JP2013040740A - Heat exchanger testing device and heat exchanger testing method - Google Patents

Heat exchanger testing device and heat exchanger testing method Download PDF

Info

Publication number
JP2013040740A
JP2013040740A JP2011179293A JP2011179293A JP2013040740A JP 2013040740 A JP2013040740 A JP 2013040740A JP 2011179293 A JP2011179293 A JP 2011179293A JP 2011179293 A JP2011179293 A JP 2011179293A JP 2013040740 A JP2013040740 A JP 2013040740A
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
liquid
lift
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011179293A
Other languages
Japanese (ja)
Other versions
JP5726019B2 (en
Inventor
Takeshi Mizuno
全 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2011179293A priority Critical patent/JP5726019B2/en
Publication of JP2013040740A publication Critical patent/JP2013040740A/en
Application granted granted Critical
Publication of JP5726019B2 publication Critical patent/JP5726019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/06Lifting of liquids by gas lift, e.g. "Mammutpumpe"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a testing device for a heat exchanger which is used for an air separator of a cryogenic distillation method, and a heat exchanger testing method used for the device.SOLUTION: The testing device includes a mixed liquid tank 1 storing mixed liquid containing liquefied nitrogen and liquefied oxygen under atmospheric pressure, a heat exchanger 2 for inspection to which a mixed liquid is supplied from a mixed liquid tank 1 using head difference, an air lift pump 11 which uses lift gas composed of mixed gas of nitrogen gas and oxygen gas to recycle a mixed liquid flown from the heat exchanger 2 for inspection into the mixed liquid tank 1, and a lift gas cooler 4 for cooling lift gas prepared from nitrogen gas and oxygen gas and supplying the cooled lift gas to the air lift pump 11, which are disposed in a vacuum heat insulation tank, respectively.

Description

本発明は、深冷分離方式の空気分離装置に使用可能なドライコンデンサー、ダウンフローリボイラーなどの熱交換器表面の液体空気、液化酸素、液化窒素等の流動、微量不純物の蓄積、固化状況等を大気圧下で長時間観測が可能な熱交換器試験装置、及び熱交換器試験方法に関する。   The present invention relates to the flow of liquid air, liquefied oxygen, liquefied nitrogen, etc. on the surface of heat exchangers such as dry condensers and downflow reboilers that can be used in cryogenic separation type air separation devices, accumulation of trace impurities, solidification status, etc. The present invention relates to a heat exchanger test apparatus capable of long-term observation under atmospheric pressure, and a heat exchanger test method.

空気(大気)は窒素、酸素等からなる混合ガスであり、地表付近の乾燥空気中の窒素、酸素、アルゴン及びその他の希ガスの濃度測定位置により変わらずほぼ一定であるが、水素、二酸化炭素、一酸化炭素、窒素酸化物等の濃度は測定位置により大きく変わる。
大気の組成から、二酸化炭素、水その他の微量成分を除くと空気は窒素78.11%、酸素20.96%、及びアルゴン0.93%の3成分からなる混合ガスである。これらの混合ガスから単独成分を取り出し、付加価値のある製品を作り出す操作を空気分離と総称されている。これらのガスは各種工業分野において大量に使用されており、目的・規模に適した空気分離装置が開発されている。
Air (atmosphere) is a mixed gas consisting of nitrogen, oxygen, etc., and is almost constant regardless of the concentration measurement position of nitrogen, oxygen, argon and other rare gases in the dry air near the surface, but hydrogen, carbon dioxide The concentration of carbon monoxide, nitrogen oxides, etc. varies greatly depending on the measurement position.
When carbon dioxide, water and other trace components are removed from the atmospheric composition, air is a mixed gas composed of three components of 78.11% nitrogen, 20.96% oxygen, and 0.93% argon. The operation of taking out a single component from these mixed gases and creating a product with added value is collectively referred to as air separation. These gases are used in large quantities in various industrial fields, and air separation apparatuses suitable for the purpose and scale have been developed.

空気分離装置は、分離するガスの製造量、純度によって、深冷分離法、PSA法、及び膜分離法を採用することができる。これらの分離法の中でも商業生産用として、空気を液化し沸点差により窒素や酸素を精留分離する装置である深冷分離法が重要である。
典型的な深冷分離法としては、上部塔(upper column 又はlow pressure column)と下部塔(lower column 又はhigh pressure column)の2つの蒸留塔からなる蒸留方式が広く採用されている(非特許文献1)。該蒸留方式において、下部塔には回収部とリボイラがなく、また上部塔の上側にはコンデンサがなく、下側に設置されたコンデンサ/リボイラ(condenser/reboiler)は上部塔の窒素上記を蒸発させるリボイラと下部塔からの窒素蒸気を液化させるコンデンサが一体となった熱交換器が通常使用されている。
The air separation apparatus can employ a cryogenic separation method, a PSA method, and a membrane separation method depending on the production amount and purity of the gas to be separated. Among these separation methods, a cryogenic separation method which is an apparatus for liquefying air and rectifying nitrogen and oxygen by a difference in boiling point is important for commercial production.
As a typical cryogenic separation method, a distillation system comprising two distillation columns, an upper column (upper column or low pressure column) and a lower column (lower column or high pressure column), is widely employed (Non-Patent Documents). 1). In the distillation system, the lower column has no recovery section and reboiler, the upper column has no condenser, and the condenser / reboiler installed below evaporates the nitrogen in the upper column. A heat exchanger in which a reboiler and a condenser for liquefying nitrogen vapor from the lower tower are integrated is usually used.

原料空気は下部塔の底部に供給され、蒸留により頂部の液体窒素と底部の酸素富化液体空気に分けられる。下部塔の液体窒素と液体空気は還流液又はフィードとして上部塔に供給される。上部塔では窒素は塔頂部に濃縮され、酸素は塔底部に回収される。液体酸素はコンデンサ/リボイラで下部塔の窒素蒸気により加熱されて気化し、上部塔を上昇する。このとき、下部塔の窒素蒸気はコンデンサ/リボイラで上部塔の液体窒素によって液化され、下部塔に還流液として戻る。
下部塔の圧力は上部塔の圧力と密接な関係にある。すなわち、上部塔の底部の圧力は通常150kPa程度なので、液体窒素が蒸発する温度は約93Kである。窒素蒸気を液体酸素の蒸発温度より1〜2度高い温度、約95Kで液化させるためには、窒素蒸気の圧力を560kPa程度に保つ必要がある。
The feed air is fed to the bottom of the lower column and is separated by distillation into top liquid nitrogen and bottom oxygen enriched liquid air. Liquid nitrogen and liquid air in the lower column are fed to the upper column as reflux or feed. In the upper column, nitrogen is concentrated at the top and oxygen is recovered at the bottom. Liquid oxygen is heated and vaporized by nitrogen vapor in the lower column in the condenser / reboiler, and rises in the upper column. At this time, the nitrogen vapor in the lower column is liquefied by the liquid nitrogen in the upper column in the condenser / reboiler and returns to the lower column as a reflux liquid.
The pressure in the lower column is closely related to the pressure in the upper column. That is, since the pressure at the bottom of the upper column is usually about 150 kPa, the temperature at which liquid nitrogen evaporates is about 93K. In order to liquefy nitrogen vapor at a temperature of about 95 K, which is 1 to 2 degrees higher than the evaporation temperature of liquid oxygen, it is necessary to maintain the pressure of nitrogen vapor at about 560 kPa.

このようなコンデンサ/リボイラに使用される熱交換器は、ダウンフローリボイラーとも称され、プレートフィン(plate-fin)型、チューブフィン(tube-fin)型等が知られている。プレートフィン型は基本的には空気流路を形成するフィン部と高温側流路部(こちら側にもフィンが設けられることがある)とが交互に積層された構造を持つ。通常使用されるフィンとしては平板フィン、波条フィン、断続面フィン等が知られている。チューブフィン型は基本的には管とその外側に設けられたフィンより構成される。   A heat exchanger used for such a condenser / reboiler is also referred to as a downflow reboiler, and a plate fin type, a tube fin type, and the like are known. The plate fin type basically has a structure in which fin portions forming an air flow path and high-temperature side flow path portions (fins may also be provided on this side) are alternately stacked. As fins that are normally used, flat plate fins, corrugated fins, interrupted surface fins and the like are known. The tube fin type is basically composed of a tube and fins provided outside the tube.

また、アルゴンガスを製造する場合、上記上部塔の中段付近から蒸気を粗アルゴン塔に供給し、該粗アルゴン塔の塔頂部の粗アルゴンは粗アルゴン凝縮器により凝縮されて高純度アルゴン蒸留塔に供給される(特許文献1)。この場合、粗アルゴン凝縮器は浸漬式でもよく、また、粗アルゴン塔とは別個に設けたドライコンデンサーでもよい。
このように深冷分離法の空気分離装置に使用される熱交換器のうち、熱交換器内で気液状態変化を起こすものは、熱交換器の流路における流体の状況や流体中の微量成分の濃縮、蓄積、熱交換器内での汚れなど、空気分離性能や長時間の安定運転に重要な要素を含んでいる(特許文献2、3)。
一方、実際の空気分離装置では、分離の対象なる流体がいずれも液体の酸素、窒素、空気であり、熱交換器自体の温度も非常に低いので、そのため熱交換器内の流体の流動を外部から目視観測することは困難であり、また、極低温下での使用に耐え、かつ外部との断熱が可能な実験設備を作成することも従来は困難であった。
In addition, when producing argon gas, steam is supplied to the crude argon tower from near the middle stage of the upper tower, and the crude argon at the top of the crude argon tower is condensed by the crude argon condenser into a high-purity argon distillation tower. (Patent Document 1). In this case, the crude argon condenser may be an immersion type, or a dry condenser provided separately from the crude argon column.
Of the heat exchangers used in the air separation apparatus of the cryogenic separation method, those that cause a change in the gas-liquid state in the heat exchanger are the conditions of the fluid in the flow path of the heat exchanger and the trace amount in the fluid. It contains important elements for air separation performance and long-term stable operation, such as concentration and accumulation of components, and contamination in the heat exchanger (Patent Documents 2 and 3).
On the other hand, in an actual air separation device, the fluids to be separated are all liquid oxygen, nitrogen, and air, and the temperature of the heat exchanger itself is very low. It has been difficult to make an experimental facility that can withstand use at extremely low temperatures and can be insulated from the outside.

また、低温の液体酸素、液体窒素中に含まれる微量の高沸点不純物が空気分離装置等の熱交換器内で固化、凝縮、蓄積する状況も同様に観測することはできない。特に、微量不純物に関しては、熱交換器内に微量の不純物を含んだ大量の液化ガスを流し続けた上で、熱交換器内流路表面を観察する必要があり、そのためには長時間の安定した液体酸素と液体窒素の供給を確保しなければならない。
通常の深冷分離法による空気分離器内の熱交換器は、0.05〜0.6MPa(G)程度であり、この条件を再現するための実験装置を作成することは、実際の生産設備を作成するに等しい費用が必要となる。
Similarly, it is impossible to observe the situation where a small amount of high-boiling impurities contained in low-temperature liquid oxygen or liquid nitrogen solidifies, condenses or accumulates in a heat exchanger such as an air separation device. In particular, for trace impurities, it is necessary to observe the surface of the flow path in the heat exchanger after flowing a large amount of liquefied gas containing a small amount of impurities in the heat exchanger. Supply of liquid oxygen and liquid nitrogen must be ensured.
The heat exchanger in the air separator by the ordinary cryogenic separation method is about 0.05 to 0.6 MPa (G), and creating an experimental apparatus for reproducing this condition is an actual production facility. An equal cost will be required to create.

空気分離装置等の熱交換器内を観察するにために、大気圧下開放系の試験設備で、かつ大量の液体窒素や液体酸素を被検体である熱交換器に循環供給させ、観察したいときだけファイバースコープを被検体に挿入する方法が提案されている(特許文献4)。   In order to observe the inside of a heat exchanger such as an air separator, when you want to observe by circulating and supplying a large amount of liquid nitrogen or liquid oxygen to the heat exchanger that is the subject in an open test system under atmospheric pressure Only a method for inserting a fiberscope into a subject has been proposed (Patent Document 4).

一方、液体窒素や液体酸素を循環させるためには、供給液をポンプアップさせる必要があり、その手段として、液供給用ポンプ、エアリフトの利用がある(特許文献5)。
液供給ポンプや液の強制気化を含む液面加圧は、高圧ガスの製造行為となり、そのための設備要件を満たすためにはコスト負担が大きくなる。一方、エアリフトポンプは、大気圧下での操作に限定されるものの高圧ガスの製造行為にならず、コスト負担が少なく簡素な方法である。しかし、熱交換器の試験等液組成が異なる混合物の場合、エアリフトポンプに用いるリフトガスの温度や組成、圧力によって、組成変化や、侵入熱量による大幅な気化を伴う問題があった。
On the other hand, in order to circulate liquid nitrogen and liquid oxygen, it is necessary to pump up the supply liquid. As a means for that, there is a liquid supply pump and an air lift (Patent Document 5).
The liquid surface pressurization including the liquid supply pump and the forced vaporization of the liquid becomes an act of producing a high-pressure gas, and the cost burden is increased in order to satisfy the equipment requirements for that purpose. On the other hand, the air lift pump is limited to operation under atmospheric pressure, but is not a high-pressure gas manufacturing act, and is a simple method with less cost burden. However, in the case of a mixture having different liquid compositions such as a test of a heat exchanger, there is a problem that the composition is changed depending on the temperature, composition, and pressure of the lift gas used in the air lift pump, and the vaporization is greatly caused by the amount of intrusion heat.

特開平10−82582号公報Japanese Patent Laid-Open No. 10-82582 特開平11−241881号公報Japanese Patent Laid-Open No. 11-241881 特開平11−337286号公報JP 11-337286 A 特開平10−211435号公報JP 10-2111435 A 特公平08−020157号公報Japanese Patent Publication No. 08-020157

「超伝導・低温工学ハンドブック」、社団法人 低温工学協会編、オーム社発行、平成5年11月30日発行、p174〜p179 "Superconductivity / Cryogenic Engineering Handbook", edited by the Association of Low Temperature Engineering, published by Ohmsha, published on November 30, 1993, p174-p179

このように空気分離装置等の熱交換器表面の観察を簡素化するために、過大な設備を必要とすることなく、液体窒素や液体酸素の利用も最小として、ファイバースコープ等が設置可能で、高圧ガスの製造設備とすることなく、液体窒素や液体酸素を循環利用するための試験方法が必要とされていた。
液化ガスを極低温に冷却して大気圧下(又は0.2MPa(G)未満)で使用すると、高圧ガスの法的な制限が少なくなり、また容器等の内圧が0.2MPa(G)未満の場合でも、密封系で気液状態変化を伴う場合は、高圧ガスの製造設備として設備要件を満たす必要があるので開放系で使用すれば高圧ガスの製造設備の法的な制限が少なくなる。
一方、液体窒素と酸素を循環させて使用する場合には、ポンプアップ等何らかの動力を用いて一旦使用した試験容器に供給した液体窒素と酸素を供給元にリサイクルする必要がある。
本発明は、上記従来技術の問題点に鑑みてなされたものであり、深冷分離法の空気分離装置に使用される、熱交換器の使用状態を想定した試験を行うに際して、該熱交換器に供給する液体窒素や液体酸素からなる混合液の濃度変化を極力少なくし、かつ長時間該混合液をリサイクルすることが可能で、高圧ガス製造設備にも該当しない熱交換器試験装置、及び該装置を使用する熱交換器試験方法を提供することを目的とする。
In order to simplify the observation of the surface of the heat exchanger such as an air separation device in this way, without using excessive equipment, the use of liquid nitrogen or liquid oxygen can be minimized, and a fiberscope can be installed. There has been a need for a test method for circulating liquid nitrogen and liquid oxygen without using high-pressure gas production equipment.
When the liquefied gas is cooled to a very low temperature and used under atmospheric pressure (or less than 0.2 MPa (G)), the legal restrictions on the high-pressure gas are reduced, and the internal pressure of the container or the like is less than 0.2 MPa (G). Even in this case, when the gas-liquid state is changed in a sealed system, it is necessary to satisfy the equipment requirements as a high-pressure gas production facility, so that the legal restrictions on the high-pressure gas production facility are reduced if it is used in an open system.
On the other hand, when liquid nitrogen and oxygen are circulated and used, it is necessary to recycle the liquid nitrogen and oxygen supplied to the test container once used by some power such as pump-up to the supply source.
The present invention has been made in view of the above-described problems of the prior art, and when performing a test assuming a use state of a heat exchanger used in an air separation apparatus of a cryogenic separation method, the heat exchanger A heat exchanger test apparatus that can minimize the change in the concentration of the liquid mixture composed of liquid nitrogen and liquid oxygen supplied to the gas, and can recycle the liquid mixture for a long time, and does not fall under high-pressure gas production facilities; An object is to provide a heat exchanger test method using the apparatus.

本発明者等は、上記課題に鑑み鋭意検討した結果、所定濃度に調整された液体窒素や液体酸素からなる混合液を被検体である検査用熱交換器に循環させるために、エアリフトポンプ手段を採用し、かつ該エアリフトポンプ用のリフトガスを該混合液と平衡な気相組成と同じ組成で該ガス温度を該混合液の温度よりも多少高めの一定温度範囲に制御することにより、該混合液の濃度変化を少なくし、かつ長時間該混合液をリサイクルすることが可能で、高圧ガス製造設備にも該当しない熱交換器試験装置、及び熱交換器試験方法を見出し、本発明を完成させるに至った。   As a result of intensive studies in view of the above problems, the present inventors have determined that an air lift pump means is used to circulate a liquid mixture composed of liquid nitrogen or liquid oxygen adjusted to a predetermined concentration to a test heat exchanger as a subject. Adopting the lift gas for the air lift pump with the same composition as the gas phase composition in equilibrium with the liquid mixture, and controlling the gas temperature within a certain temperature range slightly higher than the temperature of the liquid mixture, In order to complete the present invention, a heat exchanger test apparatus and a heat exchanger test method that can reduce the concentration change of the liquid and that can recycle the mixed solution for a long time and are not applicable to high-pressure gas production facilities are found. It came.

すなわち本発明は、以下の(1)〜(6)に記載する発明を要旨とする。
(1)真空断熱槽内にそれぞれ配置されている、
(i)大気圧下で液化窒素と液化酸素を含む混合液(L)が収納された混合液槽(A)と、
(ii)混合液槽(A)からヘッド差を利用して混合液(L)が供給される、検査用熱交換器(B)と、
(iii)検査用熱交換器(B)から流出してきた混合液(L)を窒素ガスと酸素ガスの混合ガスからなるリフトガス(G)を使用して混合液槽(A)にリサイクルするエアリフトポンプ(C)と、
(iv)窒素ガスと酸素ガスから調製されたリフトガス(G)を冷却してエアリフトポンプ(C)に供給するためのリフトガス冷却器(D)と、
からなることを特徴とする、熱交換器試験装置(以下、第1の態様ということがある)。
(2)前記混合液槽(A)に収納されている混合液(L)を調製するための、液化窒素容器及び液化酸素容器、又は液化窒素容器、液化酸素容器、及び不純物ガス容器が設けられていることを特徴とする、前記(1)に記載の熱交換器試験装置。
(3)前記混合液槽(A)中の混合液(L)の酸素濃度を測定するための酸素濃度計が設置されていることを特徴とする、前記(1)又は(2)に記載の熱交換器試験装置。
(4)前記リフトガス冷却器(D)に供給する、窒素ガスと酸素ガスからなるリフトガス(G)を調製するための、窒素ガス供給配管と酸素ガス供給配管にそれぞれ流量調製器が設けられていることを特徴とする、前記(1)から(3)のいずれかに記載の熱交換器試験装置。
(5)リフトガス冷却器(D)が大気圧下での液化窒素、又は液化窒素と液化酸素からなる混合液によりリフトガス(G)を間接熱交換で冷却する熱交換器であることを特徴とする、前記(1)から(4)のいずれかに記載の熱交換器試験装置。
That is, the gist of the present invention is the invention described in the following (1) to (6).
(1) Arranged in the vacuum insulation tank,
(I) a liquid mixture tank (A) containing a liquid mixture (L) containing liquefied nitrogen and liquefied oxygen under atmospheric pressure;
(Ii) a heat exchanger for inspection (B) to which the liquid mixture (L) is supplied from the liquid mixture tank (A) using the head difference;
(Iii) An air lift pump that recycles the mixed liquid (L) flowing out from the inspection heat exchanger (B) into the mixed liquid tank (A) using a lift gas (G) composed of a mixed gas of nitrogen gas and oxygen gas. (C) and
(Iv) a lift gas cooler (D) for cooling the lift gas (G) prepared from nitrogen gas and oxygen gas and supplying it to the air lift pump (C);
A heat exchanger test apparatus (hereinafter, also referred to as a first aspect).
(2) A liquefied nitrogen container and a liquefied oxygen container, or a liquefied nitrogen container, a liquefied oxygen container, and an impurity gas container are provided for preparing the mixed liquid (L) stored in the mixed liquid tank (A). The heat exchanger test apparatus according to (1) above, wherein
(3) The oxygen concentration meter for measuring the oxygen concentration of the mixed solution (L) in the mixed solution tank (A) is installed, as described in (1) or (2) above Heat exchanger test device.
(4) A flow rate adjuster is provided in each of the nitrogen gas supply pipe and the oxygen gas supply pipe for preparing the lift gas (G) composed of nitrogen gas and oxygen gas supplied to the lift gas cooler (D). The heat exchanger test apparatus according to any one of (1) to (3), wherein:
(5) The lift gas cooler (D) is a heat exchanger that cools the lift gas (G) by indirect heat exchange using liquefied nitrogen under atmospheric pressure or a mixed liquid composed of liquefied nitrogen and liquefied oxygen. The heat exchanger test apparatus according to any one of (1) to (4).

(6)大気圧下で液化窒素と液化酸素を含む混合液(L)が収納された混合液槽(A)から、ヘッド差を利用して混合液(L)を検査用熱交換器(B)に供給し、検査用熱交換器(B)から流出してきた混合液(L)を、リフトガス冷却器(D)で冷却された、窒素ガスと酸素ガスの混合ガスからなるリフトガス(G)を用いたエアリフトポンプ(C)により、混合液槽(A)にリサイクルする、熱交換器試験方法であって、
該エアリフトポンプ(C)に供給するリフトガス(G)が混合液槽(A)中の混合液(L)の液組成に平衡なガス組成であり、かつエアリフトポンプ(C)内の混合液(L)の温度よりも3〜10℃高いことを特徴とする、熱交換器試験方法(以下、第2の態様ということがある)。
(6) From the mixed liquid tank (A) containing the mixed liquid (L) containing liquefied nitrogen and liquefied oxygen under atmospheric pressure, the mixed liquid (L) is removed from the mixed liquid tank (L) using the head difference. ), And the mixed liquid (L) flowing out from the heat exchanger for inspection (B) is cooled by a lift gas cooler (D), and lift gas (G) composed of a mixed gas of nitrogen gas and oxygen gas is obtained. A heat exchanger test method for recycling to the mixed liquid tank (A) by the air lift pump (C) used,
The lift gas (G) supplied to the air lift pump (C) has a gas composition that is in equilibrium with the liquid composition of the liquid mixture (L) in the liquid mixture tank (A), and the liquid mixture (L ) 3 to 10 ° C. higher than the temperature of the heat exchanger test method (hereinafter sometimes referred to as the second embodiment).

本発明の熱交換器試験装置によれば、液化窒素と液化酸素からなる混合液を大気圧下で使用する装置仕様となっているので、高圧ガス製造設備には該当しない。
混合液槽(A)から検査用熱交換器(B)への混合液(L)の供給はヘッド差を利用し、検査用熱交換器(B)から混合液槽(A)への該混合液(L)リサイクルはエアリフトポンプ(C)を使用するので、回転機等の動力を必要とするポンプは使用しないので簡素な熱交換器試験装置である。
また、特に微量不純物を含む混合液(L)を検査用熱交換器(B)に連続的に、長時間、安定的に供給することが可能になる。
更に、検査用熱交換器(B)の表面を観察可能なようにファイバースコープを検査用熱交換器(B)表面近傍に挿入することにより、熱交換器表面での高沸点不純物の固化、凝縮、蓄積状況を容易に観測することが可能である。
これらの設備上の機能により、(i)長時間の連続的な運転試験が可能になり、実設備に近い熱交換器の運転条件を安定的に持続させ、(ii)液体窒素、液体酸素及び不純物の補充及びこれらの調整頻度を著しく低減させることを可能にした。これらは検査用熱交換器(B)の汚れや熱交換効率の低下など、経時的に変化する状況試験に好適かつ、顕著に観測できる状態を作り出すことができる。
According to the heat exchanger test apparatus of the present invention, since it is an apparatus specification that uses a mixed liquid composed of liquefied nitrogen and liquefied oxygen under atmospheric pressure, it does not correspond to a high-pressure gas production facility.
Supply of the mixed liquid (L) from the mixed liquid tank (A) to the inspection heat exchanger (B) utilizes the head difference, and the mixing from the inspection heat exchanger (B) to the mixed liquid tank (A). Since the liquid (L) recycling uses the air lift pump (C), a pump that requires power such as a rotating machine is not used, and therefore, it is a simple heat exchanger test apparatus.
Moreover, it becomes possible to supply the liquid mixture (L) containing a particularly small amount of impurities to the inspection heat exchanger (B) continuously and stably for a long time.
Furthermore, by inserting a fiberscope near the surface of the heat exchanger for inspection (B) so that the surface of the heat exchanger for inspection (B) can be observed, solidification and condensation of high-boiling impurities on the surface of the heat exchanger It is possible to easily observe the accumulation status.
These facilities functions enable (i) continuous operation test for a long time, stably maintain the heat exchanger operating conditions close to the actual facilities, and (ii) liquid nitrogen, liquid oxygen and It was possible to remarkably reduce the replenishment of impurities and their adjustment frequency. These are suitable for a state test that changes over time, such as contamination of the heat exchanger for inspection (B) and a decrease in heat exchange efficiency, and can create a state that can be observed remarkably.

又、本発明の熱交換器試験方法によれば混合液槽(A)から検査用熱交換器(B)への混合液(L)の供給はヘッド差を利用し、検査用熱交換器(B)から混合液槽(A)への該混合液(L)リサイクルはエアリフトポンプ(C)を使用し、かつエアリフトポンプ(C)に供給するリフトガス(G)を混合液槽(A)中の混合液(L)と同組成として、エアリフトポンプ(C)内の混合液(L)の温度よりも3〜10℃高い温度とすることにより、混合液(L)の組成変化を極力少なくでき、組成変化を少なくした混合液(L)を検査用熱交換器(B)に安定的に循環することが可能になる。又、本発明の熱交換器試験方法によれば熱交換器表面での高沸点不純物の固化、凝縮、蓄積状況を観察するのに実用上極めて有用である。   Further, according to the heat exchanger test method of the present invention, the supply of the mixed liquid (L) from the mixed liquid tank (A) to the inspection heat exchanger (B) utilizes the head difference, and the inspection heat exchanger ( The liquid mixture (L) from the B) to the liquid mixture tank (A) is recycled using the air lift pump (C), and the lift gas (G) supplied to the air lift pump (C) is contained in the liquid mixture tank (A). As the same composition as the liquid mixture (L), the composition change of the liquid mixture (L) can be reduced as much as possible by setting the temperature 3 to 10 ° C. higher than the temperature of the liquid mixture (L) in the air lift pump (C), It becomes possible to stably circulate the mixed liquid (L) with reduced composition change to the heat exchanger for inspection (B). Also, the heat exchanger test method of the present invention is extremely useful in practice for observing the state of solidification, condensation and accumulation of high boiling point impurities on the surface of the heat exchanger.

本発明の熱交換器試験装置の典型例を示す概念図である。It is a conceptual diagram which shows the typical example of the heat exchanger test apparatus of this invention. 大気圧下における混合液(L)中の液体窒素濃度(モル%)と気相中の窒素濃度(モル%)の平衡図である。It is an equilibrium diagram of liquid nitrogen concentration (mol%) in liquid mixture (L) under atmospheric pressure and nitrogen concentration (mol%) in a gaseous phase.

以下、本発明の第1の態様である、〔1〕熱交換器試験装置、及び第2の態様である〔2〕熱交換器試験方法について説明する。
〔1〕熱交換器試験装置
本発明の第1の態様である「熱交換器試験装置」は、
真空断熱槽内にそれぞれ配置されている、
(i)大気圧下で液化窒素と液化酸素を含む混合液(L)が収納された混合液槽(A)と、
(ii)混合液槽(A)からヘッド差を利用して混合液(L)が供給される、検査用熱交換器(B)と、
(iii)検査用熱交換器(B)から流出してきた混合液(L)を窒素ガスと酸素ガスの混合ガスからなるリフトガス(G)を使用して混合液槽(A)にリサイクルするエアリフトポンプ(C)と、
(iv)窒素ガスと酸素ガスから調製されたリフトガス(G)を冷却してエアリフトポンプ(C)に供給するためのリフトガス冷却器(D)と、
からなることを特徴とする。
尚、上記混合液槽(A)、検査用熱交換器(B)、エアリフトポンプ(C)、及びリフトガス冷却器(D)は混合液(L)の冷却温度を維持するためにそれぞれ真空断熱槽内に配置されていて、これらの装置間に流出入する混合液(L)用配管、及びリフトガス(G)用配管は真空による断熱構造とされている。
Hereinafter, [1] a heat exchanger test apparatus, which is a first aspect of the present invention, and [2] a heat exchanger test method, which is a second aspect, will be described.
[1] Heat exchanger test apparatus The “heat exchanger test apparatus” according to the first aspect of the present invention is:
It is arranged in each vacuum insulation tank,
(I) a liquid mixture tank (A) containing a liquid mixture (L) containing liquefied nitrogen and liquefied oxygen under atmospheric pressure;
(Ii) a heat exchanger for inspection (B) to which the liquid mixture (L) is supplied from the liquid mixture tank (A) using the head difference;
(Iii) An air lift pump that recycles the mixed liquid (L) flowing out from the inspection heat exchanger (B) into the mixed liquid tank (A) using a lift gas (G) composed of a mixed gas of nitrogen gas and oxygen gas. (C) and
(Iv) a lift gas cooler (D) for cooling the lift gas (G) prepared from nitrogen gas and oxygen gas and supplying it to the air lift pump (C);
It is characterized by comprising.
The mixed liquid tank (A), the heat exchanger for inspection (B), the air lift pump (C), and the lift gas cooler (D) are each a vacuum insulation tank in order to maintain the cooling temperature of the mixed liquid (L). The piping for the mixed liquid (L) and the piping for the lift gas (G) that are arranged inside and flow into and out of these devices have a heat insulating structure by vacuum.

本発明の熱交換器試験装置を典型例である図1を用いて説明する。尚、図1は本発明の熱交換器試験装置の例示であり、本発明の熱交換器試験装置は図1に示すものに限定されるものではない。
液体酸素容器21、液体窒素容器22、及び不純物ガス容器23から調製された混合液槽(A)1内の混合液(L)5は、開閉弁29を通って検査用熱交換器(B)2内にヘッド差で流入する。検査用熱交換器(B)2からエアリフトポンプ(C)11に流出した混合液(L)6は該ポンプ内のリフトガス導入管36に所定の速度で流入するリフトガス(G)39により揚液管37内で混合液(L)が揚液されて、循環ライン14を経て混合液槽(A)1にリサイクルされる。
The heat exchanger test apparatus of this invention is demonstrated using FIG. 1 which is a typical example. FIG. 1 is an illustration of the heat exchanger test apparatus of the present invention, and the heat exchanger test apparatus of the present invention is not limited to that shown in FIG.
The liquid mixture (L) 5 in the liquid mixture tank (A) 1 prepared from the liquid oxygen container 21, the liquid nitrogen container 22, and the impurity gas container 23 passes through the open / close valve 29 and is used as a heat exchanger for inspection (B). 2 in the head difference. The liquid mixture (L) 6 that has flowed from the inspection heat exchanger (B) 2 to the air lift pump (C) 11 is pumped by lift gas (G) 39 that flows into the lift gas introduction pipe 36 in the pump at a predetermined speed. The liquid mixture (L) is pumped in 37 and recycled to the liquid mixture tank (A) 1 via the circulation line 14.

リフトガス(G)は例えば、酸素ガス容器15、と窒素ガス容器16からそれぞれ流量制御器31、32により、流量が制御されて、混合液槽(A)1内の混合液(L)5と平衡にある気相組成と同じ組成となるように混合されてリフトガス(G)(冷却前)12が調製される。該リフトガスはリフトガス冷却器(D)4で冷却され、冷却されたリフトガス(G)(冷却後)13はエアリフトポンプ(C)11のリフトガス導入管36に流入する。
リフトガスの冷却器の例としては図1に示すように液体窒素18が収納されたリフトガス冷却器(D)4内に配設されたリフトガス(G)配管19内のリフトガス(G)は液体窒素18との間接熱交換により冷却される。
尚、混合液槽(A)1、エアリフトポンプ(C)11、リフトガス冷却器(D)4には大気に連通する排気口25、26、27がそれぞれ設けられていて、大気圧の圧力条件が維持されている。
図1において、混合液槽(A)は真空断熱槽a7内に、検査用熱交換器(B)とエアリフトポンプ(C)は真空断熱槽b8内に、リフトガス冷却器(D)は真空断熱槽c9内に、混合液(L)の冷却温度を維持するためにそれぞれ配置されているが、混合液槽(A)、検査用熱交換器(B)、エアリフトポンプ(C)、及びリフトガス冷却器(D)を収納する真空断熱槽はそれぞれ任意に組み合わせて真空断熱槽内に収納することも可能である。
For example, the flow rate of the lift gas (G) is controlled by the flow rate controllers 31 and 32 from the oxygen gas container 15 and the nitrogen gas container 16, respectively, and is in equilibrium with the mixed liquid (L) 5 in the mixed liquid tank (A) 1. The lift gas (G) (before cooling) 12 is prepared by mixing so as to have the same composition as the gas phase composition. The lift gas is cooled by the lift gas cooler (D) 4, and the cooled lift gas (G) (after cooling) 13 flows into the lift gas introduction pipe 36 of the air lift pump (C) 11.
As an example of the lift gas cooler, as shown in FIG. 1, the lift gas (G) in the lift gas (G) pipe 19 disposed in the lift gas cooler (D) 4 in which the liquid nitrogen 18 is accommodated is the liquid nitrogen 18. It is cooled by indirect heat exchange with.
The liquid mixture tank (A) 1, the air lift pump (C) 11, and the lift gas cooler (D) 4 are provided with exhaust ports 25, 26, and 27 that communicate with the atmosphere, respectively. Maintained.
In FIG. 1, the mixed solution tank (A) is in the vacuum heat insulation tank a7, the inspection heat exchanger (B) and the air lift pump (C) are in the vacuum heat insulation tank b8, and the lift gas cooler (D) is the vacuum heat insulation tank. c9 are arranged in order to maintain the cooling temperature of the mixed liquid (L), respectively, but the mixed liquid tank (A), the heat exchanger for inspection (B), the air lift pump (C), and the lift gas cooler The vacuum heat insulating tanks for storing (D) can be arbitrarily combined and stored in the vacuum heat insulating tank.

(1)混合液槽(A)
混合液槽(A)1内には、検査用熱交換器(B)内に供給する混合液(L)5が収納されている。混合液槽(A)内の混合液(L)は液体酸素容器21と液体窒素容器22から開閉弁28をそれぞれ経由して調製することができるが、該混合割合の調整は例えば、配設された酸素濃度計24の測定値と混合液槽(A)の液量から、混合液槽(A)に補充する液体酸素量と液体窒素量を演算し、液体酸素容器と液体窒素容器のそれぞれの重量の減少量を測定することにより調整、供給できる。
不純物ガスとしては、アルゴン、二酸化炭素、亜酸化窒素、一酸化炭素等から選択された1種または2種以上が挙げられ、不純物ガス容器23は複数設置することができる。
混合液槽(A)1の底部には混合液(L)5を検査用熱交換器(B)2に供給する配管が設けられている。
また、混合液槽(A)1内の混合液(L)の酸素濃度を測定するために酸素濃度計24を配設することができる。該酸素濃度の測定値と混合液量(L)の値から、液体酸素容器21と、液体窒素容器22から液体酸素と液体窒素をそれぞれ混合液槽(A)1に流入するための開閉弁28の開時間等を調整して、目的の濃度調整をおこなうことができる。
(1) Mixed liquid tank (A)
In the mixed solution tank (A) 1, a mixed solution (L) 5 to be supplied into the inspection heat exchanger (B) is accommodated. The mixed liquid (L) in the mixed liquid tank (A) can be prepared from the liquid oxygen container 21 and the liquid nitrogen container 22 via the on-off valve 28, respectively. From the measured value of the oxygen concentration meter 24 and the amount of liquid in the liquid mixture tank (A), the amount of liquid oxygen and liquid nitrogen to be replenished in the liquid mixture tank (A) are calculated, and the respective liquid oxygen containers and liquid nitrogen containers are calculated. It can be adjusted and supplied by measuring the weight loss.
Examples of the impurity gas include one or more selected from argon, carbon dioxide, nitrous oxide, carbon monoxide, and the like, and a plurality of impurity gas containers 23 can be installed.
A pipe for supplying the mixed solution (L) 5 to the inspection heat exchanger (B) 2 is provided at the bottom of the mixed solution tank (A) 1.
Further, an oxygen concentration meter 24 can be provided to measure the oxygen concentration of the mixed liquid (L) in the mixed liquid tank (A) 1. On-off valve 28 for flowing liquid oxygen and liquid nitrogen from liquid oxygen container 21 and liquid nitrogen container 22 into mixed liquid tank (A) 1 from the measured value of oxygen concentration and the value of liquid mixture (L), respectively. The target density can be adjusted by adjusting the opening time of the.

(2)検査用熱交換器(B)
検査用熱交換器(B)には前記混合液槽(A)から流量調節弁29を経由して混合液(L)が流入してくる。混合液槽(A)から検査用熱交換器(B)への混合液(L)の流れはヘッド差によりで行われ、混合液(L)の流量は流量調節弁29により制御することができる。
検査用熱交換器(B)としては、プレートフィン、チューブフィン等の実装置で使用される熱交換器、又はその一部が設置される。プレートフィンは混合液(L)流路を形成するフィン部と高温側流路部(該流路部側にもフィンが設けられる場合がある)とが交互に積層された構造を有する。チューブフィン型は管とその外側に設けられたフィンより構成される。
尚、検査用熱交換器(B)としては、塔底リボイラ、塔頂コンデンサ等が例示されるが、これらの検査用熱交換器(B)には、電熱ヒータ、温流体等で熱交換器側面を加熱する手段を設けておくと、検査用熱交換器(B)出口の混合液(L)を加熱した状態で配管6を通過、排出させることが可能になる。
(2) Inspection heat exchanger (B)
The mixed liquid (L) flows into the inspection heat exchanger (B) from the mixed liquid tank (A) through the flow rate adjustment valve 29. The flow of the mixed liquid (L) from the mixed liquid tank (A) to the inspection heat exchanger (B) is performed by the head difference, and the flow rate of the mixed liquid (L) can be controlled by the flow rate control valve 29. .
As the inspection heat exchanger (B), a heat exchanger used in an actual apparatus such as a plate fin or a tube fin, or a part thereof is installed. The plate fin has a structure in which fin portions that form a mixed liquid (L) flow path and high-temperature-side flow path sections (in some cases, fins are also provided on the flow path section side) are alternately stacked. A tube fin type is comprised from the pipe and the fin provided in the outer side.
The inspection heat exchanger (B) is exemplified by a tower bottom reboiler, a tower top condenser and the like. These inspection heat exchangers (B) are heat exchangers such as an electric heater and a hot fluid. If a means for heating the side surface is provided, the pipe 6 can be passed and discharged while the mixed liquid (L) at the exit of the heat exchanger for inspection (B) is heated.

検査用熱交換器(B)に混合液(L)が長時間循環させることにより、熱交換器内での前記不純物の固化、凝縮、蓄積状況を観測することが可能になる。
尚、これらの不純物ガスの沸点が非常に低く、観察のために装置を解体すると、不純物ガスが蒸発して観察不可能となることも想定される。このような場合には、検査用熱交換器(B)の表面を観察可能なようにファイバースコープを検査用熱交換器(B)表面近傍に挿入することにより、該熱交換器表面での固化、凝縮、蓄積状況を容易に観測することが可能である。
また、熱交換器は通常2種類の流体間で熱交換が行われるが、本発明の熱交換器試験装置における検査用熱交換器(B)に供給されるプロセス流体が混合液(L)1種類であるので、低温側に混合液(L)を流入させる場合には、前記高温側流路部に相当する側には混合液(L)が流入しないように、流路を閉止する閉止板等を取り付けて必要熱量を電気加熱等で供給するか、又は必要熱量をガス体で供給することにより検査用熱交換器(B)の該表面側を検査することができる。
By circulating the mixed liquid (L) through the inspection heat exchanger (B) for a long time, it becomes possible to observe the solidification, condensation, and accumulation of the impurities in the heat exchanger.
It should be noted that the boiling point of these impurity gases is very low, and if the apparatus is disassembled for observation, it is assumed that the impurity gases evaporate and cannot be observed. In such a case, the fiberscope is inserted in the vicinity of the surface of the heat exchanger for inspection (B) so that the surface of the heat exchanger for inspection (B) can be observed, and solidified on the surface of the heat exchanger. It is possible to easily observe the state of condensation and accumulation.
The heat exchanger normally exchanges heat between two types of fluids, and the process fluid supplied to the inspection heat exchanger (B) in the heat exchanger test apparatus of the present invention is a mixed liquid (L) 1. Since it is a kind, when the mixed liquid (L) is allowed to flow into the low temperature side, a closing plate that closes the flow path so that the mixed liquid (L) does not flow into the side corresponding to the high temperature side flow path section Etc. and the required heat quantity is supplied by electric heating or the like, or the required heat quantity is supplied as a gas body, whereby the surface side of the inspection heat exchanger (B) can be inspected.

(3)エアリフトポンプ(C)
検査用熱交換器(B)2からエアリフトポンプ(C)11に流出した混合液(L)6は該ポンプ内の揚液管37で、リフトガス導入管36に流入するリフトガス(G)39により揚液されて、混合液槽(A)1にリサイクルされる。
エアリフトポンプ(C)は通常二重の円管が用いられ、例えば図1に示すような内管側にリフトガス(G)13が供給されるリフトガス導入管36が設置され、外管側に混合液(L)が供給される揚液管37が設置される。該リフトガス(G)の流量は流量制御器31、32により制御される。流量制御器31,32の流量比は、混合液(L)の予め設定される濃度によって決定される。
尚、混合液(L)の循環量を大容量の循環とする場合には特許文献5に開示されているように、二重円管構造のエアリフトポンプの内管に上部側からリフトガスを供給して内管の下部側からリフトガスを放出する方式を採用することができる。
エアリフトポンプ(C)11への混合液(L)6の流入部近傍には温度指示計38を配設することにより、リフトガス(G)温度の設定範囲を決定することができる。
(3) Air lift pump (C)
The mixed liquid (L) 6 flowing out from the inspection heat exchanger (B) 2 to the air lift pump (C) 11 is lifted by a lift gas (G) 39 flowing into the lift gas introduction pipe 36 through a lift pipe 37 in the pump. Liquid is recycled to the mixed solution tank (A) 1.
As the air lift pump (C), a double circular pipe is usually used. For example, as shown in FIG. 1, a lift gas introduction pipe 36 to which a lift gas (G) 13 is supplied is installed on the inner pipe side, and a mixed liquid is installed on the outer pipe side. A liquid pumping pipe 37 to which (L) is supplied is installed. The flow rate of the lift gas (G) is controlled by flow rate controllers 31 and 32. The flow ratio of the flow controllers 31 and 32 is determined by the preset concentration of the liquid mixture (L).
When the circulation amount of the mixed liquid (L) is a large-capacity circulation, as disclosed in Patent Document 5, lift gas is supplied from the upper side to the inner pipe of an air lift pump having a double circular pipe structure. Thus, a method of releasing lift gas from the lower side of the inner pipe can be adopted.
By setting a temperature indicator 38 in the vicinity of the inflow portion of the mixed liquid (L) 6 to the air lift pump (C) 11, the setting range of the lift gas (G) temperature can be determined.

(4)リフトガス冷却器(D)
エアリフトポンプ(C)に供給される窒素ガスと酸素ガスからなるリフトガス(G)13は、例えば窒素ガス供給配管と酸素ガス供給配管にそれぞれ流量調製器31、32が設けられて所定の濃度と流量に調製される。
上記窒素ガスと酸素ガスの供給源としては、酸素ガス容器15と窒素ガス容器16を使用することができる。また、窒素ガスと酸素ガスからなるリフトガス(G)13の濃度調整は、前記酸素濃度計での測定値をもとに該エアリフトポンプ(C)11に供給するリフトガス(G)13が混合液槽(A)中の混合液(L)の液組成に平衡なガス組成であることが望ましい。これはエアリフトポンプ(C)から排出されるガス組成を混合液槽(A)の気相におけるガス組成と同じ組成として混合液槽(A)内の混合液(L)組成を可能な限り変更させないためである。
リフトガス(G)12を冷却するリフトガス冷却器(D)4は、図1に示すように大気圧下での液化窒素18、又は液化窒素と液化酸素からなる混合液によりリフトガス(G)を間接熱交換により冷却する熱交換方式を採用することができる。
尚、リフトガス冷却器(D)には、図1に示す液面指示計33と温度指示計34を設けることによりリフトガス(G)13の温度制御を容易化できる。
(4) Lift gas cooler (D)
The lift gas (G) 13 composed of nitrogen gas and oxygen gas supplied to the air lift pump (C) is provided with flow rate adjusters 31 and 32, for example, in a nitrogen gas supply pipe and an oxygen gas supply pipe, respectively. To be prepared.
As the supply source of the nitrogen gas and oxygen gas, an oxygen gas container 15 and a nitrogen gas container 16 can be used. Further, the concentration of the lift gas (G) 13 composed of nitrogen gas and oxygen gas is adjusted by the lift gas (G) 13 supplied to the air lift pump (C) 11 based on the value measured by the oxygen concentration meter. It is desirable that the gas composition be in equilibrium with the liquid composition of the mixed liquid (L) in (A). This is because the composition of the gas discharged from the air lift pump (C) is the same as the gas composition in the gas phase of the liquid mixture tank (A), and the composition of the liquid mixture (L) in the liquid mixture tank (A) is not changed as much as possible. Because.
The lift gas cooler (D) 4 that cools the lift gas (G) 12 indirectly heats the lift gas (G) with liquefied nitrogen 18 or a mixture of liquefied nitrogen and liquefied oxygen at atmospheric pressure as shown in FIG. It is possible to adopt a heat exchange system that cools by exchange.
Note that the lift gas cooler (D) can be easily provided with the liquid level indicator 33 and the temperature indicator 34 shown in FIG. 1 to facilitate the temperature control of the lift gas (G) 13.

(5)その他
前述のような熱交換器試験装置を使用することにより、液化窒素と液化酸素からなる混合液を大気圧下で使用する装置仕様とすることが可能となり、その結果、熱交換器試験装置は高圧ガス製造設備には該当しなくなる。
本発明の熱交換器試験装置は、混合液槽(A)から検査用熱交換器(B)への混合液(L)の供給はヘッド差を利用し、検査用熱交換器(B)から混合液槽(A)への該混合液(L)リサイクルはエアリフトポンプ(C)を使用するので、回転機等の動力を必要とするポンプは使用しないので簡素な試験装置である。また、微量不純物を含む混合液(L)を検査用熱交換器(B)に連続的に、長時間の安定的に供給することが可能になる。
更に、検査用熱交換器(B)の表面を観察可能なようにファイバースコープを検査用熱交換器(B)表面近傍に挿入することにより(特許文献4参照)、該熱交換器表面での高沸点不純物の固化、凝縮、蓄積状況を容易に観測することが可能になる。
(5) Others By using the heat exchanger test apparatus as described above, it becomes possible to make the apparatus specifications that use a mixed liquid composed of liquefied nitrogen and liquefied oxygen under atmospheric pressure. As a result, the heat exchanger The test equipment is no longer applicable to high pressure gas production facilities.
The heat exchanger test apparatus of the present invention uses the head difference to supply the mixed liquid (L) from the mixed liquid tank (A) to the inspection heat exchanger (B), and from the inspection heat exchanger (B). Since the mixed liquid (L) is recycled to the mixed liquid tank (A) by using the air lift pump (C), a pump that requires power such as a rotating machine is not used, so that it is a simple test apparatus. Moreover, it becomes possible to supply the liquid mixture (L) containing a trace amount of impurities continuously to the inspection heat exchanger (B) for a long period of time.
Furthermore, by inserting a fiberscope in the vicinity of the surface of the heat exchanger for inspection (B) so that the surface of the heat exchanger for inspection (B) can be observed (see Patent Document 4), the surface of the heat exchanger It is possible to easily observe the solidification, condensation, and accumulation of high-boiling impurities.

〔2〕熱交換器試験方法
本発明の第2の態様である「熱交換器試験方法」は、大気圧下で液化窒素と液化酸素を含む混合液(L)が収納された混合液槽(A)から、ヘッド差を利用して混合液(L)を検査用熱交換器(B)に供給し、検査用熱交換器(B)から流出してきた混合液(L)を、リフトガス冷却器(D)で冷却された、窒素ガスと酸素ガスの混合ガスからなるリフトガス(G)を用いたエアリフトポンプ(C)により、混合液槽(A)にリサイクルする、熱交換器試験方法であって、該エアリフトポンプ(C)に供給するリフトガス(G)が混合液槽(A)中の混合液(L)の液組成に平衡なガス組成であり、かつエアリフトポンプ(C)内の混合液(L)の温度よりも3〜10℃高いことを特徴とする。
[2] Heat Exchanger Test Method A “heat exchanger test method” according to the second aspect of the present invention is a mixed liquid tank (L) containing a mixed liquid (L) containing liquefied nitrogen and liquefied oxygen at atmospheric pressure ( From A), the mixed liquid (L) is supplied to the inspection heat exchanger (B) using the head difference, and the mixed liquid (L) flowing out from the inspection heat exchanger (B) is converted into the lift gas cooler. A heat exchanger test method for recycling to a mixed liquid tank (A) by an air lift pump (C) using a lift gas (G) composed of a mixed gas of nitrogen gas and oxygen gas cooled in (D). The lift gas (G) supplied to the air lift pump (C) has a gas composition that is in equilibrium with the liquid composition of the liquid mixture (L) in the liquid mixture tank (A), and the liquid mixture in the air lift pump (C) ( It is characterized by being 3 to 10 ° C. higher than the temperature of L).

(1)熱交換器試験方法に使用する熱交換器試験装置
熱交換器試験方法に使用する熱交換器試験装置は前記、第1の態様に記載した熱交換器試験装置を使用することができる。
(1) Heat exchanger test apparatus used in the heat exchanger test method The heat exchanger test apparatus described in the first aspect can be used as the heat exchanger test apparatus used in the heat exchanger test method. .

(2)混合液槽(A)における混合液(L)の調製
前記混合液槽(A)1内の混合液(L)5は、商業装置において想定される液化窒素と液化酸素の濃度、及び不純物ガスの種類とその濃度を考慮して、図1に示す、液化窒素容器22及び液化酸素容器21、又は液化窒素容器22、液化酸素容器21、及び不純物ガス容器23から開閉弁28をそれぞれ経由して調製することができるが、該混合割合の調整は例えば、液体酸素容器と液体窒素容器のそれぞれの重量の減少量を測定することにより調整できる。混合液槽(A)1内の混合液(L)の酸素濃度を測定するために酸素濃度計24を配設することができる。該酸素濃度の測定値と混合液量(L)の値から、開閉弁28の開時間等を調整して、目的の濃度調整を行うことができる。
また、前記不純物はアルゴン、二酸化炭素、亜酸化窒素等から選択された1種または2種以上とすることができる。
(2) Preparation of liquid mixture (L) in liquid mixture tank (A) The liquid mixture (L) 5 in the liquid mixture tank (A) 1 is a concentration of liquefied nitrogen and liquefied oxygen assumed in commercial equipment, and Considering the type and concentration of the impurity gas, the liquefied nitrogen container 22 and the liquefied oxygen container 21, or the liquefied nitrogen container 22, the liquefied oxygen container 21, and the impurity gas container 23 shown in FIG. The mixing ratio can be adjusted, for example, by measuring the respective weight reduction amounts of the liquid oxygen container and the liquid nitrogen container. In order to measure the oxygen concentration of the liquid mixture (L) in the liquid mixture tank (A) 1, an oxygen concentration meter 24 can be provided. The target concentration can be adjusted by adjusting the opening time of the on-off valve 28 from the measured value of the oxygen concentration and the value of the liquid mixture (L).
The impurities may be one or more selected from argon, carbon dioxide, nitrous oxide and the like.

(3)混合液槽(A)から検査用熱交換器(B)への混合液(L)の供給
混合液槽(A)1から検査用熱交換器(B)2への混合液(L)5の供給は、ヘッド差を利用して行われ、その流量は流量調節弁29により調節可能である。尚、該調節弁の下流側に流量指示計を設置することにより混合液(L)の循環量を把握することができるので、該循環量から流量調節弁29の開度を調整して所定の流量とすることができる。
(3) Supply of mixed liquid (L) from mixed liquid tank (A) to inspection heat exchanger (B) Mixed liquid (L) from mixed liquid tank (A) 1 to inspection heat exchanger (B) 2 ) 5 is supplied using the head difference, and the flow rate thereof can be adjusted by the flow rate adjusting valve 29. In addition, since the circulation amount of the mixed liquid (L) can be grasped by installing a flow rate indicator on the downstream side of the control valve, the opening degree of the flow rate control valve 29 is adjusted from the circulation amount to a predetermined amount. It can be a flow rate.

(4)エアリフトポンプ(C)による混合液(L)の循環
エアリフトポンプ(C)は、第1の態様に記載したリフトガス導入管と揚液管からなる二重円管を用いることができる。
図1に示すように、リフトガス導入管36が揚液管37の下端部側から上部に向かって浸漬されていて、該リフトガス導入管の上端部に開口部が設けられている。リフトガス導入管の下方側から、リフトガス(G)13を供給して、該リフトガス39の浮上力で混合液(L)を上昇させるものであり、構造的には従来の井戸水の汲上げ用、石油の輸送等に用いられているものと同様の方式である。なお、リフトガス導入管36の先端部には、リフトガス(G)を適度な大きさの気泡として混合液(L)中に噴出するためのノズルを設けておくことが好ましい。
(4) The circulating air lift pump (C) of the mixed liquid (L) by the air lift pump (C) can use the double circular pipe composed of the lift gas introduction pipe and the lift pipe described in the first aspect.
As shown in FIG. 1, the lift gas introduction pipe 36 is immersed from the lower end side to the upper side of the lift liquid pipe 37, and an opening is provided at the upper end part of the lift gas introduction pipe. The lift gas (G) 13 is supplied from the lower side of the lift gas introduction pipe, and the mixed liquid (L) is raised by the levitation force of the lift gas 39. It is the same system as that used for transportation of In addition, it is preferable to provide a nozzle for ejecting the lift gas (G) into the liquid mixture (L) as bubbles of an appropriate size at the tip of the lift gas introduction pipe 36.

上記のようなエアリフトポンプ(C)を低温液化ガスである混合液の揚液用等に用いると、リフトガス導入管から供給されるリフトガスの組成と温度により、リフトガスが混合液の一部を蒸発気化し、揚液駆動源である気泡量が増加し、リフトガスが混合液により冷却される結果、リフトガスが液化されて揚液駆動源である気泡量が減少するおそれがある。
従って、エアリフトポンプ(C)中に供給されたリフトガス(G)量を極力変化させないために、エアリフトポンプ(C)に供給するリフトガス(G)は混合液槽(A)中の混合液(L)の液組成に平衡なガス組成であり、かつエアリフトポンプ(C)内の混合液(L)の温度よりも3〜10℃高いことが望ましい。
When the above-described air lift pump (C) is used for pumping a liquid mixture that is a low-temperature liquefied gas, the lift gas evaporates part of the liquid mixture depending on the composition and temperature of the lift gas supplied from the lift gas introduction pipe. As a result, the amount of bubbles that are the pumping liquid drive source increases and the lift gas is cooled by the mixed liquid. As a result, the lift gas is liquefied and the amount of bubbles that are the pumping liquid drive source may decrease.
Therefore, the lift gas (G) supplied to the air lift pump (C) is the liquid mixture (L) in the liquid mixture tank (A) so as not to change the amount of lift gas (G) supplied into the air lift pump (C) as much as possible. It is desirable that the gas composition is in equilibrium with the liquid composition of the liquid and is 3 to 10 ° C. higher than the temperature of the liquid mixture (L) in the air lift pump (C).

(5)リフトガス冷却器(D)におけるリフトガス(G)の調製
エアリフトポンプ(C)に供給される窒素ガスと酸素ガスからなるリフトガス(G)は、窒素ガス供給配管と酸素ガス供給配管にそれぞれ流量調製器31、32が設けられて所定の濃度と流量に調製される。
上記窒素ガスと酸素ガスの供給源としては、窒素ガス容器と酸素ガス容器を使用することができる。また、窒素ガスと酸素ガスからなるリフトガス(G)の濃度調整は、前記酸素濃度計での測定値をもとに該エアリフトポンプ(C)に供給するリフトガス(G)が混合液槽(A)中の混合液(L)の液組成に平衡なガス組成であることが望ましい。これはエアリフトポンプ(C)から排出されるガス組成を混合液槽(A)の気相におけるガス組成と同じ組成として混合液槽(A)内の混合液(L)組成を可能な限り変更させないためである。例えば、図2に示す、大気圧下における混合液(L)中の液体窒素濃度(モル%)と気相中の窒素濃度(モル%)の平衡図から混合液槽(A)中の混合液(L)中の窒素濃度が20モル%のときは、リフトガス(G)中の窒素ガス濃度は46モル%程度が望ましい。
(5) Preparation of lift gas (G) in lift gas cooler (D) The lift gas (G) consisting of nitrogen gas and oxygen gas supplied to the air lift pump (C) is flowed into the nitrogen gas supply pipe and the oxygen gas supply pipe, respectively. Preparers 31 and 32 are provided to adjust to a predetermined concentration and flow rate.
As a supply source of the nitrogen gas and oxygen gas, a nitrogen gas container and an oxygen gas container can be used. Further, the concentration of the lift gas (G) composed of nitrogen gas and oxygen gas is adjusted by the lift gas (G) supplied to the air lift pump (C) based on the measured value by the oxygen concentration meter. The gas composition is preferably in equilibrium with the liquid composition of the mixed liquid (L) therein. This is because the composition of the gas discharged from the air lift pump (C) is the same as the gas composition in the gas phase of the liquid mixture tank (A), and the composition of the liquid mixture (L) in the liquid mixture tank (A) is not changed as much as possible. Because. For example, from the equilibrium diagram of the liquid nitrogen concentration (mol%) in the liquid mixture (L) and the nitrogen concentration (mol%) in the gas phase shown in FIG. When the nitrogen concentration in (L) is 20 mol%, the nitrogen gas concentration in the lift gas (G) is preferably about 46 mol%.

リフトガス(G)を冷却するリフトガス冷却器(D)は、図1に示すように大気圧下での液化窒素、又は液化窒素と液化酸素からなる混合液によりリフトガス(G)を間接熱交換により冷却する熱交換方式を採用することができる。
この場合、リフトガス(G)の冷却温度の制御は、リフトガス(G)の流量とリフトガス冷却器(D)における前記液化窒素、又は液化窒素と液化酸素からなる混合液の液面高さを制御して伝熱面積を変えることにより行うことができるが、リフトガス冷却器(D)における冷却方式は他の方式を採用することもできる。
リフトガス(G)の冷却温度は、エアリフトポンプ(C)内の混合液(L)の温度よりも3〜10℃高いことが好ましい。該リフトガス(G)13の温度は、例えば図1に示す温度指示計38により検出して液体窒素18の液面制御により調整することが可能である。
リフトガス(G)の温度は、液化ガス貯槽の流体温度に可能な限り近い温度であることが望ましいが、温度が低すぎるとリフトガスがリフトガス調整部で液化する可能性がある他、リフトガス調整部のリフトガスが過剰に加圧されていると、混合液槽(A)内の混合液(L)組成の沸点温度であっても、リフトガス(G)が液化してしまうので、実際には混合液槽(A)内の混合液(L)組成の沸点温度より3〜10度程度高い温度のリフトガス(G)がエアリフトポンプ(C)内に供給される。
As shown in FIG. 1, the lift gas cooler (D) that cools the lift gas (G) cools the lift gas (G) by indirect heat exchange with liquefied nitrogen under atmospheric pressure or a mixture of liquefied nitrogen and liquefied oxygen. It is possible to adopt a heat exchange method.
In this case, the control of the cooling temperature of the lift gas (G) is performed by controlling the flow rate of the lift gas (G) and the liquid level of the liquefied nitrogen or the liquid mixture of liquefied nitrogen and liquefied oxygen in the lift gas cooler (D). However, the cooling method in the lift gas cooler (D) can also employ other methods.
The cooling temperature of the lift gas (G) is preferably 3 to 10 ° C. higher than the temperature of the mixed liquid (L) in the air lift pump (C). The temperature of the lift gas (G) 13 can be detected by, for example, a temperature indicator 38 shown in FIG. 1 and adjusted by liquid level control of the liquid nitrogen 18.
The temperature of the lift gas (G) is preferably as close as possible to the fluid temperature of the liquefied gas storage tank. However, if the temperature is too low, the lift gas may be liquefied by the lift gas adjusting unit. If the lift gas is excessively pressurized, the lift gas (G) will be liquefied even at the boiling point temperature of the mixture (L) composition in the mixture tank (A). Lift gas (G) having a temperature about 3 to 10 degrees higher than the boiling point temperature of the mixed liquid (L) composition in (A) is supplied into the air lift pump (C).

(6)その他
本発明の第2の態様である、熱交換器試験方法を採用することにより、混合液槽(A)から検査用熱交換器(B)への混合液(L)の供給はヘッド差を利用し、検査用熱交換器(B)から混合液槽(A)への該混合液(L)のリサイクルはエアリフトポンプ(C)を使用し、かつエアリフトポンプ(C)に供給するリフトガス(G)を混合液槽(A)中の混合液(L)の液組成と平衡にある気相組成と同じ組成として、エアリフトポンプ(C)内の混合液(L)の温度よりも3〜10℃高い温度とすることにより、混合液(L)の組成変化を極力少なくでき、組成変化を少なくした混合液(L)を検査用熱交換器(B)に安定的に循環することが可能になる。
又、本発明の熱交換器試験方法によれば熱交換器表面での固化、凝縮、蓄積状況を観察するのに実用上極めて有用である。
(6) Others By adopting the heat exchanger test method according to the second aspect of the present invention, the supply of the mixed liquid (L) from the mixed liquid tank (A) to the heat exchanger for inspection (B) is as follows. The head lift is used to recycle the mixed liquid (L) from the inspection heat exchanger (B) to the mixed liquid tank (A) using the air lift pump (C) and supply it to the air lift pump (C). The lift gas (G) is set to the same composition as the gas phase composition in equilibrium with the liquid composition of the liquid mixture (L) in the liquid mixture tank (A), and 3 times higher than the temperature of the liquid mixture (L) in the air lift pump (C). By setting the temperature to -10 ° C higher, the composition change of the mixed liquid (L) can be reduced as much as possible, and the mixed liquid (L) with reduced composition change can be stably circulated to the heat exchanger (B) for inspection. It becomes possible.
Also, the heat exchanger test method of the present invention is extremely useful in practice for observing the state of solidification, condensation and accumulation on the surface of the heat exchanger.

次に、実施例により本発明をより具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。
本実施例1、比較例1、2において、以下に記載する熱交換器試験装置(図1参照)を使用した。
(イ)混合液槽
混合液槽として、真空断熱槽内に配置された、内容積2,000リットルの容器を使用した。該混合液槽の上端部には該槽内の気相部が大気に連通する排気口が設けられている。
該混合液槽には、混合液を調製するための、液化窒素容器、液化酸素容器、及び不純物液化ガス容器からの供給配管がそれぞれ設けられている。
該混合液槽の底部からの混合液をヘッド差で検査用熱交換器に送液するための送液配管が設けられ、該配管には混合液の循環量を調節するための流量調節弁(流量指示計を含む)と、酸素濃度計が設置されている。
(ロ)検査用熱交換器
真空断熱槽内に配置された検査用熱交換器としてプレートフィン型の熱交換器を使用した。
Next, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
In Example 1 and Comparative Examples 1 and 2, the heat exchanger test apparatus described below (see FIG. 1) was used.
(A) Mixed liquid tank As a mixed liquid tank, a container having an internal volume of 2,000 liters arranged in a vacuum heat insulating tank was used. An exhaust port is provided at the upper end of the mixed solution tank so that the gas phase portion in the tank communicates with the atmosphere.
The mixed solution tank is provided with supply pipes from the liquefied nitrogen container, the liquefied oxygen container, and the impurity liquefied gas container for preparing the mixed solution, respectively.
A liquid supply pipe for supplying the liquid mixture from the bottom of the liquid mixture tank to the heat exchanger for inspection with a head difference is provided, and the flow rate adjusting valve (for adjusting the circulation amount of the liquid mixture) A flow indicator) and an oximeter.
(B) Inspection heat exchanger A plate fin type heat exchanger was used as an inspection heat exchanger disposed in the vacuum heat insulating tank.

(ハ)エアリフトポンプ
エアリフトポンプとしては、リフトガスが供給されるリフトガス導入管と、混合液を揚液する揚液管からなる二重円管タイプを用いた。
エアリフトポンプ内には図1に示す位置に温度指示計が設けられている。
尚、エアリフトポンプの上部に設けられた排出口は大気に連通している。
エアリフトポンプで揚液された混合液は混合液槽にオーバーフロー可能な配管が配置されている。
(ニ)リフトガス冷却器
酸素ガス容器と窒素ガス容器の取出配管にそれぞれ設置された流量制御器で混合ガスの濃度と流量を制御して、リフトガスを調製後、大気圧の液体窒素が収納されている冷却層内に配管を貫通させた冷却器により89Kに冷却された、リフトガスはエアリフトポンプのリフトガス導入管に供給した。
(C) Air lift pump As the air lift pump, a double circular pipe type composed of a lift gas introduction pipe to which lift gas is supplied and a pumping pipe for pumping the mixed liquid was used.
A temperature indicator is provided in the air lift pump at the position shown in FIG.
In addition, the discharge port provided in the upper part of an air lift pump is connected to air | atmosphere.
A pipe that can overflow the liquid mixture pumped by the air lift pump is disposed in the liquid mixture tank.
(D) Lift gas cooler After the lift gas is prepared by controlling the concentration and flow rate of the mixed gas with the flow rate controllers installed in the extraction pipes of the oxygen gas container and nitrogen gas container, respectively, liquid nitrogen at atmospheric pressure is stored. The lift gas cooled to 89K by a cooler having a pipe passing through the cooling layer was supplied to a lift gas introduction pipe of an air lift pump.

[実施例1]
真空断熱槽内に配置された、混合液槽内に主成分が表1に示す組成の液化酸素と液化窒素からなり、該混合液中の不純物として亜酸化窒素10ppm(モル)を混入させた混合液を表1に供給液量で検査用熱交換器に供給した。
リフトガスとして、酸素ガス容器と窒素ガス容器からなるリフトガスをそれぞれの容器の取出配管に設置された流量制御器で混合ガスの濃度と流量を調整して、リフトガス冷却器で89Kに冷却して、リフトガスはエアリフトポンプのリフトガス導入管に供給した。
混合液槽の取出配管部に設置された酸素濃度計で混合液中の酸素濃度、及びエアリフトポンプ内に設置された温度指示計を測定しながら、リフトガス濃度を混合液と平衡濃度とほぼ同じ組成になるように、温度は混合液の温度より3〜5度高い89Kとなるように調整した。運転継続時間を表1に示す。
[Example 1]
Arranged in a vacuum insulation tank, a mixture of liquefied oxygen and liquefied nitrogen having the composition shown in Table 1 in the liquid mixture tank, and mixed with 10 ppm (mol) of nitrous oxide as impurities in the liquid mixture The liquid was supplied to the heat exchanger for inspection with the amount of liquid supplied in Table 1.
As the lift gas, the lift gas consisting of an oxygen gas container and a nitrogen gas container is adjusted to the concentration and flow rate of the mixed gas with a flow controller installed in the extraction pipe of each container, cooled to 89K with a lift gas cooler, and lift gas Was supplied to the lift gas inlet pipe of the air lift pump.
While measuring the oxygen concentration in the mixed solution and the temperature indicator installed in the air lift pump with the oxygen concentration meter installed in the extraction pipe section of the mixed solution tank, the lift gas concentration is almost the same as the mixed solution and the equilibrium concentration. The temperature was adjusted to 89K, 3 to 5 degrees higher than the temperature of the mixed solution. Table 1 shows the operation duration.

[比較例1]
混合液槽から検査用熱交換器に供給した混合液を回収せずに、すべてを排気した以外は、実施例1に記載の方法と同様に行った。条件と結果をまとめて表1に示す。
[比較例2]
リフトガスとして常温の窒素ガスを使用した以外は実施例1に記載の方法と同様に行った。条件と結果をまとめて表1に示す。
[Comparative Example 1]
The same procedure as described in Example 1 was performed, except that the mixed solution supplied from the mixed solution tank to the heat exchanger for inspection was exhausted without being recovered. The conditions and results are summarized in Table 1.
[Comparative Example 2]
The same procedure as described in Example 1 was performed except that room temperature nitrogen gas was used as the lift gas. The conditions and results are summarized in Table 1.

[評価のまとめ]
比較例1の供給液の全てを排気した場合(回収なし)は運転継続時間が0.75daysと最も短時間であった。比較例2でリフトガスとして常温の窒素ガスを使用した場合には運転継続時間が5.8daysであった。
本発明に相当する実施例1では運転継続時間が7.1daysで、供給液の組成変化は、従来技術に比べ非常に低いことがわかった。
[Summary of evaluation]
When all of the supply liquid of Comparative Example 1 was exhausted (no recovery), the operation duration was 0.75 days, which was the shortest. In the comparative example 2, when normal temperature nitrogen gas was used as the lift gas, the operation duration time was 5.8 days.
In Example 1 corresponding to the present invention, the operation duration time was 7.1 days, and it was found that the composition change of the supply liquid was very low compared to the prior art.

Figure 2013040740
Figure 2013040740

1 混合液槽(A)
2 検査用熱交換器(B)
4 リフトガス冷却器(D)
5 混合液(L)
6 混合液(L)
7 真空断熱槽a
8 真空断熱槽b
9 真空断熱槽c
11 エアリフトポンプ(C)
12 リフトガス(G)(冷却前)
13 リフトガス(G)(冷却後)
14 循環ライン
15 酸素ガス容器
16 窒素ガス容器
17 液体窒素容器
18 液体窒素
19 リフトガス(G)配管
21 液体酸素容器
22 液体窒素容器
23 不純物ガス容器
24 酸素濃度計
25 排気
26 排気
27 排気
28 開閉弁
29 流量調節弁
31 流量制御器
32 流量制御器
33 液面指示計
34 温度指示計
35 制御器
36 リフトガス導入管
37 揚液管
38 温度指示計
39 リフトガス
1 Liquid tank (A)
2 Heat exchanger for inspection (B)
4 Lift gas cooler (D)
5 Liquid mixture (L)
6 Liquid mixture (L)
7 Vacuum insulation tank a
8 Vacuum insulation tank b
9 Vacuum insulation tank c
11 Air lift pump (C)
12 Lift gas (G) (before cooling)
13 Lift gas (G) (after cooling)
14 Circulation line 15 Oxygen gas container 16 Nitrogen gas container 17 Liquid nitrogen container 18 Liquid nitrogen 19 Lift gas (G) piping 21 Liquid oxygen container 22 Liquid nitrogen container 23 Impurity gas container 24 Oxygen concentration meter 25 Exhaust 26 Exhaust 27 Exhaust 28 Open / close valve 29 Flow control valve 31 Flow controller 32 Flow controller 33 Liquid level indicator 34 Temperature indicator 35 Controller 36 Lift gas introduction pipe 37 Lift pipe 38 Temperature indicator 39 Lift gas

Claims (6)

真空断熱槽内にそれぞれ配置されている、
(i)大気圧下で液化窒素と液化酸素を含む混合液(L)が収納された混合液槽(A)と、
(ii)混合液槽(A)からヘッド差を利用して混合液(L)が供給される、検査用熱交換器(B)と、
(iii)検査用熱交換器(B)から流出してきた混合液(L)を窒素ガスと酸素ガスの混合ガスからなるリフトガス(G)を使用して混合液槽(A)にリサイクルするエアリフトポンプ(C)と、
(iv)窒素ガスと酸素ガスから調製されたリフトガス(G)を冷却してエアリフトポンプ(C)に供給するためのリフトガス冷却器(D)と、
からなることを特徴とする、熱交換器試験装置。
It is arranged in each vacuum insulation tank,
(I) a liquid mixture tank (A) containing a liquid mixture (L) containing liquefied nitrogen and liquefied oxygen under atmospheric pressure;
(Ii) a heat exchanger for inspection (B) to which the liquid mixture (L) is supplied from the liquid mixture tank (A) using the head difference;
(Iii) An air lift pump that recycles the mixed liquid (L) flowing out from the inspection heat exchanger (B) into the mixed liquid tank (A) using a lift gas (G) composed of a mixed gas of nitrogen gas and oxygen gas. (C) and
(Iv) a lift gas cooler (D) for cooling the lift gas (G) prepared from nitrogen gas and oxygen gas and supplying it to the air lift pump (C);
A heat exchanger test apparatus comprising:
前記混合液槽(A)に収納されている混合液(L)を調製するための、液化窒素容器及び液化酸素容器、又は液化窒素容器、液化酸素容器、及び不純物ガス容器が設けられていることを特徴とする、請求項1に記載の熱交換器試験装置。   A liquefied nitrogen container and a liquefied oxygen container, or a liquefied nitrogen container, a liquefied oxygen container, and an impurity gas container are provided for preparing the mixed liquid (L) stored in the mixed liquid tank (A). The heat exchanger test apparatus according to claim 1, wherein: 前記混合液槽(A)中の混合液(L)の酸素濃度を測定するための酸素濃度計が設置されていることを特徴とする、請求項1又は2に記載の熱交換器試験装置。   The heat exchanger test apparatus according to claim 1 or 2, wherein an oxygen concentration meter for measuring an oxygen concentration of the mixed liquid (L) in the mixed liquid tank (A) is installed. 前記リフトガス冷却器(D)に供給する、窒素ガスと酸素ガスからなるリフトガス(G)を調製するための、窒素ガス供給配管と酸素ガス供給配管にそれぞれ流量調製器が設けられていることを特徴とする、請求項1から3のいずれかに記載の熱交換器試験装置。   A flow rate adjuster is provided in each of the nitrogen gas supply pipe and the oxygen gas supply pipe for preparing the lift gas (G) composed of nitrogen gas and oxygen gas supplied to the lift gas cooler (D). The heat exchanger test apparatus according to any one of claims 1 to 3. リフトガス冷却器(D)が大気圧下での液化窒素、又は液化窒素と液化酸素からなる混合液によりリフトガス(G)を間接熱交換で冷却する熱交換器であることを特徴とする、請求項1から4のいずれかに記載の熱交換器試験装置。   The lift gas cooler (D) is a heat exchanger that cools the lift gas (G) by indirect heat exchange with liquefied nitrogen under atmospheric pressure or a mixed liquid composed of liquefied nitrogen and liquefied oxygen. The heat exchanger test apparatus according to any one of 1 to 4. 大気圧下で液化窒素と液化酸素を含む混合液(L)が収納された混合液槽(A)から、ヘッド差を利用して混合液(L)を検査用熱交換器(B)に供給し、検査用熱交換器(B)から流出してきた混合液(L)を、リフトガス冷却器(D)で冷却された、窒素ガスと酸素ガスの混合ガスからなるリフトガス(G)を用いたエアリフトポンプ(C)により、混合液槽(A)にリサイクルする、熱交換器試験方法であって、
該エアリフトポンプ(C)に供給するリフトガス(G)が混合液槽(A)中の混合液(L)の液組成に平衡なガス組成であり、かつエアリフトポンプ(C)内の混合液(L)の温度よりも3〜10℃高いことを特徴とする、熱交換器試験方法。
Supply the mixed liquid (L) to the inspection heat exchanger (B) from the mixed liquid tank (A) containing the mixed liquid (L) containing liquefied nitrogen and liquefied oxygen under atmospheric pressure using the head difference. The air lift using the lift gas (G) composed of a mixed gas of nitrogen gas and oxygen gas, in which the mixed liquid (L) flowing out from the heat exchanger for inspection (B) is cooled by the lift gas cooler (D) A heat exchanger test method for recycling to a mixed liquid tank (A) by a pump (C),
The lift gas (G) supplied to the air lift pump (C) has a gas composition that is in equilibrium with the liquid composition of the liquid mixture (L) in the liquid mixture tank (A), and the liquid mixture (L A heat exchanger test method characterized by being 3 to 10 ° C. higher than the temperature of
JP2011179293A 2011-08-19 2011-08-19 Heat exchanger test apparatus and heat exchanger test method Active JP5726019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179293A JP5726019B2 (en) 2011-08-19 2011-08-19 Heat exchanger test apparatus and heat exchanger test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179293A JP5726019B2 (en) 2011-08-19 2011-08-19 Heat exchanger test apparatus and heat exchanger test method

Publications (2)

Publication Number Publication Date
JP2013040740A true JP2013040740A (en) 2013-02-28
JP5726019B2 JP5726019B2 (en) 2015-05-27

Family

ID=47889312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179293A Active JP5726019B2 (en) 2011-08-19 2011-08-19 Heat exchanger test apparatus and heat exchanger test method

Country Status (1)

Country Link
JP (1) JP5726019B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128754A (en) * 1979-03-28 1980-10-04 Hitachi Ltd Combined rectification column for air separator
US5014773A (en) * 1987-08-14 1991-05-14 The Boc Group Plc Liquefied gas boilers
JP2000146431A (en) * 1998-11-16 2000-05-26 Kawasaki Steel Corp Air liquefaction separation method
JP2002031298A (en) * 2000-01-10 2002-01-31 Boeing Co:The System and method for densifying liquid
JP2003021456A (en) * 2001-07-11 2003-01-24 Hitachi Ltd Internal pressurization type cold air separation equipment
JP2006250457A (en) * 2005-03-11 2006-09-21 Aisin Seiki Co Ltd Fluid separating device
US20070220917A1 (en) * 2006-03-23 2007-09-27 Linde Aktiengesellschaft Process and Device for Evaporating an Oxygen-Enriched Working Fluid
JP2009014314A (en) * 2007-07-09 2009-01-22 Taiyo Nippon Sanso Corp Air separation method and device
JP2009541702A (en) * 2006-06-23 2009-11-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method for reducing dirt in heat exchangers
JP2010054128A (en) * 2008-08-28 2010-03-11 Taiyo Nippon Sanso Corp Heat exchanger for refrigerating machine, and cooling method of liquefied gas by heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128754A (en) * 1979-03-28 1980-10-04 Hitachi Ltd Combined rectification column for air separator
US5014773A (en) * 1987-08-14 1991-05-14 The Boc Group Plc Liquefied gas boilers
JP2000146431A (en) * 1998-11-16 2000-05-26 Kawasaki Steel Corp Air liquefaction separation method
JP2002031298A (en) * 2000-01-10 2002-01-31 Boeing Co:The System and method for densifying liquid
JP2003021456A (en) * 2001-07-11 2003-01-24 Hitachi Ltd Internal pressurization type cold air separation equipment
JP2006250457A (en) * 2005-03-11 2006-09-21 Aisin Seiki Co Ltd Fluid separating device
US20070220917A1 (en) * 2006-03-23 2007-09-27 Linde Aktiengesellschaft Process and Device for Evaporating an Oxygen-Enriched Working Fluid
JP2009541702A (en) * 2006-06-23 2009-11-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method for reducing dirt in heat exchangers
JP2009014314A (en) * 2007-07-09 2009-01-22 Taiyo Nippon Sanso Corp Air separation method and device
JP2010054128A (en) * 2008-08-28 2010-03-11 Taiyo Nippon Sanso Corp Heat exchanger for refrigerating machine, and cooling method of liquefied gas by heat exchanger

Also Published As

Publication number Publication date
JP5726019B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
DK2613109T3 (en) Method of storing a cryogenic liquid in a storage container
CN114538380A (en) Electronic-grade chlorine trifluoride purification system and temperature difference power control method thereof
CN105509383A (en) Refrigerant recovery in natural gas liquefaction processes
US20100044020A1 (en) Hydrogen gas-cooling device
US20220316811A1 (en) Method for operating a heat exchanger, arrangement with a heat exchanger, and system with a corresponding arrangement
CN105899867B (en) Method and apparatus for adjusting pressure in liquefied natural gas container
US8671715B2 (en) He-3 recovery from natural helium by distillation
US10317135B2 (en) Separation at sub-ambient temperature of a gaseous mixture containing carbon dioxide and a lighter contaminant
CN103080677B (en) Apparatus and method for the distillation separation of a mixture containing carbon dioxide
KR102627295B1 (en) BOG recondenser and LNG storage system equipped with it
CN105969439B (en) A kind of natural gas processing plant's deoiling, dewatering device low temperature lime set treatment process and device
EP2872839A1 (en) Process for storing liquid rich in carbon dioxide in solid form
JP5726019B2 (en) Heat exchanger test apparatus and heat exchanger test method
US20110017429A1 (en) Method For Vaporizing Cryogenic Liquid Through Heat Exchange Using Calorigenic Fluid
CN104704308B (en) CO is removed from sour gas2Method
RU2616147C1 (en) Cryoprovision system
EP2569569A1 (en) Method for regulating a closed intermediate medium circuit when heat exchanging a primary medium
KR20200090798A (en) BOG recondenser and LNG supply system with the same
US8683825B2 (en) He-3 recovery from natural helium by distillation
KR102151725B1 (en) Crude argon liquid transfer device and cryogenic air separation facility having the same
JP2017036898A (en) Method for operating an oxygen production device
Savinov et al. Development and creation of an efficient Khrom-3 unit for preparing krypton-xenon mixtures
UA44018A (en) METHOD OF UTILIZATION OF AMMONIA FROM PRODUCT AND TANK GASES
Wilkes A CONTINUOUS-DISTILLATION APPARATUS FOR THE SEPARATION OF He³ FROM He¹
CN103566609A (en) Flash tank provided with fractional condenser and liquid drop removing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150331

R150 Certificate of patent or registration of utility model

Ref document number: 5726019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250