JP2013041795A - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
JP2013041795A
JP2013041795A JP2011179810A JP2011179810A JP2013041795A JP 2013041795 A JP2013041795 A JP 2013041795A JP 2011179810 A JP2011179810 A JP 2011179810A JP 2011179810 A JP2011179810 A JP 2011179810A JP 2013041795 A JP2013041795 A JP 2013041795A
Authority
JP
Japan
Prior art keywords
battery
gasket
cylindrical
cylindrical battery
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011179810A
Other languages
Japanese (ja)
Other versions
JP5715907B2 (en
Inventor
Tomohisa Nozue
智久 野末
Hiroshi Hamada
浩 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2011179810A priority Critical patent/JP5715907B2/en
Publication of JP2013041795A publication Critical patent/JP2013041795A/en
Application granted granted Critical
Publication of JP5715907B2 publication Critical patent/JP5715907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical battery offering excellent discharge performance while maintaining sealing performance.SOLUTION: A cylindrical battery 1 has a cylindrical battery can 10 having a bottom, the opening of the battery can 10 having a bead 11 around the opening is swaged inward, an approximately disc-shaped sealing material 30 is attached to the opening through an intervening gasket 40, and the Rockwell hardness of the gasket is equal to or higher than 115 and equal to or lower than 122. The area ratio Ar represented by (A1-A2)/A1 is equal to or higher than 10% and lower than 17%, where A1 represents the horizontal cross-sectional area surrounded by the inner surface of the battery can at the part to which the sealing material is attached, where the horizontal direction is defined as the direction perpendicular to a cylindrical axis 50 of the battery can, and A2 represents the horizontal cross-sectional area surrounded by the inner surface of the battery can at the position where the inward protrusion of the battery can is the maximum due to the bead.

Description

本発明は、円筒形電池に関し、具体的には、周囲にビーディング部を有する有底円筒状の電池缶の開口が内方にかしめられて、当該開口に略円盤状の封口体がガスケットを介して嵌着されている円筒形電池に関する。   The present invention relates to a cylindrical battery, and more specifically, an opening of a bottomed cylindrical battery can having a beading portion around it is caulked inward, and a substantially disc-shaped sealing body is provided with a gasket in the opening. The present invention relates to a cylindrical battery that is inserted through the battery.

従来の円筒形電池の一例としてボビン形リチウム電池を挙げる。図1に当該ボビン形リチウム電池の構造を示した。当該図は、円筒軸50の延長方向を上下(縦)方向としたときの円筒形電池1の縦断面を示している。円筒形電池1は、有底円筒状の電池缶10、二酸化マンガン等の正極活物質を黒鉛等の導電助剤とともに中空円筒状に成形してなる正極合剤21、円筒状の金属リチウムやリチウム合金からなる負極リチウム22、円筒カップ状のセパレーター23、ガスケット40、封口体30などによって構成されている(たとえば特許文献1参照)。   An example of a conventional cylindrical battery is a bobbin type lithium battery. FIG. 1 shows the structure of the bobbin type lithium battery. The drawing shows a longitudinal section of the cylindrical battery 1 when the extending direction of the cylindrical shaft 50 is the vertical (vertical) direction. The cylindrical battery 1 includes a bottomed cylindrical battery can 10, a positive electrode mixture 21 formed by forming a positive electrode active material such as manganese dioxide into a hollow cylindrical shape together with a conductive auxiliary such as graphite, a cylindrical metallic lithium or lithium A negative electrode lithium 22 made of an alloy, a cylindrical cup-shaped separator 23, a gasket 40, a sealing body 30 and the like (see, for example, Patent Document 1).

電池缶10は、金属製で、電池ケースと正極集電体を兼ねている。その外底面には凸状の正極端子部12がプレス加工により形成され、開口部近傍の周囲には絞り加工によるビーディング部11が形成されている。円筒形電池1は、この電池缶10内に、正極合剤21、セパレーター23、および負極リチウム22が電解液とともに収納されているとともに、電池缶10の開口端側に略円盤状の封口体30がガスケット40を介して嵌着されたものである。   The battery can 10 is made of metal and serves as both a battery case and a positive electrode current collector. A convex positive terminal portion 12 is formed on the outer bottom surface by press working, and a beading portion 11 is formed around the opening in the vicinity of the opening. In the cylindrical battery 1, a positive electrode mixture 21, a separator 23, and a negative electrode lithium 22 are stored together with an electrolyte in the battery can 10, and a substantially disc-shaped sealing body 30 is formed on the opening end side of the battery can 10. Is inserted through the gasket 40.

封口体30は、負極端子板31と封口板32とから構成されており、負極端子板31は金属製で、電池缶10の開口を上方とすると、上方を底とした皿状で、皿の縁には、フランジが形成されている。封口板32は、金属製の円板で、負極端子板31の下方に積層される。また、ガスケット40は、樹脂製で、図2に示したように、電池缶10内に組み込まれる前の形状は、上方を開口41とした円形カップ状で、円形の底部42の周縁に上方に立設しながら周回する扁平筒状の側壁44が一体的に形成されている。   The sealing body 30 is composed of a negative electrode terminal plate 31 and a sealing plate 32, and the negative electrode terminal plate 31 is made of metal. A flange is formed on the edge. The sealing plate 32 is a metal disk and is laminated below the negative electrode terminal plate 31. Further, the gasket 40 is made of resin, and as shown in FIG. 2, the shape before being incorporated into the battery can 10 is a circular cup shape having an opening 41 on the upper side, and the upper side around the periphery of the circular bottom portion 42. A flat cylindrical side wall 44 that circulates while standing is integrally formed.

図1に示した円筒形電池1の組み立て手順としては、まず、電池缶10内に、発電要素である、正極合剤21、セパレーター23、および負極リチウム22を順次装填する。負極リチウム22は、板状の金属リチウムやリチウム合金を丸めたものであって、あらかじめ、その一部に帯状の金属薄板で形成された負極集電体を兼ねる負極リード33の一端部33aが取り付けられている。   As a procedure for assembling the cylindrical battery 1 shown in FIG. 1, first, the positive electrode mixture 21, the separator 23, and the negative electrode lithium 22, which are power generation elements, are sequentially loaded in the battery can 10. The negative electrode lithium 22 is obtained by rolling plate-like metal lithium or a lithium alloy, and is attached in advance with one end 33a of a negative electrode lead 33 that also serves as a negative electrode current collector formed of a strip-like metal thin plate. It has been.

次に、電池缶10の内方に環状に突出するビーディング部11を座として、ガスケット40を電池缶10の開口端側に装着する。ガスケット40の底部42は、中央に開口43を有して、この開口43に上述した負極リード33を挿通させつつ、当該負極リード33の他端部33bを封口板32の下面に溶接する。そして、封口体30をカップ状のガスケット40内に圧入し、ガスケット40の底部42の上面42iに封口体30を積層させ、この状態で電池缶10の開口端を内方にかしめ加工(カール絞り加工)する。それによって、封口体30がガスケット40を介して電池缶10の開口端側に嵌着され、電池缶10の内部が密閉される。   Next, the gasket 40 is mounted on the opening end side of the battery can 10 with the beading portion 11 projecting annularly inward of the battery can 10 as a seat. The bottom portion 42 of the gasket 40 has an opening 43 at the center, and the other end portion 33 b of the negative electrode lead 33 is welded to the lower surface of the sealing plate 32 while the negative electrode lead 33 is inserted into the opening 43. Then, the sealing body 30 is press-fitted into the cup-shaped gasket 40, and the sealing body 30 is laminated on the upper surface 42i of the bottom portion 42 of the gasket 40. In this state, the opening end of the battery can 10 is caulked inward (curl drawing). Processing). Thereby, the sealing body 30 is fitted to the opening end side of the battery can 10 via the gasket 40, and the inside of the battery can 10 is sealed.

図3は、図1における円100内の拡大図であり、封口体30が電池缶10に嵌着されている状態を示している。図3に示したように、ガスケット40の側壁44は、封口体30の周縁と電池缶10の内面との間に挟持され、さらに、その側壁44の上端部45が、電池缶10開口が内方に屈曲する形状に沿って屈曲し、封口体30の周縁が、この側壁44の屈曲部位とガスケット40の底部42の周縁とによって上下方向から挟持されている。   FIG. 3 is an enlarged view inside the circle 100 in FIG. 1, and shows a state where the sealing body 30 is fitted to the battery can 10. As shown in FIG. 3, the side wall 44 of the gasket 40 is sandwiched between the peripheral edge of the sealing body 30 and the inner surface of the battery can 10, and the upper end 45 of the side wall 44 has the opening of the battery can 10 inside. The sealing body 30 is bent along a shape that is bent in the direction, and the peripheral edge of the sealing body 30 is sandwiched between the bent portion of the side wall 44 and the peripheral edge of the bottom portion 42 of the gasket 40 from above and below.

ところで、ガスケット40は、電池缶10の内面と封口体30の周縁とによって挟持されることで弾性変形し、電池缶10を密閉する。そのため、ガスケット40には適度な柔らかさ(硬度)が必要となる。そして、以下の特許文献2には、ガスケットのロックウェル硬度を100以上とした筒形電池について記載されている。具体的には、実施例として、ロックウェル硬度が105のガスケットを用いた筒形電池について記載されている。   By the way, the gasket 40 is elastically deformed by being sandwiched between the inner surface of the battery can 10 and the peripheral edge of the sealing body 30 to seal the battery can 10. Therefore, the gasket 40 needs to have an appropriate softness (hardness). Patent Document 2 below describes a cylindrical battery in which the gasket Rockwell hardness is 100 or more. Specifically, as an example, a cylindrical battery using a gasket having a Rockwell hardness of 105 is described.

特開2001−273911号公報JP 2001-273911 A 特開平1−209658号公報JP-A-1-209658

上述した円筒形電池では、ビーディング部を座にして電池缶内に装着されたカップ状のガスケットの内側に封口体を圧入している。そして、電池缶を内方にかしめて封口体をガスケットとともに電池缶開口に嵌着している。そのため、ビーディング部の深さ、すなわち、ビーディング部によって電池缶内方に突出する高さが高いほど、ガスケットが安定して載置され、封口性能が向上する。   In the above-described cylindrical battery, the sealing body is press-fitted inside the cup-shaped gasket mounted in the battery can with the beading portion as a seat. The battery can is crimped inward and the sealing body is fitted together with the gasket into the battery can opening. Therefore, the higher the depth of the beading portion, that is, the height at which the beading portion projects into the battery can, the more stably the gasket is placed and the sealing performance is improved.

しかしながら、電池缶内では、ビーディング部の下方が発電要素の収納空間となるので、ビーディング部を電池缶内方に大きく突出させるように形成すると、電池缶外方から見て、ビーディング部の上下方向の溝の幅が広くなり、結果的に、発電要素を収納する空間の高さ方向のサイズが減少し、発電要素の充填量が減少する。とくに、電解液は、かしめ加工に際して電池缶外に飛散する可能性もあることから、その充填量を少なくせざるを得ない。そのため、電池の放電性能が低下する。一方、ビーディング部の深さを浅くすると、かしめ加工時にガスケットがビーディング部から脱落して電池缶の下方に落ち込むなどして封口不良が発生する可能性がある。   However, in the battery can, since the lower part of the beading portion is a storage space for the power generation element, when the beading portion is formed so as to protrude largely inward of the battery can, the beading portion is seen from the outside of the battery can. As a result, the height of the space for storing the power generation element is reduced, and the filling amount of the power generation element is reduced. In particular, since the electrolytic solution may be scattered outside the battery can during the caulking process, the filling amount must be reduced. Therefore, the discharge performance of the battery is reduced. On the other hand, when the depth of the beading portion is reduced, there is a possibility that a sealing failure may occur due to the gasket falling off from the beading portion and falling below the battery can during caulking.

したがって、本発明は、封口性能を維持しつつ放電性能に優れた円筒形電池を提供することを目的としている。なお、その他の目的については以下の記載で明らかにする。   Therefore, an object of the present invention is to provide a cylindrical battery excellent in discharge performance while maintaining sealing performance. Other purposes will be clarified in the following description.

上記目的を達成するために、本発明者は、ガスケットの物性とビーディング部の深さとの関係に着目して鋭意研究を重ね、その結果、ガスケットの硬度とビーディング部の深さとの間に最適数値範囲が存在することを知見した。本発明は、その知見に基づきなされたものである。   In order to achieve the above object, the present inventor has conducted intensive research focusing on the relationship between the physical properties of the gasket and the depth of the beading portion, and as a result, between the hardness of the gasket and the depth of the beading portion. We found that there was an optimal numerical range. This invention is made | formed based on the knowledge.

そして本発明は、周囲にビーディング部を有する有底円筒状の電池缶の開口が内方にかしめられて、当該開口に略円盤状の封口体がガスケットを介して嵌着されている円筒形電池であって、
前記ガスケットは、ロックウェル硬度が115以上、122以下であり、
前記電池缶の円筒軸に直交する方向を水平方向として、前記封口体が嵌着されている部位での前記電池缶内方の水平断面積をA1とし、前記ビーディング部によって前記電池缶が最も内方に突出した位置における当該電池缶内方の水平断面積をA2としたときに、
(A1−A2)/A1
で表される面積比が10%以上、17%未満である、
ことを特徴とした円筒形電池としている。より好ましくは、前記ガスケットが、ポリフェニレンサルファイドを主成分とした素材で形成されていることである。
The present invention provides a cylindrical shape in which an opening of a bottomed cylindrical battery can having a beading portion around it is caulked inward, and a substantially disc-shaped sealing body is fitted to the opening via a gasket. A battery,
The gasket has a Rockwell hardness of 115 or more and 122 or less,
The direction perpendicular to the cylindrical axis of the battery can is the horizontal direction, the horizontal cross-sectional area inside the battery can at the portion where the sealing body is fitted is A1, and the battery can is When the horizontal cross-sectional area inside the battery can at the position protruding inward is A2,
(A1-A2) / A1
The area ratio represented by is 10% or more and less than 17%.
The cylindrical battery is characterized by this. More preferably, the gasket is made of a material mainly composed of polyphenylene sulfide.

本発明に係る円筒形電池によれば、封口性能を維持しつつ放電性能を向上させることができる。   The cylindrical battery according to the present invention can improve discharge performance while maintaining sealing performance.

円筒形電池の一例であるボビン形リチウム電池の構造を示す図である。It is a figure which shows the structure of the bobbin type lithium battery which is an example of a cylindrical battery. 上記円筒形電池に採用されているガスケットの構造を示す図である。It is a figure which shows the structure of the gasket employ | adopted as the said cylindrical battery. 上記円筒形電池における封口状態を示す拡大図である。It is an enlarged view which shows the sealing state in the said cylindrical battery. 上記円筒形電池を構成する電池缶に形成されたビーディング部に関わる物理的なパラメーターを説明するための図である。It is a figure for demonstrating the physical parameter regarding the beading part formed in the battery can which comprises the said cylindrical battery.

===円筒形電池===
本発明の実施例に係る円筒形電池としてボビン形リチウム電池を挙げる。当該実施例のボビン形リチウム電池の基本的な構造は、図1に示したものと同じである。しかし、本実施例に係るボビン形リチウム電池1は、ガスケット40の物性に関わるパラメーターと、電池缶10のビーディング部11に関わる物理的なパラメーターとが最適化されて、十分な封口強度を維持しつつ優れた放電性能を備えている。
=== Cylindrical battery ===
A bobbin-type lithium battery is given as a cylindrical battery according to an embodiment of the present invention. The basic structure of the bobbin-type lithium battery of this example is the same as that shown in FIG. However, in the bobbin-type lithium battery 1 according to the present embodiment, the parameters related to the physical properties of the gasket 40 and the physical parameters related to the beading portion 11 of the battery can 10 are optimized to maintain sufficient sealing strength. However, it has excellent discharge performance.

なお、上述したガスケット40の物性に関わるパラメーターは、ガスケット40を構成する樹脂のロックウェル硬度であり、また、ビーディング部11に関わる物理的なパラメーターについては、図4に具体的に示した。図4(A)は、図1における点線矩形領域101内を拡大した縦断面図であり、(B)は、(A)におけるa−a矢視断面図である。(B)に示したように、ビーディング部11の形成位置よりも下方から電池缶10の開口方向を見ると、封口体30が嵌着されている位置において電池缶10の内面が縁取る円(以下、外円)10oと、ビーディング部11によって電池缶10が最も内方に突出している位置において、その電池缶10内面が縁取る円(以下、内円)10iとによって、円環状の領域(図中、網点部分)10rが形成される。そして、この円環状の領域10rの面積と外円10oの面積との比を上記ビーディング部11における物理的なパラメーターとしている。以下に、上記物理的なパラメーター(以下、面積比Ar)の定義と計算手順とを示す。   The parameter related to the physical properties of the gasket 40 described above is the Rockwell hardness of the resin constituting the gasket 40, and the physical parameters related to the beading portion 11 are specifically shown in FIG. 4A is a longitudinal cross-sectional view enlarging the inside of the dotted rectangular region 101 in FIG. 1, and FIG. 4B is a cross-sectional view taken along the line aa in FIG. As shown in (B), when the opening direction of the battery can 10 is viewed from below the position where the beading portion 11 is formed, the circle that the inner surface of the battery can 10 borders at the position where the sealing body 30 is fitted. (Hereinafter referred to as an outer circle) 10o and a circle (hereinafter referred to as an inner circle) 10i bordered by the inner surface of the battery can 10 at a position where the battery can 10 protrudes inwardly by the beading portion 11 has an annular shape. A region (halftone dot portion in the figure) 10r is formed. The ratio of the area of the annular region 10r and the area of the outer circle 10o is a physical parameter in the beading portion 11. Below, the definition of the said physical parameter (henceforth area ratio Ar) and a calculation procedure are shown.

上記円環状の領域10rにおける外円10oの面積をA1、内円10iの面積をA2とすると、当該円環状の領域10rの面積は、A1−A2であり、上記面積比Arを、
Ar=(A1−A2)/A1・・・(式1)
と規定する。
When the area of the outer circle 10o in the annular region 10r is A1, and the area of the inner circle 10i is A2, the area of the annular region 10r is A1-A2, and the area ratio Ar is
Ar = (A1-A2) / A1 (Formula 1)
It prescribes.

そして、外円10oの直径を2r(半径r)、上記円環状領域10rの幅、すなわちビーディング部11によって電池缶10内方に突出する高さをhとすると、
A1=πr・・・(式2)
A2=π(r−h)・・・(式3)
であるから、上記面積比Arは、(式2)と(式3)を(式1)に代入して
Ar=h(2r−h)/r・・・(式4)
となる。
When the diameter of the outer circle 10o is 2r (radius r) and the width of the annular region 10r, that is, the height protruding inward of the battery can 10 by the beading portion 11, h is
A1 = πr 2 (Formula 2)
A2 = π (r−h) 2 (Equation 3)
Therefore, the area ratio Ar is calculated by substituting (Equation 2) and (Equation 3) into (Equation 1). Ar = h (2r−h) / r 2 (Equation 4)
It becomes.

===放電性能試験・封口性能試験===
本発明の実施例に係る円筒形電池1の性能を評価するために、ロックウェル硬度が異なる様々なガスケット40と、上記Arの値が異なる様々な電池缶10とを用い、外形が、直径φ=17mm、高さh=45mmとなるCR8型ボビン形リチウム電池をサンプルとして作成し、各サンプルについて、放電性能試験と封口性能試験とを行った。なお、ロックウェル硬度はRスケールでのロックウェル硬度(以下、硬度Hr)とした。
=== Discharge performance test / sealing performance test ===
In order to evaluate the performance of the cylindrical battery 1 according to the embodiment of the present invention, various gaskets 40 having different Rockwell hardnesses and various battery cans 10 having different values of Ar are used. A CR8 type bobbin type lithium battery having a height of 17 mm and a height of h = 45 mm was prepared as a sample, and each sample was subjected to a discharge performance test and a sealing performance test. The Rockwell hardness was the Rockwell hardness on the R scale (hereinafter referred to as hardness Hr).

放電性能試験は、同じ製造条件のサンプルをそれぞれ5個用意し、各サンプルに対して510Ωの負荷で終止電圧2.0Vに至るまで連続放電させるまでの放電時間を計測することで行い、5個のサンプルの平均放電時間によって放電性能を評価した。   The discharge performance test was performed by preparing 5 samples each under the same manufacturing conditions and measuring the discharge time until continuous discharge until a final voltage of 2.0 V was reached with a load of 510Ω for each sample. The discharge performance was evaluated by the average discharge time of the samples.

また、封口性能試験は、同じ製造条件のサンプルをそれぞれ20個用意し、80℃の温度下で80日間保存したときに、漏液の有無を目視によって確認することで行った。そして、同じ製造条件の20個のサンプルの内、一個も漏液が発生しなければ、その製造条件のサンプルを合格とし、一個でも漏液が発生すれば不合格とした。   Moreover, the sealing performance test was performed by preparing 20 samples of the same production conditions, respectively, and visually confirming the presence or absence of leakage when stored at 80 ° C. for 80 days. If no leak occurred in 20 samples under the same manufacturing conditions, the sample under the manufacturing conditions was accepted, and if any leak occurred, the sample was rejected.

以下の表1に各サンプルについて、製造条件と性能評価試験の結果とを示した。

Figure 2013041795
Table 1 below shows the manufacturing conditions and the results of the performance evaluation test for each sample.
Figure 2013041795

まず、サンプルs1は、本発明の従来例であり、市販されているCR8型ボビン形リチウム電池と同等の製造条件で作製した円筒形電池である。当該従来例のサンプルs1では、硬度Hr=110のポリプロピレン(PP)製のガスケット40を用い、ビーディング部11の面積比Arを17%としている。この従来例のサンプルs1の放電時間は510hで、封口性能試験においては、高い信頼性を要する市販品であるので、当然のことながら、20個中一つも漏液が発生しなかった。   First, the sample s1 is a conventional example of the present invention, and is a cylindrical battery manufactured under the same manufacturing conditions as a commercially available CR8 type bobbin type lithium battery. In the sample s1 of the conventional example, a polypropylene (PP) gasket 40 having a hardness Hr = 110 is used, and the area ratio Ar of the beading portion 11 is 17%. The discharge time of the sample s1 of this conventional example is 510h, and in the sealing performance test, it is a commercial product that requires high reliability.

サンプルs2は、サンプルs1と同様の硬度Hr=110のPP製ガスケット40を用いつつ、放電性能の向上を試みるために作製されたものであり、ビーディング部11の深さをサンプルs1の電池缶10よりも浅くし、面積比Ar=15%とした。しかし、20個中4個に漏液が発生した。すなわち、従来と同等の硬度Hr=110のガスケット40では、封口性能を維持しつつ放電性能を向上させることが難しい、ということが確認できた。   The sample s2 was produced in order to try to improve the discharge performance while using the PP gasket 40 having the same hardness Hr = 110 as the sample s1, and the depth of the beading portion 11 was changed to the battery can of the sample s1. It was shallower than 10 and the area ratio Ar = 15%. However, leakage occurred in 4 out of 20. That is, it was confirmed that it was difficult to improve the discharge performance while maintaining the sealing performance with the gasket 40 having the same hardness Hr = 110 as that of the conventional one.

サンプルs3〜s9は、従来例のサンプルs1よりも硬いガスケット40を用いつつ、ビーディング部11の面積比Arを減少させたサンプルであり、これらのサンプルs3〜s9に対する放電性能試験と封口性能試験とを通じて封口性能を維持しつつ放電性能の向上が可能な条件を求めた。なお、サンプルs3〜s9は、ガスケット40の素材として、ポリフェニレンサルファイド(PPS)を主成分とした樹脂を用いている。PPSは、周知のごとく、エラストマーなどの軟質ポリマーと混合してポリマーアロイとすることができ、PPSに添加するエラストマーの種類や量により、硬度Hrを自由に調整することができる。   Samples s3 to s9 are samples in which the area ratio Ar of the beading portion 11 is reduced while using the gasket 40 that is harder than the sample s1 of the conventional example, and the discharge performance test and the sealing performance test for these samples s3 to s9. The conditions under which the discharge performance can be improved while maintaining the sealing performance were obtained. Samples s3 to s9 use a resin mainly composed of polyphenylene sulfide (PPS) as a material of the gasket 40. As is well known, PPS can be mixed with a soft polymer such as an elastomer to form a polymer alloy, and the hardness Hr can be freely adjusted according to the type and amount of the elastomer added to the PPS.

もちろん、ガスケット40の素材をPPなど他の樹脂としてもよいが、PPは、ポリマーアロイのように硬度Hrを容易に調整することができないため、硬度Hrを調整するために複雑な製造工程を要する。そのため、硬度Hrが異なる樹脂材料の調達に時間が掛かる。そこで、従来とは異なる硬度Hrのガスケット40が必要となるサンプルs3〜s9では、ガスケット40の素材として、樹脂材料メーカーなどからの原料調達が容易なPPSを主成分としたポリマーアロイを採用した。   Of course, the material of the gasket 40 may be other resin such as PP. However, PP cannot easily adjust the hardness Hr like a polymer alloy, so that a complicated manufacturing process is required to adjust the hardness Hr. . Therefore, it takes time to procure resin materials having different hardness Hr. Therefore, in samples s3 to s9 that require a gasket 40 having a hardness Hr different from the conventional one, a polymer alloy mainly composed of PPS, which can be easily procured from a resin material manufacturer, is used as the material of the gasket 40.

まず、サンプルs3〜s5では、サンプルs2において漏液が発生した面積比Ar=15%を採用しつつ、ガスケット40の硬度Hrが従来例s1よりも大きくなっている。そして、サンプルs4、s5より、硬度Hrを115以上とすると、面積比Ar=15%でも漏液が発生せず、十分な封口性能が得られることが分かった。放電性能は、面積比Arを減少させることにより従来例s1よりも多くの発電要素、とくに電解液を電池缶10内に充填できようになったため、従来例s1の510hから523hに向上した。   First, in samples s3 to s5, the hardness ratio Hr of the gasket 40 is larger than that of the conventional example s1, while adopting the area ratio Ar = 15% in which leakage occurred in the sample s2. From samples s4 and s5, it was found that when the hardness Hr was 115 or more, no leakage occurred even at an area ratio Ar = 15%, and sufficient sealing performance was obtained. The discharge performance was improved from 510h of the conventional example s1 to 523h because the battery can 10 can be filled with more power generation elements, particularly the electrolyte, than the conventional example s1 by reducing the area ratio Ar.

次に、さらなる放電性能の向上を試みるため、サンプルs6、およびサンプルs7では、硬度Hrを上記サンプルs3〜s5から得た最小値Hr=115としつつ、面積比Arを10%、および8%とした。その結果、サンプルs6では、放電性能が、従来例1cの510hに対し528hにまで向上し、漏液も発生しなかった。しかし、面積比Ar=8%としたサンプルs7では、20個中2個に漏液が発生した。   Next, in order to further improve the discharge performance, in the samples s6 and s7, the hardness ratio Hr is set to the minimum value Hr = 115 obtained from the samples s3 to s5, and the area ratio Ar is 10% and 8%. did. As a result, in the sample s6, the discharge performance was improved to 528h as compared with 510h of the conventional example 1c, and no leakage occurred. However, in sample s7 in which the area ratio Ar = 8%, liquid leakage occurred in 2 of 20 samples.

以上、サンプルs3〜s7における放電性能試験と封口性能試験の結果より、まず、ガスケット40の硬度Hrを115以上とすることで、ビーディング部11の面積比Arを従来例s1の面積比Ar=17%よりも減少させて放電性能の向上が可能であることが分かった。そして、封口性能を維持しつつ、放電性能を従来の円筒形電池に対して向上させるためには、まず、硬度HrをHr≧115とした上で、面積比Arを10%≦Ar<17%とすればよいことが分かった。   As described above, from the results of the discharge performance test and the sealing performance test in samples s3 to s7, first, by setting the hardness Hr of the gasket 40 to 115 or more, the area ratio Ar of the beading portion 11 is set to the area ratio Ar of the conventional example s1 = It has been found that the discharge performance can be improved by reducing the content to less than 17%. In order to improve the discharge performance over the conventional cylindrical battery while maintaining the sealing performance, first, the hardness Hr is set to Hr ≧ 115, and the area ratio Ar is set to 10% ≦ Ar <17%. I found out that

表1におけるサンプルs8とs9は、サンプルs3〜s7によって求められた硬度Hrの下限115に対し、その硬度Hrに上限が存在するか否かを確認するためのサンプルである。サンプルs8は、硬度Hr=122で、サンプルs9は、硬度Hr=123である。また、面積比Arは、ともに下限値の10%としている。そして、サンプルs8では漏液が発生せず、サンプルs9では漏液が発生した。目視検査によれば、サンプルs9では、本来は円形である封口体30の平面形状が楕円形状に歪んでいるものが散見され、最終的に封口性能試験において、20個中3個に漏液が発生した。このサンプルs9に対する封口性能試験の結果から、ガスケット40は、硬度Hr=123では硬すぎることが分かった。すなわち、ガスケット40が硬すぎるため、かしめ加工に際して電池缶10の円周方向に均一な圧力を安定して加えることが困難であることが確認できた。したがって、封口性能を維持しつつ放電性能に優れた円筒形電池1を達成するためには、ガスケット40の硬度Hrを、115≦Hr≦122とし、かつビーディング部11の面積比Arを10%≦Ar<17%とすればよいことが分かった。また、面積比Arは、実際の測定値が存在する10%≦Ar≦15%とすれば、より好ましい。   Samples s8 and s9 in Table 1 are samples for confirming whether or not an upper limit exists in the hardness Hr with respect to the lower limit 115 of the hardness Hr obtained by the samples s3 to s7. Sample s8 has hardness Hr = 122, and sample s9 has hardness Hr = 123. Further, the area ratio Ar is set to 10% of the lower limit value. Then, no leakage occurred in sample s8, and leakage occurred in sample s9. According to the visual inspection, in the sample s9, it is found that the originally round circular shape of the sealing body 30 is distorted into an elliptical shape. Finally, in the sealing performance test, 3 out of 20 leaks. Occurred. From the results of the sealing performance test on the sample s9, it was found that the gasket 40 was too hard at a hardness Hr = 123. That is, since the gasket 40 was too hard, it was confirmed that it was difficult to stably apply a uniform pressure in the circumferential direction of the battery can 10 during the caulking process. Therefore, in order to achieve the cylindrical battery 1 having excellent discharge performance while maintaining the sealing performance, the hardness Hr of the gasket 40 is 115 ≦ Hr ≦ 122, and the area ratio Ar of the beading portion 11 is 10%. It was found that ≦ Ar <17% was sufficient. The area ratio Ar is more preferably 10% ≦ Ar ≦ 15% where actual measurement values exist.

なお、封口性能を維持しつつ放電性能を向上させるためのガスケット40のロックウェル硬度Hr、およびビーディング部11に関わる面積比Arの数値範囲は、ボビン形リチウム電池に限らず、周囲にビーディング部を有する有底円筒状の電池缶の開口が内方にかしめられて、その開口に略円盤状の封口体がガスケットを介して嵌着されているタイプの円筒形電池であれば適用可能である。   The numerical range of the Rockwell hardness Hr of the gasket 40 and the area ratio Ar related to the beading part 11 for improving the discharge performance while maintaining the sealing performance is not limited to the bobbin type lithium battery, and beading around the periphery This is applicable to any type of cylindrical battery in which the opening of a bottomed cylindrical battery can having a portion is caulked inward and a substantially disc-shaped sealing body is fitted to the opening via a gasket. is there.

本発明はボビン形リチウム電池などに利用可能である。   The present invention can be used for a bobbin type lithium battery or the like.

1 円筒形電池(ボビン形リチウム電池)、10 電池缶、11 ビーディング部、
12 正極端子部、21 正極合剤、22 負極リチウム、23 セパレーター、
30 封口体、31 負極端子板、32 封口板、33 負極リード、
40 ガスケット、42 ガスケット底部、44 ガスケット側壁、
1 cylindrical battery (bobbin type lithium battery), 10 battery can, 11 beading part,
12 positive electrode terminal part, 21 positive electrode mixture, 22 negative electrode lithium, 23 separator,
30 sealing body, 31 negative electrode terminal plate, 32 sealing plate, 33 negative electrode lead,
40 gasket, 42 gasket bottom, 44 gasket sidewall,

Claims (2)

周囲にビーディング部を有する有底円筒状の電池缶の開口が内方にかしめられて、当該開口に略円盤状の封口体がガスケットを介して嵌着されている円筒形電池であって、
前記ガスケットは、ロックウェル硬度が115以上、122以下であり、
前記電池缶の円筒軸に直交する方向を水平方向として、前記封口体が嵌着されている部位での前記電池缶内方の水平断面積をA1とし、前記ビーディング部によって前記電池缶が最も内方に突出した位置における当該電池缶内方の水平断面積をA2としたときに、
(A1−A2)/A1
で表される面積比が10%以上、17%未満である、
ことを特徴とした円筒形電池。
A cylindrical battery in which an opening of a bottomed cylindrical battery can having a beading portion is crimped inward, and a substantially disc-shaped sealing body is fitted to the opening via a gasket,
The gasket has a Rockwell hardness of 115 or more and 122 or less,
The direction perpendicular to the cylindrical axis of the battery can is the horizontal direction, the horizontal cross-sectional area inside the battery can at the portion where the sealing body is fitted is A1, and the battery can is When the horizontal cross-sectional area inside the battery can at the position protruding inward is A2,
(A1-A2) / A1
The area ratio represented by is 10% or more and less than 17%.
A cylindrical battery characterized by that.
請求項1において、前記ガスケットは、ポリフェニレンサルファイドを主成分とした素材で形成されていることを特徴とする円筒形電池。   2. The cylindrical battery according to claim 1, wherein the gasket is made of a material mainly composed of polyphenylene sulfide.
JP2011179810A 2011-08-19 2011-08-19 Cylindrical battery Active JP5715907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179810A JP5715907B2 (en) 2011-08-19 2011-08-19 Cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179810A JP5715907B2 (en) 2011-08-19 2011-08-19 Cylindrical battery

Publications (2)

Publication Number Publication Date
JP2013041795A true JP2013041795A (en) 2013-02-28
JP5715907B2 JP5715907B2 (en) 2015-05-13

Family

ID=47890002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179810A Active JP5715907B2 (en) 2011-08-19 2011-08-19 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP5715907B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035452A (en) * 1983-08-03 1985-02-23 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte battery
JPH06251758A (en) * 1993-02-24 1994-09-09 A T Battery:Kk High capacity cylindrical battery
JPH08321287A (en) * 1995-03-20 1996-12-03 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPH1083800A (en) * 1996-09-10 1998-03-31 Kishimoto Akira Battery can and manufacture of dry battery using this can
JPH10255730A (en) * 1997-03-13 1998-09-25 Fuji Photo Film Co Ltd Beading method and device of cylindrical battery
JP2000030674A (en) * 1998-07-10 2000-01-28 Gs Melcotec Kk Cylindrical battery and capacitor
JP2006517725A (en) * 2003-02-11 2006-07-27 エヴァレディ・バッテリー・カンパニー・インコーポレイテッド Electrochemical cell with small volume cover assembly
JP2010080247A (en) * 2008-09-25 2010-04-08 Fdk Energy Co Ltd Battery can and alkaline battery
JP2011048976A (en) * 2009-08-26 2011-03-10 Toshiba Corp Battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035452A (en) * 1983-08-03 1985-02-23 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte battery
JPH06251758A (en) * 1993-02-24 1994-09-09 A T Battery:Kk High capacity cylindrical battery
JPH08321287A (en) * 1995-03-20 1996-12-03 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPH1083800A (en) * 1996-09-10 1998-03-31 Kishimoto Akira Battery can and manufacture of dry battery using this can
JPH10255730A (en) * 1997-03-13 1998-09-25 Fuji Photo Film Co Ltd Beading method and device of cylindrical battery
JP2000030674A (en) * 1998-07-10 2000-01-28 Gs Melcotec Kk Cylindrical battery and capacitor
JP2006517725A (en) * 2003-02-11 2006-07-27 エヴァレディ・バッテリー・カンパニー・インコーポレイテッド Electrochemical cell with small volume cover assembly
JP2010080247A (en) * 2008-09-25 2010-04-08 Fdk Energy Co Ltd Battery can and alkaline battery
JP2011048976A (en) * 2009-08-26 2011-03-10 Toshiba Corp Battery

Also Published As

Publication number Publication date
JP5715907B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
US6602629B1 (en) Zero mercury air cell
US4725515A (en) Button cell construction with internally compressed gasket
US20130330601A1 (en) Coin battery
US20100047666A1 (en) Electrochemical Cell with Shaped Catalytic Electrode Casing
JP2018116799A (en) Sealing body of cylindrical cell and cylindrical cell
JP2006221988A (en) Gasket for cylindrical sealed battery, the battery, and manufacturing method therefor
US5821010A (en) Galvanic cell having a reliable sealable vent closure
JP6663633B2 (en) Sealing gasket for alkaline batteries and alkaline batteries
JP6406836B2 (en) Cylindrical battery manufacturing method and cylindrical battery
JP5715907B2 (en) Cylindrical battery
JP6915548B2 (en) Manufacturing method of sealing member, power storage element and power storage element
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
JP5124242B2 (en) Cylindrical battery
JP4951207B2 (en) Cylindrical sealed battery
JP2012252922A (en) Cylinder type battery
JP5297697B2 (en) Cylindrical battery
US20230387523A1 (en) Cylindrical battery
KR101889592B1 (en) Beading-free Cylindrical Battery and Manufacturing Method for the Same
JP4983095B2 (en) Alkaline storage battery and manufacturing method thereof
JP5677868B2 (en) Battery can for cylindrical alkaline battery and cylindrical alkaline battery
US20220190412A1 (en) Holder for an electrode of a button battery and a battery provided therewith
JP7187205B2 (en) cylindrical battery
JP7178610B2 (en) battery
JP2008103222A (en) Alkaline dry cell
JP2013073804A (en) Cathode can for lithium battery, lithium battery, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5715907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250