JP2013040891A - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP2013040891A
JP2013040891A JP2011179518A JP2011179518A JP2013040891A JP 2013040891 A JP2013040891 A JP 2013040891A JP 2011179518 A JP2011179518 A JP 2011179518A JP 2011179518 A JP2011179518 A JP 2011179518A JP 2013040891 A JP2013040891 A JP 2013040891A
Authority
JP
Japan
Prior art keywords
pressure sensor
upper member
crystal
silicon
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011179518A
Other languages
Japanese (ja)
Inventor
Noritugu Matsukura
徳丞 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2011179518A priority Critical patent/JP2013040891A/en
Publication of JP2013040891A publication Critical patent/JP2013040891A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure sensor that, in a diaphragm-type pressure sensor, allows suppression of reduction in sensitivity generated because of a thermal expansion coefficient difference between a vessel and a piezoelectric sensitive element, and moreover has high pressure resistance.SOLUTION: In a diaphragm-type pressure sensor, amorphous silicon carbide layers 11 and 31, and epitaxial SiOlayers 12 and 32 are made to grow on bonding surfaces between each of an upper member 1 and a lower member 3, and a quartz vibrator 2, which are bonded using a surface activation method. Thereby, it can be prevented that stresses are generated on the quartz vibrator 2 because of a thermal expansion coefficient difference caused by making a dissimilar material such as an adhesive sandwiched in the bonding portions, which causes a decrease in detection sensitivity. The use of a silicon material for a vessel enables possession of high pressure resistance.

Description

本発明は水晶振動子を用いた、ダイヤフラム方式の圧力センサに関する。   The present invention relates to a diaphragm type pressure sensor using a crystal resonator.

自動車のタイヤの空気圧を常時モニタリングし、設定された空気圧以下になると警報を発するTPMS(タイヤ・プレッシャー・モニタリング・システム)においては、当該空気圧を測定するために水晶振動子を用いた圧力センサを用いることが検討されている。   In a TPMS (tire pressure monitoring system) that constantly monitors the tire pressure of a car and issues an alarm when the pressure falls below a set pressure, a pressure sensor using a crystal oscillator is used to measure the pressure. It is being considered.

ダイヤフラム式の圧力センサは、ダイヤフラムに支持された圧力感応素子、例えば水晶振動子が外部からの応力を受けることによって生じる共振周波数の変化を検出するセンサである。   The diaphragm type pressure sensor is a sensor that detects a change in resonance frequency caused by a pressure sensitive element supported by the diaphragm, for example, a crystal resonator, when receiving stress from the outside.

ダイヤフラム式の圧力センサは、ダイヤフラムの変形を検出する感度が極めて高く、高感度な圧力センサである。しかしながら、その感度の高さのため、圧力以外の外乱により、ダイヤフラムがわずかに変形した場合でも、変形を検出するおそれがある。外乱としては例えば環境の温度が変化したときに、容器と圧力感応素子の熱膨張係数の差により、圧力感応素子に応力が生じる場合が挙げられる。   The diaphragm type pressure sensor is a highly sensitive pressure sensor with extremely high sensitivity for detecting the deformation of the diaphragm. However, due to the high sensitivity, even if the diaphragm is slightly deformed due to disturbances other than pressure, deformation may be detected. Examples of the disturbance include a case where stress is generated in the pressure sensitive element due to a difference in thermal expansion coefficient between the container and the pressure sensitive element when the temperature of the environment changes.

特許文献1は、容器と圧力感応素子を熱膨張率の近い材料で構成することにより、例えば容器及び圧力感応素子を夫々シリコン及び水晶で構成するか、あるいは両者を共に水晶で構成することで、温度変化による感度低下を減らす技術が記載されている。しかしながら圧力感応素子の接合は接着剤でなされており、容器及び水晶振動子と接合材料(接着剤)の間の熱膨張係数差により、温度変化による感度低下が生じていた。また容器に水晶が用いられるため、応力が低く圧力耐性が低い圧力センサであった。   In Patent Document 1, by configuring the container and the pressure sensitive element with a material having a coefficient of thermal expansion, for example, the container and the pressure sensitive element are each composed of silicon and quartz, or both are composed of quartz, A technique for reducing sensitivity reduction due to temperature change is described. However, the pressure-sensitive element is bonded with an adhesive, and the sensitivity is lowered due to a temperature change due to a difference in thermal expansion coefficient between the container and the crystal unit and the bonding material (adhesive). Further, since quartz is used for the container, the pressure sensor has low stress and low pressure resistance.

特開2010−281573JP2010-281573

本発明はこのような事情の下になされたものであり、ダイヤフラム式圧力センサにおいて、容器及び感圧素子の材料の熱膨張係数差に起因する感度低下を抑制することのできる圧力センサを提供することにある。   The present invention has been made under such circumstances, and provides a pressure sensor that can suppress a decrease in sensitivity due to a difference in thermal expansion coefficient between materials of a container and a pressure sensitive element in a diaphragm pressure sensor. There is.

本発明の圧力センサは外部からの圧力により撓むダイヤフラムを構成し、下面側に凹部が形成されたシリコンからなる上側部材と、
上面側に凹部が形成され、前記上側部材と共に容器をなすシリコンからなる下側部材と、
前記上側部材の周縁部と下側部材の周縁部との間にその周縁部が全周に亘って挟まれ、前記凹部により形成される空間に感圧素子である水晶振動子が形成された水晶板と、
この水晶板の周縁部と前記上側部材の周縁部との間、及び前記水晶板の周縁部と前記下側部材の周縁部との間の各々に水晶板側からこの順番に形成された二酸化シリコンからなるエピタキシャルSiO層及び炭化シリコン層と、を備え、
前記上側部材、水晶板及び下側部材が前記エピタキシャルSiO層及び炭化シリコン層を介して互に接合されていることを特徴とする。
The pressure sensor of the present invention constitutes a diaphragm that bends due to pressure from the outside, an upper member made of silicon with a recess formed on the lower surface side,
A concave member is formed on the upper surface side, and a lower member made of silicon that forms a container together with the upper member;
A quartz crystal in which a peripheral portion of the upper member is sandwiched between the peripheral portion of the upper member and the peripheral portion of the lower member, and a crystal resonator serving as a pressure sensitive element is formed in a space formed by the concave portion. The board,
Silicon dioxide formed in this order from the crystal plate side between the peripheral portion of the crystal plate and the peripheral portion of the upper member and between the peripheral portion of the crystal plate and the peripheral portion of the lower member An epitaxial SiO 2 layer and a silicon carbide layer comprising:
The upper member, the crystal plate, and the lower member are bonded to each other through the epitaxial SiO 2 layer and the silicon carbide layer.

本発明は、圧力センサの容器を形成する上側部材及び下側部材としてシリコンを材料に用い、非晶質の炭化シリコン層とエピタキシャルSiO層とを介して上側部材、水晶振動子を含む水晶板及び下側部材を接合している。前記炭化シリコン層は弾性が大きく、緩衝層の役割を果たすため、環境温度の変化が起こった場合に、シリコンと水晶との熱膨張率の違いを当該緩衝層が吸収するため応力の発生が少なく、検出感度の低下が抑えられる。また炭化シリコン層はシリコン及び水晶と強固に面接合することから容器と水晶板との結合力が大きい。更にまた容器としてシリコンを用いることにより圧力センサの耐圧性が大きい。 The present invention uses a silicon as a material for an upper member and a lower member forming a container of a pressure sensor, and a quartz plate including an upper member and a crystal resonator via an amorphous silicon carbide layer and an epitaxial SiO 2 layer And the lower member is joined. Since the silicon carbide layer has high elasticity and plays a role as a buffer layer, when the environmental temperature changes, the buffer layer absorbs the difference in thermal expansion coefficient between silicon and quartz, so that the generation of stress is small. , A decrease in detection sensitivity is suppressed. Further, since the silicon carbide layer is firmly surface-bonded to silicon and quartz, the bonding force between the container and the quartz plate is large. Furthermore, the pressure resistance of the pressure sensor is high by using silicon as the container.

本発明の実施の形態に係る圧力センサの縦断側面図及び、平面透視図である。It is the vertical side view of the pressure sensor which concerns on embodiment of this invention, and a plane perspective view. 前記圧力センサの上側部材の製造工程の一部を示す平面図である。It is a top view which shows a part of manufacturing process of the upper member of the said pressure sensor. 前記上側部材の製造工程の一部を示す縦断側面図である。It is a vertical side view which shows a part of manufacturing process of the said upper member. 前記圧力センサの下側部材の製造工程の一部を示す平面図である。It is a top view which shows a part of manufacturing process of the lower side member of the said pressure sensor. 前記下側部材の製造工程の一部を示す平面図である。It is a top view which shows a part of manufacturing process of the said lower side member. 前記圧力センサの水晶振動子の製造工程の一部を示す平面図である。It is a top view which shows a part of manufacturing process of the crystal oscillator of the said pressure sensor. 前記圧力センサの水晶振動子の製造工程の一部を示す縦断側面図である。It is a vertical side view which shows a part of manufacturing process of the crystal oscillator of the said pressure sensor. 前記圧力センサの上側部材、水晶振動子及び、下側部材の接合の工程を示す斜視図である。It is a perspective view which shows the process of joining the upper side member of the said pressure sensor, a crystal oscillator, and a lower side member. 本発明の実施の形態に係る圧力センサに圧力が加わった様子を模式的に示した模式図である。It is the schematic diagram which showed typically a mode that the pressure was added to the pressure sensor which concerns on embodiment of this invention.

先ず本発明の実施の形態における圧力センサの構造について説明する。図1に示すように、圧力センサは容器を構成するための上側部材1及び下側部材3と、上側部材1及び下側部材3の間に設けられる感圧素子である水晶振動子2が形成された水晶板25と、を備えている。上側部材1及び下側部材3は各々シリコンにより作られている。上側部材1は扁平な円柱形の上面側に円形の凹部13が形成されると共に、下面側に前記凹部13よりも口径の小さい円形の凹部14が形成され、これら凹部13、14の間の薄肉部分(底部分)をダイヤフラム15として構成したものである。そのダイヤフラム15は直径が例えばおよそ10mmに設定されている。その厚さが例えば1.4mmであり、押圧されると撓む弾性板として構成されている。   First, the structure of the pressure sensor in the embodiment of the present invention will be described. As shown in FIG. 1, the pressure sensor includes an upper member 1 and a lower member 3 for constituting a container, and a crystal resonator 2 that is a pressure-sensitive element provided between the upper member 1 and the lower member 3. Crystal plate 25 is provided. The upper member 1 and the lower member 3 are each made of silicon. In the upper member 1, a circular recess 13 is formed on the upper surface side of a flat cylindrical shape, and a circular recess 14 having a smaller diameter than the recess 13 is formed on the lower surface side, and the thin wall between these recesses 13, 14 is formed. The portion (bottom portion) is configured as a diaphragm 15. The diameter of the diaphragm 15 is set to about 10 mm, for example. The thickness is 1.4 mm, for example, and it is configured as an elastic plate that bends when pressed.

ダイヤフラム15は上面が例えば車両に設けられたタイヤの内部空間などの測定雰囲気に面し、測定雰囲気の圧力に応じて変形する。即ち、ダイヤフラム15は測定雰囲気の圧力が容器内の圧力よりも大きくなったときに容器の内側へ撓み、小さくなったときに容器の外側へ撓む。   The upper surface of the diaphragm 15 faces a measurement atmosphere such as an internal space of a tire provided in the vehicle, and is deformed according to the pressure of the measurement atmosphere. That is, the diaphragm 15 bends to the inside of the container when the pressure of the measurement atmosphere becomes larger than the pressure in the container, and bends to the outside of the container when the pressure becomes small.

水晶板25は例えばATカットの水晶からなり、後述のようにエッチングによりくり抜かれて、環状枠部23で囲まれる領域にその両端が当該環状枠部23に連結されて直径方向に伸びる短冊形状の水晶片24が形成された構成になっている。   The quartz plate 25 is made of, for example, an AT-cut quartz, and is formed in a strip shape that is cut out by etching as will be described later, and that both ends of the quartz plate 25 are connected to the annular frame 23 and extend in the diameter direction. The crystal piece 24 is formed.

環状枠部23は上側部材1の環状壁16と下側部材3の環状壁38との間にその周縁部が全周に亘って挟みこまれており、上側部材1及び下側部材3により囲まれた気密空間内に置かれることとなる。水晶片24と上側部材1及び下側部材3との接合面は、水晶片24側より、夫々厚さ1〜10μmの二酸化シリコンからなるエピタキシャルSiO層12、32、厚さ50〜100μmの炭化シリコンの炭化シリコン層11、31の順に構成されている。当該水晶振動子2はダイヤフラム15と平行に、つまりダイヤフラム15と対向して配置されていることになり、両端を支えられた両梁支えの構造となっている。 The peripheral edge of the annular frame 23 is sandwiched between the annular wall 16 of the upper member 1 and the annular wall 38 of the lower member 3, and is surrounded by the upper member 1 and the lower member 3. It will be placed in the sealed airtight space. The bonding surfaces of the crystal piece 24 with the upper member 1 and the lower member 3 are epitaxial SiO 2 layers 12 and 32 made of silicon dioxide having a thickness of 1 to 10 μm and carbonized with a thickness of 50 to 100 μm from the crystal piece 24 side. The silicon carbide layers 11 and 31 of silicon are formed in this order. The crystal resonator 2 is arranged in parallel with the diaphragm 15, that is, opposed to the diaphragm 15, and has a double beam support structure in which both ends are supported.

短冊形状の水晶片24の両面には例えばCrを下地層とし、その上にAuを積層した励振電極21、22が形成され、電極21、22は下側部材3の環状壁36の上面側からの下面側へ貫通する貫通孔34内を通る導電路39を介して、容器外部へと引き回され、外部端子36に接続されている。   Excitation electrodes 21 and 22 are formed on both surfaces of the strip-shaped crystal piece 24 by using, for example, Cr as an underlayer and Au being laminated thereon. The electrodes 21 and 22 are formed from the upper surface side of the annular wall 36 of the lower member 3. It is routed to the outside of the container and connected to the external terminal 36 through a conductive path 39 passing through the through hole 34 penetrating to the lower surface side of the container.

次に本発明に係る圧力センサの製造方法について説明する。先ず上側部材用ウエハ10、水晶振動子用ウエハ20、下側部材用ウエハ30を用意する。上側部材用及び、下側部材用ウエハ10、30は、例えばシリコンを材料とする。水晶振動子用ウエハ20は前述のようにATカットされた水晶を用いる。各ウエハ10、20、30はフォトリソグラフィ工程によるマスクの形成及びエッチング工程により、それぞれ上側部材1、水晶板25、下側部材3の外形が作製される。   Next, the manufacturing method of the pressure sensor according to the present invention will be described. First, an upper member wafer 10, a crystal resonator wafer 20, and a lower member wafer 30 are prepared. The upper member and lower member wafers 10 and 30 are made of, for example, silicon. The quartz resonator wafer 20 uses the AT-cut quartz as described above. The outer shapes of the upper member 1, the crystal plate 25, and the lower member 3 are respectively formed on the wafers 10, 20, and 30 by forming a mask by a photolithography process and an etching process.

上側部材用ウエハ10はRCA洗浄により表面に親水化処理が施された後、図3に示すように片面に、非結晶質である炭化シリコン(SiC)層11が形成される。炭化シリコン層11はシリコン上に格子定数差の大きいヘテロエピタキシャルSiO2層を成長させるために設けられる層であり、規則的な原子配列を持たない非晶層を設けることで、例えばシリコン等の基板の上にエピタキシャルSiO層のような格子定数の異なる層を成長させることができる。炭化シリコン層11は、図3に示すように、水晶板25と接合する面の表面全体に形成される。炭化シリコン層11は、例えば光CVD装置により、反応ガスとして、シラン(SiHと酸素(O)、キャリアガスとして水素(H)を用いて基板加熱温度200℃の低温で、シリコン基板上に成膜される。 After the surface of the upper member wafer 10 is subjected to a hydrophilic treatment by RCA cleaning, an amorphous silicon carbide (SiC) layer 11 is formed on one surface as shown in FIG. The silicon carbide layer 11 is a layer provided for growing a heteroepitaxial SiO 2 layer having a large lattice constant difference on silicon, and by providing an amorphous layer having no regular atomic arrangement, for example, a substrate such as silicon is formed. A layer having a different lattice constant such as an epitaxial SiO 2 layer can be grown thereon. As shown in FIG. 3, silicon carbide layer 11 is formed on the entire surface to be bonded to crystal plate 25. The silicon carbide layer 11 is formed on a silicon substrate at a low temperature of 200 ° C. using a silane (SiH 4 and oxygen (O 2 ) as a reaction gas and hydrogen (H 2 ) as a carrier gas, for example, by a photo-CVD apparatus. A film is formed.

次に図3に示すように、上側部材用ウエハ10における前記炭化シリコン層11の上にエピタキシャルSiO層12が成長される。エピタキシャルSiO層12は例えば光CVD装置を用いて、反応ガスとして、シラン(SiH)と酸素(O)500〜570℃の温度で成長される。 Next, as shown in FIG. 3, an epitaxial SiO 2 layer 12 is grown on the silicon carbide layer 11 in the upper member wafer 10. The epitaxial SiO 2 layer 12 is grown at a temperature of silane (SiH 4 ) and oxygen (O 2 ) 500 to 570 ° C. as reaction gases using, for example, a photo-CVD apparatus.

エピタキシャルSiO層12が形成された、しかる後、上側部材1は上面部側及び接合面側に図3に示すように凹部13、14が形成される。具体的な加工については上側部材1の両面にスパッタリングにより金属膜が形成され、フォトリソグラフィにより、金属マスクパターンが形成される。その後上側部材1の上面部側には例えば、RIE(Reactive Ion Etching)加工により凹部13が形成されると共に、接合部側は、例えばケミカルエッチング加工により凹部14が形成されることで、例えば厚さ1.4mm程度のダイヤフラム15が形成される。 After the epitaxial SiO 2 layer 12 is formed, the upper member 1 is formed with recesses 13 and 14 on the upper surface side and the bonding surface side as shown in FIG. For specific processing, a metal film is formed on both surfaces of the upper member 1 by sputtering, and a metal mask pattern is formed by photolithography. Thereafter, the concave portion 13 is formed on the upper surface portion side of the upper member 1 by, for example, RIE (Reactive Ion Etching) processing, and the concave portion 14 is formed on the bonding portion side by, for example, chemical etching processing. A diaphragm 15 of about 1.4 mm is formed.

一方下側部材用ウエハ30は上面部側が接合面になる。この接合面には、上側部材1と同様にRCA洗浄が施された後に、図5に示すように、炭化シリコン層31が低温成長され、その後図5に示すように、当該炭化シリコン層31上に一面を覆うようにエピタキシャルSiO層32が形成される。 On the other hand, the lower member wafer 30 has a bonding surface on the upper surface side. As shown in FIG. 5, a silicon carbide layer 31 is grown on the bonding surface at a low temperature as shown in FIG. 5 after RCA cleaning as in the case of the upper member 1, and then on the silicon carbide layer 31 as shown in FIG. An epitaxial SiO 2 layer 32 is formed so as to cover the entire surface.

次に図5に示すように下側部材3に凹部33が設けられると共に、配線35を通す貫通孔34が下側部材3の環状壁38の上面部から、下面部側へ垂直に貫通するように設けられ、水晶振動子2に設けられた電極21、22を接続するための導電路39が形成される。貫通孔34は、例えばサンドブラストによって形成される。   Next, as shown in FIG. 5, the lower member 3 is provided with a recess 33, and the through hole 34 through which the wiring 35 passes is vertically penetrated from the upper surface portion of the annular wall 38 of the lower member 3 to the lower surface portion side. The conductive path 39 for connecting the electrodes 21 and 22 provided in the crystal resonator 2 is formed. The through hole 34 is formed by, for example, sand blasting.

次に前記貫通孔34に配線35が形成され、下側部材3の下面部に外部端子部36が形成される。貫通孔34に設けられる配線35は、例えばペースト状のAu等の導電材料を貫通孔34に充填することで形成され、前記外部端子部36と接合される。当該配線の下側部材3の上面部側には、後述する水晶振動子2に設けられた電極21、22に接続するための接合部37が設けられる。   Next, a wiring 35 is formed in the through hole 34, and an external terminal portion 36 is formed on the lower surface portion of the lower member 3. The wiring 35 provided in the through hole 34 is formed by, for example, filling the through hole 34 with a conductive material such as paste-like Au, and is joined to the external terminal portion 36. On the upper surface portion side of the lower member 3 of the wiring, a joint portion 37 for connecting to electrodes 21 and 22 provided on the crystal resonator 2 described later is provided.

水晶片24の両面には図6、7に示すように、電極21,22が形成される。電極21は、励振電極に相当する水晶片24上面部側中央部位から一端側を介して環状部材23の下面側へ引き回され、下側部材3に設けられた一方の接続部37に対応する位置まで伸ばされる。電極22は他方の接続部37に対応する位置より水晶片24の下面部に沿って中央部まで引き回され、両面に形成された電極21、22で水晶片24を挟み込むように形成される。   Electrodes 21 and 22 are formed on both sides of the crystal piece 24 as shown in FIGS. The electrode 21 is routed from the central part on the upper surface side of the crystal piece 24 corresponding to the excitation electrode to the lower surface side of the annular member 23 via one end side, and corresponds to one connecting portion 37 provided on the lower member 3. Stretched to position. The electrode 22 is drawn from the position corresponding to the other connecting portion 37 to the central portion along the lower surface portion of the crystal piece 24 and is formed so as to sandwich the crystal piece 24 between the electrodes 21 and 22 formed on both surfaces.

続いて図8に示すように、上側部材1、水晶板25及び下側部材3を平面方向の互いの位置を合わせた状態で、この順に重ね合わせ互いに接合させる。この結果、上側部材1及び下側部材3の夫々に設けられたエピタキシャルSiO層12、32により水晶板25を上下から挟み込むように接合される。上側部材1と水晶板25とは、例えばアルゴンビームを用いた表面活性化接合により常温下で接合される。一方下側部材3と水晶板25とは酸素プラズマを用いた表面活性化接合により常温下で接合されると共に前記電極21、22及び、配線の接合部37が電気的に接続される。その後ダイシングを行うことにより、個々の圧力センサに切り分けられる。 Subsequently, as shown in FIG. 8, the upper member 1, the crystal plate 25, and the lower member 3 are overlapped and joined to each other in this order in a state in which the respective positions in the plane direction are aligned. As a result, the crystal plate 25 is joined so as to be sandwiched from above and below by the epitaxial SiO 2 layers 12 and 32 provided on the upper member 1 and the lower member 3, respectively. The upper member 1 and the crystal plate 25 are bonded at room temperature by surface activation bonding using, for example, an argon beam. On the other hand, the lower member 3 and the crystal plate 25 are bonded at room temperature by surface activation bonding using oxygen plasma, and the electrodes 21 and 22 and the wiring bonding portion 37 are electrically connected. Thereafter, dicing is performed to separate the pressure sensors.

次に上述実施の形態に係る圧力センサの作用を説明する。本発明の圧力センサの上側部材1を例えばタイヤのバルブに取り付ける。このときタイヤの内部は加圧状態(大気圧以上の雰囲気)であり、その圧力に応じてダイヤフラム15の円板部が容器の内側に撓む。この撓み量に応じて、上側部材の環状壁16は外側に押し広げられるため、上側部材1の環状壁16を介して接合された水晶振動子2の両端部に水晶振動子の長さ方向の引っ張り応力が加わり、図9に示すように、当該水晶振動子2が撓む。この撓みにより水晶振動子2の共振周波数が変化し、その周波数信号が外部端子36を介し、図示しない外部導電路及び発振回路を介して計測回路部により計測され、これにより圧力値が検出される。   Next, the operation of the pressure sensor according to the above embodiment will be described. The upper member 1 of the pressure sensor of the present invention is attached to, for example, a tire valve. At this time, the inside of the tire is in a pressurized state (atmosphere above atmospheric pressure), and the disk portion of the diaphragm 15 bends inward of the container according to the pressure. The annular wall 16 of the upper member is pushed outward in accordance with the amount of bending, so that the crystal resonator 2 in the length direction of the crystal resonator 2 joined through the annular wall 16 of the upper member 1 is expanded. A tensile stress is applied, and the crystal resonator 2 is bent as shown in FIG. Due to this bending, the resonance frequency of the crystal unit 2 is changed, and the frequency signal is measured by the measurement circuit unit via the external terminal 36 and the external conductive path and the oscillation circuit (not shown), thereby detecting the pressure value. .

上述実施の形態によれば、圧力センサの容器を形成する上側部材1及び下側部材3としてシリコンを材料に用い、非晶質の炭化シリコン層11、31とエピタキシャルSiO層12、32とを介して上側部材1、水晶振動子2を含む水晶板25及び下側部材3を互いに接合している。前記炭化シリコン層11、31は弾性が大きく、緩衝層の役割を果たすため、環境温度の変化が起こった場合に、シリコン容器1、3と水晶片24との熱膨張率の違いを当該炭化シリコン層11、31が吸収するため応力の発生が少なく、検出感度の低下が少なく抑えられる。 According to the above-described embodiment, silicon is used for the upper member 1 and the lower member 3 forming the container of the pressure sensor, and the amorphous silicon carbide layers 11 and 31 and the epitaxial SiO 2 layers 12 and 32 are formed. The upper member 1, the crystal plate 25 including the crystal resonator 2, and the lower member 3 are joined to each other. Since the silicon carbide layers 11 and 31 have a large elasticity and play a role of a buffer layer, when the environmental temperature changes, the difference in thermal expansion coefficient between the silicon containers 1 and 3 and the crystal piece 24 is determined. Since the layers 11 and 31 absorb, the generation of stress is small, and the decrease in detection sensitivity is suppressed.

また炭化シリコン層11、31は非晶質であり、特定の原子配置を持たないため、接合面の原子の配置を一致させることができ、シリコン及び水晶と強固に面接合することから容器と水晶板25との結合力が大きい。   Further, since the silicon carbide layers 11 and 31 are amorphous and do not have a specific atomic arrangement, the arrangement of atoms on the bonding surface can be matched, and the container and the quartz crystal are firmly bonded to silicon and the quartz crystal. The bonding force with the plate 25 is large.

更にまた容器としてシリコンを用い、シリコンの基板で水晶を挟むことにより大きな強度の圧力センサが得られる。   In addition, a pressure sensor with high strength can be obtained by using silicon as a container and holding a crystal between silicon substrates.

1 上側部材
11、31 炭化シリコン層
12、32 エピタキシャルSiO
15 ダイヤフラム
2 水晶振動子
21、22 電極
3 下側部材
35 配線
36 外部端子
1 Upper member 11, 31 Silicon carbide layer 12, 32 Epitaxial SiO 2 layer 15 Diaphragm 2 Crystal resonator 21, 22 Electrode 3 Lower member 35 Wiring 36 External terminal

Claims (1)

外部からの圧力により撓むダイヤフラムを構成し、下面側に凹部が形成されたシリコンからなる上側部材と、
上面側に凹部が形成され、前記上側部材と共に容器をなすシリコンからなる下側部材と、
前記上側部材の周縁部と下側部材の周縁部との間にその周縁部が全周に亘って挟まれ、前記凹部により形成される空間に感圧素子である水晶振動子が形成された水晶板と、
この水晶板の周縁部と前記上側部材の周縁部との間、及び前記水晶板の周縁部と前記下側部材の周縁部との間の各々に水晶板側からこの順番に形成された二酸化シリコンからなるエピタキシャルSiO層及び非晶質の炭化シリコン層と、を備え、
前記上側部材、水晶板及び下側部材が前記エピタキシャルSiO層及び炭化シリコン層を介して互に接合されていることを特徴とする圧力センサ。
An upper member made of silicon that forms a diaphragm that bends due to pressure from the outside and that has a recess formed on the lower surface side;
A concave member is formed on the upper surface side, and a lower member made of silicon that forms a container together with the upper member;
A quartz crystal in which a peripheral portion of the upper member is sandwiched between the peripheral portion of the upper member and the peripheral portion of the lower member, and a crystal resonator serving as a pressure sensitive element is formed in a space formed by the concave portion. The board,
Silicon dioxide formed in this order from the crystal plate side between the peripheral portion of the crystal plate and the peripheral portion of the upper member and between the peripheral portion of the crystal plate and the peripheral portion of the lower member An epitaxial SiO 2 layer and an amorphous silicon carbide layer comprising:
The pressure sensor, wherein the upper member, the crystal plate, and the lower member are bonded to each other through the epitaxial SiO 2 layer and the silicon carbide layer.
JP2011179518A 2011-08-19 2011-08-19 Pressure sensor Withdrawn JP2013040891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179518A JP2013040891A (en) 2011-08-19 2011-08-19 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179518A JP2013040891A (en) 2011-08-19 2011-08-19 Pressure sensor

Publications (1)

Publication Number Publication Date
JP2013040891A true JP2013040891A (en) 2013-02-28

Family

ID=47889427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179518A Withdrawn JP2013040891A (en) 2011-08-19 2011-08-19 Pressure sensor

Country Status (1)

Country Link
JP (1) JP2013040891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150131990A (en) * 2014-05-16 2015-11-25 아즈빌주식회사 Differential pressure sensor and method for manufacturing differential pressure sensor
CN113278922A (en) * 2021-05-25 2021-08-20 东莞市长益光电有限公司 Frequency hopping prevention coating process for crystal oscillator wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150131990A (en) * 2014-05-16 2015-11-25 아즈빌주식회사 Differential pressure sensor and method for manufacturing differential pressure sensor
KR101630128B1 (en) 2014-05-16 2016-06-13 아즈빌주식회사 Differential pressure sensor and method for manufacturing differential pressure sensor
CN113278922A (en) * 2021-05-25 2021-08-20 东莞市长益光电有限公司 Frequency hopping prevention coating process for crystal oscillator wafer

Similar Documents

Publication Publication Date Title
US8096187B2 (en) Pressure sensor element and pressure sensor
US8297124B2 (en) Pressure sensor
US7663295B2 (en) Method and system for measuring physical parameters with a piezoelectric bimorph cantilever in a gaseous or liquid environment
JP5713737B2 (en) Noise sensor with reduced noise
EP2568269B1 (en) Resonant pressure sensor and method of manufacturing the same
JP5375624B2 (en) Acceleration sensor and acceleration detection device
JP5915103B2 (en) Physical quantity detector
JP2012242343A (en) Acceleration sensor and acceleration detector
JP2007093213A (en) Pressure sensor
JP2019519763A (en) Micromachined bulk acoustic wave resonator pressure sensor
Han et al. A MEMS pressure sensor based on double-ended tuning fork resonator with on-chip thermal compensation
JP2013040891A (en) Pressure sensor
JP6230286B2 (en) Electronic device and method for manufacturing electronic device
JP2010243276A (en) Relative pressure sensor, relative pressure measuring device, and relative pressure measuring method
JPWO2017213059A1 (en) Wide range load sensor using quartz oscillator
JP2011108680A (en) Method of manufacturing multilayer substrate, method of manufacturing diaphragm, and method of manufacturing pressure sensor
JP2008261750A (en) Pressure sensor, and diaphragm for pressure sensor
JP2012189537A (en) Gas sensor
JP2011058944A (en) Pressure sensor
JP2010025786A (en) Pressure-sensitive element and pressure sensor employing the same
JP4811106B2 (en) QCM sensor device
JP2011153836A (en) Acceleration sensor, and accelerometer
JP2010181183A (en) Pressure sensor
JP2013221909A (en) Physical quantity sensor, manufacturing method of physical quantity sensor, physical quantity sensor module, electronic apparatus, and moving body
JP2011106823A (en) Pressure sensor and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104