JP2013040879A - Analyzer with analyte diluting device - Google Patents

Analyzer with analyte diluting device Download PDF

Info

Publication number
JP2013040879A
JP2013040879A JP2011178995A JP2011178995A JP2013040879A JP 2013040879 A JP2013040879 A JP 2013040879A JP 2011178995 A JP2011178995 A JP 2011178995A JP 2011178995 A JP2011178995 A JP 2011178995A JP 2013040879 A JP2013040879 A JP 2013040879A
Authority
JP
Japan
Prior art keywords
sample
dilution
liquid
solution
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011178995A
Other languages
Japanese (ja)
Other versions
JP5754298B2 (en
Inventor
Genichi Uematsu
原一 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2011178995A priority Critical patent/JP5754298B2/en
Publication of JP2013040879A publication Critical patent/JP2013040879A/en
Application granted granted Critical
Publication of JP5754298B2 publication Critical patent/JP5754298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an analyzer with a diluting device, which is capable of handling analytes in various forms and has a simple configuration and is inexpensive.SOLUTION: The analyzer includes: solution delivery means 1 which delivers a solution; sample introducing means 2 which includes a loop 6 capable of being filled with a sample and sample filling means for filling the loop with the sample and can be switched between a state where the loop can be filled with the sample and a state where the sample filled in the loop can be delivered; and detection means 5. The sample filing means includes: a supply part which supplies a diluent for diluting the sample; a diluting part 14 which is loaded with the sample to dilute the sample with the diluent; and a solution delivery part 15 which includes diluent delivery means 17 having a suction port and a discharge port and capable of delivering the diluent from the suction port to the discharge port and one or more ducking/discharging means 18 including a diaphragm capable of holding a solution and a suction/discharge port and capable of sucking/discharging the solution in the diaphragm and is capable of delivering the diluent and of sucking/discharging a diluted sample diluted with the diluent.

Description

本発明は導入する試料(検体)を希釈する装置を備えた、試料の分析装置に関する。   The present invention relates to a sample analyzer equipped with a device for diluting a sample (specimen) to be introduced.

血液や尿のような生体試料中に含まれる成分を分離分析する場合、液体クロマトグラフ装置(図1)を使用することが多々ある。しかしながら、これら生体試料は多種多様な成分を含む一方、分離分析しようとする成分(目的成分)の量はごく僅かな場合が多い。そのため生体試料を直接液体クロマトグラフ装置に備えた分析カラムに導入すると、当該分析カラムにダメージを与えたり、目的成分の分離分析を妨害することが多い。したがって、液体クロマトグラフ装置を用いて生体試料中の目的成分の分離分析を行なう場合、通常は生体試料を希釈してから液体クロマトグラフ装置に導入することが多い。また、生体試料が血液であり、血球中の目的成分を分離分析する場合は、液体クロマトグラフ装置に導入する前に溶血剤や溶血液により溶血させる必要がある。   When separating and analyzing components contained in a biological sample such as blood and urine, a liquid chromatograph (FIG. 1) is often used. However, while these biological samples contain a wide variety of components, the amount of components (target components) to be separated and analyzed is often very small. For this reason, when a biological sample is directly introduced into an analysis column provided in a liquid chromatograph apparatus, the analysis column is often damaged or the separation and analysis of a target component is disturbed. Therefore, when performing separation analysis of a target component in a biological sample using a liquid chromatograph apparatus, the biological sample is usually diluted before being introduced into the liquid chromatograph apparatus. In addition, when the biological sample is blood and the target component in the blood cell is separated and analyzed, it is necessary to hemolyze with a hemolyzing agent or hemolyzed before being introduced into the liquid chromatograph apparatus.

生体試料を自動で希釈する方法や、血液試料に溶血剤を添加する方法については、これまで多く商品化または開示されている。その一例として、シリンジポンプおよびニードルを備えた分注手段を用いて、少量の空気、所定量の希釈液、少量の空気、所定量の試料液の順にニードルに吸引したのち希釈容器に吐出分注し、続いて前記希釈容器内でニードルによる吸引/吐出で撹拌することにより希釈試料を調製する方法がある(特許文献1)。別の例としては、一定量の液体を保持可能な希釈ポートに希釈液を事前に溜めておき、分注手段により液体試料(検体)を前記ポートに排出し撹拌することで希釈試料を調製する方法がある(特許文献2および3)。なお、前述の方法で希釈された検体は、シリンジなどの分注手段を用いて分析カラムに導入される。その他の方法としては、液体試料(検体)と希釈液とを配管内に混在させ、自然拡散によるオンラインで希釈を行なう方法も開示されている(特許文献4)。   Many methods for diluting a biological sample or adding a hemolytic agent to a blood sample have been commercialized or disclosed so far. As an example, using a dispensing device equipped with a syringe pump and a needle, a small amount of air, a predetermined amount of diluent, a small amount of air, a predetermined amount of sample liquid are sucked into the needle in this order, and then dispensed into the dilution container. Then, there is a method of preparing a diluted sample by stirring by suction / discharge with a needle in the dilution container (Patent Document 1). As another example, the diluted solution is stored in advance in a dilution port capable of holding a certain amount of liquid, and the diluted sample is prepared by discharging and stirring the liquid sample (specimen) to the port by a dispensing means. There are methods (Patent Documents 2 and 3). Note that the sample diluted by the above-described method is introduced into the analysis column using a dispensing means such as a syringe. As another method, a method is also disclosed in which a liquid sample (specimen) and a diluent are mixed in a pipe and dilution is performed online by natural diffusion (Patent Document 4).

特開2011−013045号公報JP 2011-013045 A 特開2002−031626号公報JP 2002-031626 A 特開平9−178719号公報JP-A-9-178719 特開2001−343371号公報JP 2001-343371 A

液体クロマトグラフ装置などの分析装置に導入する生体試料を自動で希釈する方法や、血液試料に溶血剤を添加する方法については、前述したようにこれまでも多く商品化または開示されている。しかしながら、前述したいずれの方法も、試料(検体)は採血管や試料カップ等に収容された液体状態であり、他の様態の検体を取り扱うことは困難である。また、前述した方法で用いる手段(ユニット)は高価なシリンジユニット等で構成されるため、動作も複雑であり、価格も高価になりがちである。   As described above, many methods for diluting a biological sample to be introduced into an analyzer such as a liquid chromatograph device and methods for adding a hemolytic agent to a blood sample have been commercialized or disclosed. However, in any of the above-described methods, the sample (specimen) is in a liquid state accommodated in a blood collection tube, a sample cup, or the like, and it is difficult to handle the sample in other modes. Further, since the means (unit) used in the above-described method is constituted by an expensive syringe unit or the like, the operation is complicated and the price tends to be expensive.

そこで本発明は、様々な形態の検体を取り扱うことができ、かつ構造が簡単で廉価な希釈装置を備えた分析装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an analyzer equipped with a diluting device that can handle various types of specimens, has a simple structure, and is inexpensive.

前記課題を鑑みてなされた本発明は、以下の態様を包含する。   This invention made | formed in view of the said subject includes the following aspects.

すなわち本発明の第一の態様は、
溶液を送液する送液手段と、
試料を充填可能なループと前記ループに試料を充填する試料充填手段とを設け、前記試料充填手段で前記ループに試料を充填可能な状態と前記ループに充填した試料を前記送液手段で送液された溶液により送液可能な状態とを切り替え可能な、試料導入手段と、
検出手段と、を備えた分析装置であって、
前記試料充填手段が、
試料を希釈する希釈液の供給部と、
試料を負荷し前記希釈液により前記試料の希釈を行なう希釈部と、
吸引口および吐出口を有し前記希釈液を当該吸引口から吐出口に送液可能な希釈液送液手段と、液体を保留可能なダイヤフラムと吸引吐出口とを有し当該ダイヤフラム内の液体を吸引吐出可能な一以上の吸引吐出手段と、を設けた、前記希釈液の送液および前記希釈部により希釈された希釈試料の吸引吐出が可能な送液部と、
を備えた手段である、前記装置である。
That is, the first aspect of the present invention is:
A liquid feeding means for feeding the solution;
A loop that can be filled with a sample and a sample filling means that fills the loop with a sample are provided. The sample filling means can fill the loop with the sample and the sample filled in the loop is fed by the liquid feeding means. A sample introduction means capable of switching between a state in which liquid can be fed by the prepared solution;
An analysis device comprising a detection means,
The sample filling means comprises:
A diluent supply for diluting the sample;
A dilution section for loading the sample and diluting the sample with the diluent;
A dilution liquid feeding means having a suction port and a discharge port and capable of feeding the diluted liquid from the suction port to the discharge port, a diaphragm capable of holding the liquid, and a suction discharge port, and the liquid in the diaphragm One or more suction / discharge means capable of suction / discharge, and a liquid-feeding unit capable of sucking and discharging the diluted solution and the diluted sample diluted by the dilution unit,
It is the said apparatus which is a means provided with.

また本発明の第二の態様は、
第1の溶液を送液する送液手段と、
第2の溶液を充填可能なループと前記ループに第2の溶液を充填する第1の充填手段とを設け、第1の充填手段で第2の溶液を前記ループに充填可能な状態と前記ループに充填した第2の溶液を送液手段で送液された第1の溶液により送液可能な状態とを切り替え可能な、第1の流路切り替え手段と、
第n(nは3以上)の溶液を充填可能なループと前記ループに第nの溶液を充填する第(n−1)の充填手段とを設け、第(n−1)の充填手段で第nの溶液を前記ループに充填可能な状態と前記ループに充填した第nの溶液を送液手段で送液された第1の溶液により送液可能な状態とを切り替え可能な、第(n−1)の流路切り替え手段と、
を備え、第(n−1)の流路切り替え手段を第(n−2)の流路切り替え手段に設けたループに備えた、流路系と、
試料を充填可能なループと前記ループに試料を充填する試料充填手段とを設け、前記試料充填手段で試料を充填可能な状態と前記ループに充填した試料を前記送液手段で送液された第1の溶液により送液可能な状態とを切り替え可能な、試料導入手段と、
検出手段と、
を備えた分析装置であって、前記試料充填手段が、
試料を希釈する希釈液の供給部と、
試料を負荷し前記希釈液により前記試料の希釈を行なう希釈部と、
吸引口および吐出口を有し前記希釈液を当該吸引口から吐出口に送液可能な希釈液送液手段と、液体を保留可能なダイヤフラムと吸引吐出口とを有し当該ダイヤフラム内の液体を吸引吐出可能な一以上の吸引吐出手段と、を設けた、前記希釈液の送液および前記希釈部により希釈された希釈試料の吸引吐出が可能な送液部と、
を備えた手段である、前記装置である。
The second aspect of the present invention is as follows.
Liquid feeding means for feeding the first solution;
A loop that can be filled with a second solution and a first filling means that fills the loop with the second solution, a state in which the second solution can be filled into the loop by the first filling means, and the loop A first flow path switching means capable of switching between a state in which the second solution filled in the liquid can be fed by the first solution fed by the liquid feeding means;
A loop capable of filling the nth (n is 3 or more) solution and a (n-1) th filling means for filling the nth solution in the loop are provided, and the (n-1) th filling means The nth solution can be switched between a state in which the n solution can be filled in the loop and a state in which the nth solution filled in the loop can be fed by the first solution fed by the liquid feeding means. 1) the flow path switching means;
A flow path system provided in a loop provided with the (n-1) th flow path switching means in the (n-2) th flow path switching means,
A loop capable of filling a sample and a sample filling means for filling the loop with a sample are provided, and a state in which the sample can be filled by the sample filling means and a sample filled in the loop are fed by the liquid feeding means. A sample introduction means capable of switching between a state in which liquid can be fed by one solution;
Detection means;
The sample filling means comprises:
A diluent supply for diluting the sample;
A dilution section for loading the sample and diluting the sample with the diluent;
A dilution liquid feeding means having a suction port and a discharge port and capable of feeding the diluted liquid from the suction port to the discharge port, a diaphragm capable of holding the liquid, and a suction discharge port, and the liquid in the diaphragm One or more suction / discharge means capable of suction / discharge, and a liquid-feeding unit capable of sucking and discharging the diluted solution and the diluted sample diluted by the dilution unit,
It is the said apparatus which is a means provided with.

また本発明の第三の態様は、
前記希釈部が、
希釈液または希釈検体を保留し、かつ検体の負荷が可能な希釈ポートと、
前記希釈ポートの外周部に設けた、希釈液または希釈検体の排出が可能なドレンポートと、
前記希釈ポートの底部と前記吸引吐出手段が有する吸引吐出口の一つとを連通させるための第一の流路と、
前記希釈ポートの側面部と第一の流路とを連通させるための第二の流路と、
を設け、前記第一の流路および第二の流路にそれぞれ逆止弁を有した、前記第一または第二の態様に記載の分析装置である。
The third aspect of the present invention is as follows.
The dilution section is
A dilution port that holds the diluted solution or diluted sample and can load the sample,
A drain port provided on an outer peripheral portion of the dilution port and capable of discharging a diluted solution or a diluted specimen;
A first flow path for communicating the bottom of the dilution port with one of the suction and discharge ports of the suction and discharge means;
A second flow path for communicating the side surface portion of the dilution port with the first flow path;
The analyzer according to the first or second aspect, wherein a check valve is provided in each of the first channel and the second channel.

また本発明の第四の態様は、分析装置が液体クロマトグラフ装置である、前記第一から第三のいずれかの態様に記載の分析装置である。   A fourth aspect of the present invention is the analyzer according to any one of the first to third aspects, wherein the analyzer is a liquid chromatograph device.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の分析装置の一例を示した模式図を図2に示す。図2に示す本発明の分析装置は、
溶離液(8)を送液する送液ポンプ(1)と、
試料を充填可能なループ(6)と前記ループに試料(検体)を充填する試料充填手段とを設け、前記試料充填手段で試料(検体)を充填可能な状態と前記ループに充填した試料(検体)を送液ポンプ(1)で送液された溶離液(8)により送液可能な状態とを切り替え可能な、試料導入バルブ(2)とを設けた試料導入手段と、分析カラム(3)と検出器(5)とを設けた検出手段と、を備えており、前記試料充填手段が、
試料(検体)を希釈する希釈液(13)の供給部と、
試料を負荷し、希釈液(13)により前記試料の希釈を行なう希釈部(14)と、
吸引口および吐出口を有し前記希釈液を当該吸引口から吐出口に送液可能な希釈液送液手段(17)と、液体を保留可能なダイヤフラムと吸引吐出口とを有し当該ダイヤフラム内の液体を吸引吐出可能な一以上の吸引吐出手段(18)と、を有した、希釈液(13)の送液および希釈部(14)により希釈された希釈試料の吸引吐出が可能な送液部(15)と、
を設けた手段である、分析装置である。なお、本発明において、希釈液とは、生体試料(検体)中に含まれる目的成分およびその他の成分の濃度を低減させるために、検体に添加する液体のことをいい、生体試料(検体)が血液である場合、血球中の目的成分を分離分析するために血液検体に添加する、溶血剤を含む液体も、本発明の希釈液に該当する。
A schematic view showing an example of the analyzer of the present invention is shown in FIG. The analyzer of the present invention shown in FIG.
A liquid feed pump (1) for feeding the eluent (8);
A loop (6) that can be filled with a sample and a sample filling means for filling the loop with a sample (specimen) are provided. A sample introduction means provided with a sample introduction valve (2) that can be switched between a state in which liquid can be fed by the eluent (8) fed by the liquid feed pump (1), and an analysis column (3) And a detector provided with a detector (5), the sample filling means,
A supply portion of a diluent (13) for diluting the sample (specimen);
A dilution section (14) for loading the sample and diluting the sample with the diluent (13);
A dilution liquid feeding means (17) having a suction port and a discharge port and capable of feeding the diluent from the suction port to the discharge port, a diaphragm capable of holding the liquid, and a suction discharge port. One or more suction / discharge means (18) capable of sucking and discharging the liquid, and feeding the diluted liquid (13) and feeding the diluted sample diluted by the dilution section (14) Part (15),
This is an analysis apparatus. In the present invention, the dilution liquid refers to a liquid added to a specimen in order to reduce the concentration of the target component and other components contained in the biological sample (specimen). In the case of blood, a liquid containing a hemolytic agent, which is added to a blood sample in order to separate and analyze a target component in blood cells, also corresponds to the diluent of the present invention.

本発明の分析装置では、試料導入バルブ(2)の出口側に何を設けるかにより、様々な種類の流れ分析装置を構築することができる。例えば、試料導入バルブ(2)の出口側に検体(試料)に適した分離手段(例えば分析カラム(3))を備えることで、液体クロマトグラフ装置、ガスクロマトグラフ装置、キャピラリー電気泳動装置等の分析装置を構築することができる。また、試料導入バルブ(2)の出口側に反応場としての配管(22)を設けることによりフローインジェクション分析装置を構築することができる。   In the analyzer of the present invention, various types of flow analyzers can be constructed depending on what is provided on the outlet side of the sample introduction valve (2). For example, by providing separation means (for example, analysis column (3)) suitable for the specimen (sample) on the outlet side of the sample introduction valve (2), analysis of a liquid chromatograph device, a gas chromatograph device, a capillary electrophoresis device, etc. A device can be constructed. Moreover, a flow injection analyzer can be constructed by providing a pipe (22) as a reaction field on the outlet side of the sample introduction valve (2).

本発明の分析装置に備える試料導入手段のうち、試料充填手段における希釈装置(希釈部および送液部)の一例を図3に示す。図3に示す希釈装置において送液部(15)は、
吸引口および吐出口を有し、希釈液(13)を当該吸引口から吐出口へ送液可能な希釈液送液手段(17)と、
液体を保留可能なダイヤフラム(41)と二つの吸引吐出口を有し、前記ダイヤフラム(41)内の液体を吸引吐出可能な、二つの吸引吐出手段(18a、18b)と、
を備えており、
希釈液送液手段(17)が有する吐出口と、吸引吐出手段(18a)が有する吸引吐出口の一方とが連通し、
吸引吐出手段(18a)が有する吸引吐出口の他方と、吸引吐出手段(18b)が有する吸引吐出口の一方とが連通し、
吸引吐出手段(18b)が有する吸引吐出口の他方と、希釈部(14)とが連通可能となっている。
FIG. 3 shows an example of a diluting device (diluting part and liquid feeding part) in the sample filling means among the sample introducing means provided in the analyzer of the present invention. In the diluting apparatus shown in FIG.
A diluent feeding means (17) having a suction port and a discharge port and capable of feeding the diluent (13) from the suction port to the discharge port;
Two suction / discharge means (18a, 18b) having a diaphragm (41) capable of holding liquid and two suction / discharge ports, and capable of sucking and discharging the liquid in the diaphragm (41);
With
The discharge port of the dilute solution feeding means (17) communicates with one of the suction discharge ports of the suction discharge means (18a),
The other of the suction and discharge ports of the suction and discharge means (18a) communicates with one of the suction and discharge ports of the suction and discharge means (18b),
The other of the suction / discharge ports of the suction / discharge means (18b) can communicate with the dilution section (14).

図3に示す希釈装置における希釈液送液手段(17)の一例として、逆止弁(21a、21b)により希釈液を一方向に(吸引口から吐出口へ)送液可能な簡易ポンプがあげられる。簡易ポンプの代表的な例としては、近年商品化された電磁式ダイアフラムポンプがあげられる。電磁式ダイアフラムポンプは、
液体を保留可能な、ゴム等の柔軟性のある材質で作られたダイアフラム(41)と、
ダイアフラム(41)と接合されたピストン(42)と、
ピストン(42)を一方向に駆動させるための電磁コイル(45)と、
ピストン(42)を逆方向に駆動させるためのスプリング(43)と、
ピストン(42)の移動距離を決定するための調整ねじ(44)と、
を有しており、電磁コイル(45)への電源をON/OFFすることでダイアフラム(41)が変形し、希釈液を一方向(吸引口から吐出口へ)に送液することができる(図4a)。なお希釈液送液手段(17)は、前述した電磁式ダイアフラムポンプに限らず、逆止弁(21a、21b)等により希釈液を一方向(吸引口から吐出口へ)に送液可能なポンプであればよい。一例として、モータまたは圧電素子によりピストン(ダイヤフラム)を駆動させるダイヤフラムポンプや、ペリスタリックポンプに代表されるチューブポンプ等があげられる。
As an example of the diluent feeding means (17) in the diluting apparatus shown in FIG. 3, a simple pump capable of feeding the diluent in one direction (from the suction port to the discharge port) by the check valves (21a, 21b) is given. It is done. A typical example of a simple pump is an electromagnetic diaphragm pump that has been commercialized in recent years. The electromagnetic diaphragm pump
A diaphragm (41) made of a flexible material such as rubber, which can hold liquid;
A piston (42) joined to a diaphragm (41);
An electromagnetic coil (45) for driving the piston (42) in one direction;
A spring (43) for driving the piston (42) in the opposite direction;
An adjustment screw (44) for determining the travel distance of the piston (42);
When the power to the electromagnetic coil (45) is turned on / off, the diaphragm (41) is deformed and the diluting liquid can be sent in one direction (from the suction port to the discharge port) ( FIG. 4a). The diluting liquid feeding means (17) is not limited to the electromagnetic diaphragm pump described above, but a pump capable of feeding the diluting liquid in one direction (from the suction port to the discharge port) by a check valve (21a, 21b) or the like. If it is. As an example, a diaphragm pump that drives a piston (diaphragm) by a motor or a piezoelectric element, a tube pump represented by a peristaltic pump, and the like can be given.

図3に示す希釈装置における吸引吐出手段(18a、18b)の一例として、
液体を保留可能な、ゴム等の柔軟性のある材質で作られたダイヤフラム(41)と、
ダイヤフラム(41)と接合されたピストン(42)と、
ピストン(42)を一方向に駆動させるための電磁コイル(45)と、
ピストン(42)を逆方向に駆動させるためのスプリング(43)と、
ピストン(42)の駆動距離を決定するための調整ねじ(44)と、
を有した手段があり、電磁コイル(45)への電源をON/OFFすることでダイヤフラム(41)が変形し、ダイヤフラム(41)内の液体を移動させることができる(図4b)。図4bに示す吸引吐出手段は、前述した電磁式ダイヤフラムポンプ(図4a)と酷似した構造および外観を有しており、価格的にも安価であるため好ましい。なお、吸引吐出手段(18a)が有するダイアフラム(41)の容量と、吸引吐出手段(18b)が有するダイアフラム(41)の容量は、同一容量であってもよいし、異なる容量であってもよい。
As an example of the suction and discharge means (18a, 18b) in the dilution apparatus shown in FIG.
A diaphragm (41) made of a flexible material such as rubber, which can hold liquid;
A piston (42) joined to the diaphragm (41);
An electromagnetic coil (45) for driving the piston (42) in one direction;
A spring (43) for driving the piston (42) in the opposite direction;
An adjustment screw (44) for determining the drive distance of the piston (42);
The diaphragm (41) is deformed by turning on / off the power supply to the electromagnetic coil (45), and the liquid in the diaphragm (41) can be moved (FIG. 4b). The suction / discharge means shown in FIG. 4b is preferable because it has a structure and appearance very similar to those of the electromagnetic diaphragm pump (FIG. 4a) described above and is inexpensive in price. The capacity of the diaphragm (41) included in the suction / discharge means (18a) and the capacity of the diaphragm (41) included in the suction / discharge means (18b) may be the same capacity or different capacity. .

図3に示す希釈装置における送液部(15)に備えた希釈液送液手段(17)および一以上の吸引吐出手段(18)は、
(A)個別の手段として配置し、各々を外部配管で接続した態様であってもよいし、
(B)1つのマニホールド(61)の形に集約した態様(図5および6)、
であってもよいが、前記(B)の態様を採用すると、希釈装置を省スペース化できる点で好ましい。なお、図5および6に示す希釈装置において、希釈液送液手段(17)は、吸引吐出手段(18c)を含んだブロックと逆止弁(21)を含んだブロックとから構成されている。
The dilution liquid feeding means (17) and one or more suction / discharge means (18) provided in the liquid feeding section (15) in the dilution apparatus shown in FIG.
(A) It may be arranged as individual means and each may be connected by external piping,
(B) A mode (FIGS. 5 and 6) aggregated in the form of one manifold (61),
However, it is preferable to employ the aspect (B) in that the dilution apparatus can be saved in space. In the diluting apparatus shown in FIGS. 5 and 6, the dilute solution feeding means (17) is composed of a block including the suction / discharge means (18c) and a block including the check valve (21).

図3に示す希釈装置における希釈部(14)の一例を図7aに示す。図7aに示す希釈部は、
希釈液または希釈検体を一定量保留し、かつ検体の負荷が可能な希釈ポート(31)と、
希釈ポート(31)の外周部に設けた、希釈ポートからオーバーフローした希釈液または希釈検体を受け止めるドレン受け(32)と、
希釈ポート(31)の外周部に設けた、ドレン受け(32)に溜まった希釈液または希釈検体を系外に排出可能なドレンポート(33)と、
希釈ポート(31)の底部に設けた、送液部と希釈液または希釈検体の出入りを行なう流路(34)と、
を備えている。なお、希釈ポート(31)の外形は、オーバーフローした希釈液がドレン溝方向にスムーズに流れる形状であればよく、図7aに示す、単純な円錐または円錐台状であってもよいし、その他の形状であってもよい。
An example of the dilution section (14) in the dilution apparatus shown in FIG. 3 is shown in FIG. 7a. The dilution part shown in FIG.
A dilution port (31) that holds a fixed amount of the diluted solution or diluted sample and is capable of loading the sample,
A drain receiver (32) provided on the outer periphery of the dilution port (31) for receiving the diluted solution or the diluted specimen overflowing from the dilution port;
A drain port (33) provided on the outer periphery of the dilution port (31) and capable of discharging the diluted solution or the diluted specimen accumulated in the drain receiver (32) out of the system;
A flow path provided at the bottom of the dilution port (31) and a flow path (34) through which the diluted solution or diluted sample enters and exits;
It has. The outer shape of the dilution port (31) may be any shape as long as the overflowing diluted solution flows smoothly in the direction of the drain groove, and may be a simple cone or truncated cone shape shown in FIG. It may be a shape.

図3に示す希釈装置における希釈部(14)の別の例を図7bに示す。図7bに示す希釈部は、
希釈液または希釈検体を一定量保留し、かつ検体の負荷が可能な希釈ポート(31)と、
希釈ポート(31)の外周部に設けた、希釈ポートからオーバーフローした希釈液または希釈検体を受け止めるドレン受け(32)と、
希釈ポート(31)の外周部に設けた、ドレン受け(32)に溜まった希釈液または希釈検体を系外に排出可能なドレンポート(33)と、
希釈ポート(31)の底部に設けた、送液部と希釈液または希釈検体の出入りを行なう第一の流路(34a)と、
希釈ポート(31)の側面部と第一の流路(34a)とを連通させる第二の流路(34b)と、
を備えており、第一の流路(34a)と第二の流路(34b)にはそれぞれ逆止弁(21b、21a)を有している。第一の流路(34a)のうち第二の流路(34b)との分岐部から希釈ポート(31)までの流路は逆止弁(21b)により希釈ポート(31)から送液部への送液のみ可能であり、第二の流路(34b)は逆止弁(21a)により送液部から希釈ポート(31)への送液のみ可能である。なお、希釈ポート(31)の外形は、図7aに示す希釈部と同様、オーバーフローした希釈液がドレン溝方向にスムーズに流れる形状であればよく、図7bに示す、単純な円錐や円錐台状であってもよいし、その他の形状であってもよい。
FIG. 7b shows another example of the dilution section (14) in the dilution apparatus shown in FIG. The dilution part shown in FIG.
A dilution port (31) that holds a fixed amount of the diluted solution or diluted sample and is capable of loading the sample,
A drain receiver (32) provided on the outer periphery of the dilution port (31) for receiving the diluted solution or the diluted specimen overflowing from the dilution port;
A drain port (33) provided on the outer periphery of the dilution port (31) and capable of discharging the diluted solution or the diluted specimen accumulated in the drain receiver (32) out of the system;
A first flow path (34a) provided at the bottom of the dilution port (31) for entering and exiting the liquid feeding portion and the diluted solution or diluted specimen;
A second channel (34b) for communicating the side surface of the dilution port (31) with the first channel (34a);
The first flow path (34a) and the second flow path (34b) have check valves (21b, 21a), respectively. Of the first flow path (34a), the flow path from the branch to the second flow path (34b) to the dilution port (31) is connected from the dilution port (31) to the liquid feeding section by the check valve (21b). The second flow path (34b) can only send liquid from the liquid feeding part to the dilution port (31) by the check valve (21a). The outer shape of the dilution port (31) may be a simple cone or truncated cone shape as shown in FIG. 7b as long as the overflowed diluted solution flows smoothly in the direction of the drain groove as in the dilution portion shown in FIG. 7a. It may be any other shape.

図3に示す希釈装置における希釈部(14)に設けた希釈ポートの内部形状は、負荷する検体の形態により最適な形状を選択すればよい。例えば、液滴を検体として使用する場合は内部形状が円柱状の希釈ポート(図8a)が好ましく、試験片を検体として使用する場合は内部形状が直方体の希釈ポート(図8b)が好ましい。この他にも、円錐または円錐台状の内部形状を有した希釈ポート(図8c)もあげられる。また、希釈ポートの容積は、目的とする検体希釈量や希釈倍率を考慮し適宜決定すればよい。   As the internal shape of the dilution port provided in the dilution section (14) in the dilution apparatus shown in FIG. 3, an optimal shape may be selected depending on the form of the specimen to be loaded. For example, when a droplet is used as a specimen, a dilution port (FIG. 8a) whose inner shape is cylindrical is preferable, and when a test piece is used as a specimen, a dilution port (FIG. 8b) whose inner shape is a rectangular parallelepiped is preferable. Another example is a dilution port (FIG. 8c) having a conical or frustoconical internal shape. The volume of the dilution port may be appropriately determined in consideration of the target specimen dilution amount and dilution ratio.

本発明の分析装置における希釈部(14)に設けた希釈ポート(31)に負荷する検体の態様は特に限定されない。一例として、
(A)液体検体をシリンジやピペットなどの分注器を用いて直接負荷する方法、
(B)液体検体を毛細管を用いて吸引し、検体を吸引した毛細管ごと負荷する方法、
(C)穿刺器具を用いて自己採血した血液試料(検体)を採血部位ごとそのまま負荷する方法、
(D)綿棒(16a)または試験片(16b)の先端に設けた吸収部(16aa、16ba)に検体を吸収させ、吸収させた綿棒(16a)または試験片(16b)ごと負荷する方法(図9から12)、
があげられる。また、分注器で採取した検体、毛細管で吸引した検体、自己採血した検体等をあわせて一つの試験片に吸収後、当該試験片ごと希釈ポートに負荷してもよい。
The aspect of the sample loaded on the dilution port (31) provided in the dilution section (14) in the analyzer of the present invention is not particularly limited. As an example,
(A) A method of directly loading a liquid sample using a dispenser such as a syringe or pipette,
(B) A method of aspirating a liquid specimen using a capillary and loading the specimen together with the aspirated capillary,
(C) A method of loading a blood sample (specimen) self-collected using a puncture device as it is with each blood collection site,
(D) A method of absorbing the specimen to the absorbent portion (16aa, 16ba) provided at the tip of the cotton swab (16a) or the test piece (16b) and loading the absorbed cotton swab (16a) or the test piece (16b) together (FIG. 9 to 12),
Can be given. Alternatively, a sample collected by a dispenser, a sample aspirated by a capillary, a sample collected by self-collection, and the like may be absorbed together into one test piece and then loaded together with the test piece to the dilution port.

なお希釈部を図7bに示す態様とすると、希釈ポート(31)に負荷する検体が、あらかじめ綿棒や試験片のような媒体の先端に吸収させた検体である場合、特に有用である。その理由として、図7bに示す希釈部は、送液部から吐出される希釈液が希釈ポート(31)の側面部から吐出されるため、当該吐出位置に綿棒や試験片(16b)中の検体吸収部(16ba)をあわせることで、吐出された希釈液が直接検体吸収部(16ba)に吹き付けられ、希釈効率を高めることが期待できるからである(図13)。   7B is particularly useful when the specimen loaded on the dilution port (31) is a specimen that has been absorbed in advance at the tip of a medium such as a cotton swab or a test piece. The reason for this is that in the dilution section shown in FIG. 7b, the diluted liquid discharged from the liquid supply section is discharged from the side surface portion of the dilution port (31), so that the sample in the cotton swab or test piece (16b) is at the discharge position. This is because by combining the absorption part (16ba), the discharged diluted liquid is directly sprayed on the specimen absorption part (16ba), and it can be expected to increase the dilution efficiency (FIG. 13).

図2に示す分析装置のうち、試料充填手段が図3に示す希釈部(14)と送液部(15)とを備えた手段であり、試料導入バルブ(2)の出口側に分析カラム(3)を備えた態様における、検体(試料)の希釈および希釈検体の分析の流れを、図14から16を用いて詳細に説明する。   In the analyzer shown in FIG. 2, the sample filling means is a means provided with the dilution part (14) and the liquid feeding part (15) shown in FIG. 3, and an analysis column (on the outlet side of the sample introduction valve (2)) The flow of dilution of the specimen (sample) and analysis of the diluted specimen in the embodiment provided with 3) will be described in detail with reference to FIGS.

(a)希釈ポート洗浄工程(図14(a))
希釈液送液手段(17)により希釈液(13)を送液する場合は、下流に備えた2つの吸引吐出手段(18a、18b)を貫通した状態にする必要がある。吸引吐出手段(18a、18b)が図4bに示した態様の場合、電磁コイル(45)への電源をONにしピストン(42)を上方に移動させダイヤフラム(41)を膨らんだ状態にすることで、吸引吐出手段(18a、18b)を貫通状態にすることができる。この状態で、希釈液送液手段(17)を駆動させる(具体的には、周期的に電源のON/OFFを繰り返す)ことで、希釈液が、希釈液送液手段(17)、吸引吐出手段(18a)、吸引吐出手段(18b)、希釈部(14)の順に送液され、希釈部(14)から希釈液がオーバーフローすることで、希釈部(14)および送液部(15)内の洗浄ならびに希釈液への置換が行なわれる。なお、試料導入バルブ(2)は後述の(d)希釈工程まで、希釈部(14)−ループ(6)−送液部(15)との間が連通した状態(Load状態)とし、Load状態では送液ポンプ(1)により送液される溶離液(8)は直接分析カラム(3)に導入される。
(A) Dilution port cleaning process (FIG. 14 (a))
When the diluent (13) is sent by the diluent feeding means (17), it is necessary to pass through the two suction / discharge means (18a, 18b) provided downstream. When the suction / discharge means (18a, 18b) is in the form shown in FIG. 4b, the power to the electromagnetic coil (45) is turned on, the piston (42) is moved upward, and the diaphragm (41) is inflated. The suction / discharge means (18a, 18b) can be in a penetrating state. In this state, the diluting liquid feeding means (17) is driven (specifically, the power is periodically turned ON / OFF repeatedly), so that the diluting liquid is supplied to the diluting liquid feeding means (17) and the suction discharge. The liquid is fed in the order of the means (18a), the suction / discharge means (18b), and the diluting part (14), and when the diluting liquid overflows from the diluting part (14), the inside of the diluting part (14) and the liquid feeding part (15) And washing with a diluted solution. The sample introduction valve (2) is in a state in which the dilution part (14), the loop (6), and the liquid feeding part (15) are in communication with each other until the later described (d) dilution step (Load state). Then, the eluent (8) fed by the liquid feed pump (1) is directly introduced into the analysis column (3).

(b)排出工程(図14(b))
希釈液送液手段(17)を停止した状態(すなわちダイヤフラムがしぼんだ状態)で、吸引吐出手段(18a、18b)に設けた電磁コイルへの電源をOFFにしピストンを下方に移動させダイヤフラム(41)がしぼんだ状態にすることで、ダイヤフラム(41)容量分の希釈液が排出される。なお希釈液送液手段(17)の吐出口側の逆止弁により、希釈液送液手段(17)側は閉状態(OFF状態)になることから、希釈部(14)側にのみ希釈液が排出される。
(B) Discharging process (FIG. 14 (b))
In a state where the diluting liquid feeding means (17) is stopped (that is, the diaphragm is deflated), the power to the electromagnetic coil provided in the suction / discharge means (18a, 18b) is turned off, the piston is moved downward, and the diaphragm (41 ) Is in a deflated state, the diaphragm (41) volume of diluent is discharged. Since the dilution liquid feeding means (17) side is closed (OFF state) by the check valve on the discharge port side of the dilution liquid feeding means (17), the dilution liquid only on the dilution section (14) side. Is discharged.

(c)検体負荷工程(図15(c))
希釈部(14)にて検体(7)が負荷された後、希釈液送液手段(17)は停止したまま、吸引吐出手段(18a、18b)に設けた電磁コイルへの電源をONにしピストンを上方に移動させダイヤフラム(41)を膨らんだ状態にすることで、ダイヤフラム(41)内に検体を含んだ希釈液(希釈検体)が吸引される。なお希釈液送液手段(17)の吐出口側の逆止弁により、希釈液送液手段(17)側は閉状態になることから、吸引吐出手段(18a、18b)が有するダイヤフラム(41)にのみ希釈検体が吸引される。
(C) Specimen loading process (FIG. 15 (c))
After the sample (7) is loaded in the diluting section (14), the power to the electromagnetic coil provided in the suction / discharge means (18a, 18b) is turned on while the dilute solution feeding means (17) is stopped and the piston is turned on. Is moved upward to bring the diaphragm (41) into a swelled state, and the diluted solution (diluted sample) containing the sample is aspirated into the diaphragm (41). Note that the non-return valve on the discharge port side of the dilute solution feeding means (17) closes the dilute solution feed means (17) side, so that the diaphragm (41) of the suction and discharge means (18a, 18b) is provided. Diluted specimen is aspirated only in

(d)希釈工程(図15(d))
吸引吐出手段(18b)に設けた電磁コイルに対し周期的に電源のON/OFFを行なうことで、吸引吐出手段(18b)に設けたダイヤフラム(41)容量分の検体希釈液を吸引吐出し、当該ダイアフラムの容量分だけ液体を往復動作させることで、検体の希釈を行なう。
(D) Dilution step (FIG. 15 (d))
By periodically turning on / off the power supply to the electromagnetic coil provided in the suction / discharge means (18b), the sample diluent for the diaphragm (41) volume provided in the suction / discharge means (18b) is sucked and discharged. The sample is diluted by reciprocating the liquid by the volume of the diaphragm.

(e)希釈検体導入工程(図16(e))
検体希釈終了後、試料導入バルブ(2)をLoad状態から、溶離液(8)−ループ(6)−分析カラム(3)との間が連通した状態(Injection状態)に切り替える。ループ(6)に充填した希釈検体を溶離液(8)で押し出す形で分析カラム(3)に導入し、溶離液による検体成分の溶出および分析を行なう。
(E) Diluted sample introduction step (FIG. 16 (e))
After completion of the sample dilution, the sample introduction valve (2) is switched from the Load state to the state where the eluent (8) -loop (6) -analysis column (3) communicates (Injection state). The diluted sample packed in the loop (6) is introduced into the analysis column (3) in the form of being pushed out by the eluent (8), and the elution and analysis of the sample components by the eluent are performed.

図14から16に示す分析装置を用いて、検体(試料)希釈および分析を行なう場合における、希釈液送液手段(17)および吸引吐出手段(18a、18b)の吸引吐出状態、希釈部に設けた希釈ポート(31)の液面位置、ならびに試料導入バルブ(2)の切り替え位置をまとめたダイアグラムを図17にまとめる。なお、図17において、各工程に付された記号は図14から16の記号と対応している。   When the specimen (sample) is diluted and analyzed using the analyzer shown in FIGS. 14 to 16, the suction and discharge states of the diluent feeding means (17) and the suction and discharge means (18a and 18b) are provided in the dilution section. A diagram summarizing the liquid level position of the dilution port (31) and the switching position of the sample introduction valve (2) is shown in FIG. In FIG. 17, the symbols given to the respective steps correspond to the symbols in FIGS.

本発明の分析装置の別の例を図27に示す。図27に示す分析装置は、
溶離液A(バッファA:押出液を兼ねる)(8a)を送液する送液ポンプ(1a)と、溶離液B(バッファB)(8b)を分析カラム(3)へ導入するための第1の流路切り替えバルブ(12a)と、溶離液C(バッファC)(8c)を分析カラム(3)へ導入するための第2の流路切り替えバルブ(12b)と、バッファBを充填可能なループ(6b)と、バッファCを充填可能なループ(6c)と、を備え、第2の流路切り替えバルブ(12b)は第1の流路切り替えバルブ(12a)に設けたループ(6b)に備えた、流路系と、
第1の流路切り替えバルブ(12a)の出口側に設けた、図14から図16に示す分析装置と同様な試料充填手段と試料導入バルブ(2)とを有した試料導入手段と、
分析カラム(3)および検出器(5)とを備えた装置である。第1の流路切り替えバルブ(12a)、第2の流路切り替えバルブ(12b)、および試料導入バルブ(2)は、通常液体クロマトグラフで用いられる、二位置切り替え六方バルブを用いることができる。
Another example of the analyzer of the present invention is shown in FIG. The analyzer shown in FIG.
A feed pump (1a) for feeding an eluent A (buffer A: also serving as an extrusion solution) (8a), and a first for introducing the eluent B (buffer B) (8b) into the analytical column (3). A flow path switching valve (12a), a second flow path switching valve (12b) for introducing the eluent C (buffer C) (8c) into the analysis column (3), and a loop capable of filling the buffer B (6b) and a loop (6c) that can be filled with the buffer C, and the second flow path switching valve (12b) is provided in a loop (6b) provided in the first flow path switching valve (12a). And the flow path system,
A sample introduction means having a sample filling means and a sample introduction valve (2) similar to the analyzer shown in FIGS. 14 to 16 provided on the outlet side of the first flow path switching valve (12a);
It is an apparatus provided with an analytical column (3) and a detector (5). As the first channel switching valve (12a), the second channel switching valve (12b), and the sample introduction valve (2), a two-position switching six-way valve that is usually used in a liquid chromatograph can be used.

図27に示す分析装置における、検体(試料)の希釈および希釈検体の分析の流れを、図28から図34を用いて詳細に説明する。   The flow of sample dilution and sample analysis in the analyzer shown in FIG. 27 will be described in detail with reference to FIGS.

(a)希釈ポート洗浄工程(図28)から(e)希釈撹拌工程(図32)まで
図14(a)から図15(d)と同様な方法で、検体(試料)の希釈を行なう。なお、試料導入バルブ(2)は、希釈部(14)−ループ(6a)−送液部(15)との間が連通した状態(Load状態)とし、Load状態では送液ポンプ(1a)により送液されるバッファA(8a)は直接分析カラム(3)に導入される。また、第1の流路切り替えバルブ(12a)はループ(6b)にバッファB(8b)を充填可能な状態(OFF状態)、第2の流路切り替えバルブ(12b)はループ(6c)にバッファC(8c)を充填可能な状態(OFF状態)とする。
From (a) dilution port washing step (FIG. 28) to (e) dilution stirring step (FIG. 32), the specimen (sample) is diluted by the same method as in FIGS. 14 (a) to 15 (d). The sample introduction valve (2) is in a state (Load state) in which the dilution part (14) -the loop (6a) -the liquid feeding part (15) communicate with each other. In the Load state, the liquid feeding pump (1a) The buffer A (8a) to be fed is directly introduced into the analysis column (3). The first flow path switching valve (12a) is in a state (OFF state) in which the loop (6b) can be filled with the buffer B (8b), and the second flow path switching valve (12b) is buffered in the loop (6c). Let C (8c) be in a state where it can be filled (OFF state).

(f)希釈検体導入工程(図33)
検体希釈終了後、試料導入バルブ(2)をLoad状態から、溶離液(8)−ループ(6a)−分析カラム(3)との間が連通した状態(Injection状態)に切り替える。ループ(6a)に充填した希釈検体をバッファA(押出液)(8a)で押し出す形で分析カラム(3)に導入し、バッファA(8a)による試料成分の溶出および分析を行なう。
(F) Diluted sample introduction step (FIG. 33)
After completion of the sample dilution, the sample introduction valve (2) is switched from the Load state to the state where the eluent (8) -loop (6a) -analysis column (3) communicates (Injection state). The diluted specimen filled in the loop (6a) is introduced into the analysis column (3) in the form of being pushed out by the buffer A (extrusion liquid) (8a), and the sample components are eluted and analyzed by the buffer A (8a).

(g)ステップグラジエント分析工程(図34)
希釈検体導入終了後、試料導入バルブ(2)をInjection状態からLoad状態に戻し、再び検体(試料)の希釈が可能な状態とする。一方、第1の流路切り替えバルブ(12a)はバッファA(8a)を送液する流路とバッファBを充填したループ(6b)とを連結した状態(ON状態)に、第2の流路切り替えバルブ(12b)はバッファBを充填したループ(6b)とバッファCを充填したループ(6c)とを連結した状態(ON状態)に、それぞれ切り替える。これにより、バッファA(押出液)で押し出される形でバッファB、バッファCの順に分析カラム(3)へ導入され、バッファBによる試料成分の溶出、引き続きバッファCによる試料成分の溶出および分析を行なう。
(G) Step gradient analysis process (FIG. 34)
After the diluted sample introduction is completed, the sample introduction valve (2) is returned from the injection state to the load state, so that the sample (sample) can be diluted again. On the other hand, the first flow path switching valve (12a) is in a state (ON state) in which the flow path for sending the buffer A (8a) and the loop (6b) filled with the buffer B are connected to each other. The switching valve (12b) switches to a state (ON state) in which the loop (6b) filled with the buffer B and the loop (6c) filled with the buffer C are connected. Thus, the buffer B (extruded solution) is introduced into the analysis column (3) in the order of buffer B and buffer C, and the sample components are eluted by the buffer B, and subsequently the sample components are eluted and analyzed by the buffer C. .

図27に示す分析装置を用いて、検体(試料)希釈および分析を行なう場合における、希釈液送液手段(17)および吸引吐出手段(18a、18b)の吸引吐出状態(ON・/OFF状態)、希釈部に設けた希釈ポート(31)の液面位置、ならびに試料導入バルブ(2)および流路切り替えバルブ(12a、12b)の切り替え位置をまとめたダイアグラムを図35にまとめる。なお、図35において、各工程に付された記号は図28から34の記号と対応している。   The aspiration / discharge state (ON / OFF state) of the dilute solution feeding means (17) and the suction / discharge means (18a, 18b) when the specimen (sample) is diluted and analyzed using the analyzer shown in FIG. FIG. 35 shows a diagram summarizing the liquid level position of the dilution port (31) provided in the dilution section and the switching positions of the sample introduction valve (2) and the flow path switching valves (12a, 12b). In FIG. 35, symbols given to the respective steps correspond to the symbols in FIGS.

図27に示す分析装置では、分析カラムに送液する溶離液(バッファ)の種類は3種類であり、流路切り替え手段を2つ設けた分析装置であったが、分析カラムに送液する溶離液(バッファ)の種類に限定はなく、分析カラムに送液する溶離液(バッファ)の種類がn種類の場合は、流路切り替え手段を(n−1)個設ければよい。   In the analyzer shown in FIG. 27, there are three types of eluents (buffers) to be sent to the analysis column, and the analyzer is provided with two flow path switching means. The type of the liquid (buffer) is not limited. When the number of eluents (buffers) sent to the analysis column is n, (n-1) channel switching means may be provided.

図27に示す分析装置では高圧状態での切り替え(すなわち圧力変動)が常に2回で済むため、分析装置に備えた検出器に余分なノイズを与えることがなくなり、より高精度な分析を可能とするため好ましい。なお、試料導入手段を第1の流路切り替え手段に設けたループに備えてもよく、その場合は高圧状態での切り替え(すなわち圧力変動)は常に1回で済むため、さらに高精度な分析が可能となることが予想される(特願2010−268560号)。   In the analyzer shown in FIG. 27, switching in the high pressure state (that is, pressure fluctuation) is always required only twice, so that no extra noise is given to the detector provided in the analyzer, and more accurate analysis is possible. Therefore, it is preferable. Note that the sample introduction means may be provided in a loop provided in the first flow path switching means. In that case, since switching in a high pressure state (ie, pressure fluctuation) is always required only once, more accurate analysis is possible. This is expected to be possible (Japanese Patent Application No. 2010-268560).

図14から16および図27に示す分析装置の希釈装置に備えた送液部では吸引吐出手段を二つ備えているが、吸引吐出手段を一つ備えた送液部であっても、図14から15および図27から32に示す方法と同様な方法で検体の希釈が可能である。吸引吐出手段を一つ備えた場合、希釈工程において、吸引吐出手段が吸引状態にあるときは当該手段が有するダイヤフラムの容量分だけ希釈部に設けた希釈ポートの液面が低下し、吸引吐出手段が吐出状態にあるときは前記希釈ポートの液面は最上面まで上昇する。そのため、吸引吐出手段が吐出状態の時、希釈部に衝撃等何らかの外部要因が生じると、希釈ポートの最上面にある希釈検体がこぼれ落ち、希釈性能が悪化する恐れがある。一方、吸引吐出手段を二つ以上備えた場合、希釈(撹拌)工程において、吸引吐出手段が吸引状態にあるときは当該手段が有するダイヤフラムの合計容量(図14から16および図27に示す分析装置の希釈装置に備えた送液部の場合は吸引吐出手段(18a、18b)が有するダイヤフラム(41)の合計容量)分だけ希釈部に設けた希釈ポートの液面が低下し、吸引吐出手段が吐出状態にあるときは前記希釈ポートの液面が吸引吐出手段一つ分の容量(図14から16および図27に示す分析装置の希釈装置に備えた送液部の場合は吸引吐出手段(18a)が有するダイヤフラム(41)の容量)分だけ低下した位置まで液面が上昇する。つまり、液面が希釈ポートの最上面より低くなるため、希釈部に衝撃等何らかの外部要因が生じても検体希釈液がこぼれ落ちることはなく、より安定した希釈性能を発揮することが可能である。   14 to 16 and FIG. 27, the liquid feeding section provided in the dilution apparatus of the analyzer includes two suction / discharge means. However, even the liquid feeding section provided with one suction / discharge means may be To 15 and the method shown in FIGS. 27 to 32 can be used to dilute the specimen. When one suction / discharge means is provided, when the suction / discharge means is in the suction state in the dilution process, the liquid level of the dilution port provided in the dilution section is reduced by the volume of the diaphragm of the means, and the suction / discharge means Is in the discharge state, the liquid level of the dilution port rises to the uppermost surface. For this reason, when an external factor such as an impact occurs in the dilution section when the suction / discharge means is in the discharge state, the diluted specimen on the top surface of the dilution port may spill out and the dilution performance may deteriorate. On the other hand, when two or more suction / discharge means are provided, when the suction / discharge means is in the suction state in the dilution (stirring) step, the total capacity of the diaphragm of the means (analyzer shown in FIGS. 14 to 16 and FIG. 27) In the case of the liquid feeding section provided in the dilution device, the liquid level of the dilution port provided in the dilution section is lowered by the amount of the diaphragm (41) of the suction / discharge means (18a, 18b), and the suction / discharge means When in the discharge state, the liquid level of the dilution port has a capacity corresponding to one suction discharge means (in the case of the liquid feed section provided in the dilution apparatus of the analyzer shown in FIGS. 14 to 16 and 27, the suction discharge means (18a The liquid level rises to a position lowered by the diaphragm (41) of the diaphragm (41). In other words, since the liquid level is lower than the uppermost surface of the dilution port, even if some external factor such as an impact occurs in the dilution part, the sample dilution liquid does not spill out, and it is possible to exhibit more stable dilution performance. .

本発明の分析装置は、溶液を送液する送液手段と、試料を充填可能なループと前記ループに試料を充填する試料充填手段とを設け前記試料充填手段で前記ループに試料を充填可能な状態と前記ループに充填した試料を前記送液手段で送液された溶液により送液可能な状態とを切り替え可能な試料導入手段と、検出手段と、を備え、かつ前記試料充填手段が、試料を希釈する希釈液の供給部と、試料を負荷し前記希釈液により前記試料の希釈を行なう希釈部と、吸引口および吐出口を有し前記希釈液を当該吸引口から吐出口に送液可能な希釈液送液手段と液体を保留可能なダイヤフラムと吸引吐出口とを有し当該ダイヤフラム内の液体を吸引吐出可能な一以上の吸引吐出手段とを設けた前記希釈液の送液および前記希釈部により希釈された希釈試料の吸引吐出が可能な送液部と、を備えていることを特徴としている。   The analyzer of the present invention comprises a liquid feeding means for feeding a solution, a loop capable of filling a sample, and a sample filling means for filling the loop with a sample, and the sample filling means can fill the loop with the sample. A sample introduction means capable of switching between a state and a state in which the sample filled in the loop can be fed by the solution fed by the liquid feeding means, and a detection means, and the sample filling means comprises a sample A diluent supply section for diluting the sample, a dilution section for loading the sample and diluting the sample with the diluent, and having a suction port and a discharge port, and the diluent can be fed from the suction port to the discharge port The diluting liquid feeding means and the diluting liquid feeding means, the diaphragm capable of holding the liquid, and one or more suction and discharging means capable of sucking and discharging the liquid in the diaphragm are provided. Dilution diluted by part It is characterized in that suction and discharge of the charges and a, and a liquid supply unit as possible.

本発明の分析装置に備えた試料充填手段では、送液部に備えた吸引吐出手段を、液体を保留可能なダイヤフラムと吸引吐出口とを有し、かつ前記ダイヤフラム内の液体を吸引吐出可能な手段とすることで、例えば吸引吐出手段が有する電磁式部品への電源のON/OFF操作のみで液体を吸引吐出することができる。したがって、装置構成を大幅に簡素化することができ、製造コストを大幅に低減させることが可能となる。さらに送液部を構成する各手段はマニホールドに集約することができ、これにより分析装置に占める試料充填手段の容積を大幅に小さくすることが可能となる。   In the sample filling means provided in the analyzer of the present invention, the suction / discharge means provided in the liquid feeding section has a diaphragm capable of holding the liquid and a suction / discharge port, and can suck and discharge the liquid in the diaphragm. By using the means, for example, the liquid can be sucked and discharged only by the power ON / OFF operation to the electromagnetic parts included in the suction and discharge means. Therefore, the apparatus configuration can be greatly simplified, and the manufacturing cost can be greatly reduced. Further, each means constituting the liquid feeding section can be concentrated on the manifold, and this makes it possible to greatly reduce the volume of the sample filling means in the analyzer.

なお、本発明の分析装置に備えた試料充填手段における希釈部を、
希釈液または希釈検体を保留し、かつ検体の負荷が可能な希釈ポートと、
前記希釈ポートの外周部に設けた、希釈液または希釈検体の排出が可能なドレンポートと、
前記希釈ポートの底部と前記吸引吐出手段が有する吸引吐出口の一つとを連通させるための第一の流路と、
前記希釈ポートの側面部と第一の流路とを連通させるための第二の流路と、
を設け、前記第一の流路および第二の流路にそれぞれ逆止弁を有した、希釈部とすると、濾紙片、綿棒、試験片等の媒体に吸収させた検体からの希釈を行なうとき、第二の流路から吐出する希釈液が、検体を吸収させた箇所に直接吹き付けられるため、より効率的な検体希釈が可能となる。よって結果として、分析装置による検体成分の分析精度を向上させることができる。なお、前記希釈部は、希釈液および試料(検体)を循環させる形式のため、試料負荷量が多い場合でも効率的な検体希釈が可能となる。
In addition, the dilution part in the sample filling means provided in the analyzer of the present invention,
A dilution port that holds the diluted solution or diluted sample and can load the sample,
A drain port provided on an outer peripheral portion of the dilution port and capable of discharging a diluted solution or a diluted specimen;
A first flow path for communicating the bottom of the dilution port with one of the suction and discharge ports of the suction and discharge means;
A second flow path for communicating the side surface portion of the dilution port with the first flow path;
When the sample is absorbed from a medium such as a filter paper piece, a cotton swab, or a test piece, the dilution unit has a check valve in each of the first channel and the second channel. Since the diluent discharged from the second flow channel is directly sprayed on the portion where the specimen is absorbed, more efficient specimen dilution is possible. Therefore, as a result, the analysis accuracy of the sample component by the analyzer can be improved. Since the dilution section circulates the diluted solution and the sample (specimen), it is possible to efficiently dilute the sample even when the sample load is large.

一般的な液体クロマトグラフ装置の流路系を示した図である。It is the figure which showed the flow-path system of the general liquid chromatograph apparatus. 本発明の分析装置の一例を示した模式図である。It is the schematic diagram which showed an example of the analyzer of this invention. 本発明の分析装置に備えた希釈装置の一例を示した図である。It is the figure which showed an example of the dilution apparatus with which the analyzer of this invention was equipped. 図3に示す希釈装置に備えた送液手段および吸引吐出手段の基本動作を示した図である。It is the figure which showed the basic operation | movement of the liquid feeding means and the suction discharge means with which the dilution apparatus shown in FIG. 3 was equipped. 図3に示す希釈装置に備えた希釈装置のうち送液部を一つのマニホールドに集約した態様の一例を示す図である。aが全体図、bが分解図である。It is a figure which shows an example of the aspect which concentrated the liquid feeding part on one manifold among the dilution apparatuses with which the dilution apparatus shown in FIG. 3 was equipped. a is a general view and b is an exploded view. 図3に示す希釈装置に備えた希釈装置のうち送液部を一つのマニホールドに集約した態様の別の例を示す図である。aが全体図、bおよびcが分解図である。It is a figure which shows another example of the aspect which concentrated the liquid feeding part on one manifold among the dilution apparatuses with which the dilution apparatus shown in FIG. 3 was equipped. a is an overall view, and b and c are exploded views. 図3に示す希釈装置に備えた希釈装置のうち希釈部の基本構造を示した図である。aは液体を吸引するときの流路と吐出するときの流路とを共通にした態様を、bは液体を吸引するときの流路と吐出するときの流路とを分離した態様を、それぞれ示している。It is the figure which showed the basic structure of the dilution part among the dilution apparatuses with which the dilution apparatus shown in FIG. 3 was equipped. a is a mode in which the flow channel when sucking the liquid and the flow channel when discharging is common, and b is a mode in which the flow channel when sucking the liquid and the flow channel when discharging the liquid are separated. Show. 図3に示す希釈装置に備えた希釈装置のうち、希釈部が有する希釈ポートの形状の例を示した図である。It is the figure which showed the example of the shape of the dilution port which a dilution part has among the dilution apparatuses with which the dilution apparatus shown in FIG. 3 was equipped. 本発明の分析装置で分析する検体の負荷に用いる綿棒の一例を示した図である。It is the figure which showed an example of the cotton swab used for the load of the sample analyzed with the analyzer of this invention. 図9に示す綿棒を用いた、本発明の分析装置に備えた試料導入手段への検体負荷態様の一例を示した図である。It is the figure which showed an example of the sample load aspect to the sample introduction means with which the analysis apparatus of this invention was used using the cotton swab shown in FIG. 本発明の分析装置で分析する検体の負荷に用いる試験片の一例を示した図である。It is the figure which showed an example of the test piece used for the load of the sample analyzed with the analyzer of this invention. 図11に示す試験片を用いた、本発明の分析装置に備えた試料導入手段への検体負荷態様の一例を示した図である。It is the figure which showed an example of the sample load aspect to the sample introduction means with which the test piece shown in FIG. 11 was equipped with the analyzer of this invention. 図11に示す試験片に吸収させた検体を、図7bに示す希釈部で希釈したときの希釈態様を示した図である。It is the figure which showed the dilution aspect when the test substance absorbed in the test piece shown in FIG. 11 is diluted with the dilution part shown in FIG. 7b. 本発明の分析装置の一例における各工程の動作を示した図である。(a)は希釈ポート洗浄工程における動作を、(b)は排出工程における操作を、それぞれ示している。It is the figure which showed the operation | movement of each process in an example of the analyzer of this invention. (A) shows the operation in the dilution port cleaning process, and (b) shows the operation in the discharge process. 本発明の分析装置の一例における各工程の動作を示した図である。(c)は検体負荷工程における動作を、(d)は希釈工程における操作を、それぞれ示している。It is the figure which showed the operation | movement of each process in an example of the analyzer of this invention. (C) shows the operation in the specimen loading process, and (d) shows the operation in the dilution process. 本発明の分析装置の一例における(e)希釈検体導入工程の動作を示した図である。It is the figure which showed the operation | movement of the (e) dilution sample introduction | transduction process in an example of the analyzer of this invention. 本発明の分析装置の一例を用いて検体を分析する際の、各構成要素(送液手段、吸引吐出手段、希釈部、試料導入手段)の動作を示したダイヤグラムである。なお、本図において、各工程に付された記号は図14から16の記号と一致している。6 is a diagram showing the operation of each component (liquid feeding means, suction / discharge means, dilution section, sample introduction means) when a sample is analyzed using an example of the analyzer of the present invention. In this figure, the symbols given to the respective steps are the same as those in FIGS. 実施例1で希釈率を算出するために使用した検量線である。2 is a calibration curve used for calculating the dilution rate in Example 1. FIG. 実施例1で試料負荷量を10μLに固定し、試料濃度を変化させた場合の、希釈の過程を示したクロマトグラムである。横軸が測定回数(#1から#13)、縦軸が検出器の出力を示している。2 is a chromatogram showing a dilution process when the sample load is fixed to 10 μL in Example 1 and the sample concentration is changed. The horizontal axis indicates the number of measurements (# 1 to # 13), and the vertical axis indicates the output of the detector. 図19を基に、各試料濃度におけるピーク面積(測定13回目、図19aから19eの#13)をプロットした結果を示す図である。It is a figure which shows the result of having plotted the peak area in each sample density | concentration (13th measurement, # 13 of FIG. 19a to 19e) based on FIG. 実施例1で試料濃度を50mg/50mLに固定し、試料負荷量を変化させた場合の、希釈の過程を示したクロマトグラムである。横軸が測定回数、縦軸が検出器の出力を示している。2 is a chromatogram showing a dilution process when the sample concentration is fixed to 50 mg / 50 mL and the sample load is changed in Example 1. FIG. The horizontal axis indicates the number of measurements, and the vertical axis indicates the output of the detector. 図21を基に、各試料負荷量におけるピーク面積(測定13回目、図21aから21fの#13)をプロットした結果を示す図である。It is a figure which shows the result of having plotted the peak area in each sample load amount (13th measurement, # 13 of FIGS. 21a to 21f) based on FIG. 実施例1において、測定(#1から#13)ごとのクロマトグラムをまとめた結果である。各クロマトグラムにおいて、横軸は溶出時間、縦軸は検出器出力を示し、上部に示した回数は希釈操作における通算の吸引/吐出回数を示す。In Example 1, it is the result which put together the chromatogram for every measurement (# 1 to # 13). In each chromatogram, the horizontal axis represents the elution time, the vertical axis represents the detector output, and the number shown at the top represents the total number of suction / discharge times in the dilution operation. 実施例1で再現性を確認した結果を示す図である。縦軸は測定13回目(#13)におけるピーク面積を、横軸は実施回数(n)を示す。It is a figure which shows the result of having confirmed reproducibility in Example 1. FIG. The vertical axis represents the peak area at the 13th measurement (# 13), and the horizontal axis represents the number of executions (n). 実施例2の分析装置において、試料濃度を50mg/50mLに固定し、試料負荷量を変化させた場合の、希釈の過程を示したクロマトグラムである。横軸が測定回数(#1から#13)、縦軸が検出器の出力を示している。In the analyzer of Example 2, it is the chromatogram which showed the process of dilution when fixing a sample concentration to 50 mg / 50mL and changing a sample load. The horizontal axis indicates the number of measurements (# 1 to # 13), and the vertical axis indicates the output of the detector. 図25を基に、各検体(試料)負荷量におけるピーク面積(測定13回目、図25aから25gの#13)をプロットした結果を示す図である。It is a figure which shows the result of having plotted the peak area (13th measurement, # 13 of FIG. 25a to 25g) in each specimen (sample) load amount based on FIG. 本発明の分析装置の別の例を示した図である。It is the figure which showed another example of the analyzer of this invention. 図27に示す分析装置の、(a)希釈ポート洗浄工程における動作を示した図である。It is the figure which showed the operation | movement in the (a) dilution port washing | cleaning process of the analyzer shown in FIG. 図27に示す分析装置の、(b)希釈液排出工程(計量工程)における動作を示した図である。It is the figure which showed the operation | movement in the (b) dilution liquid discharge process (metering process) of the analyzer shown in FIG. 図27に示す分析装置の、(c)検体負荷用隙間作成工程における動作を示した図である。It is the figure which showed the operation | movement in the (c) sample load clearance preparation process of the analyzer shown in FIG. 図27に示す分析装置の、(d)検体負荷工程における動作を示した図である。It is the figure which showed the operation | movement in the (d) sample loading process of the analyzer shown in FIG. 図27に示す分析装置の、(e)希釈撹拌工程における動作を示した図である。It is the figure which showed the operation | movement in the (e) dilution stirring process of the analyzer shown in FIG. 図27に示す分析装置の、(f)希釈検体導入工程における動作を示した図である。It is the figure which showed the operation | movement in the (f) dilution sample introduction process of the analyzer shown in FIG. 図27に示す分析装置の、(g)ステップグラジエント分析工程における動作を示した図である。It is the figure which showed the operation | movement in the (g) step gradient analysis process of the analyzer shown in FIG. 図27に示す分析装置を用いて検体を分析する際の、各構成要素(送液手段、吸引吐出手段、希釈部、試料導入手段、流路切り替え手段)の動作を示したダイヤグラムである。なお、本図において、各工程に付された記号は図28から34の記号と一致している。FIG. 28 is a diagram showing the operation of each component (liquid feeding means, suction / discharge means, dilution section, sample introduction means, flow path switching means) when a sample is analyzed using the analyzer shown in FIG. 27. In this figure, the symbols given to the respective steps are the same as those in FIGS. 実施例3で試料負荷量を変化させた場合の、負荷量に対するクロマトグラムの変化を示した図である。横軸が測定時間、縦軸が検出器の出力を示している。It is the figure which showed the change of the chromatogram with respect to the load amount at the time of changing sample load amount in Example 3. FIG. The horizontal axis represents the measurement time, and the vertical axis represents the detector output. 図36を基に、各試料負荷量における(a)A1cまたは(b)A0のピーク面積値をプロットした結果を示す図である。It is a figure which shows the result of having plotted the peak area value of (a) A1c or (b) A0 in each sample load based on FIG. 実施例3で試料希釈率を変化させた場合の、希釈率に対するクロマトグラムの変化を示した図である。横軸が測定時間、縦軸が検出器の出力を示している。It is the figure which showed the change of the chromatogram with respect to a dilution rate at the time of changing a sample dilution rate in Example 3. FIG. The horizontal axis represents the measurement time, and the vertical axis represents the detector output. 図38を基に、各試料希釈率における(a)A1cまたは(b)A0のピーク面積値をプロットした結果を示す図である。It is a figure which shows the result of having plotted the peak area value of (a) A1c or (b) A0 in each sample dilution rate based on FIG. 図27に示す分析装置において、液体試料を直接負荷した場合の再現性を評価した結果を示す図である。(a)は代表的なクロマトグラム、(b)は各測定におけるA1cおよびA0の保持時間(R.T.)の推移、(c)は各測定におけるA1c(%)の推移、(d)は希釈率を算出するために使用した検量線である。In the analyzer shown in FIG. 27, it is a figure which shows the result of having evaluated the reproducibility at the time of loading a liquid sample directly. (A) is a representative chromatogram, (b) is the transition of retention time (RT) of A1c and A0 in each measurement, (c) is the transition of A1c (%) in each measurement, (d) is It is a calibration curve used for calculating the dilution rate. 図27に示す分析装置において、試料液を綿棒の吸収体に吸収させた態様で負荷したときの再現性を評価した結果を示す図である。(a)は代表的なクロマトグラム、(b)は各測定におけるA1cおよびA0の保持時間(R.T.)の推移、(c)は各測定におけるA1c(%)の推移、(d)は希釈率を算出するために使用した検量線である。In the analyzer shown in FIG. 27, it is a figure which shows the result of having evaluated the reproducibility when it loaded in the aspect which made the absorbent body of the cotton swab absorb the sample liquid. (A) is a representative chromatogram, (b) is the transition of retention time (RT) of A1c and A0 in each measurement, (c) is the transition of A1c (%) in each measurement, (d) is It is a calibration curve used for calculating the dilution rate. 実施例4の分析装置により、試料液を試験片の吸収体に吸収させた態様で負荷したときの再現性を評価した結果を示す図である。(a)は代表的なクロマトグラム、(b)は各測定におけるA1cおよびA0の保持時間(R.T.)の推移、(c)は各測定におけるA1c(%)の推移、(d)は希釈率を算出するために使用した検量線である。It is a figure which shows the result of having evaluated the reproducibility when it loads with the aspect which made the absorber of a test piece absorb the sample liquid with the analyzer of Example 4. FIG. (A) is a representative chromatogram, (b) is the transition of retention time (RT) of A1c and A0 in each measurement, (c) is the transition of A1c (%) in each measurement, (d) is It is a calibration curve used for calculating the dilution rate.

以下、実施例により本発明をさらに詳細に説明するが、これら実施例は本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, these Examples do not limit this invention.

実施例1
図14から16に示す本発明の分析装置を用いて、本発明の分析装置の有用性を評価した。
Example 1
Using the analyzer of the present invention shown in FIGS. 14 to 16, the usefulness of the analyzer of the present invention was evaluated.

送液ポンプ(1)は東ソー製DP−8020を、試料導入バルブ(2)は2位置切り替えバルブを、ループ(6)は0.5μLの容量のループを、分析カラム(3)は東ソー製TSKgel ODS−100V(内径1mmID、長さ35mm、粒径3μm)を、検出器(5)は東ソー製紫外可視検出器UV−8020(マイクロセル)(検出波長:550nm)を、溶離液(バッファ)(8)および希釈液(13)は30%アセトニトリル水溶液を、それぞれ用い、試料(検体)として緑色色素であるアリザリングリーン(和光純薬製)を用いた。   The liquid feed pump (1) is Tosoh DP-8020, the sample introduction valve (2) is a 2-position switching valve, the loop (6) is a 0.5 μL capacity loop, and the analytical column (3) is Tosoh TSKgel. ODS-100V (inner diameter 1 mm ID, length 35 mm, particle size 3 μm), detector (5) UV-visible detector UV-8020 (microcell) (detection wavelength: 550 nm) manufactured by Tosoh, eluent (buffer) ( 8) and dilute solution (13) were 30% acetonitrile aqueous solutions, respectively, and alizarin green (manufactured by Wako Pure Chemical Industries), which is a green pigment, was used as a sample (specimen).

希釈部(14)は図7aに示す吸引/吐出の流路が共通の形式(往復動作方式)を採用した。なお、希釈ポート(31)は直径5mmΦ×深さ20mmの円柱形状(図8a)であり、容積は約400μLである。希釈液送液手段(17)は電磁式ダイアフラムポンプである高砂電気製定量吐出ポンプMVP−50を、吸引吐出手段(18a)は希釈液送液手段(17)と同じポンプから逆止弁を除いたものを、吸引吐出手段(18b)は高砂電気製定量吐出ポンプPKP−500から逆止弁を除いたものを、それぞれ用いた。   The diluting section (14) employs a format (reciprocating operation method) in which the suction / discharge flow paths shown in FIG. The dilution port (31) has a cylindrical shape (FIG. 8a) with a diameter of 5 mmΦ × depth of 20 mm and a volume of about 400 μL. The diluent feeding means (17) is a Takasago Electric fixed discharge pump MVP-50, which is an electromagnetic diaphragm pump, and the suction discharge means (18a) is the same pump as the diluent feeding means (17) except for the check valve. As the suction discharge means (18b), those obtained by removing the check valve from the Takasago Electric fixed discharge pump PKP-500 were used.

試料の希釈および希釈試料の分析は以下の方法で行なった。
(a)吸引吐出手段(18a、18b)のダイヤフラム(41)が膨らんだ状態(ON状態)で、希釈液送液手段(17)のON/OFF状態を約0.3分間、3秒間隔で切り替えることで、希釈液を送液し希釈ポート(31)内を洗浄する(図14(a))。
(b)吸引吐出手段(18a、18b)のダイヤフラム(41)がしぼんだ状態(OFF状態)にし、希釈液を排出させることで、希釈ポート(31)内の希釈液容量を一定にする(図14(b))。
(c)吸引吐出手段(18a、18b)をON状態して希釈液を吸引することで、希釈ポート(31)内に一定容量の隙間を作成し、試料を負荷する(図15(c))。
(d)吸引吐出手段(18b)のON/OFF状態を2.4秒間隔で5往復することで、試料を希釈する(図15(d))。
(e)試料導入バルブ(2)をLoad状態からInjection状態に切り替え、ループ(6)内の希釈試料を、溶離液(8)で押し出す形で分析カラム(3)に導入した(図16(e))。
(f)約15秒待機(その間試料導入バルブ(2)をInjection状態からLoad状態に切り替える)後、(a)から(e)の操作を再び行ない、希釈試料の導入を通算13回行なった。
Dilution of the sample and analysis of the diluted sample were performed by the following method.
(A) With the diaphragm (41) of the suction / discharge means (18a, 18b) swelled (ON state), the ON / OFF state of the dilute solution feeding means (17) is changed for about 0.3 minutes at intervals of 3 seconds. By switching, the dilution liquid is fed and the inside of the dilution port (31) is washed (FIG. 14 (a)).
(B) The diaphragm (41) of the suction / discharge means (18a, 18b) is in a deflated state (OFF state), and the diluent is discharged, whereby the volume of the diluent in the dilution port (31) is made constant (FIG. 14 (b)).
(C) The suction / discharge means (18a, 18b) is turned on to suck the diluent, thereby creating a gap of a certain volume in the dilution port (31) and loading the sample (FIG. 15 (c)). .
(D) The sample is diluted by reciprocating the ON / OFF state of the suction / discharge means (18b) five times at intervals of 2.4 seconds (FIG. 15 (d)).
(E) The sample introduction valve (2) is switched from the Load state to the Injection state, and the diluted sample in the loop (6) is introduced into the analysis column (3) by pushing it out with the eluent (8) (FIG. 16 (e) )).
(F) After waiting for about 15 seconds (while switching the sample introduction valve (2) from the injection state to the load state), the operations from (a) to (e) were performed again, and the diluted sample was introduced 13 times in total.

希釈率を算出するために用いる検量線を図18に示す。図18は、用手法で試料(アリザリングリーン)を1倍(50mg/50mL(1mg/mL))、5倍、10倍、20倍、50倍、100倍、200倍に希釈した溶液を分析カラム(3)に導入して得られた結果を基に作成している(図18aは整数軸、図18bは縦軸横軸とも対数軸で表示)。   A calibration curve used for calculating the dilution rate is shown in FIG. FIG. 18 shows an analytical column obtained by diluting a sample (alizarin green) 1-fold (50 mg / 50 mL (1 mg / mL)), 5-fold, 10-fold, 20-fold, 50-fold, 100-fold, and 200-fold using the procedure described above. It is created on the basis of the result obtained by introducing in (3) (FIG. 18a is represented by an integer axis, and FIG.

図14から16に示す本発明の分析装置を用いた試料分析において、試料負荷量を10μLに固定し、試料濃度を変化させたときのピーク面積(高さ)の傾向を示したクロマトグラムを図19に示す。負荷した試料(アリザニングリーン)の濃度は、25mg/50mL(a)、50mg/50mL(b)、75mg/50mL(c)、100mg/50mL(d)、125mg/50mL(e)である。いずれの濃度の試料液を用いたときも、4から5回目の試料希釈から一定のピーク高さ、すなわち一定の希釈率を示すことが分かる。4から5回目の試料希釈を吸引吐出手段(18b)におけるON/OFF状態の往復数に換算すると、20から25往復に相当する。   In the sample analysis using the analyzer of the present invention shown in FIGS. 14 to 16, the chromatogram showing the tendency of the peak area (height) when the sample load is fixed at 10 μL and the sample concentration is changed is shown. 19 shows. The concentration of the loaded sample (alizanin green) is 25 mg / 50 mL (a), 50 mg / 50 mL (b), 75 mg / 50 mL (c), 100 mg / 50 mL (d), 125 mg / 50 mL (e). It can be seen that a constant peak height, that is, a constant dilution rate is exhibited from the fourth to fifth sample dilutions when any concentration of the sample solution is used. When the fourth to fifth sample dilution is converted into the number of reciprocations in the ON / OFF state in the suction / discharge means (18b), it corresponds to 20 to 25 reciprocations.

試料希釈13回目(図19aから19eの#13)のときの、負荷した試料液の濃度とピーク面積との関係を図20に示す。図20より、試料負荷量が一定の場合、試料濃度とピーク面積との間に良好な直線関係が認められ、定量的な希釈が行なわれていることがわかる。   FIG. 20 shows the relationship between the concentration of the loaded sample solution and the peak area at the 13th sample dilution (# 13 in FIGS. 19a to 19e). As can be seen from FIG. 20, when the sample loading is constant, a good linear relationship is recognized between the sample concentration and the peak area, and quantitative dilution is performed.

図14から16に示す本発明の分析装置を用いた試料分析において、試料濃度を50mg/50mL(1mg/mL)に固定し、試料負荷量を変化させたときのピーク面積(高さ)の傾向を示したクロマトグラムを図21に示す。負荷した試料(アリザニングリーン)液の量は、2.5μL(a)、5μL(b)、10μL(c)、15μL(d)、20μL(e)、25μL(f)である。いずれの試料量を用いたときも、4から5回目の試料希釈から一定のピーク高さ、すなわち一定の希釈率を示すことが分かる。4から5回目の試料希釈を吸引吐出手段(18b)におけるON/OFF状態の往復数に換算すると、20から25往復に相当する。   In sample analysis using the analyzer of the present invention shown in FIGS. 14 to 16, the peak area (height) tendency when the sample concentration is fixed to 50 mg / 50 mL (1 mg / mL) and the sample loading is changed. A chromatogram showing the above is shown in FIG. The amount of the sample (alizanine green) solution loaded is 2.5 μL (a), 5 μL (b), 10 μL (c), 15 μL (d), 20 μL (e), and 25 μL (f). It can be seen that, when any sample amount is used, a constant peak height, that is, a constant dilution rate is exhibited from the fourth to fifth sample dilutions. When the fourth to fifth sample dilution is converted into the number of reciprocations in the ON / OFF state in the suction / discharge means (18b), it corresponds to 20 to 25 reciprocations.

試料希釈13回目(図21aから21fの#13)のときの、試料負荷量とピーク面積との関係を図22に示す。図22より、試料濃度が一定の場合、2.5μLから15μLの範囲(図21aから21d)では、試料負荷量とピーク面積との間に良好な直線関係が認められ、定量的な希釈が行なわれているものの、それ以上の負荷量では当該直線関係から外れる傾向(グラフが寝る傾向)となった。この理由として、図14から図16に示す本発明の分析装置では、吸引吐出手段(18b)のダイヤフラム容量分往復動作を行なうことで試料の希釈撹拌を行なうため対流が不十分で、試料負荷量が過大になると、試料と希釈液の界面から遠い原液濃度の試料が希釈されにくい傾向を示すためと考えられる。   FIG. 22 shows the relationship between the sample load and the peak area at the 13th sample dilution (# 13 in FIGS. 21a to 21f). From FIG. 22, when the sample concentration is constant, in the range of 2.5 μL to 15 μL (FIGS. 21a to 21d), a good linear relationship is recognized between the sample load and the peak area, and quantitative dilution is performed. However, it became a tendency to deviate from the linear relationship (the tendency for the graph to lie down) at loads higher than that. The reason for this is that, in the analyzer of the present invention shown in FIGS. 14 to 16, the sample is diluted and stirred by reciprocating the diaphragm volume of the suction and discharge means (18b), so that the convection is insufficient and the sample load amount is low. This is considered to be because a sample having a stock solution concentration far from the interface between the sample and the diluent tends to be difficult to be diluted.

図14から16に示す本発明の分析装置の再現性を確認した結果を図23から24および表1に示す。負荷した試料液の量は10μL(マイクロシリンジ使用)、濃度は50mg/50mL(希釈率1)であり、試料希釈および希釈試料の分析を13回実施している図23は各測定回数(#1から#13)におけるクロマトグラムの一例である。図23において、各クロマトグラム上部に記載の回数は、吸引吐出手段(18b)におけるON/OFF状態の通算往復数である。4から5回目の試料希釈(#4から#5)から一定のピーク高さ、すなわち一定の希釈率を示すことが分かる。4から5回目の試料希釈を吸引吐出手段(18b)におけるON/OFF状態の往復数に換算すると20から25往復に相当し、時間に換算すると1.6から2.0分に相当する。   The results of confirming the reproducibility of the analyzer of the present invention shown in FIGS. 14 to 16 are shown in FIGS. The amount of the loaded sample solution is 10 μL (using a microsyringe), the concentration is 50 mg / 50 mL (dilution rate 1), and the sample dilution and the analysis of the diluted sample are performed 13 times. FIG. To # 13) is an example of a chromatogram. In FIG. 23, the number of times described in the upper part of each chromatogram is the total number of reciprocations in the ON / OFF state of the suction / discharge means (18b). It can be seen from the fourth to fifth sample dilutions (# 4 to # 5) that a constant peak height, i.e. a constant dilution rate, is exhibited. The fourth to fifth sample dilution corresponds to 20 to 25 reciprocations when converted to the number of reciprocations in the ON / OFF state in the suction / discharge means (18b), and 1.6 to 2.0 minutes when converted to time.

図24および表1は試料希釈13回目(図23の#13)におけるピーク面積(高さ)や希釈率を、測定サイクル実施(n)毎にまとめた結果である。本条件では、約100倍の希釈が行われており、ピーク高さの変動でCV=5.3%程度、面積、面積から換算した希釈率および希釈率の逆数ではCV=3.8%程度と良好な値を示しており、図14から16に示す本発明の分析装置は、試料を安定的に希釈し分析できることがわかる。   FIG. 24 and Table 1 show the results of summarizing the peak area (height) and the dilution rate for each measurement cycle (n) at the 13th sample dilution (# 13 in FIG. 23). Under this condition, about 100-fold dilution is performed, CV = about 5.3% due to fluctuation of peak height, CV = about 3.8% when the dilution rate is converted from the area and area, and the reciprocal of the dilution rate. It can be seen that the analysis apparatus of the present invention shown in FIGS. 14 to 16 can stably dilute and analyze the sample.

Figure 2013040879
実施例2
図14から16に示す本発明の分析装置のうち、希釈部(14)を図7bに示す吸引/吐出の流路が異なる形式(循環動作方式)とし、希釈ポート(31)を2mm×5mm×深さ20mmの直方体形状(図8b)とした分析装置(以下、実施例2の分析装置とする)を用いて、実施例1と同様に、試料の希釈および希釈試料の分析を行なった。
Figure 2013040879
Example 2
14 to 16, the diluting section (14) is of a type (circulation operation system) having a different suction / discharge flow path shown in FIG. 7b, and the dilution port (31) is 2 mm × 5 mm × The sample was diluted and the diluted sample was analyzed in the same manner as in Example 1 using an analyzer (hereinafter referred to as the analyzer of Example 2) having a rectangular parallelepiped shape (FIG. 8 b) having a depth of 20 mm.

実施例2の分析装置を用いた試料分析において、試料濃度を50mg/50mLに固定し、試料負荷量を変化させたときのピーク面積(高さ)の傾向を示したクロマトグラムを図25に示す。負荷した試料(アリザニングリーン)液の量は、2.5μL(a)、5μL(b)、10μL(c)、15μL(d)、20μL(e)、25μL(f)、50μL(g)である。いずれの試料量を用いたときも、4から5回目の試料希釈から一定のピーク高さ、すなわち一定の希釈率を示すことが分かる。4から5回目の試料希釈を吸引吐出手段(18b)におけるON/OFF状態の往復数に換算すると、20から25往復に相当する。   FIG. 25 shows a chromatogram showing the tendency of the peak area (height) when the sample concentration is fixed to 50 mg / 50 mL and the sample load is changed in the sample analysis using the analyzer of Example 2. . The amount of sample (alizanine green) solution loaded was 2.5 μL (a), 5 μL (b), 10 μL (c), 15 μL (d), 20 μL (e), 25 μL (f), 50 μL (g) It is. It can be seen that, when any sample amount is used, a constant peak height, that is, a constant dilution rate is exhibited from the fourth to fifth sample dilutions. When the fourth to fifth sample dilution is converted into the number of reciprocations in the ON / OFF state in the suction / discharge means (18b), it corresponds to 20 to 25 reciprocations.

試料希釈13回目(図25aから25gの#13)のときの、試料負荷量とピーク面積との関係を図26に示す。2.5μLから50μLの広い範囲で良好な直線関係が認められ、定量的な希釈が行なわれていることがわかる。前述したように、希釈部(14)に往復動作方式(図7a)を採用した、図14から図16に示す本発明の分析装置では、直線関係が得られたのが15μLまでであったため、実施例2の分析装置により直線関係が得られる容量が2倍以上拡大していることがわかる。よって、希釈部(14)に循環動作方式(図7b)を採用した、実施例2の分析装置は、効率的に撹拌希釈操作が行なえるため、試料負荷量が多い場合でも高精度に試料成分の分析が行なえる。   FIG. 26 shows the relationship between the sample load and the peak area at the 13th sample dilution (# 13 in FIGS. 25a to 25g). A good linear relationship is recognized in a wide range of 2.5 μL to 50 μL, and it is understood that quantitative dilution is performed. As described above, in the analyzer of the present invention shown in FIGS. 14 to 16 adopting the reciprocating operation method (FIG. 7a) in the dilution section (14), the linear relationship was obtained up to 15 μL. It turns out that the capacity | capacitance from which the linear relationship is acquired with the analyzer of Example 2 has expanded 2 times or more. Therefore, since the analyzer of Example 2 adopting the circulation operation method (FIG. 7b) in the dilution section (14) can efficiently perform the stirring / dilution operation, the sample components can be accurately obtained even when the sample load is large. Can be analyzed.

実施例3
特願2010−268560号で開示のステップグラジエント流路系を利用した本発明の分析装置(図27)を用いて、血液成分中のグリコヘモグロビン量の分析を行なった。
Example 3
The amount of glycohemoglobin in blood components was analyzed using the analyzer of the present invention (FIG. 27) using the step gradient channel system disclosed in Japanese Patent Application No. 2010-268560.

送液ポンプ(1a、1b、1c)はUNIFLOWS製UP002SZWB、試料導入バルブ(2)および流路切り替えバルブ(12a、12b)は、少なくとも2つの貫通孔を設けた第1のステータと第1のステータと同じ数の貫通孔を設けた第2のステータと第1のステータおよび第2のステータにより液密に挟まれ、かつ第1のステータと第2のステータに設けた貫通孔を連通可能な外周部に歯車を設けたロータシールとを備えた流路切り替えバルブと、駆動手段と前記ロータシールの外周部に設けた歯車と噛合させて前記駆動手段からの動力を伝達する手段とを備えたロータシール回転手段と、を備えたバルブ(特願2010−031095号)を、ループ(6a)として試料導入バルブ(2)のロータシールに設けた0.5μLの溝を、ループ(6b)は流路切り替えバルブ(12a)外部に設けた容量11μLのループを、ループ(6c)は流路切り替えバルブ(12b)外部に設けた容量47μLのループを、分析カラム(3)は東ソー製TSKgel SP−NPR(内径0.3mmID、長さ35mm、粒径3μm)を、検出器(5)は東ソー製紫外可視検出器UV−8020(マイクロセル)(検出波長:415nm)を、溶離液(バッファ)(8a、8b、8c)は東ソー製グリコヘモグロビン分析計HLC−723GHbVIII用溶離液を基本に一部濃度変更したものを、試料(検体)(7)は東ソー製HbA1cコントロール(レベル1または2)または東ソー製HbA1cキャリブレーター(CALIB_1またはCALIB_2)を純水で希釈したものを用いた。   The liquid feed pumps (1a, 1b, 1c) are UP002SZWB made by UNIFLOWS, the sample introduction valve (2) and the flow path switching valves (12a, 12b) are a first stator and a first stator provided with at least two through holes. The second stator having the same number of through holes as the first stator, the first stator, and the second stator are liquid tightly sandwiched, and the outer periphery that allows the through holes provided in the first stator and the second stator to communicate with each other Rotor comprising: a flow path switching valve provided with a rotor seal provided with a gear on the part; and a means for transmitting the power from the drive means by meshing with a drive means and a gear provided on the outer periphery of the rotor seal A valve (Japanese Patent Application No. 2010-031095) having a seal rotation means is provided as a loop (6a) on the rotor seal of the sample introduction valve (2). The loop (6b) is a loop with a capacity of 11 μL provided outside the flow path switching valve (12a), and the loop (6c) is a loop with a capacity of 47 μL provided outside the flow path switching valve (12b). ) Is Tosoh TSKgel SP-NPR (inner diameter 0.3 mm ID, length 35 mm, particle size 3 μm), detector (5) is Tosoh UV-Vis detector UV-8020 (microcell) (detection wavelength: 415 nm) The eluents (buffers) (8a, 8b, 8c) were prepared by changing the concentration of the eluent for the glycohemoglobin analyzer HLC-723GHbVIII manufactured by Tosoh Co., Ltd. Level 1 or 2) or a Tosoh HbA1c calibrator (CALIB_1 or CALIB_2) diluted with pure water It was used.

希釈部(14)は図7bに示す吸引/吐出の流路が異なる形式(循環動作方式)を採用した。なお、希釈ポート(31)は2mm×5mm×深さ20mmの直方体形状(図8b)である。希釈液送液手段(17)は電磁式ダイアフラムポンプである高砂電気製定量吐出ポンプMVP−50を、吸引吐出手段(18a)は希釈液送液手段(17)と同じポンプから逆止弁を除いたものを、吸引吐出手段(18b)は高砂電気製定量吐出ポンプPKP−500から逆止弁を除いたものを、それぞれ用いた。   The diluting section (14) employs a form (circulation operation method) in which the suction / discharge flow paths shown in FIG. 7b are different. The dilution port (31) has a rectangular parallelepiped shape (FIG. 8b) of 2 mm × 5 mm × depth 20 mm. The diluent feeding means (17) is a Takasago Electric fixed discharge pump MVP-50, which is an electromagnetic diaphragm pump, and the suction discharge means (18a) is the same pump as the diluent feeding means (17) except for the check valve. As the suction discharge means (18b), those obtained by removing the check valve from the Takasago Electric fixed discharge pump PKP-500 were used.

試料の希釈および希釈試料の分析は以下の方法で行なった。
(I)実施例1の(a)から(d)と同様な方法で試料の負荷および希釈を行なった(図28から32)。なお、付加した試料の形態は、
(I−1)液体試料を直接負荷する形態、
(I−2)約0.5mmφ(アルミ材)の芯棒部と脱脂綿を巻き付けた約1mmφの吸収部(16aa)からなる、アズピュア工業用綿棒AP−8(アズワン製、品番:1−8584−08)(16a)の吸収部(16aa)に試料液に浸漬し、余分な液滴を排除した形態(図9および10)、
(I−3)幅2.5mm、長さ200mm、厚み200μmの樹脂シートの先端に、横2.5ミリ、幅2.5ミリのセルロース濾紙からなる吸収部(16ba)を熱融着させた試験片(16b)に試料液に浸漬し、余分な液滴を排除した形態(図11および12)、
のいずれかである。
(II)試料希釈終了後、試料導入バルブ(2)をLoad状態からInjection状態)に切り替え、ループ(6a)に充填した希釈試料を、バッファA(押出液)(8a)で押し出す(毎分11μL)形で分析カラム(3)に導入する(図33)。
(III)分析カラム(3)へのバッファA(押出液)(8a)の導入開始0.25分後に、試料導入バルブ(2)をInjection状態からLoad状態に戻し、再び検体(試料)の希釈が可能な状態とする。一方、2つの流路切り替えバルブ(12a、12b)はそれぞれOFF状態からON状態に切り替えることで、ループ(6b、6c)に充填したバッファBおよびバッファCが、バッファAで押し出す形で分析カラムに導入されるようにする。これにより、導入開始後0から0.25分はバッファA、0.25から1.25分はバッファB、1.25分以降はバッファCが送液されるステップグラジエントが行なわれることになる(図34)。
Dilution of the sample and analysis of the diluted sample were performed by the following method.
(I) The sample was loaded and diluted in the same manner as in Examples 1 (a) to (d) (FIGS. 28 to 32). The form of the added sample is
(I-1) A form in which a liquid sample is directly loaded,
(I-2) Aspure cotton swab AP-8 (manufactured by ASONE, product number: 1-8584-) consisting of a core rod portion of about 0.5 mmφ (aluminum material) and an absorbent portion (16aa) of about 1 mmφ wound with absorbent cotton. 08) A form (FIGS. 9 and 10) in which the excess liquid droplets are removed by immersing the sample liquid in the absorption part (16aa) of (16a),
(I-3) An absorption part (16ba) made of cellulose filter paper having a width of 2.5 mm and a width of 2.5 mm was heat-sealed to the tip of a resin sheet having a width of 2.5 mm, a length of 200 mm, and a thickness of 200 μm. A form (FIGS. 11 and 12) in which excess liquid droplets are removed by immersing the specimen (16b) in the sample liquid
One of them.
(II) After completion of sample dilution, the sample introduction valve (2) is switched from the Load state to the Injection state, and the diluted sample filled in the loop (6a) is pushed out by the buffer A (extrusion solution) (8a) (11 μL per minute) ) Into the analytical column (3) (FIG. 33).
(III) 0.25 minutes after the start of introduction of the buffer A (extrusion liquid) (8a) into the analytical column (3), the sample introduction valve (2) is returned from the injection state to the load state, and the specimen (sample) is diluted again. Is possible. On the other hand, the two flow path switching valves (12a, 12b) are respectively switched from the OFF state to the ON state, so that the buffer B and the buffer C filled in the loop (6b, 6c) are pushed out by the buffer A to the analysis column. To be introduced. As a result, a step gradient is performed in which the buffer A is sent from 0 to 0.25 minutes after the start of introduction, the buffer B is sent from 0.25 to 1.25 minutes, and the buffer C is sent from 1.25 minutes onwards. FIG. 34).

図27に示す本発明の分析装置を用いた試料分析において、HbA1cキャリブレータ(CALIB_2)凍結乾燥品を純水0.5mLに溶解して得られた試料を直接、5μL(a)、10μL(b)、15μL(c)、20μL(d)、40μL(e)負荷したときのクロマトグラムを図36に示す。また、図36の結果を基に、試料負荷量に対するA1cおよびA0のピーク面積値をプロットした結果を図37に示す。負荷した試料量に比例してA1cおよびA0の面積が増加しており、相関性も良好であることがわかる。   In the sample analysis using the analyzer of the present invention shown in FIG. 27, a sample obtained by dissolving a freeze-dried product of HbA1c calibrator (CALIB_2) in 0.5 mL of pure water was directly added to 5 μL (a), 10 μL (b). FIG. 36 shows chromatograms when 15 μL (c), 20 μL (d), and 40 μL (e) are loaded. FIG. 37 shows the result of plotting the peak area values of A1c and A0 against the sample load based on the result of FIG. It can be seen that the areas of A1c and A0 increase in proportion to the amount of sample loaded, and the correlation is good.

図27に示す本発明の分析装置を用いた試料分析において、HbA1cキャリブレータ(CALIB_2)凍結乾燥品を純水0.25mLに溶解して得られた試料(原液)(a)および、用手法により2倍(b)、4倍(c)、8倍(d)希釈した試料を、それぞれ10μLずつ直接負荷したときのクロマトグラムを図38に示す。また、図38の結果を基に、負荷した試料液の濃度(希釈率)に対するA1cおよびA0のピーク面積値をプロットした結果を図39に示す。負荷した試料濃度(希釈率)に比例してA1cおよびA0の面積が増加しており、相関性も良好であることがわかる。   In the sample analysis using the analyzer of the present invention shown in FIG. 27, a sample (stock solution) (a) obtained by dissolving a freeze-dried product of HbA1c calibrator (CALIB_2) in 0.25 mL of pure water and 2 according to the method used. FIG. 38 shows a chromatogram when 10 μL of a sample diluted twice (b), 4 times (c), and 8 times (d) is directly loaded. FIG. 39 shows the result of plotting the peak area values of A1c and A0 against the concentration (dilution rate) of the loaded sample solution based on the results of FIG. It can be seen that the areas of A1c and A0 increase in proportion to the loaded sample concentration (dilution rate), and the correlation is also good.

図27に示す本発明の分析装置を用いて、液体試料を直接負荷したときの再現性評価結果を図40および表2に示す。試料は東ソー製HbA1cコントロール(レベル2)凍結乾燥品を純水0.5mLに溶解したものを使用した。図40aは代表的なクロマトグラム、図40bは測定毎のA1cおよびA0の溶出時間をプロットした結果、図40cは測定毎のA1c(%)をプロットした結果、図40dは希釈率を算出するために用いた検量線、表2は測定毎のA1cおよびA0の溶出時間ならびにピーク面積、A1c(%)をまとめたものである。A1cおよびA0の溶出時間の再現性(CV)は、それぞれ0.51%、0.47%と良好であり、希釈装置を介して試料導入を行なっても、試料の空打ちなどの現象が生じていないことを示唆している。A1cおよびA0の面積の再現性(CV)は、それぞれ7.2%、7.3%程度であったが、A1c(%)の再現性(CV)は0.52%と非常に良好であり、定量性には問題ないことが確認できた。なお、用手法で事前に作製した検量線(図40d)から、本条件で得られた希釈率は1/45.5と算出された。   FIG. 40 and Table 2 show the reproducibility evaluation results when the liquid sample was directly loaded using the analyzer of the present invention shown in FIG. A sample prepared by dissolving a freeze-dried product of HbA1c control (level 2) manufactured by Tosoh in 0.5 mL of pure water was used. FIG. 40a is a representative chromatogram, FIG. 40b is a result of plotting the elution time of A1c and A0 for each measurement, FIG. 40c is a result of plotting A1c (%) for each measurement, and FIG. 40d is for calculating the dilution rate. Table 2 summarizes the elution time, peak area, and A1c (%) of A1c and A0 for each measurement. The reproducibility (CV) of elution time of A1c and A0 is 0.51% and 0.47%, respectively, and even if the sample is introduced through a diluting device, a phenomenon such as sample blanking occurs. Suggests not. The area reproducibility (CV) of A1c and A0 was about 7.2% and 7.3%, respectively, but the reproducibility (CV) of A1c (%) was very good at 0.52%. It was confirmed that there was no problem in quantitativeness. It should be noted that the dilution rate obtained under these conditions was calculated to be 1 / 45.5 from the calibration curve (FIG. 40d) prepared in advance by the usage method.

Figure 2013040879
液体試料の代わりに、綿棒(図9)先端の吸収部に試料を吸収させた形態で負荷したときの、再現性評価結果を図41および表3に示す。試料は東ソー製HbA1cコントロール(レベル2)凍結乾燥品を純水0.25mLに溶解したものを使用した。図41aは代表的なクロマトグラム、図41bは測定毎のA1cおよびA0の溶出時間をプロットした結果、図41cは測定毎のA1c(%)をプロットした結果、図41dは希釈率を算出するために用いた検量線、表3は測定毎のA1cおよびA0の溶出時間ならびにピーク面積、A1c(%)をまとめたものである。綿棒を媒体として試料を負荷および希釈操作を行ない、その希釈検体を液体クロマトグラフに導入、分析を行なっても良好なクロマトグラムが得られていることがわかる(図41a)。A1cおよびA0の溶出時間の再現性(CV)はそれぞれ、0.71%、0.44%と良好であり、希釈装置を介して注入を行なっても、試料の空打ちなどの現象が生じていないことを示唆している。A1cおよびA0のピーク面積の再現性(CV)はそれぞれ、13.5%、13.5%程度と、前記の液体試料を直接負荷する方式より劣っていたものの、A1c(%)の再現性(CV)は0.17%と非常に良好であり、定量性には問題ないことが確認できた。なお、用手法で事前に作製した検量線(図41d)から、本条件で得られた希釈率は1/55.3と算出された。
Figure 2013040879
FIG. 41 and Table 3 show the reproducibility evaluation results when the sample was absorbed in the absorbent portion at the tip of the cotton swab (FIG. 9) instead of the liquid sample. A sample prepared by dissolving a freeze-dried HbA1c control (level 2) manufactured by Tosoh in 0.25 mL of pure water was used. 41a is a representative chromatogram, FIG. 41b is a result of plotting the elution time of A1c and A0 for each measurement, FIG. 41c is a result of plotting A1c (%) for each measurement, and FIG. 41d is for calculating the dilution rate. Table 3 summarizes the elution time, peak area, and A1c (%) of A1c and A0 for each measurement. It can be seen that a good chromatogram was obtained even when the sample was loaded and diluted with a cotton swab as a medium, and the diluted specimen was introduced into a liquid chromatograph and analyzed (FIG. 41a). The reproducibility (CV) of elution time of A1c and A0 is 0.71% and 0.44%, respectively, and even if injection is performed through a diluting device, a phenomenon such as sample blanking occurs. Suggests not. The reproducibility (CV) of the peak areas of A1c and A0 was about 13.5% and 13.5%, respectively, which was inferior to the method of directly loading the liquid sample, but the reproducibility of A1c (%) ( CV) was very good at 0.17%, and it was confirmed that there was no problem in the quantitativeness. It should be noted that the dilution rate obtained under these conditions was calculated as 1 / 55.3 from a calibration curve (FIG. 41d) prepared in advance by the usage method.

Figure 2013040879
実施例4
図27に示す本発明の分析装置のうち、希釈部(14)を図7aに示す吸引/吐出の流路が共通の形式(往復動作方式)とし、希釈ポート(31)を直径5mmΦ×深さ20mmの円柱形状(図8a)(容積は約400μL)とした分析装置(以下、実施例4の分析装置)を用いて、実施例3と同様に、試料の希釈および希釈試料の分析を行なった。
Figure 2013040879
Example 4
In the analyzer of the present invention shown in FIG. 27, the diluting section (14) has the same type (reciprocating operation method) as the suction / discharge flow path shown in FIG. 7a, and the dilution port (31) has a diameter of 5 mmΦ × depth. The sample was diluted and the diluted sample was analyzed in the same manner as in Example 3 using an analyzer (hereinafter, the analyzer of Example 4) having a 20 mm cylindrical shape (FIG. 8 a) (volume is about 400 μL). .

図27に示す本発明の分析装置を用いて、試験片(図11)先端の吸収部に試料を吸収させた形態で負荷したときの再現性評価結果を図42および表4に示す。試料は東ソー製HbA1cコントロール(レベル2)凍結乾燥品を純水0.25mLに溶解したものを使用した。図42aは代表的なクロマトグラム、図42bは測定毎のA1cおよびA0の溶出時間をプロットした結果、図42cは測定毎のA1c(%)をプロットした結果、図42dは希釈率を算出するために用いた検量線、表4は測定毎のA1cおよびA0の溶出時間ならびにピーク面積、A1c(%)をまとめたものである。試料片を媒体として試料を負荷および希釈操作を行ない、その希釈検体を液体クロマトグラフに導入、分析を行なっても良好なクロマトグラムが得られていることがわかる(図42a)。A1cおよびA0の溶出時間の再現性(CV)はそれぞれ、0.39%、0.29%と良好であり、希釈装置を介して注入を行なっても、試料の空打ちなどの現象が生じていないことを示唆している。A1cおよびA0のピーク面積の再現性(CV)はそれぞれ、16.0%、15.5%程度と、前記の液状検体を直接負荷する方式より劣っていたものの、A1c(%)の再現性(CV)は1.3%と良好であり、定量性には問題ないことが確認できた。ただし、希釈部(14)に循環動作方式(図7b)を採用した図27に示す分析装置と比較すると、A1c(%)の再現性は悪化していることから、綿棒や試験片の吸収部に試料を吸収させたものを負荷して測定する場合は、希釈部(14)に循環動作方式(図7b)を採用した分析装置が好ましいといえる。なお、用手法で事前に作製した検量線(図42d)から、本条件で得られた希釈率は1/94.0と算出された。   FIG. 42 and Table 4 show the reproducibility evaluation results when the sample is loaded in a form in which the sample is absorbed in the absorption part at the tip of the test piece (FIG. 11) using the analyzer of the present invention shown in FIG. A sample prepared by dissolving a freeze-dried HbA1c control (level 2) manufactured by Tosoh in 0.25 mL of pure water was used. 42a is a representative chromatogram, FIG. 42b is a result of plotting the elution time of A1c and A0 for each measurement, FIG. 42c is a result of plotting A1c (%) for each measurement, and FIG. 42d is for calculating the dilution rate. Table 4 summarizes the elution time, peak area, and A1c (%) of A1c and A0 for each measurement. It can be seen that a good chromatogram is obtained even when the sample is loaded and diluted with the sample piece as a medium, and the diluted specimen is introduced into the liquid chromatograph and analyzed (FIG. 42a). The reproducibility (CV) of the elution time of A1c and A0 is as good as 0.39% and 0.29%, respectively, and even if injection is performed through a diluting device, a phenomenon such as sample blanking has occurred. Suggests not. The reproducibility (CV) of the peak areas of A1c and A0 was about 16.0% and 15.5%, respectively, which was inferior to the method of directly loading the liquid specimen, but the reproducibility of A1c (%) ( CV) was as good as 1.3%, and it was confirmed that there was no problem in quantitativeness. However, since the reproducibility of A1c (%) is deteriorated as compared with the analyzer shown in FIG. 27 in which the circulation operation method (FIG. 7b) is adopted as the dilution part (14), the absorbent part of the swab or the test piece In the case of measuring by loading a sample that has been absorbed, it is preferable to use an analyzer that employs a circulation operation method (FIG. 7b) in the dilution section (14). Note that the dilution rate obtained under these conditions was calculated to be 1 / 94.0 from the calibration curve (FIG. 42d) prepared in advance by the usage method.

Figure 2013040879
Figure 2013040879

1:送液ポンプ
2:試料導入バルブ
3:分析カラム
4:カラム恒温槽
5:検出器
6:ループ
7:試料(検体)
8:溶離液(バッファ)
9:洗浄液
10:シリンジ
11:電磁弁
12:希釈液
13:流路切り替えバルブ
14:希釈部
15:送液部
16a:綿棒
16b:試験片
17:希釈液送液手段
18:吸引吐出手段
19:吸引口
20:吸引吐出口
21:逆止弁
22:反応用配管
31:希釈ポート
32:ドレン受け
33:ドレンポート
34:流路
41:ダイヤフラム
42:ピストン
43:スプリング
44:容量調整ねじ
45:電磁コイル
46:電源
51:マニホールド
52:流路
1: Liquid feed pump 2: Sample introduction valve 3: Analysis column 4: Column thermostat 5: Detector 6: Loop 7: Sample (specimen)
8: Eluent (buffer)
9: Washing liquid 10: Syringe 11: Solenoid valve 12: Dilution liquid 13: Flow path switching valve 14: Dilution section 15: Liquid feeding section 16a: Cotton swab 16b: Test piece 17: Dilution liquid feeding section 18: Suction discharge section 19: Suction port 20: Suction / discharge port 21: Check valve 22: Reaction piping 31: Dilution port 32: Drain port 33: Drain port 34: Flow path 41: Diaphragm 42: Piston 43: Spring 44: Capacity adjustment screw 45: Electromagnetic Coil 46: Power supply 51: Manifold 52: Flow path

Claims (4)

溶液を送液する送液手段と、
試料を充填可能なループと前記ループに試料を充填する試料充填手段とを設け、前記試料充填手段で前記ループに試料を充填可能な状態と前記ループに充填した試料を前記送液手段で送液された溶液により送液可能な状態とを切り替え可能な、試料導入手段と、
検出手段と、を備えた分析装置であって、
前記試料充填手段が、
試料を希釈する希釈液の供給部と、
試料を負荷し前記希釈液により前記試料の希釈を行なう希釈部と、
吸引口および吐出口を有し前記希釈液を当該吸引口から吐出口に送液可能な希釈液送液手段と、液体を保留可能なダイヤフラムと吸引吐出口とを有し当該ダイヤフラム内の液体を吸引吐出可能な一以上の吸引吐出手段と、を設けた、前記希釈液の送液および前記希釈部により希釈された希釈試料の吸引吐出が可能な送液部と、
を備えた手段である、前記装置。
A liquid feeding means for feeding the solution;
A loop that can be filled with a sample and a sample filling means that fills the loop with a sample are provided. The sample filling means can fill the loop with the sample and the sample filled in the loop is fed by the liquid feeding means. A sample introduction means capable of switching between a state in which liquid can be fed by the prepared solution;
An analysis device comprising a detection means,
The sample filling means comprises:
A diluent supply for diluting the sample;
A dilution section for loading the sample and diluting the sample with the diluent;
A dilution liquid feeding means having a suction port and a discharge port and capable of feeding the diluted liquid from the suction port to the discharge port, a diaphragm capable of holding the liquid, and a suction discharge port, and the liquid in the diaphragm One or more suction / discharge means capable of suction / discharge, and a liquid-feeding unit capable of sucking and discharging the diluted solution and the diluted sample diluted by the dilution unit,
A device comprising: said device.
第1の溶液を送液する送液手段と、
第2の溶液を充填可能なループと前記ループに第2の溶液を充填する第1の充填手段とを設け、第1の充填手段で第2の溶液を前記ループに充填可能な状態と前記ループに充填した第2の溶液を送液手段で送液された第1の溶液により送液可能な状態とを切り替え可能な、第1の流路切り替え手段と、
第n(nは3以上)の溶液を充填可能なループと前記ループに第nの溶液を充填する第(n−1)の充填手段とを設け、第(n−1)の充填手段で第nの溶液を前記ループに充填可能な状態と前記ループに充填した第nの溶液を送液手段で送液された第1の溶液により送液可能な状態とを切り替え可能な、第(n−1)の流路切り替え手段と、
を備え、第(n−1)の流路切り替え手段を第(n−2)の流路切り替え手段に設けたループに備えた、流路系と、
試料を充填可能なループと前記ループに試料を充填する試料充填手段とを設け、前記試料充填手段で試料を充填可能な状態と前記ループに充填した試料を前記送液手段で送液された第1の溶液により送液可能な状態とを切り替え可能な、試料導入手段と、
検出手段と、
を備えた分析装置であって、前記試料充填手段が、
試料を希釈する希釈液の供給部と、
試料を負荷し前記希釈液により前記試料の希釈を行なう希釈部と、
吸引口および吐出口を有し前記希釈液を当該吸引口から吐出口に送液可能な希釈液送液手段と、液体を保留可能なダイヤフラムと吸引吐出口とを有し当該ダイヤフラム内の液体を吸引吐出可能な一以上の吸引吐出手段と、を設けた、前記希釈液の送液および前記希釈部により希釈された希釈試料の吸引吐出が可能な送液部と、
を備えた手段である、前記装置。
Liquid feeding means for feeding the first solution;
A loop that can be filled with a second solution and a first filling means that fills the loop with the second solution, a state in which the second solution can be filled into the loop by the first filling means, and the loop A first flow path switching means capable of switching between a state in which the second solution filled in the liquid can be fed by the first solution fed by the liquid feeding means;
A loop capable of filling the nth (n is 3 or more) solution and a (n-1) th filling means for filling the nth solution in the loop are provided, and the (n-1) th filling means The nth solution can be switched between a state in which the n solution can be filled in the loop and a state in which the nth solution filled in the loop can be fed by the first solution fed by the liquid feeding means. 1) the flow path switching means;
A flow path system provided in a loop provided with the (n-1) th flow path switching means in the (n-2) th flow path switching means,
A loop capable of filling a sample and a sample filling means for filling the loop with a sample are provided, and a state in which the sample can be filled by the sample filling means and a sample filled in the loop are fed by the liquid feeding means. A sample introduction means capable of switching between a state in which liquid can be fed by one solution;
Detection means;
The sample filling means comprises:
A diluent supply for diluting the sample;
A dilution section for loading the sample and diluting the sample with the diluent;
A dilution liquid feeding means having a suction port and a discharge port and capable of feeding the diluted liquid from the suction port to the discharge port, a diaphragm capable of holding the liquid, and a suction discharge port, and the liquid in the diaphragm One or more suction / discharge means capable of suction / discharge, and a liquid-feeding unit capable of sucking and discharging the diluted solution and the diluted sample diluted by the dilution unit,
A device comprising: said device.
前記希釈部が、
希釈液または希釈検体を保留し、かつ検体の負荷が可能な希釈ポートと、
前記希釈ポートの外周部に設けた、希釈液または希釈検体の排出が可能なドレンポートと、
前記希釈ポートの底部と前記吸引吐出手段が有する吸引吐出口の一つとを連通させるための第一の流路と、
前記希釈ポートの側面部と第一の流路とを連通させるための第二の流路と、
を設け、前記第一の流路および第二の流路にそれぞれ逆止弁を有した、請求項1または2に記載の分析装置。
The dilution section is
A dilution port that holds the diluted solution or diluted sample and can load the sample,
A drain port provided on an outer peripheral portion of the dilution port and capable of discharging a diluted solution or a diluted specimen;
A first flow path for communicating the bottom of the dilution port with one of the suction and discharge ports of the suction and discharge means;
A second flow path for communicating the side surface portion of the dilution port with the first flow path;
The analyzer according to claim 1 or 2, wherein a check valve is provided in each of the first flow path and the second flow path.
分析装置が液体クロマトグラフ装置である、請求項1から3のいずれかに記載の分析装置。 The analyzer according to any one of claims 1 to 3, wherein the analyzer is a liquid chromatograph.
JP2011178995A 2011-08-18 2011-08-18 Analytical device with sample dilution device Active JP5754298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011178995A JP5754298B2 (en) 2011-08-18 2011-08-18 Analytical device with sample dilution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011178995A JP5754298B2 (en) 2011-08-18 2011-08-18 Analytical device with sample dilution device

Publications (2)

Publication Number Publication Date
JP2013040879A true JP2013040879A (en) 2013-02-28
JP5754298B2 JP5754298B2 (en) 2015-07-29

Family

ID=47889415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178995A Active JP5754298B2 (en) 2011-08-18 2011-08-18 Analytical device with sample dilution device

Country Status (1)

Country Link
JP (1) JP5754298B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187318A (en) * 2016-04-01 2017-10-12 東ソー株式会社 Dilution mixer with pinch valves
CN114432943A (en) * 2015-07-24 2022-05-06 新型微装置有限责任公司(Dba 新型装置) Sample extraction device and method of use thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198864A (en) * 1981-05-30 1982-12-06 Shimadzu Corp Mixing device for solvent of high-speed liquid chromatograph
JPS6189166U (en) * 1984-11-15 1986-06-10
JPH05119036A (en) * 1991-10-25 1993-05-14 Hitachi Ltd Particle measuring device
JPH0882580A (en) * 1994-09-10 1996-03-26 Horiba Ltd Reagent injection device and method
JPH09171024A (en) * 1995-12-19 1997-06-30 Toa Medical Electronics Co Ltd Sample stirrer
JPH09274048A (en) * 1996-04-04 1997-10-21 Tosoh Corp Pretreatment apparatus
JP2000199763A (en) * 1998-12-29 2000-07-18 Sysmex Corp Sample treatment apparatus
JP2002267649A (en) * 2001-03-12 2002-09-18 Shiseido Co Ltd Drive program for high-speed liquid chromatographic apparatus and record medium
JP2003247987A (en) * 2002-02-27 2003-09-05 Shimadzu Corp Liquid chromatograph system
JP2008175650A (en) * 2007-01-17 2008-07-31 Fuji Silysia Chemical Ltd Chromatography device, chromatography system, and separation method
JP2011013045A (en) * 2009-06-30 2011-01-20 Tosoh Corp Sample liquid dilution method and liquid chromatograph apparatus using the same
JP2012117934A (en) * 2010-12-01 2012-06-21 Tosoh Corp Step gradient flow channel system
JP2012247224A (en) * 2011-05-25 2012-12-13 Tosoh Corp Specimen dilution apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198864A (en) * 1981-05-30 1982-12-06 Shimadzu Corp Mixing device for solvent of high-speed liquid chromatograph
JPS6189166U (en) * 1984-11-15 1986-06-10
JPH05119036A (en) * 1991-10-25 1993-05-14 Hitachi Ltd Particle measuring device
JPH0882580A (en) * 1994-09-10 1996-03-26 Horiba Ltd Reagent injection device and method
JPH09171024A (en) * 1995-12-19 1997-06-30 Toa Medical Electronics Co Ltd Sample stirrer
JPH09274048A (en) * 1996-04-04 1997-10-21 Tosoh Corp Pretreatment apparatus
JP2000199763A (en) * 1998-12-29 2000-07-18 Sysmex Corp Sample treatment apparatus
JP2002267649A (en) * 2001-03-12 2002-09-18 Shiseido Co Ltd Drive program for high-speed liquid chromatographic apparatus and record medium
JP2003247987A (en) * 2002-02-27 2003-09-05 Shimadzu Corp Liquid chromatograph system
JP2008175650A (en) * 2007-01-17 2008-07-31 Fuji Silysia Chemical Ltd Chromatography device, chromatography system, and separation method
JP2011013045A (en) * 2009-06-30 2011-01-20 Tosoh Corp Sample liquid dilution method and liquid chromatograph apparatus using the same
JP2012117934A (en) * 2010-12-01 2012-06-21 Tosoh Corp Step gradient flow channel system
JP2012247224A (en) * 2011-05-25 2012-12-13 Tosoh Corp Specimen dilution apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432943A (en) * 2015-07-24 2022-05-06 新型微装置有限责任公司(Dba 新型装置) Sample extraction device and method of use thereof
JP2017187318A (en) * 2016-04-01 2017-10-12 東ソー株式会社 Dilution mixer with pinch valves

Also Published As

Publication number Publication date
JP5754298B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6367195B2 (en) Gradient liquid feeder in sample analyzer
KR101299644B1 (en) Liquid chromatography device and liquid chromatography
JP6035603B2 (en) Sample introduction device
JP6309439B2 (en) Hemoglobin analyzer
JP5643340B2 (en) Automatic analyzer with low-pressure in-line filter action
JP2015092166A5 (en)
JP5754298B2 (en) Analytical device with sample dilution device
US9981263B2 (en) Flow control apparatus for sample fluids
JP4613279B2 (en) High-throughput autosampler
JP6329131B2 (en) Sample injection device for flow analysis device, flow analysis device, and hemoglobin component measurement method
JP2007512515A5 (en)
JP5810630B2 (en) Sample dilution device
RU2730922C2 (en) Device and method for high-accuracy sampling of liquids in an automatic sample analyzer
JP2869158B2 (en) Automatic sample introduction method and automatic sample introduction device
CN112469998A (en) Fluid channel containing conductivity sensor and method of use thereof
JP2015028452A (en) Sample introduction method and sample introduction device
KR20230047123A (en) Point-of-care medical diagnostic analyzer and sample's medical diagnostic analysis device, system, and method
JP2017187318A (en) Dilution mixer with pinch valves
CN116583732A (en) Flow path cleaning method for automatic sampler and flow path cleaning device for automatic sampler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R151 Written notification of patent or utility model registration

Ref document number: 5754298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151