JP2000146431A - Air liquefaction separation method - Google Patents

Air liquefaction separation method

Info

Publication number
JP2000146431A
JP2000146431A JP10324931A JP32493198A JP2000146431A JP 2000146431 A JP2000146431 A JP 2000146431A JP 10324931 A JP10324931 A JP 10324931A JP 32493198 A JP32493198 A JP 32493198A JP 2000146431 A JP2000146431 A JP 2000146431A
Authority
JP
Japan
Prior art keywords
air
nitrogen
oxygen
amount
feed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10324931A
Other languages
Japanese (ja)
Other versions
JP3428468B2 (en
Inventor
Toshihiko Kukutsu
寿彦 久々津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32493198A priority Critical patent/JP3428468B2/en
Publication of JP2000146431A publication Critical patent/JP2000146431A/en
Application granted granted Critical
Publication of JP3428468B2 publication Critical patent/JP3428468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/44Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/46Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption by liquefying air due to compression-expansion, separating the air into oxygen and nitrogen due to the difference in a boiling point, and then subtracting air that matches the amount that flows back to the downstream side of a feed air compressor from one portion out of surplus. SOLUTION: One portion of surplus oxygen and nitrogen being unloaded from an oxygen dissipation valve 7 and a nitrogen dissipation valve 8 is taken in and is adjusted to the same pressure as feed air by oxygen/nitrogen pressure-adjusting valves 14 and 15, respectively. Then, the ratio of N2 to O2 is adjusted so that it reaches 0.79 to 0.21 by an oxygen flow rate adjustment valve 16 and a nitrogen flow rate adjustment valve 17 for mixing by a mixer 18. After mixing, the mixture is allowed to flow back to the inlet of the main heat exchanger of a cold box 4 that is located at the downstream of a feed air compressor 1 for re-introducing. The amount of mixed gas being introduced is measured by a dissipation collection flowmeter 19, and an adjustment is made by an inlet guide vein so that the amount of feed air being introduced to the feed air compressor 1 can be subtracted by the amount that matches the amount of mixed gas. The flow rate is controlled so that the amount of air being introduced into a rectifying column becomes constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、原料空気の圧縮
に必要な消費電力を低減するための空気液化分離方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air liquefaction separation method for reducing power consumption required for compressing raw air.

【0002】[0002]

【従来の技術】製鉄所をはじめとする、大量の酸素ガス
と窒素ガスを使用する工場では、通常、工場内にこれら
ガスを製造するための空気液化分離装置を備えている。
図1は、製鉄所における一般的なガスの製造−消費のフ
ローを示したものである。図1に示すように、製鉄所で
は、空気液化分離装置により製造した酸素ガス、窒素ガ
スを圧縮機(酸素圧縮機5および窒素圧縮機6)を用い
て昇圧し、これらのガスを使用する各設備に送給してい
る。空気液化分離装置の主要部は、図2に示す構成とな
っている。原料空気は図示しない空気フィルターにより
1次除塵された後、図の左方から原料空気圧縮機1に送
られ、ここで、所定の圧力(5.4 kg/cm2 )に昇圧され
る。原料空気圧縮機1には、通常、インレットガイドベ
ーンが設置されており、所定風量の負荷(最低で定格風
量の70%)までは風量を調整することが可能となってい
る。昇圧後の空気は、水洗冷却塔2で水冷、二次除塵さ
れた後、モレキュラーシーブ3においてCO2 とH2
が除去され、コールドボックス4に送られる。次いで、
コールドボックス4の一部をなす、主熱交換器4aに
て、空気は分離精整ずみの低温状態の酸素ガス及び窒素
ガスと熱交換され、空気の液化温度(−186 ℃)まで冷
却され、さらに精留塔4cに送給される。
2. Description of the Related Art Factories that use a large amount of oxygen gas and nitrogen gas, such as steelworks, usually have an air liquefaction / separation apparatus for producing these gases in the factory.
FIG. 1 shows a flow of general gas production and consumption in an ironworks. As shown in FIG. 1, in a steel mill, oxygen gas and nitrogen gas produced by an air liquefaction separator are pressurized using a compressor (oxygen compressor 5 and nitrogen compressor 6), and each gas using these gases is used. Feeding to equipment. The main part of the air liquefaction / separation apparatus has the configuration shown in FIG. The raw material air is subjected to primary dust removal by an air filter (not shown), and then sent to the raw material air compressor 1 from the left side of the figure, where the pressure is increased to a predetermined pressure (5.4 kg / cm 2 ). The raw material air compressor 1 is usually provided with an inlet guide vane so that the air flow can be adjusted up to a predetermined air flow load (at least 70% of the rated air flow). The pressurized air is water-cooled in the washing cooling tower 2 and subjected to secondary dust removal, and then CO 2 and H 2 O in the molecular sieve 3.
Is removed and sent to the cold box 4. Then
In the main heat exchanger 4a forming a part of the cold box 4, the air is heat-exchanged with the separated and refined low-temperature oxygen gas and nitrogen gas, and cooled to the liquefaction temperature of air (-186 ° C). Further, it is sent to the rectification column 4c.

【0003】精留塔4c内において、液化した空気は酸
素と窒素に分離し、沸点の高い酸素(−183 ℃)は精留
塔下部に滞留し、沸点の低い窒素(−196 ℃)は精留塔
頂部に向かって上昇する。このとき、液化空気の精留分
離は、孔の開いた精留板を多数具えた精留塔内におい
て、上昇する蒸気となった窒素分を多く含む空気と、塔
頂からの還流液とが接触し、平衡状態を保とうとし、よ
り低沸点の成分(窒素)が蒸気相側に蒸発移動し、より
高沸点の成分(酸素)が液相側に移動することによって
行われる。このように、精留塔内での分離は、精留板上
の液と蒸気との間における平衡バランスを利用して行っ
ている。そのために、空気の液化分離を安定して実施す
るには、導入する空気量、還流液量、発生する酸素量と
窒素量のバランスを正確に監視、制御することが必要と
なっている。
[0003] In the rectification column 4c, the liquefied air is separated into oxygen and nitrogen, oxygen having a high boiling point (-183 ° C) is retained in the lower portion of the rectification column, and nitrogen having a low boiling point (-196 ° C) is purified. It rises toward the top of the tower. At this time, in the rectification separation of the liquefied air, in the rectification column equipped with a number of rectification plates with holes, the air containing a large amount of nitrogen, which has become steam, and the reflux liquid from the top of the column are separated. Contact is made to maintain an equilibrium state, and the lower boiling component (nitrogen) evaporates to the vapor phase side and the higher boiling component (oxygen) moves to the liquid phase side. As described above, the separation in the rectification column is performed by utilizing the equilibrium balance between the liquid and the vapor on the rectification plate. Therefore, in order to stably perform liquefaction and separation of air, it is necessary to accurately monitor and control the amount of introduced air, the amount of reflux liquid, and the balance between the amounts of generated oxygen and nitrogen.

【0004】さて、上述した方法で製造したこれら精整
ガスを、需要側となるガス使用側設備の立場からマスバ
ランス的にみてみる。上記ガス分離装置は連続的に操業
し、精整ガスも連続的に発生するのが一般的である、こ
れに対し、製鋼工場に代表されるような、ガス使用側設
備の多くは、非連続的な操業を行っている。このような
状況を考えた場合、本来、使用側設備が操業しないとき
には、空気液化分離装置も使用側設備に追随して操業し
ないことが望ましい。具体的には、例えば、一般の製鉄
所で行われているように、使用側設備が長時間停止して
いるときには、空気分離装置もこれに対応して停止させ
ており、かかる操業を行うかぎり、空気分離装置を稼働
させるための消費電力を削減することも可能である。
[0004] Now, these refined gases produced by the above-mentioned method will be considered in terms of mass balance from the viewpoint of the gas use side equipment on the demand side. In general, the above gas separation device operates continuously, and the refined gas is also continuously generated. On the other hand, most of the gas-using-side facilities such as steel mills are non-continuous. Operation. In consideration of such a situation, it is originally desirable that when the use-side facility does not operate, the air liquefaction / separation apparatus does not operate following the use-side facility. Specifically, for example, when a user-side facility has been shut down for a long time, as in a general steelworks, the air separation device has also been stopped correspondingly, and as long as such operation is performed, It is also possible to reduce the power consumption for operating the air separation device.

【0005】[0005]

【発明が解決しようとする課題】しかし一方、使用側設
備が短い時間(30〜180 分)だけしか操業しない一時的
な停止、あるいは一時的な操業度の低下の際に、空気液
化分離をも停止すると、空気液化分離操業そのものに支
障を生じてしまう。なぜなら、空気液化分離操業を短時
間停止した場合には、停止後安定操業に移行するまでの
不安定な時間が相対的に大となって、効率的な液化分離
が行えなくなるからである。このように、使用側設備の
使用量に合わせて、空気液化分離を一時的に停止する、
省電力型の操業は、現実的ではなく採用されていなかっ
た。そこで、従来、このような非定常状態のときには、
必然的に精整分離した余剰ガスが発生し、これを放散す
るしか手だてがなかった。この場合には、図1における
酸素圧力計12、窒素圧力計13により測定した圧力が所定
の圧力になるように、酸素放散弁7、窒素放散弁8を緩
めて、酸素、窒素を大気中に放散することになる。
On the other hand, in the case of a temporary stop or a temporary decrease in the operation of the use-side equipment for only a short time (30 to 180 minutes), the air liquefaction separation is also performed. If stopped, the liquefaction and separation operation itself will be hindered. This is because, when the air liquefaction separation operation is stopped for a short time, the unstable time until the transition to the stable operation after the stoppage is relatively long, so that efficient liquefaction separation cannot be performed. In this way, the air liquefaction and separation are temporarily stopped in accordance with the usage of the use side equipment,
Power-saving operations were unrealistic and not adopted. Therefore, conventionally, in such an unsteady state,
Inevitably, a surplus gas separated and separated was generated, and the only option was to dissipate it. In this case, the oxygen release valve 7 and the nitrogen release valve 8 are loosened so that the pressure measured by the oxygen pressure gauge 12 and the nitrogen pressure gauge 13 in FIG. Will be dissipated.

【0006】このように、従来、空気液化分離の安定操
業のためには、余剰分の酸素、窒素を放散させるしかな
かったのは、上述した精留分離の機構から止むをえない
ことであった。すなわち、放散ガスを抑制するために、
原料空気圧縮機に送給される原料空気の量を減じると、
精留板上での液と蒸気の平衡バランスがくずれ、これを
もとの安定状態に戻すまでには、最低でも3時間程度は
かかるからである。結局、空気液化分離装置を短時間停
止したり、負荷変更を行うことは得策ではなく、実質的
には実施することはできなかったのである。
As described above, in the past, the only way to stably operate the air liquefaction separation was to dissipate excess oxygen and nitrogen, because of the rectification separation mechanism described above. Was. That is, in order to suppress the emission gas,
If you reduce the amount of feed air sent to the feed air compressor,
This is because the equilibrium balance between the liquid and the vapor on the rectification plate is lost, and it takes at least about 3 hours to return to an original stable state. In the end, it was not advisable to stop the air liquefaction / separation device for a short time or change the load, and it could not be practically implemented.

【0007】以上述べたように、従来は、空気液化分離
装置の安定操業を維持するためには、原料空気の供給量
を一定、すなわち原料空気圧縮機の負荷を一定にして操
業するしかなかった。そのため、必然的に余剰の酸素、
窒素が発生することとなり、これら余剰の酸素や窒素は
大気中に放散されていた。したがって、従来は、余剰の
酸素、窒素を製造するためにも、原料空気を圧縮してい
ることとなり、そのため必要な電力消費は余分なものと
いえる。よって、余剰の酸素、窒素を製造するための余
分な消費電力を低減することが求められていた。なお、
使用設備の需要変動に対応した空気液化分離方法に、特
開平3−67983号公報に開示の提案があるが、この技術
は酸素の需要変動には対応できるが、酸素および窒素の
需要変動には対応できないという難点があった。そこで
本発明の目的は、従来技術における上記問題に鑑み、消
費電力の少ない空気液化分離方法を提案することにあ
る。
As described above, conventionally, in order to maintain the stable operation of the air liquefaction / separation apparatus, it was necessary to operate the apparatus while keeping the supply amount of the raw air constant, that is, the load of the raw air compressor constant. . Therefore, surplus oxygen inevitably,
Nitrogen was generated, and these surplus oxygen and nitrogen were released into the atmosphere. Therefore, conventionally, in order to produce excess oxygen and nitrogen, the raw air is compressed, so that it can be said that the necessary power consumption is excessive. Therefore, there has been a demand for reducing excess power consumption for producing excess oxygen and nitrogen. In addition,
Japanese Patent Application Laid-Open No. 3-67983 discloses a proposal for an air liquefaction separation method that responds to fluctuations in demand for equipment used. There was a drawback that we could not cope. Accordingly, an object of the present invention is to propose an air liquefaction / separation method that consumes less power in view of the above-described problems in the related art.

【0008】[0008]

【課題を解決するための手段】本発明は、空気を圧縮−
膨張させて液化し、液化した空気を沸点差により酸素と
窒素とに分離する空気液化分離方法において、分離後の
酸素と窒素の余剰分のうちの少なくとも一部を、原料空
気圧縮機の下流側に還流させ、還流量に見合う量の原料
空気を減じることによって、原料空気圧縮機の負荷を軽
減することを特徴とする空気液化分離方法である。ま
た、上記発明において、主熱交換器の入り側の位置、具
体的にはモレキュラーシーブと主熱交換器との間の位置
に余剰分を還流させ、モレキュラーシーブを通過してき
た圧縮空気と合流させることが好適である。
According to the present invention, air is compressed.
In the air liquefaction separation method of expanding and liquefying and separating liquefied air into oxygen and nitrogen by a boiling point difference, at least a part of the surplus of oxygen and nitrogen after separation is downstream of the raw material air compressor. An air liquefaction separation method characterized by reducing the load on the raw material air compressor by reducing the amount of raw air in proportion to the reflux amount. Further, in the above invention, the excess portion is returned to the position on the entry side of the main heat exchanger, specifically, the position between the molecular sieve and the main heat exchanger, and merges with the compressed air that has passed through the molecular sieve. Is preferred.

【0009】[0009]

【発明の実施の形態】従来の空気液化分離方法では、圧
縮機の短時間での負荷変更は精留塔内の精留バランスを
乱すことになるので、現実には実施することができなか
った。本発明は、精留塔内の精留バランスを乱すことの
ない安定した空気液化分離を、省電力を図りつつ可能に
するものである。そして、この方法は、需要量の短期的
な変動、すなわち使用側設備で短時間の操業停止などに
伴ってもたらされる、酸素、窒素の需要減少に際して、
従来は放散していた、余剰の酸素、窒素を有効に利用す
ることによって達成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional air liquefaction separation method, a change in load of a compressor in a short period of time would disturb the rectification balance in a rectification tower, and thus could not be carried out in practice. . The present invention enables stable air liquefaction separation without disturbing the rectification balance in the rectification tower while saving power. And this method, when short-term fluctuations in demand, that is, the demand for oxygen and nitrogen caused by the
This is achieved by effectively utilizing the excess oxygen and nitrogen, which have conventionally been dissipated.

【0010】図3に、本発明に好適な酸素、窒素の製造
から消費までのフローを示す。なお、以下述べる本発明
法の説明のうち、従来法と共通する部分の説明について
は省略することとする。本発明では、まず、酸素放散弁
7、窒素放散弁8から排出される余剰の酸素、窒素の少
なくとも一部を、取り込み、それぞれ酸素圧力調節弁14
および窒素圧力調節弁15により、原料空気と同じ圧力
(例えば、5.4 kg/cm2 )に調整する。その後、この両
者をそれぞれ酸素流量調節弁16および窒素流量調節弁17
により、N 2 :O2 の割合が0.79:0.21になるように調
整し、混合器18で混合する。混合後、これを原料空気圧
縮機1の下流に位置する、コールドボックス4の主熱交
換器4aの入口に還流させて再導入する。
FIG. 3 shows the production of oxygen and nitrogen suitable for the present invention.
The flow from to is consumed. The present invention described below
Of the explanation of the law, the explanation of the common parts with the conventional method
Is omitted. In the present invention, first, the oxygen release valve
7. Excessive oxygen and nitrogen discharged from the nitrogen release valve 8
At least a part is taken in and each oxygen pressure control valve 14
And the nitrogen pressure control valve 15, the same pressure as the raw air
(For example, 5.4 kg / cmTwo). After that, both
The oxygen flow control valve 16 and the nitrogen flow control valve 17 respectively.
By N Two: OTwoSo that the ratio is 0.79: 0.21
And mix in mixer 18. After mixing, this is
Main heat exchange of cold box 4 located downstream of compressor 1
It is refluxed at the inlet of the exchanger 4a and reintroduced.

【0011】このとき、上記操作により導入した混合ガ
ス量を、放散回収流量計19により測定し、この混合ガス
量に見合う量だけ、原料空気圧縮機1に導入される原料
空気量を減らすように、インレットガイドベーン20によ
って調整する。以上のように、原料空気の低減量が、再
導入される酸素と窒素を混合した空気量と同量になるよ
うに調整することによって、精留塔内に導入する空気量
を常に一定量になるように、流量制御する。この方法を
採用すれば、圧縮機の負荷は原料空気量の低減量分だけ
減らすことが可能になり、圧縮に要する消費電力も削減
される。
At this time, the amount of the mixed gas introduced by the above operation is measured by the diffusion and recovery flow meter 19, and the amount of the raw air introduced into the raw air compressor 1 is reduced by an amount corresponding to the amount of the mixed gas. Adjusted by inlet guide vane 20. As described above, the amount of air introduced into the rectification column is always kept at a constant amount by adjusting the amount of reduction of the raw material air to be the same as the amount of air mixed with oxygen and nitrogen to be reintroduced. So that the flow rate is controlled. By employing this method, the load on the compressor can be reduced by the reduced amount of the raw material air, and the power consumption required for compression is also reduced.

【0012】以上説明したように、短時間の使用側設備
の停止のときに、従来は、空気液化分離装置の一時的停
止や、負荷の低下は、精留塔における精留バランス維持
するために、実施することができなかった。そして、結
果的に、分離後の余剰分の酸素、窒素は全量を放散し、
空気液化分離の消費電力も大きかった。これに対し、本
発明では、余剰分の酸素、窒素を有効に利用して、原料
空気圧縮機の下流、具体的には主熱交換器の入口に循環
導入するようにしたので、回収した混合空気量に見合う
分だけ、原料空気圧縮機の空気量を減らすことができ、
消費電力を削減することができる。なお、本発明は、発
生した酸素および窒素の昇圧機がバイパス制御型の圧縮
機(インレットガイドベーンの設置されていないタイ
プ)のときに特に有効である。
As described above, when the use-side equipment is stopped for a short period of time, conventionally, the temporary stoppage of the air liquefaction / separation apparatus or the reduction of the load is required to maintain the rectification balance in the rectification column. , Could not be implemented. And, as a result, the excess oxygen and nitrogen after separation dissipate the entire amount,
The power consumption of air liquefaction separation was also large. On the other hand, in the present invention, the excess oxygen and nitrogen are effectively used to circulate and introduce the oxygen to the downstream of the raw material air compressor, specifically, to the inlet of the main heat exchanger. The amount of air in the raw material air compressor can be reduced by the amount corresponding to the amount of air,
Power consumption can be reduced. The present invention is particularly effective when the booster for the generated oxygen and nitrogen is a bypass control type compressor (a type without an inlet guide vane).

【0013】[0013]

【実施例】定常時の空気処理能力145,000 Nm3/Hrの空気
液化分離装置を用い、図3に示すようなフローで、使用
側設備の停止により発生した余剰の酸素と窒素を、5.4
kg/cm2 に圧力調整するとともに、N2 :O2 の割合が
0.79:0.21になるように流量調整し、これを混合器を経
て主熱交換器入口に再導入した。なお、設備休止時間は
約15分であった。図4は、本発明法に従い運転して得
られた、酸素及び窒素の放散量と、原料空気圧縮機の消
費電力を、従来法の場合と比較して示したものである。
この図から明らかのように、従来は、短時間の使用側設
備停止のときには、酸素放散量が10kNm3 /Hr以
上、窒素放散量が13kNm3 /Hr以上もあったが、
本発明法では酸素は従来法の1/2近くまで、窒素は0
まで減少した。表1は、このような経過のグラフをもと
にして、使用側設備停止時における酸素および窒素の放
散量、空気分離装置の消費電力について、使用側設備停
止期間中のデータの平均をまとめたものである。表1か
ら、消費電力も従来法では常時11MWであったのに対
し、本発明法では使用設備停止時には9MWまで低下さ
せることが可能になった。
[Embodiment] Using an air liquefaction / separation device with a steady air treatment capacity of 145,000 Nm 3 / Hr, the excess oxygen and nitrogen generated by stopping the use-side equipment were removed by 5.4 flow according to the flow shown in FIG.
While adjusting the pressure to kg / cm 2 , the ratio of N 2 : O 2
The flow rate was adjusted to 0.79: 0.21, and this was reintroduced into the main heat exchanger inlet via the mixer. The equipment downtime was about 15 minutes. FIG. 4 shows the amounts of oxygen and nitrogen released and the power consumption of the raw material air compressor obtained by operating according to the method of the present invention, as compared with those of the conventional method.
As is clear from this figure, conventionally, when the use-side equipment was stopped for a short time, the amount of oxygen emission was 10 kNm 3 / Hr or more, and the amount of nitrogen emission was 13 kNm 3 / Hr or more.
In the method of the present invention, oxygen is reduced to almost half of the conventional method,
Down to. Table 1 summarizes the average of data during the period during which the use-side equipment is stopped, regarding the amounts of oxygen and nitrogen released when the use-side equipment is stopped and the power consumption of the air separation device, based on the graph of such progress. Things. According to Table 1, the power consumption was always 11 MW in the conventional method, but it was possible to reduce the power consumption to 9 MW when the used equipment was stopped in the method of the present invention.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
短時間の使用側設備停止のときに、従来は精留バランス
上の理由から不可能であった空気液化分離装置の負荷
(原料空気圧縮機の消費電力)を低下させることが可能
になる。また、従来多量に発生していた酸素おおよび窒
素の放散量を低減できるるようになる。
As described above, according to the present invention,
When the use-side equipment is stopped for a short time, it is possible to reduce the load of the air liquefaction / separation apparatus (power consumption of the raw material air compressor), which was conventionally impossible due to rectification balance. In addition, the amounts of oxygen and nitrogen that have conventionally been generated in large amounts can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来法における、酸素、窒素の製造−消費のフ
ローを示す摸式図である。
FIG. 1 is a schematic diagram showing a flow of production and consumption of oxygen and nitrogen in a conventional method.

【図2】空気液化分離装置を示す図である。FIG. 2 is a diagram showing an air liquefaction separation device.

【図3】発明法における、酸素、窒素の製造−消費のフ
ローを示す摸式図である。
FIG. 3 is a schematic diagram showing a flow of production and consumption of oxygen and nitrogen in the method of the present invention.

【図4】使用側設備の停止を伴う場合の、酸素、窒素の
放散量および消費電力の変化を例示するグラフである。
FIG. 4 is a graph illustrating changes in the amounts of oxygen and nitrogen released and power consumption when the use-side equipment is stopped.

【符号の説明】 1 原料空気圧縮機 2 水洗冷却塔 3 モレキュラーシーブ 4 コールドボックス 4a 主熱交換器 4b 膨張タービン 4c 精留塔 5 酸素圧縮機 6 窒素圧縮機 7 酸素放散弁 8 窒素放散弁 9 酸素ガスホルダー 10 窒素ガスホルダー 11 酸素・窒素使用側設備 12 酸素圧力計 13 窒素圧力計 14 酸素圧力調節弁 15 窒素圧力調節弁 16 酸素流量調節弁 17 窒素流量調節弁 18 混合器 19 放散回収流量計 20 インレットガイドベーン[Description of Signs] 1 Raw material air compressor 2 Rinse cooling tower 3 Molecular sieve 4 Cold box 4a Main heat exchanger 4b Expansion turbine 4c Rectification tower 5 Oxygen compressor 6 Nitrogen compressor 7 Oxygen release valve 8 Nitrogen release valve 9 Oxygen Gas holder 10 Nitrogen gas holder 11 Oxygen / nitrogen use side equipment 12 Oxygen pressure gauge 13 Nitrogen pressure gauge 14 Oxygen pressure control valve 15 Nitrogen pressure control valve 16 Oxygen flow control valve 17 Nitrogen flow control valve 18 Mixer 19 Emission and recovery flow meter 20 Inlet guide vane

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空気を圧縮、膨張させて液化し、液化し
た空気を沸点差により酸素と窒素とに分離する空気液化
分離方法において、分離後の酸素と窒素の余剰分のうち
の少なくとも一部を、原料空気圧縮機の下流側に還流さ
せ、還流量に見合う量の原料空気を減じることによっ
て、原料空気圧縮機の負荷を軽減することを特徴とする
空気液化分離方法。
1. An air liquefaction separation method for compressing and expanding air to liquefy air and separating the liquefied air into oxygen and nitrogen by a difference in boiling point, wherein at least a part of the surplus oxygen and nitrogen after separation. Liquefied air downstream of the raw material air compressor to reduce the load on the raw material air compressor by reducing the amount of raw material air corresponding to the reflux amount.
【請求項2】 主熱交換器の入り側に余剰分を還流させ
る、請求項1に記載の空気液化分離方法。
2. The air liquefaction separation method according to claim 1, wherein the excess is refluxed to the inlet side of the main heat exchanger.
JP32493198A 1998-11-16 1998-11-16 Air liquefaction separation method Expired - Fee Related JP3428468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32493198A JP3428468B2 (en) 1998-11-16 1998-11-16 Air liquefaction separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32493198A JP3428468B2 (en) 1998-11-16 1998-11-16 Air liquefaction separation method

Publications (2)

Publication Number Publication Date
JP2000146431A true JP2000146431A (en) 2000-05-26
JP3428468B2 JP3428468B2 (en) 2003-07-22

Family

ID=18171222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32493198A Expired - Fee Related JP3428468B2 (en) 1998-11-16 1998-11-16 Air liquefaction separation method

Country Status (1)

Country Link
JP (1) JP3428468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532529A (en) * 2002-07-09 2005-10-27 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Manufacturing plant operating method and manufacturing plant
EP1239246B2 (en) 2001-03-09 2011-06-08 Linde AG Process and apparatus for separation of a gas mixture with failsafe operation
JP2013040740A (en) * 2011-08-19 2013-02-28 Taiyo Nippon Sanso Corp Heat exchanger testing device and heat exchanger testing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239246B2 (en) 2001-03-09 2011-06-08 Linde AG Process and apparatus for separation of a gas mixture with failsafe operation
JP2005532529A (en) * 2002-07-09 2005-10-27 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Manufacturing plant operating method and manufacturing plant
JP2013040740A (en) * 2011-08-19 2013-02-28 Taiyo Nippon Sanso Corp Heat exchanger testing device and heat exchanger testing method

Also Published As

Publication number Publication date
JP3428468B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US5806340A (en) High purity nitrogen generator unit and method
JPS6146747B2 (en)
JP2018204825A (en) Gas production system
JP2000146431A (en) Air liquefaction separation method
JP3208547B2 (en) Liquefaction method of permanent gas using cold of liquefied natural gas
JP2873473B2 (en) Air liquefaction separation method
US5430223A (en) Process for separating higher hydrocarbons from a gas mixture
RU2354902C2 (en) Method and installation for high purity oxygen provision by means of cryogenic distillation of air
JPH0534061A (en) Air liquefaction and separation method suitable for variation in demand for oxygen and apparatus therefor
JPS61231380A (en) Air liquefying separating device proper to demand fluctuation of oxygen
JP6627660B2 (en) Air liquefaction separation method
JP2004533572A (en) Method and equipment for feeding an air separation unit by a gas turbine
JP3220755B2 (en) Air liquefaction separation method and apparatus
JP7460974B1 (en) Nitrogen generator and nitrogen generation method
CN216245125U (en) Air separation adjusting system
JP3300898B2 (en) Nitrogen production apparatus and its operation method
JPH10292987A (en) High purity nitrogen gas producing device
JP7446569B2 (en) Product gas supply amount adjustment device and air separation device equipped with the same
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor
JP3026098B2 (en) Air liquefaction separation method and apparatus suitable for fluctuations in demand
JPS62116887A (en) Production unit for high-impurity nitrogen gas
JP2004198016A (en) Cryogenic air separating device and operation control method thereof
JPH0611254A (en) Liquefaction/separation method for air and device thereof utilizing lng cold heat
JP5244491B2 (en) Air separation device
JP2967427B2 (en) Air separation method and apparatus suitable for demand fluctuation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees