JP2013042616A - Non contact power supply system - Google Patents

Non contact power supply system Download PDF

Info

Publication number
JP2013042616A
JP2013042616A JP2011178821A JP2011178821A JP2013042616A JP 2013042616 A JP2013042616 A JP 2013042616A JP 2011178821 A JP2011178821 A JP 2011178821A JP 2011178821 A JP2011178821 A JP 2011178821A JP 2013042616 A JP2013042616 A JP 2013042616A
Authority
JP
Japan
Prior art keywords
power
power supply
receiving coil
conductor
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011178821A
Other languages
Japanese (ja)
Inventor
Masahiro Yamaguchi
雅博 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIHARADENNKI CO Ltd
Original Assignee
AIHARADENNKI CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIHARADENNKI CO Ltd filed Critical AIHARADENNKI CO Ltd
Priority to JP2011178821A priority Critical patent/JP2013042616A/en
Publication of JP2013042616A publication Critical patent/JP2013042616A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non contact power supply system which supplies power to a mobile object.SOLUTION: A non contact power supply system includes: a first power supply conductor linearly formed; and at least one power reception coil disposed so as to face the first power supply conductor. The power reception coil is formed into an annular shape having a first parallel part extending in parallel with the first power supply conductor and a connection part connecting both end parts of the parallel part with each other.

Description

本発明は、非接触給電システムに関する。   The present invention relates to a non-contact power feeding system.

非接触で電力を供給するシステムについては、従来より種々の研究がなされており、実用化も進められている。例えば、特許文献1には、コイル間で給電を行うシステムが開示されている。   Various studies have been made on systems for supplying electric power in a non-contact manner, and practical applications are being promoted. For example, Patent Document 1 discloses a system that supplies power between coils.

特開2010−259172号公報JP 2010-259172 A

しかしながら、コイル間で給電を行うシステムは、コイル同士を対向させた状態で給電を行うため、給電を行う位置が制限されるという問題がある。また、コイル間の給電では、両コイルの軸心を一致させる必要があり、位置決めが難しいという問題もある。本発明は、このような問題を解決するためになされたものであり、給電を行う位置を制限することなく、且つ位置決めが容易な非接触給電システムを提供することを目的とする。   However, since a system that supplies power between coils performs power supply in a state where the coils are opposed to each other, there is a problem that a position where power is supplied is limited. In addition, there is a problem that positioning between the coils is difficult because the axes of both coils need to coincide with each other. The present invention has been made to solve such a problem, and an object of the present invention is to provide a non-contact power feeding system that is easy to position without limiting the position where power feeding is performed.

本発明に係る非接触給電システムは、線状に形成された第1給電導体と、前記給電導体と対向するように配置された、少なくとも一つの受電コイルと、を備え、前記受電コイルは、前記第1給電導体と平行に延びる第1平行部と、当該平行部の両端部を結ぶ連結部とを有する環状に形成されている。   A non-contact power supply system according to the present invention includes a first power supply conductor formed in a linear shape, and at least one power reception coil arranged to face the power supply conductor, and the power reception coil includes: It is formed in an annular shape having a first parallel part extending in parallel with the first power supply conductor and a connecting part connecting both ends of the parallel part.

この構成によれば、線状に形成された第1給電導体と対向するように配置された受電コイルに、第1給電導体と平行に延びる第1平行部を設けているため、第1給電導体に電流を供給すれば、受電コイルに給電が行われる。このように、受電コイルに第1給電導体に平行な部分を設けておけば給電を行うことができるため、受電コイルは、第1給電導体に沿ういずれの位置にも配置することができる。したがって、給電を行う位置が制限されず、自由度の高いシステムを構築することができる。また、受電コイルの第1平行部を給電導体に沿わせるだけで給電が行えるため、位置決めも容易に行うことができる。なお、第1給電導体は、直線状、曲線状、あるいはこれらを混在させた形態とすることができる。   According to this configuration, since the first parallel portion extending in parallel with the first power supply conductor is provided in the power receiving coil disposed so as to face the first power supply conductor formed in a linear shape, the first power supply conductor is provided. If a current is supplied to the power supply coil, power is supplied to the power receiving coil. In this way, since power can be supplied if the power receiving coil is provided with a portion parallel to the first power supply conductor, the power receiving coil can be disposed at any position along the first power supply conductor. Therefore, the position where power feeding is performed is not limited, and a system with a high degree of freedom can be constructed. In addition, since power can be supplied simply by placing the first parallel portion of the power receiving coil along the power supply conductor, positioning can be easily performed. In addition, the 1st electric power feeding conductor can be made into the form which made linear form, curve form, or these mixed.

上記受電コイルにおいては、連結部の配置は種々の態様にすることができるが、例えば、連結部を、第1給電導体と第1平行部とを通過する平面上に配置すると、さらに効果的に給電を行うことができる。   In the above power receiving coil, the arrangement of the connecting portion can be various. For example, if the connecting portion is arranged on a plane passing through the first feeding conductor and the first parallel portion, it is more effective. Power can be supplied.

また、連結部に、第1給電導体と平行に延びる第2平行部を設けると、さらに効果的に給電を行うことができる。   In addition, when the second parallel portion extending in parallel with the first power supply conductor is provided in the connecting portion, power can be supplied more effectively.

上記システムにおいて、第1給電体には第1コンデンサを接続することができる。このようなコンデンサを設けることで、力率補正が行われ、第1給電導体に接続される電源が小さい容量であっても、十分に必要な励磁を行うことができる。   In the above system, a first capacitor can be connected to the first power feeder. By providing such a capacitor, power factor correction is performed, and sufficiently necessary excitation can be performed even if the power supply connected to the first power supply conductor has a small capacity.

また、上記システムにおいて、受電コイルに接続される負荷と、この負荷に接続される第2コンデンサと、をさらに設けることができる。このようにすると、受電コイルの漏れリアクタンスによる電圧降下とコンデンサの電圧降下とが等しくなり、両電圧降下が相殺されて、受電コイルに誘起した起電力のほとんどは負荷に印加される。   In the above system, a load connected to the power receiving coil and a second capacitor connected to the load can be further provided. In this way, the voltage drop due to the leakage reactance of the power receiving coil becomes equal to the voltage drop of the capacitor, both voltage drops are offset, and most of the electromotive force induced in the power receiving coil is applied to the load.

上記非接触給電システムにおいては、第1給電導体、第1平行部、及び第2平行部と同一平面上にあり、且つ第1給電導体と平行に延び、第1給電導体とは、異なる方向に電流が流れる線状に形成された第2給電導体をさらに設けることができる。このようにすると、第2給電導体によって受電コイルと鎖交する磁束が多くなるため、より高い出力を得ることができる。なお、第2給電導体は、第1給電導体と同様に、直線状、曲線状、あるいはこれらを混在させた形態にすることができる。但し、第1給電導体と平行に配置する必要がある。   In the non-contact power supply system, the first power supply conductor, the first parallel portion, and the second parallel portion are on the same plane and extend in parallel with the first power supply conductor in a different direction from the first power supply conductor. A second feeding conductor formed in a linear shape through which a current flows can be further provided. If it does in this way, since the magnetic flux which links with a receiving coil by a 2nd electric power feeding conductor increases, a higher output can be obtained. In addition, the 2nd electric power feeding conductor can be made into the form which made linear form, curvilinear form, or these mixed together like the 1st electric power feeding conductor. However, it is necessary to arrange in parallel with the first feeding conductor.

上記非接触給電システムにおいては、受電コイルを複数設けることができる。例えば、第1給電導体の軸線を中心として、その周囲に複数の受電コイルを環状に配置することできる。   In the non-contact power feeding system, a plurality of power receiving coils can be provided. For example, a plurality of power receiving coils can be annularly arranged around the axis of the first power supply conductor.

また、上記非接触給電システムにおいては、受電コイルを、給電導体に沿って移動させるガイド部材を設けることができる。上記のように、本発明のシステムでは、受電コイルを配置する位置が制限されないため、受電コイルを給電導体に沿って移動させることができる。したがって、上記のようなガイド部材を設けることで、受電コイルを移動体として、移動しながらの給電が可能となる。   In the non-contact power feeding system, a guide member that moves the power receiving coil along the power feeding conductor can be provided. As described above, in the system of the present invention, the position where the power receiving coil is arranged is not limited, and therefore the power receiving coil can be moved along the power feeding conductor. Therefore, by providing the guide member as described above, power can be supplied while moving with the power receiving coil as a moving body.

本発明に係る非接触給電システムによれば、給電を行う位置を制限されることなく、また位置決めを容易に行うことができる。   According to the non-contact power feeding system according to the present invention, the position where power feeding is performed is not limited, and positioning can be easily performed.

本実施形態に係る非接触給電システムの平面図である。It is a top view of the non-contact electric supply system concerning this embodiment. 図1の断面図である。It is sectional drawing of FIG. 図1の断面図である。It is sectional drawing of FIG. 図1の非接触給電システムの他の例を示す断面図である。It is sectional drawing which shows the other example of the non-contact electric power feeding system of FIG. 図1の非接触給電システムの他の例を示す平面図及び断面図である。It is the top view and sectional drawing which show the other example of the non-contact electric power feeding system of FIG. 図1の非接触給電システムの他の例を示す断面図である。It is sectional drawing which shows the other example of the non-contact electric power feeding system of FIG. 図1の非接触給電システムの他の例を示す平面図である。It is a top view which shows the other example of the non-contact electric power feeding system of FIG. 図1の非接触給電システムの他の例を示す平面図である。It is a top view which shows the other example of the non-contact electric power feeding system of FIG.

以下、本発明に係る非接触給電システムの一実施形態について、図面を参照しつつ説明する。図1は本実施形態に係る非接触給電システムの平面図、図2は図1の断面図である。   Hereinafter, an embodiment of a non-contact power feeding system according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a non-contact power feeding system according to this embodiment, and FIG. 2 is a cross-sectional view of FIG.

図1及び図2に示すように、この非接触給電システムは、直線状の給電導体1と、これに近接する受電コイル2とで、構成されている。給電導体1は、一本又は複数の導線を束ねることで構成されており、交流電源3及び共振用の第1コンデンサ7が直列に接続されている。一方、受電コイル2は、給電導体1と平行に配置されるものであり、矩形状のフレーム21と、その外周面に巻き付けられた導線22とで構成されている。フレーム21は、平面視で長方形状に形成され、二つの長辺21a,21bがともに給電導体1と同一平面上にあるように配置される。なお、フレーム21は、ステンレス、プラスチック、紙、磁器などの非磁性体で形成することができる。導線22は、フレーム21に複数回巻き付けられ、その両端部はフレーム21から外部へ延びる出力用の導線221,222として機能する。また、出力用の導線222の一方には負荷4が直列に接続され、この負荷4と受電コイル2との間に共振用の第2コンデンサ6が直列に接続されている。なお、本実施形態では、受電コイル2の導線22において給電導体1と近接する長辺22aが本発明の第1平行部に相当し、他の部分が連結部に相当する。   As shown in FIGS. 1 and 2, the non-contact power feeding system includes a linear power feeding conductor 1 and a power receiving coil 2 adjacent to the linear power feeding conductor 1. The power supply conductor 1 is configured by bundling one or a plurality of conductive wires, and an AC power source 3 and a first capacitor for resonance 7 are connected in series. On the other hand, the power receiving coil 2 is arranged in parallel with the power supply conductor 1 and is composed of a rectangular frame 21 and a conductive wire 22 wound around the outer peripheral surface thereof. The frame 21 is formed in a rectangular shape in plan view, and is arranged so that the two long sides 21 a and 21 b are on the same plane as the power supply conductor 1. The frame 21 can be formed of a nonmagnetic material such as stainless steel, plastic, paper, or porcelain. The conducting wire 22 is wound around the frame 21 a plurality of times, and both ends thereof function as output conducting wires 221 and 222 extending from the frame 21 to the outside. A load 4 is connected in series to one of the output conductive wires 222, and a resonance second capacitor 6 is connected in series between the load 4 and the power receiving coil 2. In the present embodiment, the long side 22a close to the feeding conductor 1 in the conducting wire 22 of the power receiving coil 2 corresponds to the first parallel portion of the present invention, and the other portion corresponds to the connecting portion.

次に、上記のように構成された非接触給電システムのメカニズムについて説明する。図3は、図1の断面図である。図3に示す寸法で、給電導体1と受電コイル2を設け、給電導体1に電流Iが流れている場合、両者の相互インダクタンスMは、次の式で求められる。すなわち、平面視長方形の受電コイル2と鎖交する磁束Φは給電導体1から距離xだけ離れた位置の磁束密度Bを積分したものであるから、磁束Φは、以下の通りである。

Figure 2013042616
したがって、相互インダクタンスMは、以下の式で表される。
Figure 2013042616
但し、μは、真空の透磁率=4π×10−7[H/m] Next, the mechanism of the non-contact power feeding system configured as described above will be described. FIG. 3 is a cross-sectional view of FIG. When the power supply conductor 1 and the power receiving coil 2 are provided with the dimensions shown in FIG. 3 and the current I flows through the power supply conductor 1, the mutual inductance M of both is obtained by the following equation. That is, the magnetic flux Φ interlinking with the power receiving coil 2 having a rectangular shape in plan view is obtained by integrating the magnetic flux density B x at a position away from the power supply conductor 1 by the distance x, and thus the magnetic flux Φ is as follows.
Figure 2013042616
Therefore, the mutual inductance M is expressed by the following equation.
Figure 2013042616
However, μ 0 is the vacuum permeability = 4π × 10 −7 [H / m].

以上より、相互インダクタンスMは、給電導体1と受電コイル2が対面する長さbと比例関係にあることが分かる。よって、必要な出力を得るには必要な対面長さに製作した受電コイル2を使用すれば、従来のような鉄心を使用することなく、非接触給電を行うことが可能となる。   From the above, it can be seen that the mutual inductance M is proportional to the length b where the feeding conductor 1 and the power receiving coil 2 face each other. Therefore, if the power receiving coil 2 manufactured to have a required facing length is used to obtain a required output, non-contact power feeding can be performed without using a conventional iron core.

また、給電導体1には、共振用のコンデンサ7が直列に接続されているため、力率補正が行われる。すなわち、給電導体1において磁束を発生させる励磁電流は、電源電圧に対して約90度の位相差の遅れ電流であるため、力率補正を施すことで、小さい電源容量でも十分に必要な励磁を行うことが可能となる。なお、図1に示す例では、電源3に対してコンデンサ7を直列に接続し、電圧降下を相殺しているが、コンデンサ7を電源3に対して並列に接続することもでき、これによって、電流を相殺することができる。   In addition, since the resonance capacitor 7 is connected in series to the power supply conductor 1, power factor correction is performed. That is, the excitation current that generates magnetic flux in the power supply conductor 1 is a delayed current having a phase difference of about 90 degrees with respect to the power supply voltage. Therefore, sufficient power excitation can be performed even with a small power supply capacity by performing power factor correction. Can be done. In the example shown in FIG. 1, the capacitor 7 is connected in series with the power supply 3 to cancel the voltage drop, but the capacitor 7 can be connected in parallel with the power supply 3, The current can be canceled out.

一方、受電コイル2に電流が流れると磁束が発生し、この磁束が受電コイル2自身と鎖交して受電コイル2に電圧を誘起する。これが電圧降下として作用するため、負荷4に加わる電圧が小さくなるおそれがある。また、給電導体1と受電コイル2との磁気結合状態が著しく低いとき、受電コイル2の漏れインダクタンスは受電コイル2の自己インダクタンスにほぼ等しい。そこで、図1に示すように、受電コイル2と負荷4との間にコンデンサ6を接続し、受電コイル2の漏れリアクタンスによる電圧降下とコンデンサ6の電圧降下を等しくすると、両電圧降下が相殺され、受電コイル2に誘起した起電力のほとんどは負荷4に印加される。   On the other hand, when a current flows through the power receiving coil 2, a magnetic flux is generated, and this magnetic flux interlinks with the power receiving coil 2 itself to induce a voltage in the power receiving coil 2. Since this acts as a voltage drop, the voltage applied to the load 4 may be reduced. Further, when the magnetic coupling state between the feeding conductor 1 and the receiving coil 2 is extremely low, the leakage inductance of the receiving coil 2 is substantially equal to the self-inductance of the receiving coil 2. Therefore, as shown in FIG. 1, if a capacitor 6 is connected between the power receiving coil 2 and the load 4, and the voltage drop due to the leakage reactance of the power receiving coil 2 is equal to the voltage drop of the capacitor 6, both voltage drops are canceled out. Most of the electromotive force induced in the power receiving coil 2 is applied to the load 4.

以上のように、本実施形態によれば、線状に形成された給電導体1と対向するように配置された受電コイル2に、給電導体1と平行に延びる部分21a,21bを設けているため、給電導体1に電流を供給すれば、受電コイル2に給電が行われる。このように、受電コイル2に給電導体1に平行な部分を設けておけば給電を行うことができるため、受電コイル2は、第1給電導体1に沿ういずれの位置にも配置することができる。したがって、給電を行う位置が制限されないため、自由度の高いシステムを展開することができる。また、受電コイル2の第1平行部22aを給電導体1に沿わせるだけで給電が行えるため、位置決めも容易に行うことができる。そのため、例えば、受電コイル2を給電導体1に対して移動させることができる。あるいは、給電導体1を床や壁の中に埋め込んでおけば、受電コイル2をその床や壁に接触させることにより、受電を行うことができる。   As described above, according to the present embodiment, the power receiving coil 2 disposed so as to face the power supply conductor 1 formed in a linear shape is provided with the portions 21 a and 21 b extending in parallel with the power supply conductor 1. If a current is supplied to the power supply conductor 1, power is supplied to the power receiving coil 2. As described above, since power can be supplied if the power receiving coil 2 is provided with a portion parallel to the power feeding conductor 1, the power receiving coil 2 can be disposed at any position along the first power feeding conductor 1. . Therefore, since the position where power feeding is performed is not limited, a system with a high degree of freedom can be developed. Further, since power can be supplied simply by placing the first parallel portion 22a of the power receiving coil 2 along the power supply conductor 1, positioning can be easily performed. Therefore, for example, the power receiving coil 2 can be moved with respect to the power supply conductor 1. Alternatively, if the power feeding conductor 1 is embedded in a floor or wall, power can be received by bringing the power receiving coil 2 into contact with the floor or wall.

以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。例えば、上記実施形態では、一つの受電コイル2を用いたが、複数の受電コイル2を用いることができる。例えば、図4に示すように、給電導体1の軸線を中心とし、この周囲に、上述したように受電コイル2を配置することができる。すなわち、給電導体1からは、軸線の周囲に磁束Φが生じるため、この磁束Φが受電コイル2に鎖交するように配置すれば、複数の受電コイル2が配置されていたとしても、給電が可能となる。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible unless it deviates from the meaning. For example, in the above embodiment, one power receiving coil 2 is used, but a plurality of power receiving coils 2 can be used. For example, as shown in FIG. 4, the power receiving coil 2 can be arranged around the axis of the power supply conductor 1 as described above. That is, since the magnetic flux Φ is generated around the axis line from the power supply conductor 1, if the magnetic flux Φ is arranged so as to be linked to the power receiving coil 2, power can be supplied even if a plurality of power receiving coils 2 are disposed. It becomes possible.

また、図5に示すように、互いに平行に延びる2つの給電導体を配置し、その間に受電コイルを配置することもできる。ここでは、説明の便宜上、符号1の給電導体を第1給電導体と称し、符号5の給電導体を第2給電導体と称することとする。両給電導体1,5は、同一の材料で構成されている。但し、電流の流れる方向が互いに反対となっている。受電コイル2は、2つの長辺(第1平行部,第2平行部)21a,21bが両給電導体1,5を通る平面上にある。このような構成により、受電コイル1には、2つの給電導体1,5からの磁束が鎖交するため、より高い出力を得ることができる。なお、図示は省略するが、第2給電導体5にも電源及びコンデンサが接続される。   In addition, as shown in FIG. 5, two power supply conductors extending in parallel to each other can be disposed, and a power receiving coil can be disposed therebetween. Here, for convenience of explanation, the feeding conductor denoted by reference numeral 1 is referred to as a first feeding conductor, and the feeding conductor denoted by reference numeral 5 is referred to as a second feeding conductor. Both feed conductors 1 and 5 are made of the same material. However, the directions of current flow are opposite to each other. The power receiving coil 2 has two long sides (first parallel portion and second parallel portion) 21a and 21b on a plane passing through both the power feeding conductors 1 and 5. With such a configuration, since the magnetic flux from the two power supply conductors 1 and 5 is linked to the power receiving coil 1, a higher output can be obtained. Although illustration is omitted, a power source and a capacitor are also connected to the second feeding conductor 5.

また、受電コイル2が長方形の場合、両長辺21a,21bが給電導体1と同一平面上に配置されていなくてもよく、図6に示すように、両長辺21a,21bが給電導体1と平行であればよい。受電コイル2の形状は、上記実施形態以外のものでも適用することができる。例えば、受電コイル2を平面視で、短辺が給電導体1と平行な長方形や、正方形にすることもできる。また、図7に示すように、給電導体1に近接する部分に直線状の平行部25を設け、この平行部25の両端に曲線状の連結部26を設けて、全体として環状に形成することもできる。   Further, when the power receiving coil 2 is rectangular, both long sides 21a and 21b may not be arranged on the same plane as the power feeding conductor 1, and both long sides 21a and 21b are arranged on the power feeding conductor 1 as shown in FIG. As long as it is parallel. The power receiving coil 2 may have a shape other than the above embodiment. For example, the power receiving coil 2 can be a rectangle or a square whose short side is parallel to the power supply conductor 1 in plan view. Further, as shown in FIG. 7, a linear parallel portion 25 is provided in a portion close to the power supply conductor 1, and curved connecting portions 26 are provided at both ends of the parallel portion 25, so that the whole is formed in an annular shape. You can also.

また、図8に示すように、受電コイル2が、給電導体1と平行に移動できるような、ガイドレール9を設けることもできる。この例では、給電導体1と平行に一対のガイドレール9を設け、このガイドレール9上に受電コイルを移動可能に配置している。例えば、給電導体1からの給電により、受電コイル2がガイドレール9上を自走できるようにすることもできる。なお、ガイドレールの形態は種々のものがあり、受電コイル2が給電導体1と平行に移動できるものであれば、特には限定されない。   Further, as shown in FIG. 8, a guide rail 9 can be provided so that the power receiving coil 2 can move in parallel with the power feeding conductor 1. In this example, a pair of guide rails 9 are provided in parallel with the power supply conductor 1, and the power receiving coil is movably disposed on the guide rails 9. For example, the power receiving coil 2 can be self-propelled on the guide rail 9 by power feeding from the power feeding conductor 1. There are various types of guide rails, and the guide rail is not particularly limited as long as the power receiving coil 2 can move in parallel with the power supply conductor 1.

以下、本発明の実施例について説明する。但し、本発明は、以下の実施例には限定されない。   Examples of the present invention will be described below. However, the present invention is not limited to the following examples.

ここでは、実施例1として図1に示す非接触給電システムを作製し、実施例2として図5に示す非接触給電システムを作製した。また、参考例として、2個の円形コイルによる非接触給電システムも作製した。各部材の仕様は以下の通りである。
・給電導体:断面積2mmのIV線
・受電コイル:非磁性材で構成した長方形のフレームに(リッツ線0.12φ100C)の導線を巻き付け、310×150mmの長方形のコイルを準備した。巻数は、34ターンである。また、インダクタンスは0.68mHである。
・円形コイル:直径300mm円形で、巻数は、33ターンである。
・電源電圧:200V
・負荷抵抗:11.85Ω
・コンデンサ:0.28μF
Here, the non-contact power feeding system shown in FIG. 1 was produced as Example 1, and the non-contact power feeding system shown in FIG. As a reference example, a non-contact power supply system using two circular coils was also produced. The specifications of each member are as follows.
- feeding conductor: IV line, the power receiving coil of the cross-sectional area 2 mm 2: winding a conductor of the rectangular frame of a non-magnetic material (litz wire 0.12φ100C), was prepared a rectangular coil of 310 × 150 mm. The number of turns is 34 turns. The inductance is 0.68 mH.
-Circular coil: It is a circle with a diameter of 300 mm, and the number of turns is 33 turns.
・ Power supply voltage: 200V
・ Load resistance: 11.85Ω
・ Capacitor: 0.28μF

上記のような非接触給電システムにおいて、受電コイルと給電導体との距離を変更しつつ、入出力比を測定した。結果は以下の通りである。

Figure 2013042616
In the non-contact power feeding system as described above, the input / output ratio was measured while changing the distance between the power receiving coil and the power feeding conductor. The results are as follows.
Figure 2013042616

上記のように、実施例1,2は、円形コイルを用いた参考例と比べると、入出力比が低いが、概ね必要な出力を得ることができることが分かる。特に、給電導体と受電コイルとの距離を小さくすることで、入出力比が高まり、距離が50mmの場合には、実施例2が参考例を上回っている。 As described above, Examples 1 and 2 have a low input / output ratio compared to the reference example using a circular coil, but it can be understood that a necessary output can be obtained. In particular, when the distance between the power supply conductor and the power receiving coil is reduced, the input / output ratio is increased, and in the case where the distance is 50 mm, Example 2 exceeds the reference example.

また、実施例1,2について、受電コイルを1m/sの速度で給電導体に沿って移動したところ、静止時と全く変化がなく、同等の入出力比を得ることができた。 Further, in Examples 1 and 2, when the power receiving coil was moved along the feeding conductor at a speed of 1 m / s, there was no change at all when stationary and an equivalent input / output ratio could be obtained.

1 給電導体(第1給電導体)
2 受電コイル
5 第2給電導体
6 第2コンデンサ
7 第1コンデンサ
9 ガイド部材
1 Feeding conductor (first feeding conductor)
2 Power-receiving coil 5 Second feeding conductor 6 Second capacitor 7 First capacitor 9 Guide member

Claims (7)

線状に形成された第1給電導体と、
前記第1給電導体と対向するように配置された、少なくとも一つの受電コイルと、を備え、
前記受電コイルは、前記第1給電導体と平行に延びる第1平行部と、当該平行部の両端部を結ぶ連結部とを有する環状に形成されている、非接触給電システム。
A first feeding conductor formed in a linear shape;
And at least one power receiving coil disposed to face the first power supply conductor,
The power receiving coil is a non-contact power feeding system formed in an annular shape having a first parallel part extending in parallel with the first power feeding conductor and a connecting part connecting both ends of the parallel part.
前記第1給電体には第1コンデンサが接続されている、請求項1に記載の非接触給電システム。   The contactless power feeding system according to claim 1, wherein a first capacitor is connected to the first power feeding body. 前記受電コイルに接続される負荷と、
前記負荷に接続される第2コンデンサと
をさらに備えている、請求項1または2に記載の非接触給電システム。
A load connected to the power receiving coil;
The wireless power supply system according to claim 1, further comprising a second capacitor connected to the load.
前記連結部に、前記第1給電導体と平行に延びる第2平行部が設けられている、請求項1から3のいずれかに記載の非接触給電システム。   The non-contact electric power feeding system in any one of Claim 1 to 3 with which the 2nd parallel part extended in parallel with the said 1st electric power feeding conductor is provided in the said connection part. 前記第1給電導体、第1平行部、及び第2平行部と同一平面上にあり、且つ前記第1給電導体と平行に延び、当該第1給電導体とは、異なる方向に電流が流れる線状に形成された第2給電導体をさらに備えている、請求項4に記載の非接触給電システム。   The first power supply conductor, the first parallel portion, and the second parallel portion are coplanar and extend in parallel with the first power supply conductor, and a linear current flows in a different direction from the first power supply conductor. The non-contact power feeding system according to claim 4, further comprising a second power feeding conductor formed on. 前記受電コイルが複数設けられている、請求項1から5のいずれかに記載の非接触給電システム。   The non-contact electric power feeding system in any one of Claim 1 to 5 with which the said receiving coil is provided with two or more. 前記受電コイルを前記第1給電導体に沿って移動させるガイド部材をさらに備えている、請求項1から6のいずれかに記載の非接触給電システム。
The non-contact electric power feeding system in any one of Claim 1 to 6 further equipped with the guide member which moves the said receiving coil along the said 1st electric power feeding conductor.
JP2011178821A 2011-08-18 2011-08-18 Non contact power supply system Withdrawn JP2013042616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011178821A JP2013042616A (en) 2011-08-18 2011-08-18 Non contact power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011178821A JP2013042616A (en) 2011-08-18 2011-08-18 Non contact power supply system

Publications (1)

Publication Number Publication Date
JP2013042616A true JP2013042616A (en) 2013-02-28

Family

ID=47890478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178821A Withdrawn JP2013042616A (en) 2011-08-18 2011-08-18 Non contact power supply system

Country Status (1)

Country Link
JP (1) JP2013042616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195350A (en) * 2013-03-28 2014-10-09 Ryutech Co Ltd Electric vehicle power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195350A (en) * 2013-03-28 2014-10-09 Ryutech Co Ltd Electric vehicle power supply system

Similar Documents

Publication Publication Date Title
KR101794901B1 (en) Inductive power transfer apparatus
JP5437650B2 (en) Non-contact power feeding device
JP6164421B2 (en) Power transmission coil unit and wireless power transmission device
CN109155535B (en) Biplane wireless power transmission pad
JP5941046B2 (en) Inductive power receiver device
JP5286445B1 (en) Wireless power feeder for electric mobile body
JP5682992B2 (en) Non-contact power transmission device
JP6179375B2 (en) Coil unit
JP6282398B2 (en) Electromagnetic induction coil
JP2012099644A (en) Variable inductance type non-contact power supply device
US10742070B2 (en) Movable power coupling and a robot with movable power coupling
JP5646688B2 (en) Contactless power supply system
JP2011142177A (en) Contactless power transmission device, and coil unit for contactless power transmission device
JP2015106581A (en) Power transmission coil unit and wireless power transmission device
WO2012001758A1 (en) Non-contact electric power feeding device
JP2017212880A (en) Wireless power transmission apparatus
JP6541425B2 (en) Wireless power supply system
JP6358098B2 (en) Power feeding device and non-contact power transmission device
JP2010035300A (en) Non-contact power supply apparatus
JP2015053751A (en) Non-contact power transmission device
JP3672556B2 (en) Non-contact power supply device
US9123466B2 (en) Wireless power transfer systems containing foil-type transmitter and receiver coils
EP2698799B1 (en) Magnetic configuration for High Efficiency Power Processing
JP5857204B2 (en) Non-contact power feeding device
WO2013145573A1 (en) Contactless power supply system and contactless power supply method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104