素濃度を前記後流側の脂肪族炭化水素検知器で求め、求めた脂肪族炭化水素濃度からガス浄化装置の活性炭の破過を予測してなることを特徴とするPCB処理設備の活性炭破過モニタリング装置。
An activated carbon breakthrough monitoring device for predicting activated carbon breakthrough of a gas purification device for purifying an organic compound containing PCB in exhaust gas exhausted from a PCB treatment facility through an exhaust gas line with activated carbon A,
A monitoring exhaust gas line branched from the exhaust gas line and branching a part of the exhaust gas;
The monitoring which is interposed in the monitoring exhaust line and has a predetermined volume of monitoring activated carbon smaller than the filling volume of the activated carbon of the gas purifier, and which monitors and adsorbs / removes PCB in the branch gas by the monitoring activated carbon Purification device for
A wake-side aliphatic hydrocarbon detector that is provided on the downstream side of the monitoring and purifying device and detects aliphatic hydrocarbons in the monitor exhaust gas discharged from the monitoring and purifying device;
Saturated adsorption of aliphatic hydrocarbons in advance on the activated carbon for monitoring,
The aliphatic hydrocarbon and PCB that have been saturated and adsorbed on the activated carbon for monitoring of the monitoring and purifying apparatus are substituted and adsorbed, and the concentration of the aliphatic hydrocarbon that has been desorbed by substitution of PCB by substitution and adsorption is determined as the fat on the downstream side. An activated carbon breakthrough monitoring device for a PCB processing facility, characterized in that the activated carbon breakthrough of a gas purification device is predicted from an aliphatic hydrocarbon concentration obtained with an aromatic hydrocarbon detector.
請求項1において、
前記監視用浄化装置の前流側に介装され、該監視用浄化装置に導入されるモニタ排出ガス中の脂肪族炭化水素を検出する前流側の脂肪族炭化水素検知器を有することを特徴とするPCB処理設備の活性炭破過モニタリング装置。
In claim 1,
It has an upstream-side aliphatic hydrocarbon detector that is interposed on the upstream side of the monitoring purification device and detects aliphatic hydrocarbons in the monitor exhaust gas introduced into the monitoring purification device. An activated carbon breakthrough monitoring device for PCB processing equipment.
請求項1又は2において、
前記監視用浄化装置の後流側に介装され、該監視用浄化装置から排出されるPCBを検出する芳香族炭化水素検知器を有することを特徴とするPCB処理設備の活性炭破過モニタリング装置。
In claim 1 or 2,
An activated carbon breakthrough monitoring device for a PCB processing facility, comprising an aromatic hydrocarbon detector interposed on the downstream side of the monitoring purification device and detecting PCB discharged from the monitoring purification device.
請求項1乃至3のいずれか一つのPCB処理設備の活性炭破過モニタリング装置を用い、
監視用浄化装置のモニタ用活性炭に飽和吸着していた脂肪族炭化水素とPCBとが置換吸着する工程と、
監視用浄化装置から排出される排出ガス中のPCBと置換して脱離した脂肪族炭化水素濃度を前記後流側の脂肪族炭化水素検知器で求め、その積算値より、所定の脱離脂肪族炭化水素濃度であるか否かを判定する工程と、
前記判定工程において、所定閾値以下であれば、そのまま浄化装置での浄化を継続可能と判断し、所定値以上であれば、前記浄化装置のPCBを吸着・除去する活性炭の交換時期と判断する工程とを含むことを特徴とするPCB処理設備のガス浄化装置の活性炭破過の予測方法。
Using the activated carbon breakthrough monitoring device of the PCB processing facility according to any one of claims 1 to 3,
A process in which aliphatic hydrocarbons and PCBs saturated and adsorbed on the activated carbon for monitoring of the monitoring purification device are substituted and adsorbed;
The concentration of the aliphatic hydrocarbon desorbed by substituting the PCB in the exhaust gas discharged from the monitoring purification apparatus is obtained by the aliphatic hydrocarbon detector on the downstream side, and the predetermined desorbed fat is determined from the integrated value. Determining whether it is a group hydrocarbon concentration,
In the determination step, if it is equal to or less than a predetermined threshold value, it is determined that the purification in the purification device can be continued, and if it is equal to or greater than the predetermined value, it is determined that it is time to replace the activated carbon that adsorbs and removes the PCB of the purification device. A method for predicting breakthrough of activated carbon in a gas purification device of a PCB processing facility, comprising:
請求項4において、
前記判定工程は、
前記前流側の脂肪族炭化水素検知器で求めたモニタ排出ガス中の脂肪族炭化水素を求め、後流側の脂肪族炭化水素検知器で求めた値より減じ、積算することを特徴とするPCB処理設備のガス浄化装置の活性炭破過の予測方法。
In claim 4,
The determination step includes
The aliphatic hydrocarbon in the monitor exhaust gas obtained by the upstream aliphatic hydrocarbon detector is obtained, subtracted from the value obtained by the upstream aliphatic hydrocarbon detector, and integrated. Prediction method of activated carbon breakthrough of gas purification device of PCB processing equipment.
請求項4又は5において、
前記警告工程は、
前記監視用浄化装置から排出されるPCBを検出し、所定閾値に達成した場合、前記浄化装置のPCBを吸着・除去する活性炭の交換時期と判断することを特徴とするPCB処理設備のガス浄化装置の活性炭破過の予測方法。
In claim 4 or 5,
The warning process includes
A PCB gas purification apparatus for PCB processing equipment, characterized in that when the PCB discharged from the monitoring purification apparatus is detected and a predetermined threshold value is reached, it is determined that it is time to replace the activated carbon that adsorbs and removes the PCB of the purification apparatus. Prediction method for activated carbon breakthrough.
PCB処理設備から排気される排出ガス中のPCBを含む有機化合物を活性炭で浄化するガス浄化装置と、
請求項1乃至3のいずれか一つのPCB処理設備の活性炭破過モニタリング装置とを具備することを特徴とするPCB処理設備のガス浄化設備。
A gas purification device for purifying an organic compound containing PCB in exhaust gas exhausted from a PCB processing facility with activated carbon;
A gas purification facility for a PCB processing facility, comprising the activated carbon breakthrough monitoring device for the PCB processing facility according to any one of claims 1 to 3.
JP2011180927A 2011-08-22 2011-08-22 Activated carbon breakthrough monitoring device for PCB processing equipment, prediction method of activated carbon breakthrough for gas purification device Expired - Fee Related JP5619695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180927A JP5619695B2 (en) 2011-08-22 2011-08-22 Activated carbon breakthrough monitoring device for PCB processing equipment, prediction method of activated carbon breakthrough for gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180927A JP5619695B2 (en) 2011-08-22 2011-08-22 Activated carbon breakthrough monitoring device for PCB processing equipment, prediction method of activated carbon breakthrough for gas purification device

Publications (2)

Publication Number Publication Date
JP2013044573A true JP2013044573A (en) 2013-03-04
JP5619695B2 JP5619695B2 (en) 2014-11-05

Family

ID=48008603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180927A Expired - Fee Related JP5619695B2 (en) 2011-08-22 2011-08-22 Activated carbon breakthrough monitoring device for PCB processing equipment, prediction method of activated carbon breakthrough for gas purification device

Country Status (1)

Country Link
JP (1) JP5619695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324154A (en) * 2018-10-09 2019-02-12 广东环境保护工程职业学院 A kind of method of quick judgement molecular sieve adsorption saturation critical state

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591417A (en) * 1992-04-15 1997-01-07 Mobil Oil Corporation Removing SOx, CO and NOx from flue gases
JPH09508308A (en) * 1994-01-21 1997-08-26 モービル・オイル・コーポレイション Gas stream desulfurization
JPH1176743A (en) * 1997-09-04 1999-03-23 Ebara Corp Purifying method of gas and device therefor
JP2004033987A (en) * 2002-07-08 2004-02-05 Nippon Soda Co Ltd Method for cleaning exhaust gas and operation method of decomposition treatment facility
JP2004057900A (en) * 2002-07-26 2004-02-26 Kobelco Eco-Solutions Co Ltd Method and equipment for treating pcb-containing gas
JP2005028228A (en) * 2003-07-08 2005-02-03 Hitachi Plant Eng & Constr Co Ltd Gas treating method
JP2010158643A (en) * 2009-01-09 2010-07-22 Ebara Corp Exhaust gas treatment apparatus equipped with backup treatment tank

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591417A (en) * 1992-04-15 1997-01-07 Mobil Oil Corporation Removing SOx, CO and NOx from flue gases
JPH09508308A (en) * 1994-01-21 1997-08-26 モービル・オイル・コーポレイション Gas stream desulfurization
JPH1176743A (en) * 1997-09-04 1999-03-23 Ebara Corp Purifying method of gas and device therefor
JP2004033987A (en) * 2002-07-08 2004-02-05 Nippon Soda Co Ltd Method for cleaning exhaust gas and operation method of decomposition treatment facility
JP2004057900A (en) * 2002-07-26 2004-02-26 Kobelco Eco-Solutions Co Ltd Method and equipment for treating pcb-containing gas
JP2005028228A (en) * 2003-07-08 2005-02-03 Hitachi Plant Eng & Constr Co Ltd Gas treating method
JP2010158643A (en) * 2009-01-09 2010-07-22 Ebara Corp Exhaust gas treatment apparatus equipped with backup treatment tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324154A (en) * 2018-10-09 2019-02-12 广东环境保护工程职业学院 A kind of method of quick judgement molecular sieve adsorption saturation critical state

Also Published As

Publication number Publication date
JP5619695B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP4465430B2 (en) Extraction method of polychlorinated biphenyls
Cole et al. Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem?
CN103263845B (en) A kind of simultaneous SO_2 and NO removal mercury removal device
NO20052891L (en) Process for the treatment of electrolysis cell effluent and apparatus for producing aluminum
Lu et al. Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration
KR101682782B1 (en) A method for filtration of gas effluents from an industrial installation
JP5619695B2 (en) Activated carbon breakthrough monitoring device for PCB processing equipment, prediction method of activated carbon breakthrough for gas purification device
Kazemi et al. A novel multi array dielectric barrier discharge plasma gas diffuser for wastewater treatment: The role of reactive species
JP2006271519A (en) Treatment method, apparatus and control system of pop or pop-containing oil
JP2013148539A (en) Method for extracting polychloro biphenyl class
Yamazaki‐Nishida et al. Gas phase photocatalytic degradation on TiO2 pellets of volatile chlorinated organic compounds from a soil vapor extraction well
CN107614086B (en) Method and system for managing gas purification
JP5010498B2 (en) On-line simplified measuring device and method for PCB in gas, monitoring system for PCB processing equipment
JP3579360B2 (en) Method for detoxifying PCB-containing insulating oil in transformers etc.
JP2008246449A (en) Treatment apparatus and treatment method of toxic organic substance oil-containing water
JP4544849B2 (en) Hazardous material treatment system and method for judging graduation of hazardous material contamination
CN103341307A (en) Method and apparatus for removing durable organic pollutants from large flow incinerator exhaust
KR100827568B1 (en) Apparatus for recovering volatile organic compounds
WO2011134050A1 (en) Apparatus and method of dehydration of transformer insulating oil by continuous fluid flow
JP2010206963A (en) Method of detecting abnormal conditions in gas-insulated power apparatus
JP3902086B2 (en) PCB contamination treatment graduation judgment system
Asakura et al. Application of new technologies for gaseous tritium recovery and monitoring
Dobashi et al. Laser mass spectrometry: rapid analysis of polychlorinated biphenyls in exhaust gas of disposal plants
JP2003279555A (en) Hazardous material analysis device
RU2428630C1 (en) Method of destroying toxic compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R151 Written notification of patent or utility model registration

Ref document number: 5619695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees