JP2013043563A - Traveling control device - Google Patents

Traveling control device Download PDF

Info

Publication number
JP2013043563A
JP2013043563A JP2011182947A JP2011182947A JP2013043563A JP 2013043563 A JP2013043563 A JP 2013043563A JP 2011182947 A JP2011182947 A JP 2011182947A JP 2011182947 A JP2011182947 A JP 2011182947A JP 2013043563 A JP2013043563 A JP 2013043563A
Authority
JP
Japan
Prior art keywords
vehicle
collision risk
dimensional space
control device
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011182947A
Other languages
Japanese (ja)
Other versions
JP5824968B2 (en
Inventor
Ichiro Yamaguchi
一郎 山口
Yoshitaka Deguchi
欣高 出口
Satoshi Shimada
聡 島田
Masayasu Shimakage
正康 島影
Hirotoshi Ueda
宏寿 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011182947A priority Critical patent/JP5824968B2/en
Publication of JP2013043563A publication Critical patent/JP2013043563A/en
Application granted granted Critical
Publication of JP5824968B2 publication Critical patent/JP5824968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a traveling control device capable of reducing an uncomfortable feeling given to a driver.SOLUTION: The traveling control device includes: a three-dimensional space detection unit 11 for detecting a traveling road and an obstacle based on a vehicle width direction and height direction ahead on an own vehicle traveling road, and detecting a three-dimensional space ahead on the traveling road; a collision risk estimation unit 12 for estimating a level of risk of own vehicle's collision with the obstacle, for the detected three-dimensional space; a target route calculation unit 13 for calculating a target route for the own vehicle so as to avoid a high collision risk portion according to the detected level of collision risk; and a driving support unit 14 for performing driving support based on the calculated recommendable route.

Description

本発明は、走行制御装置に関する。   The present invention relates to a travel control device.

従来の走行制御装置では、自車前方の先行車または障害物の横の道路上の幅方向距離(走行可能領域)に応じて目標経路を生成し、生成した目標経路に基づいてブレーキ制御やステアリング制御等の運転支援を行っている。   In a conventional travel control device, a target route is generated according to the distance in the width direction (travelable region) on the road next to the preceding vehicle or obstacle ahead of the host vehicle, and brake control and steering are performed based on the generated target route. Driving assistance such as control.

特開2003−132498号公報JP 2003-132498 A

しかしながら、上記従来技術にあっては、衝突時のリスクを軽減させるように障害物に対してマージンを取った目標経路を生成していないため、ドライバの運転操作意志と合致した運転支援を行うことができず、ドライバに違和感を与えるという問題があった。
本発明の目的は、ドライバに与える違和感を軽減できる走行制御装置を提供することにある。
However, in the above prior art, since a target route with a margin is not generated for an obstacle so as to reduce the risk at the time of collision, driving assistance that matches the driving intention of the driver is performed. There was a problem that the driver was uncomfortable.
An object of the present invention is to provide a travel control device that can reduce a sense of discomfort given to a driver.

本発明では、走行路前方の立体空間に対して自車の障害物に対する衝突リスクの高さを推定し、衝突リスクの高さに応じて衝突リスクが高い部分から距離を取るように自車の推奨経路を求め、推奨経路に基づいて運転支援を行う。   In the present invention, the height of the collision risk with respect to the obstacle of the own vehicle is estimated with respect to the three-dimensional space in front of the traveling path, and the distance of the own vehicle is set so as to take a distance from the portion with the high collision risk according to the height of the collision risk. A recommended route is obtained, and driving assistance is performed based on the recommended route.

よって、本発明にあっては、衝突リスクを軽減させる自車の推奨経路に基づいて運転支援を行うため、ドライバの運転操作意志に合致した運転支援を実現でき、ドライバが走行する経路に対する違和感を軽減できる。   Therefore, in the present invention, since driving assistance is performed based on the recommended route of the host vehicle that reduces the risk of collision, driving assistance that matches the driver's willingness to drive can be realized, and the driver feels uncomfortable with the route that the driver is driving. Can be reduced.

実施例1の走行制御装置の構成図である。It is a block diagram of the traveling control apparatus of Example 1. 実施例1の運転支援制御処理の流れを示すフローチャートである。4 is a flowchart illustrating a flow of driving support control processing according to the first embodiment. 車速に応じた閾値設定マップである。It is a threshold value setting map according to vehicle speed. 車速に応じたマージン設定マップである。It is a margin setting map according to the vehicle speed. 立体形状の高さの絶対値に応じた第1係数設定マップである。It is a 1st coefficient setting map according to the absolute value of the height of a solid shape. 立体形状の車幅方向の長さ変化に対する高さの変化の絶対値に応じた第2係数設定マップである。It is a 2nd coefficient setting map according to the absolute value of the change of the height with respect to the length change of the solid shape in the vehicle width direction. 立体空間の各部の属性に応じた第3係数設定マップである。It is a 3rd coefficient setting map according to the attribute of each part of solid space. 総和Jの算出方法を示す模式図である。FIG. 5 is a schematic diagram showing a method for calculating a sum J. 総和Jに応じた目標車速設定マップである。It is a target vehicle speed setting map according to sum J. 走行路の左右境界が自車の車高よりも高い壁である走行シーンにおける運転支援作用を示す模式図である。It is a schematic diagram which shows the driving | operation assistance effect | action in the driving | running | working scene where the left-right boundary of a driving path is a wall higher than the vehicle height of the own vehicle. 走行路の左境界が区画線、右境界が壁である走行シーンにおける運転支援作用を示す模式図である。It is a schematic diagram which shows the driving | operation assistance effect | action in the driving | running scene where the left boundary of a driving path is a lane marking and the right boundary is a wall. 走行路の左境界が自車の車高よりも低い盛り土、右境界が壁である走行シーンにおける運転支援作用を示す模式図である。It is a schematic diagram showing a driving support action in a driving scene in which the left boundary of the travel path is lower than the vehicle height of the host vehicle and the right boundary is a wall.

以下、本発明の走行制御装置を実施するための形態を、図面に示す実施例に基づいて説明する。   EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing the traveling control apparatus of this invention is demonstrated based on the Example shown on drawing.

〔実施例1〕
図1は、実施例1の走行制御装置の構成図であり、実施例1の走行制御装置は、カメラ1と、車輪速センサ2と、液圧制御ユニット3と、コントローラ4とを備える。
カメラ1は、自車走行路前方の映像を撮影する。
車輪速センサ2は、各車輪に設けられ、対応する車輪の車輪速を検出する。
液圧制御ユニット3は、ドライバのブレーキ操作に応じて、またはコントローラ4からの指令に応じて、各車輪に設けられたホイルシリンダ5の液圧(ホイルシリンダ圧)を増減または保持し、車両の制動力を制御する。
コントローラ4は、カメラ1により撮影された自車走行路前方の映像から得られる情報と、各車輪速センサ2からの各車輪速から算出した車体速(車速)とに基づいて、自車の目標経路(推奨経路)を生成し、目標経路に基づいて液圧制御ユニット3を駆動し、車両を減速させる運転支援を行う。
[Example 1]
FIG. 1 is a configuration diagram of a travel control device according to a first embodiment. The travel control device according to the first embodiment includes a camera 1, a wheel speed sensor 2, a hydraulic pressure control unit 3, and a controller 4.
The camera 1 captures an image in front of the own vehicle traveling path.
The wheel speed sensor 2 is provided on each wheel and detects the wheel speed of the corresponding wheel.
The hydraulic pressure control unit 3 increases / decreases or maintains the hydraulic pressure (foil cylinder pressure) of the wheel cylinder 5 provided on each wheel in accordance with the driver's brake operation or in response to a command from the controller 4. Control the braking force.
The controller 4 determines the target of the vehicle based on the information obtained from the image in front of the vehicle traveling path taken by the camera 1 and the vehicle speed (vehicle speed) calculated from the wheel speeds from the wheel speed sensors 2. A route (recommended route) is generated, and the hydraulic pressure control unit 3 is driven based on the target route to perform driving support for decelerating the vehicle.

コントローラ4は、上記運転支援を実現するための構成として、立体空間検出部(立体空間検出手段)11と、衝突リスク推定部(衝突リスク推定手段)12と、目標経路演算部(推奨経路演算手段)13と、運転支援部(運転支援手段)14とを備える。
立体空間検出部11は、カメラ1からの映像に基づいて、自車走行路前方の走行路および障害物の立体形状を検出し、各立体形状から走行路前方の立体空間を検出する。
衝突リスク推定部12は、立体空間検出部11により検出された立体空間に対し、自車の障害物に対する衝突リスクの高さを推定する。
目標経路演算部13は、衝突リスク推定部12により推定された衝突リスクの高さに応じて、衝突リスクが高い部分から距離を取るように自車の目標経路を演算する。
運転支援部14は、目標経路演算部13により演算された目標経路に基づいて運転支援を行う。運転支援部14は、衝突リスクが高い部分に近づくにつれて、自車を減速するように制御する減速制御部(減速制御手段)15を有する。
The controller 4 includes a three-dimensional space detection unit (three-dimensional space detection unit) 11, a collision risk estimation unit (collision risk estimation unit) 12, and a target route calculation unit (recommended route calculation unit). ) 13 and a driving support unit (driving support means) 14.
Based on the video from the camera 1, the three-dimensional space detection unit 11 detects the three-dimensional shape of the traveling road and obstacle ahead of the host vehicle traveling path, and detects the three-dimensional space ahead of the traveling road from each three-dimensional shape.
The collision risk estimation unit 12 estimates the height of the collision risk for the obstacle of the own vehicle with respect to the three-dimensional space detected by the three-dimensional space detection unit 11.
The target route calculation unit 13 calculates the target route of the host vehicle so as to take a distance from a portion having a high collision risk according to the height of the collision risk estimated by the collision risk estimation unit 12.
The driving support unit 14 performs driving support based on the target route calculated by the target route calculating unit 13. The driving support unit 14 includes a deceleration control unit (deceleration control means) 15 that controls the vehicle to decelerate as it approaches a portion with a high collision risk.

以下、各部の具体的な処理内容を、図2のフローチャートに基づいて説明する。
図2は、コントローラ4により実行される実施例1の運転支援制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。
ステップS1では、立体空間検出部11において、カメラ1からの映像を取り込み、自車の走行路前方の走行可能領域を検出する。例えば、走行路前方に先行車が存在し、走行路左右の境界が壁である場合、左側の壁と先行車との間、および右側の壁と先行車との間が走行可能領域となる。
ステップS2では、立体空間検出部11において、自車に対して最も近い位置で、走行路前方の車幅方向と高さ方向と奥行き方向とによる走行路および障害物の立体形状を検出し、各立体形状に基づいて、走行路前方の立体空間を検出する。
Hereinafter, the specific processing content of each part is demonstrated based on the flowchart of FIG.
FIG. 2 is a flowchart showing the flow of the driving support control process of the first embodiment executed by the controller 4, and each step will be described below.
In step S1, the three-dimensional space detection unit 11 captures an image from the camera 1 and detects a travelable area in front of the travel path of the host vehicle. For example, when a preceding vehicle is present in front of the traveling path and the left and right boundaries of the traveling path are walls, the travelable region is between the left wall and the preceding vehicle and between the right wall and the preceding vehicle.
In step S2, the three-dimensional space detection unit 11 detects the three-dimensional shape of the road and obstacles according to the vehicle width direction, height direction, and depth direction in front of the road at the position closest to the host vehicle. Based on the three-dimensional shape, a three-dimensional space in front of the traveling road is detected.

ステップS3では衝突リスク推定部12において、ステップS2で検出された立体空間から、衝突したときに重大性が高い部分を、衝突リスクが高い部分として抽出する。実施例1では、障害物立体空間を構成する各立体形状の高さが自車の高さよりも所定の閾値(例えば、5cm)以上高い部分を、衝突リスクが高い部分として抽出する。ここで、閾値は、図3に示すように、車速に応じて可変としてもよい。図3の例では、車速Vが30km/h以下の場合は車速Vが高くなるにつれて閾値Thを10から徐々に小さくし、車速Vが30km/hを超える場合は閾値Thを最小値(2cm)とする。   In step S3, the collision risk estimation unit 12 extracts, from the three-dimensional space detected in step S2, a portion having a high severity when there is a collision as a portion having a high collision risk. In the first embodiment, a portion in which the height of each three-dimensional shape constituting the obstacle three-dimensional space is higher than the height of the own vehicle by a predetermined threshold (for example, 5 cm) is extracted as a portion having a high collision risk. Here, the threshold value may be variable according to the vehicle speed, as shown in FIG. In the example of FIG. 3, when the vehicle speed V is 30 km / h or less, the threshold value Th is gradually decreased from 10 as the vehicle speed V increases, and when the vehicle speed V exceeds 30 km / h, the threshold value Th is set to the minimum value (2 cm). And

ステップS4では、衝突リスク推定部12において、ステップS3で抽出された衝突リスクが高い部分に対し、自車の車速に応じたマージン[m]を設定する。図4は、車速に応じたマージン設定マップであり、マージンMは、車速Vが10km/h以下の場合は最小値(0.5m)とし、車速Vが10km/hを超えて30km/h以下の場合は車速Vが高くなるにつれてマージンMを大きくし、車速Vが30km/hを超える場合は最大値(1m)とする。   In step S4, the collision risk estimation unit 12 sets a margin [m] corresponding to the vehicle speed of the host vehicle for the portion with a high collision risk extracted in step S3. Fig. 4 is a margin setting map according to the vehicle speed. The margin M is the minimum value (0.5m) when the vehicle speed V is 10km / h or less, and the vehicle speed V exceeds 10km / h and is 30km / h or less. In this case, the margin M is increased as the vehicle speed V increases, and the maximum value (1 m) is set when the vehicle speed V exceeds 30 km / h.

図4のマップから求めたマージンMは、立体空間の大きさに応じた第1係数と、立体空間の車幅方向と高さ方向との比率に応じた第2係数と、立体空間の各部の属性に応じた第3係数とをそれぞれ乗算して補正する。
図5は、立体形状の高さの絶対値に応じた第1係数設定マップであり、第1係数は、障害物立体形状の高さの絶対値[cm]が閾値Th以下の場合は0、閾値Thを超えて10cm以下の場合は絶対値が大きくなるにつれて大きくし、10cmを超える場合は1とする。
The margin M obtained from the map of FIG. 4 includes a first coefficient according to the size of the three-dimensional space, a second coefficient according to the ratio between the vehicle width direction and the height direction of the three-dimensional space, and each part of the three-dimensional space. The third coefficient corresponding to the attribute is multiplied and corrected.
FIG. 5 is a first coefficient setting map according to the absolute value of the height of the solid shape, and the first coefficient is 0 when the absolute value [cm] of the height of the obstacle solid shape is equal to or less than the threshold Th. When the threshold value Th exceeds 10 cm, the value increases as the absolute value increases. When the value exceeds 10 cm, 1 is set.

図6は、立体形状の車幅方向の長さ変化に対する高さの変化の絶対値に応じた第2係数設定マップであり、第2係数は、障害物立体形状の車幅方向の長さの変化に対する高さの変化の絶対値が10以下の場合は絶対値が大きくなるにつれて大きくし、10を超える場合は1とする。
図7は、立体空間の各部(各障害物立体形状)の属性に応じた第3係数設定マップであり、第3係数は、属性が歩行者、自転車およびバイクの場合は1.5、車両の場合は1.2、その他の場合は1とする。ここで、属性の判定は、障害物立体形状から判定する(属性設定手段に相当)。例えば細い2本のポールが隣接していたら人間の足とみなして歩行者と判定する。また、車幅方向に約1.5〜2.0m、高さが1m以上の障害物は車両と判定し、それ以外は壁面や段差と判定する。
FIG. 6 is a second coefficient setting map according to the absolute value of the height change with respect to the length change in the vehicle width direction of the three-dimensional shape, and the second coefficient is the length of the obstacle solid shape in the vehicle width direction. When the absolute value of the change in height with respect to the change is 10 or less, the absolute value increases as the absolute value increases.
FIG. 7 is a third coefficient setting map according to the attribute of each part (each obstacle three-dimensional shape) of the three-dimensional space, and the third coefficient is 1.5 when the attribute is pedestrian, bicycle and motorcycle, 1.2, 1 otherwise. Here, the attribute is determined from the obstacle solid shape (corresponding to attribute setting means). For example, if two thin poles are adjacent, it is regarded as a human foot and determined to be a pedestrian. In addition, an obstacle having a height of about 1.5 to 2.0 m and a height of 1 m or more in the vehicle width direction is determined as a vehicle, and other than that, it is determined as a wall surface or a step.

ステップS5では、目標経路演算部13において、ステップS4で設定された、衝突リスクが高い部分からのマージンが最小となる車幅方向位置を、自車の目標経路として設定する。実施例1では、ステップS1で検出された走行可能領域の中で、ステップS3で抽出された衝突リスクが高い部分との距離を、衝突リスクが高い部分にステップS4で設定されたマージンMから差し引いた値の総和Jが最小となる目標経路を求める。例えば、図8の場合、盛り土に対するマージンM1からマージンM1が自車に重なる長さW1を差し引いた値(M1-W1)と、壁に対するマージンM2からマージンM2が自車に重なる長さW2を差し引いた値(M2-W2)との総和J=(M1-W1)+(M2-W2)が最小となる車幅方向位置を目標経路とする。   In step S5, the target route calculation unit 13 sets the position in the vehicle width direction, which is set in step S4 and minimizes the margin from the portion with a high collision risk, as the target route of the host vehicle. In the first embodiment, in the travelable area detected in step S1, the distance from the portion with high collision risk extracted in step S3 is subtracted from the margin M set in step S4 for the portion with high collision risk. The target route that minimizes the sum J of the obtained values is obtained. For example, in the case of FIG. 8, the value (M1-W1) obtained by subtracting the length W1 where the margin M1 overlaps the own vehicle from the margin M1 for the embankment and the length W2 where the margin M2 overlaps the own vehicle are subtracted from the margin M2 for the wall. The position in the vehicle width direction where the sum J = (M1-W1) + (M2-W2) with the value (M2-W2) is the target route.

ステップS6では、減速制御部15において、自車の走行経路がステップS5で設定された目標経路に追従するように液圧制御ユニット3を駆動して運転支援を行う。実施例1では、ステップS5で求めた最小の総和Jから、図9のマップを参照して目標車速Vtを設定し、自車の車速が目標車速Vtとなるように減速支援を行う。すなわち、十分なマージンが取れないときほど、車速を落として通過させるようにする。このとき、目標車速Vtの上限は走行路の制限車速Vlimにより制限する。図9に示すように、目標車速Vtは、総和Jが0未満の場合は制限車速Vlim(例えば、100km/h)とし、総和Jが0以上の場合は総和Jが大きくなるにつれて小さくし、総和Jが所定値以上の場合、徐行速度(例えば、10km/h)とする。   In step S6, the deceleration control unit 15 drives the hydraulic pressure control unit 3 to provide driving assistance so that the travel route of the host vehicle follows the target route set in step S5. In the first embodiment, the target vehicle speed Vt is set from the minimum sum J obtained in step S5 with reference to the map of FIG. 9, and deceleration support is performed so that the vehicle speed of the host vehicle becomes the target vehicle speed Vt. That is, the vehicle speed is decreased and the vehicle is allowed to pass when a sufficient margin cannot be obtained. At this time, the upper limit of the target vehicle speed Vt is limited by the limit vehicle speed Vlim on the travel path. As shown in FIG. 9, the target vehicle speed Vt is set to a limited vehicle speed Vlim (for example, 100 km / h) when the total sum J is less than 0, and decreases as the total sum J increases when the total sum J is 0 or more. When J is equal to or greater than a predetermined value, the speed is slow (for example, 10 km / h).

次に、作用を説明する。
[運転支援作用]
特に住宅街などの狭い道路や追い越し(通り抜け)といった走行シーンにおいて、ドライバは走行路内外の衝突時のリスクが高い段差や障害物に対し、その衝突リスクに応じたマージンを取って走行を行う。例えば、走行路の左右境界が壁である場合には、ドライバは左右の壁から均等に距離を取るため、自車を走行路の中央位置で走行させるのに対し、左右一方の境界が壁ではなく区画線や中央線である場合には、ドライバは衝突時のリスクが高い壁に対してマージンを取り、自車を走行路の中央位置よりも区画線または中央線側に寄せて走行させる。
Next, the operation will be described.
[Driving support action]
In particular, in a driving scene such as a narrow road such as a residential area or overtaking (passing through), the driver travels with a margin according to the collision risk with respect to a step or an obstacle with a high risk at the time of a collision inside and outside the road. For example, if the left and right boundaries of the road are walls, the driver will be equally spaced from the left and right walls. If it is a lane line or a center line, the driver takes a margin for a wall having a high risk at the time of collision, and moves the vehicle closer to the lane line or the center line side than the center position of the road.

ところが、従来の走行制御装置では、障害物に対する衝突時のリスクを考慮せず、走行可能領域のみに応じて目標経路を生成しているため、走行路の左右一方の境界が壁で他方が区画線や中央線である場合であっても、先行車が走行路の中央位置を走行している場合には、走行路の中央位置が目標経路に設定される。つまり、上記従来技術では、ドライバの運転操作意志に合致した運転支援を行うことができないため、ドライバに違和感を与えてしまう。   However, in the conventional travel control device, the target route is generated only in accordance with the travelable area without considering the risk at the time of collision with the obstacle, so the left and right boundaries of the travel path are walls and the other is partitioned. Even in the case of a line or a center line, when the preceding vehicle is traveling along the center position of the travel path, the center position of the travel path is set as the target path. That is, in the above-described conventional technology, it is impossible to provide driving support that matches the driver's willingness to drive, and thus the driver feels uncomfortable.

これに対し、実施例1では、走行路前方の立体空間から衝突時のリスクが高い部分を見積もり、見積もった部分の衝突リスクの高さに応じて、衝突リスクを軽減させるようにマージンを取って目標経路を生成し、十分なマージンが取れない場合には、自車を減速させることで衝突時のリスクを軽減させるため、ドライバの運転操作意志に合致した運転支援を実現でき、ドライバに与える違和感を軽減できる。   On the other hand, in Example 1, the part where the risk at the time of the collision is high is estimated from the three-dimensional space in front of the traveling road, and a margin is taken so as to reduce the collision risk according to the height of the collision risk of the estimated part. If the target route is generated and sufficient margin cannot be obtained, the vehicle can be decelerated to reduce the risk at the time of collision, so driving assistance that matches the driver's willingness to drive can be realized, and the driver feels uncomfortable Can be reduced.

また、実施例1では、衝突リスクが高い部分の自車に対して最も近い位置で障害物の立体形状を検出するため、自車近傍の障害物に対しても衝突リスクに応じたマージンを考慮した運転支援を行うことができ、ドライバに与える違和感を軽減できる。
このとき、奥行き方向の形状も考慮して障害物の立体形状を検出するため、例えば、逸脱防止用のポールのように奥行き方向に不連続に衝突リスクの高い部分が存在する場合であっても、これを考慮して立体形状を検出でき、ドライバに与える違和感を軽減できる。
Further, in the first embodiment, since the three-dimensional shape of the obstacle is detected at the closest position to the portion of the vehicle where the collision risk is high, a margin corresponding to the collision risk is also taken into consideration for the obstacle near the own vehicle. Driving assistance can be provided, and the uncomfortable feeling given to the driver can be reduced.
At this time, since the three-dimensional shape of the obstacle is detected in consideration of the shape in the depth direction, for example, even when there is a discontinuous high risk portion in the depth direction, such as a pole for preventing departure. Considering this, the three-dimensional shape can be detected, and the uncomfortable feeling given to the driver can be reduced.

実施例1では、衝突リスクが高い障害物形状の高さが高くなるほど、車速Vに応じたマージンMに乗算する第1係数の値を大きくする。すなわち、障害物形状が大きくなるほど、換言すると、立体空間の大きさが小さくなるほど、衝突リスクが高いと推定する。よって、例えば、障害物として路面段差が存在する場合、段差が高くなるほどマージンが大きくなり、ドライバの運転操作意志と合致するため、ドライバに与える違和感を軽減できる。   In the first embodiment, the value of the first coefficient that is multiplied by the margin M corresponding to the vehicle speed V is increased as the height of the obstacle shape having a high collision risk increases. That is, it is estimated that the larger the obstacle shape, in other words, the higher the risk of collision, the smaller the size of the three-dimensional space. Thus, for example, when there is a road step as an obstacle, the higher the step, the greater the margin and the driver's willingness to drive, thus reducing the sense of discomfort given to the driver.

また、障害物立体形状の車幅方向の長さの変化に対する高さの変化の絶対値が大きくなるほど、車速Vに応じたマージンMに乗算する第2係数の値を大きくする。すなわち、長さの変化に対する高さの変化が大きくなるほど、衝突リスクが高いと推定する。よって、例えば、同じ段差でもスロープが付いている場合は、付いていない場合よりもマージンが大きくなり、ドライバの運転操作意志と合致するため、ドライバに与える違和感を軽減できる。   Further, as the absolute value of the change in height with respect to the change in the length of the obstacle solid shape in the vehicle width direction is increased, the value of the second coefficient multiplied by the margin M corresponding to the vehicle speed V is increased. That is, it is estimated that the greater the change in height with respect to the change in length, the higher the risk of collision. Therefore, for example, when the slope is provided even at the same step, the margin is larger than when the slope is not provided and matches the driver's willingness to drive, so that the uncomfortable feeling given to the driver can be reduced.

さらに、立体空間の各部の属性が歩行者、自転車およびバイクである場合には第3係数の値を1.5とし、属性が車両である場合は第3係数の値を1.2とし、その他の属性の場合は第3係数を1とする。すなわち、各部の属性に基づいて衝突リスクの高さを推定する。衝突時のリスクは人間が最も大きく、次いで車両、最後が壁や路面段差、電柱等となるため、属性に基づいて衝突リスクの高さを推定することで、ドライバに与える違和感を軽減できる。
実施例1では、衝突リスクが高い部分に近づくにつれて、自車を減速するように制御する。つまり、衝突リスクが高い障害物に対して十分なマージンを取れないような狭いスペースを通過する走行シーンでは、車両を減速させることでドライバの運転操作意志と合致した運転支援を行うことができ、ドライバに与える違和感を軽減できる。
Furthermore, when the attribute of each part of the three-dimensional space is pedestrian, bicycle, and motorcycle, the value of the third coefficient is set to 1.5, and when the attribute is a vehicle, the value of the third coefficient is set to 1.2. Sets the third coefficient to 1. That is, the height of the collision risk is estimated based on the attribute of each part. The risk at the time of collision is greatest for humans, followed by vehicles, followed by walls, road surface steps, utility poles, and the like. By estimating the risk of collision based on attributes, it is possible to reduce the uncomfortable feeling given to the driver.
In the first embodiment, the vehicle is controlled to decelerate as it approaches a portion with a high collision risk. In other words, in a driving scene that passes through a narrow space that does not allow a sufficient margin for obstacles with high collision risk, it is possible to perform driving support that matches the driver's willingness to drive by decelerating the vehicle, The uncomfortable feeling given to the driver can be reduced.

以下、各走行シーン別に実施例1の運転支援作用を説明する。
図10は、走行路の左右境界が自車の車高よりも高い壁である走行シーンにおける運転支援作用を示す模式図であり、このシーンでは、左右の壁は共に衝突リスクが高い部分であり、左側の壁に対するマージンと右側の壁に対するマージンは同一となり、左右の壁に対して十分なマージンが取れない。よって、自車を減速させる運転支援を実施することで、衝突時のリスクを軽減する。
Hereinafter, the driving support operation of the first embodiment will be described for each traveling scene.
FIG. 10 is a schematic diagram showing a driving support action in a driving scene in which the left and right boundaries of the driving path are walls higher than the vehicle height of the own vehicle. In this scene, both the left and right walls are portions where the collision risk is high. The margin for the left wall and the margin for the right wall are the same, and a sufficient margin cannot be obtained for the left and right walls. Therefore, the risk at the time of a collision is reduced by implementing the driving assistance which decelerates the own vehicle.

図11は、走行路の左境界が区画線(白線)、右境界が壁である走行シーンにおける運転支援作用を示す模式図であり、このシーンでは、右側の壁のみが衝突リスクが高い部分であって、ドライバは自車を走行路の中央位置から左側(区画線側)に寄せることで右側の壁に対するマージンを確保できるため、自車を減速させる運転支援は不要である。
図12は、走行路の左境界が自車の車高よりも低い盛り土、右境界が壁である走行シーンにおける運転支援作用を示す模式図であり、このシーンでは、右側の壁の方が左側の盛り土よりも衝突リスクが高いため、ドライバは自車を走行路の中央位置から左側に寄せても左右の障害物に対して十分なマージンが取れない。よって、自車を減速させる運転支援を実施することで、衝突時のリスクを軽減する。
FIG. 11 is a schematic diagram showing a driving support operation in a driving scene in which the left boundary of the road is a lane marking (white line) and the right boundary is a wall. In this scene, only the right wall is a part where the collision risk is high. Since the driver can secure a margin for the right wall by moving the vehicle from the center position of the travel path to the left side (the lane marking side), driving assistance for decelerating the vehicle is unnecessary.
FIG. 12 is a schematic diagram showing a driving support operation in a driving scene in which the left boundary of the traveling road is lower than the vehicle height of the vehicle and the right boundary is a wall. In this scene, the right wall is on the left side. Since the risk of collision is higher than that of the embankment, even if the driver moves his / her vehicle to the left side from the center position of the road, there is not enough margin for the left and right obstacles. Therefore, the risk at the time of a collision is reduced by implementing the driving assistance which decelerates the own vehicle.

次に、効果を説明する。
実施例1の走行制御装置にあっては、以下に列挙する効果を奏する。
(1) 自車走行路前方の車幅方向と高さ方向による走行路および障害物を検出し、走行路前方の立体空間を検出する立体空間検出部11と、検出された立体空間に対し、自車の障害物に対する衝突リスクの高さを推定する衝突リスク推定部12と、推定された衝突リスクの高さに応じて、衝突リスクが高い部分から距離を取るように自車の目標経路を演算する目標経路演算部13と、演算された推奨経路に基づいて運転支援を行う運転支援部14と、を備えた。
よって、ドライバの運転操作意志に合致した運転支援を実現でき、ドライバに与える違和感を軽減できる。
Next, the effect will be described.
The travel control device according to the first embodiment has the following effects.
(1) A three-dimensional space detection unit 11 for detecting a three-dimensional space in front of the traveling path by detecting a traveling path and obstacles in the vehicle width direction and the height direction in front of the own vehicle traveling path, and for the detected three-dimensional space, The collision risk estimation unit 12 that estimates the height of the collision risk for the obstacle of the own vehicle, and the target route of the own vehicle so as to take a distance from the portion where the collision risk is high according to the estimated height of the collision risk A target route calculation unit 13 for calculating, and a driving support unit 14 for providing driving support based on the calculated recommended route are provided.
Therefore, driving support that matches the driver's willingness to drive can be realized, and the feeling of strangeness given to the driver can be reduced.

(2) 立体空間検出部11は、衝突リスクが高い部分の自車に対して最も近い位置で障害物立体形状を検出するため、自車近傍の障害物に対しても衝突リスクに応じたマージンを考慮した運転支援を行うことができ、ドライバに与える違和感を軽減できる。   (2) The three-dimensional space detection unit 11 detects the three-dimensional shape of the obstacle at the position closest to the subject vehicle where the collision risk is high. Driving assistance can be performed in consideration of discomfort, and the uncomfortable feeling given to the driver can be reduced.

(3) 立体空間検出部11は、自車からより前方の奥行き方向の形状も考慮して障害物立体形状を検出するため、例えば、逸脱防止用のポールのように奥行き方向に不連続に衝突リスクの高い部分が存在する場合であっても、これを考慮して立体形状を検出でき、ドライバに与える違和感を軽減できる。   (3) The three-dimensional space detection unit 11 detects the obstacle three-dimensional shape in consideration of the shape in the depth direction ahead of the host vehicle.For example, it collides discontinuously in the depth direction like a pole for preventing departure. Even when there is a high-risk part, it is possible to detect the three-dimensional shape in consideration of this, and to reduce the uncomfortable feeling given to the driver.

(4) 衝突リスク推定部12は、検出された立体空間の大きさが小さくなるほど、衝突リスクが高いと推定するため、例えば、障害物として路面段差が存在する場合、段差が高くなるほどマージンが大きくなり、ドライバの運転操作意志と合致するため、ドライバに与える違和感を軽減できる。   (4) The collision risk estimation unit 12 estimates that the collision risk is higher as the size of the detected three-dimensional space is smaller.For example, when there is a road step as an obstacle, the margin increases as the step increases. Therefore, since it matches the driver's willingness to drive, the uncomfortable feeling given to the driver can be reduced.

(5) 衝突リスク推定部12は、検出された立体空間の車幅方向距離が高さ方向距離に対して小さくなるほど、衝突リスクが高いと推定するため、例えば、同じ段差でもスロープが付いている場合は、付いていない場合よりもマージンが大きくなり、ドライバの運転操作意志と合致するため、ドライバに与える違和感を軽減できる。   (5) The collision risk estimation unit 12 estimates that the collision risk is higher as the vehicle width direction distance of the detected three-dimensional space becomes smaller than the height direction distance. In this case, the margin becomes larger than the case where it is not attached, and it matches the driver's willingness to drive, so the feeling of strangeness given to the driver can be reduced.

(6) 衝突リスク推定部12は、検出された立体空間の各部の属性を設定する属性設定手段(ステップS4)を有し、設定した属性に基づいて衝突リスクの高さを推定するため、属性に応じて衝突リスクの高さが変化するのに対し、ドライバに与える違和感を軽減できる。   (6) The collision risk estimation unit 12 has attribute setting means (step S4) for setting the attribute of each part of the detected three-dimensional space, and estimates the collision risk height based on the set attribute. Although the height of the collision risk changes according to the situation, the uncomfortable feeling given to the driver can be reduced.

(7) 運転支援部14は、推定された衝突リスクが高い部分に近づくにつれて、自車を減速するように制御する減速制御部15を有するため、衝突リスクが高い障害物に対して十分なマージンを取れないような狭いスペースを通過する走行シーンでは、車両を減速させることでドライバの運転操作意志と合致した運転支援を行うことができ、ドライバに与える違和感を軽減できる。   (7) Since the driving support unit 14 includes the deceleration control unit 15 that controls the vehicle to decelerate as it approaches a portion where the estimated collision risk is high, there is a sufficient margin for an obstacle with a high collision risk. In a traveling scene that passes through a narrow space where it cannot be taken, it is possible to provide driving assistance that matches the driver's willingness to drive by decelerating the vehicle, and to reduce the uncomfortable feeling given to the driver.

(他の実施例)
以上、本発明を実施するための形態を、実施例に基づいて説明したが、本発明の具体的な構成は、実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
例えば、実施例1では、運転支援としてブレーキ制御を実施する例を示したが、自車が推奨経路上を走行するように操向輪を自動で転舵するステアリング制御を併用してもよい。
(Other examples)
As mentioned above, although the form for implementing this invention was demonstrated based on the Example, the concrete structure of this invention is not limited to an Example, The design change of the range which does not deviate from the summary of invention And the like are included in the present invention.
For example, in the first embodiment, an example in which brake control is performed as driving assistance has been described. However, steering control that automatically steers steered wheels so that the vehicle travels on a recommended route may be used in combination.

1 カメラ
2 車輪速センサ
3 液圧制御ユニット
4 コントローラ
5 ホイルシリンダ
11 立体空間検出部(立体空間検出手段)
12 衝突リスク推定部(衝突リスク推定手段)
13 目標経路演算部(推奨経路演算手段)
14 運転支援部(運転支援手段)
15 減速制御部(減速制御手段)
S4 属性設定手段
1 Camera
2 Wheel speed sensor
3 Hydraulic control unit
4 Controller
5 Wheel cylinder
11 3D space detector (3D space detection means)
12 Collision risk estimation unit (collision risk estimation means)
13 Target route calculation unit (recommended route calculation means)
14 Driving support department (driving support means)
15 Deceleration control unit (deceleration control means)
S4 attribute setting method

Claims (7)

自車走行路前方の車幅方向と高さ方向による走行路および障害物を検出し、走行路前方の立体空間を検出する立体空間検出手段と、
検出された立体空間に対し、自車の障害物に対する衝突リスクの高さを推定する衝突リスク推定手段と、
推定された衝突リスクの高さに応じて、衝突リスクが高い部分から距離を取るように自車の推奨経路を演算する推奨経路演算手段と、
演算された推奨経路に基づいて運転支援を行う運転支援手段と、
を備えたことを特徴とする走行制御装置。
A three-dimensional space detecting means for detecting a three-dimensional space in front of the traveling path by detecting a traveling path and an obstacle in the vehicle width direction and the height direction in front of the own vehicle traveling path;
A collision risk estimation means for estimating the height of the collision risk against the obstacle of the own vehicle with respect to the detected three-dimensional space;
A recommended route calculating means for calculating a recommended route of the vehicle so as to take a distance from a portion where the collision risk is high, according to the estimated collision risk,
Driving support means for providing driving support based on the calculated recommended route;
A travel control device comprising:
請求項1に記載の走行制御装置において、
前記立体空間検出手段は、前記衝突リスクが高い部分の自車に対して最も近い位置で障害物立体形状を検出することを特徴とする走行制御装置。
The travel control device according to claim 1,
The three-dimensional space detection means detects a three-dimensional shape of an obstacle at a position closest to the subject vehicle at a high collision risk.
請求項2に記載の走行制御装置において、
前記立体空間検出手段は、自車からより前方の奥行き方向の形状も考慮して障害物立体形状を検出することを特徴とする走行制御装置。
In the travel control device according to claim 2,
The three-dimensional space detection means detects a three-dimensional shape of an obstacle in consideration of a shape in the depth direction ahead of the own vehicle.
請求項1ないし請求項3のいずれか1項に記載に走行制御装置において、
前記衝突リスク推定手段は、検出された立体空間の大きさが小さくなるほど、衝突リスクが高いと推定することを特徴とする走行制御装置。
In the travel control device according to any one of claims 1 to 3,
The travel control apparatus according to claim 1, wherein the collision risk estimation means estimates that the collision risk is higher as the size of the detected three-dimensional space is smaller.
請求項1ないし請求項4のいずれか1項に記載の走行制御装置において、
前記衝突リスク推定手段は、検出された立体空間の車幅方向距離が高さ方向距離に対して小さくなるほど、衝突リスクが高いと推定することを特徴とする走行制御装置。
In the traveling control device according to any one of claims 1 to 4,
The collision risk estimation means estimates that the collision risk is higher as the vehicle width direction distance of the detected three-dimensional space is smaller than the height direction distance.
請求項1ないし請求項5のいずれか1項に記載の走行制御装置において、
前記衝突リスク推定手段は、検出された立体空間の各部の属性を設定する属性設定手段を有し、
設定した属性に基づいて衝突リスクの高さを推定することを特徴とする走行制御装置。
In the traveling control device according to any one of claims 1 to 5,
The collision risk estimation means has attribute setting means for setting attributes of each part of the detected three-dimensional space,
A travel control device that estimates the height of a collision risk based on a set attribute.
請求項1ないし請求項6のいずれか1項に記載の走行制御装置において、
前記運転支援手段は、推定された衝突リスクが高い部分に近づくにつれて、自車を減速するように制御する減速制御手段を有することを特徴とする走行制御装置。
The travel control device according to any one of claims 1 to 6,
The driving support means includes a deceleration control means for controlling the vehicle to decelerate as it approaches a portion where the estimated collision risk is high.
JP2011182947A 2011-08-24 2011-08-24 Travel control device Active JP5824968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011182947A JP5824968B2 (en) 2011-08-24 2011-08-24 Travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011182947A JP5824968B2 (en) 2011-08-24 2011-08-24 Travel control device

Publications (2)

Publication Number Publication Date
JP2013043563A true JP2013043563A (en) 2013-03-04
JP5824968B2 JP5824968B2 (en) 2015-12-02

Family

ID=48007794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011182947A Active JP5824968B2 (en) 2011-08-24 2011-08-24 Travel control device

Country Status (1)

Country Link
JP (1) JP5824968B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031011A1 (en) * 2014-08-28 2016-03-03 日産自動車株式会社 Travel control device and travel control method
JP2017047739A (en) * 2015-08-31 2017-03-09 株式会社アドヴィックス Vehicle control device
JP2017136968A (en) * 2016-02-04 2017-08-10 日立オートモティブシステムズ株式会社 Vehicle control device
KR20180116913A (en) * 2017-04-18 2018-10-26 현대자동차주식회사 Apparatus and method for drive controlling of vehicle
JP2019026208A (en) * 2017-08-03 2019-02-21 株式会社Subaru Vehicle drive support device
JP2019087127A (en) * 2017-11-09 2019-06-06 サカエ理研工業株式会社 Vehicle traffic determination device
JP2021502914A (en) * 2018-09-28 2021-02-04 バイドゥ ドットコム タイムス テクノロジー (ベイジン) カンパニー リミテッド Tunnel-based planning system used for autonomous vehicles
WO2021171643A1 (en) * 2020-02-28 2021-09-02 日本電気株式会社 In-vehicle device, passing-through determination method, and recording medium
JP2021524410A (en) * 2018-05-17 2021-09-13 ズークス インコーポレイテッド Determining the drive envelope

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132498A (en) * 2001-10-23 2003-05-09 Hitachi Ltd Vehicle driving supporting device
JP2005049963A (en) * 2003-07-30 2005-02-24 Olympus Corp Safe movement support device
JP2005319986A (en) * 2005-04-11 2005-11-17 Toyota Motor Corp Controller of vehicle
JP2006099409A (en) * 2004-09-29 2006-04-13 Denso Corp Navigation system for avoiding deviation due to contact
JP2006224740A (en) * 2005-02-16 2006-08-31 Advics:Kk Vehicle travel support device
JP2007172266A (en) * 2005-12-21 2007-07-05 Fuji Heavy Ind Ltd Vehicle driving support device
JP2008195289A (en) * 2007-02-14 2008-08-28 Fuji Heavy Ind Ltd Vehicle driving support device
JP2008273479A (en) * 2007-05-07 2008-11-13 Mitsubishi Electric Corp Vehicle control device and vehicle control method
JP2008307951A (en) * 2007-06-12 2008-12-25 Fuji Heavy Ind Ltd Driving support apparatus of vehicle
JP2009214764A (en) * 2008-03-11 2009-09-24 Toyota Motor Corp Automatic brake system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132498A (en) * 2001-10-23 2003-05-09 Hitachi Ltd Vehicle driving supporting device
JP2005049963A (en) * 2003-07-30 2005-02-24 Olympus Corp Safe movement support device
JP2006099409A (en) * 2004-09-29 2006-04-13 Denso Corp Navigation system for avoiding deviation due to contact
JP2006224740A (en) * 2005-02-16 2006-08-31 Advics:Kk Vehicle travel support device
JP2005319986A (en) * 2005-04-11 2005-11-17 Toyota Motor Corp Controller of vehicle
JP2007172266A (en) * 2005-12-21 2007-07-05 Fuji Heavy Ind Ltd Vehicle driving support device
JP2008195289A (en) * 2007-02-14 2008-08-28 Fuji Heavy Ind Ltd Vehicle driving support device
JP2008273479A (en) * 2007-05-07 2008-11-13 Mitsubishi Electric Corp Vehicle control device and vehicle control method
JP2008307951A (en) * 2007-06-12 2008-12-25 Fuji Heavy Ind Ltd Driving support apparatus of vehicle
JP2009214764A (en) * 2008-03-11 2009-09-24 Toyota Motor Corp Automatic brake system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016031011A1 (en) * 2014-08-28 2017-06-08 日産自動車株式会社 Travel control device and travel control method
US10001781B2 (en) 2014-08-28 2018-06-19 Nissan Motor Co., Ltd. Travel control device and travel control method
WO2016031011A1 (en) * 2014-08-28 2016-03-03 日産自動車株式会社 Travel control device and travel control method
JP2017047739A (en) * 2015-08-31 2017-03-09 株式会社アドヴィックス Vehicle control device
JP2017136968A (en) * 2016-02-04 2017-08-10 日立オートモティブシステムズ株式会社 Vehicle control device
KR102310378B1 (en) 2017-04-18 2021-10-12 현대자동차주식회사 Apparatus and method for drive controlling of vehicle
KR20180116913A (en) * 2017-04-18 2018-10-26 현대자동차주식회사 Apparatus and method for drive controlling of vehicle
JP2019026208A (en) * 2017-08-03 2019-02-21 株式会社Subaru Vehicle drive support device
JP2019087127A (en) * 2017-11-09 2019-06-06 サカエ理研工業株式会社 Vehicle traffic determination device
JP2021524410A (en) * 2018-05-17 2021-09-13 ズークス インコーポレイテッド Determining the drive envelope
US11875681B2 (en) 2018-05-17 2024-01-16 Zoox, Inc. Drive envelope determination
JP2021502914A (en) * 2018-09-28 2021-02-04 バイドゥ ドットコム タイムス テクノロジー (ベイジン) カンパニー リミテッド Tunnel-based planning system used for autonomous vehicles
US11561546B2 (en) 2018-09-28 2023-01-24 Baidu Usa Llc Tunnel-based planning system for autonomous driving vehicles
WO2021171643A1 (en) * 2020-02-28 2021-09-02 日本電気株式会社 In-vehicle device, passing-through determination method, and recording medium

Also Published As

Publication number Publication date
JP5824968B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5824968B2 (en) Travel control device
JP5754510B2 (en) Vehicle driving support system
KR101864938B1 (en) Collision avoidance support device
JP6731234B2 (en) Vehicle motion control device and method thereof
JP4759547B2 (en) Driving support device
JP5910634B2 (en) Vehicle driving support system
JP6532786B2 (en) Vehicle travel control device and speed control method
JP6035207B2 (en) Vehicle control system
US20170129486A1 (en) Parking Trajectory Calculation Apparatus and Parking Trajectory Calculation Method
JP5426427B2 (en) Driving support device
JP5272448B2 (en) Vehicle driving support apparatus and vehicle driving support method
JP5300357B2 (en) Collision prevention support device
JP6108974B2 (en) Vehicle control system
JP6530705B2 (en) Driving support device and driving support method
JP6183799B2 (en) Vehicle control system
US20110015850A1 (en) Lane keeping assist device and lane keeping assist method
JP6049542B2 (en) Vehicle control system
JP6049541B2 (en) Vehicle control system
KR20140054359A (en) Vehicle driving assistance system
JP2009286279A (en) Drive support device for vehicle
JP5774966B2 (en) Vehicle obstacle avoidance device
JP2008018923A (en) Brake control device for vehicle, brake control method for vehicle
KR20140051444A (en) Vehicle driving assistance system
JP5315798B2 (en) Vehicle driving support apparatus and vehicle driving support method
JP2010137803A (en) Vehicular drive assistance system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5824968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151