JP2013040460A - Multistage stepping vibration control structure and method - Google Patents

Multistage stepping vibration control structure and method Download PDF

Info

Publication number
JP2013040460A
JP2013040460A JP2011176605A JP2011176605A JP2013040460A JP 2013040460 A JP2013040460 A JP 2013040460A JP 2011176605 A JP2011176605 A JP 2011176605A JP 2011176605 A JP2011176605 A JP 2011176605A JP 2013040460 A JP2013040460 A JP 2013040460A
Authority
JP
Japan
Prior art keywords
seismic
earthquake
gap
stepping
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011176605A
Other languages
Japanese (ja)
Other versions
JP5762879B2 (en
Inventor
Hiroyuki Masuda
寛之 増田
Tadashi Nagase
正 長瀬
Toshihito Kumano
豪人 熊野
Soichiro Kushima
壮一郎 九嶋
Yoshinori Serizawa
好徳 芹澤
Masaki Tabei
正樹 田部井
Takafumi Kumagai
考文 熊谷
Tatsuya Yamada
達也 山田
Akihiko Kunimoto
暁彦 國本
Hiroto Kawaguchi
裕人 川口
Toru Ichikawa
徹 市川
Hiroshi Yamaguchi
浩志 山口
Hiroaki Nakagawa
浩明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2011176605A priority Critical patent/JP5762879B2/en
Publication of JP2013040460A publication Critical patent/JP2013040460A/en
Application granted granted Critical
Publication of JP5762879B2 publication Critical patent/JP5762879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multistage stepping vibration control structure in which a performance to prevent the destruction of a building is improved.SOLUTION: A lower terminal part of a multi-story earthquake-proof element 1 is rimmed from a foundation 4. A gapped earthquake-proof element 2 being adjacent via a gap 3 within the same structure plane as the multi-story earthquake-proof element 1 is constructed to enable float-up 5 by rimming its lower terminal part from the foundation 4. In the case of a giant earthquake Q3 within a range estimated for the Building Standard Law, a resistance mechanism is switched into the state where the multi-story earthquake-proof element 1 and the gapped earthquake-proof element 2 are integrated, responds through a stepping stance enlarged behavior and presents robustness. In the case of an ultra giant earthquake Q4 out of the estimation for the Building Standard Law, the resistance mechanism is switched into the state where the multi-story earthquake-proof element 1 and the gapped earthquake-proof element 2 are integrated, responds through a stepping stance enlarged float-up behavior, converts earthquake input into great positional energy and presents redundancy, so that a cycle is prevented from being prolonged and a building 10 is prevented from being destroyed.

Description

この発明は、浮き上がり制震要素とギャップ付き耐震要素とを組み合わせて多段階に浮き上がる(ロッキング又はステッピングする。)構成とした制震構造及び制震方法に係り、更に言えば、想定外の地震動が発生した場合でも、入力地震動の大きさや周期のバラツキに応じて抵抗構造(又は抵抗機構)が多段階に切り換わり、ステッピングスタンスを拡大変化させて建物の安定性(ロバスト性)を向上させ、「想定外」の超巨大地震動に襲われても建物の倒壊を防ぐ性能(冗長性)を向上させた多段階ステッピング制震構造及び制震方法の技術分野に属する。   The present invention relates to a seismic control structure and a seismic control method in which a floating seismic control element and a seismic element with a gap are combined to rise (rocking or stepping) in multiple stages. Even if it occurs, the resistance structure (or resistance mechanism) switches to multiple stages according to the variation in the magnitude and period of the input ground motion, and the stepping stance is expanded and changed to improve the building stability (robustness). It belongs to the technical field of multi-step stepping damping structure and damping method that has improved performance (redundancy) to prevent building collapse even if it is attacked by unexpectedly large earthquake motion.

建築基準法で想定する外乱、例えば地震動の種類やレベルは最低基準であり、それ以上に大きい、いわゆる「想定外」の地震動に建物が襲われると、相当な被害を被る可能性を否定できない。
したがって、震災後に避難施設として利用する期待が大きい学校や公民館、あるいは行政庁舎の如き建物の用途、機能の重要性を考慮すると、前記「想定外」の地震動に対しても安定であり、崩壊や倒壊を免れて、震災後も建物の用途、機能を十分に発揮させる対策技術の重要性が広く認識されている。
とはいえ、過度の設計にならない構造計画、構造設計で経済性と施工性が満たされることも大いに重視される。
しかし、従来、上記した如く相反する二面性の要望を満たすに足りる制震構造ないし制震方法は未だ見聞されない。
Disturbances assumed by the Building Standards Act, such as the type and level of ground motion, are the minimum standards, and if a building is attacked by a so-called “unexpected” ground motion, the possibility of considerable damage cannot be denied.
Therefore, considering the importance of the use and functions of buildings such as schools, public halls, and administrative buildings that are highly expected to be used as evacuation facilities after the earthquake disaster, they are stable against the above-mentioned “unexpected” ground motion and collapse. Recognizing the importance of countermeasure technology that avoids collapse and collapse, and can fully utilize the purpose and function of the building after the earthquake.
However, it is also important to satisfy economic efficiency and workability through structural planning and design that do not result in excessive design.
However, there has not yet been observed a seismic control structure or a seismic control method that is sufficient to satisfy the conflicting demands for duality as described above.

従来、例えば下記特許文献1には、耐震壁が基礎と縁切りされて回転、浮き上がりが可能とされると共に、同耐震壁の側方に基礎に固定したフレームを構築し、該フレームと耐震壁との間に相対変位エネルギを吸収するエネルギ吸収機構を組み込んだ制震構造物が開示されている。この制震構造物は要するに、地震等の入力に対して、耐震壁を回転挙動で浮き上がらせる剛体変位によりせん断変形を抑制し、更に同耐震壁の変位エネルギをエネルギ吸収機構に吸収させて外力を減衰させ制震効果が得られると説明されている。
下記の特許文献2には、構造物を支持する基礎杭の頭部と構造物の下部とが上下方向への相対移動(浮き上がり)が可能に縁切りされ、基礎杭の頭部と構造物の下部との間に構造物が元に戻るときの衝撃を吸収する衝撃吸収材が設置された構造物基礎が開示されている。この発明は要するに、地震時には構造物にロッキング振動を生じさせてエネルギ吸収を行わせ、構造物の損壊等の被害を防止できると説明されている。
更に下記の特許文献3には、地震時の水平力を負担する連層耐震壁の下部を、転倒モーメントの作用で柱と共に浮き上がり(ロッキング振動)が発生する構成とした建物の耐震架構が開示されている。この耐震架構は要するに、地震時には建物にロッキング振動を生じさせて地震入力を低減し、耐震性を向上させると説明している。
Conventionally, for example, in Patent Document 1 below, a seismic wall is cut off from the foundation and can be rotated and lifted, and a frame fixed to the foundation on the side of the seismic wall is constructed. A damping structure incorporating an energy absorbing mechanism for absorbing relative displacement energy is disclosed. In short, this seismic control structure suppresses shear deformation by a rigid body displacement that lifts the shear wall by rotating behavior against the input of an earthquake, etc., and further absorbs the external energy by absorbing the displacement energy of the shear wall by the energy absorption mechanism. It is explained that damping effect can be obtained by damping.
In Patent Document 2 below, the head of the foundation pile supporting the structure and the lower part of the structure are cut so that they can be moved relative to each other in the vertical direction (lifted), and the head of the foundation pile and the lower part of the structure The structure foundation in which the shock absorber which absorbs the shock when the structure returns to the original position is installed. In short, the present invention is described as being capable of absorbing energy by causing rocking vibration in a structure during an earthquake and preventing damage such as damage to the structure.
Further, Patent Document 3 below discloses a seismic frame for a building in which the lower part of the multistory shear wall that bears the horizontal force at the time of an earthquake is lifted together with the column (rocking vibration) due to the action of the overturning moment. ing. In short, this earthquake-resistant frame explains that rocking vibration is generated in the building during an earthquake to reduce earthquake input and improve earthquake resistance.

特開平10−252307号公報Japanese Patent Laid-Open No. 10-252307 特開平10−331173号公報JP 10-331173 A 特開2001−336300号公報JP 2001-336300 A

上記したとおり、建物の耐震性ないし制震性能に関する技術開発は既に種々進められている。しかし、そのいずれも地震動の種類やレベルが建築基準法で想定する範囲内である限り、建物の安定性、安全性を確保できることを前提とする技術内容と認められる。つまり、地震動の種類やレベルが建築基準法で想定する基準を超えた「想定外」の地震動に襲われた場合でも、被害を受けないか、又は被害が少なく、倒壊や崩壊を免れて、震災後も建物の用途、機能を発揮させることができる耐震技術ないし制震技術で、しかも過度の設計にならない構造計画、構造設計で施工でき、経済性と施工性を満足できる耐震技術ないし制震技術といえる対策技術は未だ見聞されないのが現状である。   As described above, various technological developments related to the earthquake resistance or damping performance of buildings have already been promoted. However, as long as the type and level of ground motion are within the range assumed by the Building Standards Act, it is recognized that the technical content assumes that the stability and safety of the building can be secured. In other words, even if the type and level of seismic motion is struck by “unexpected” seismic motion that exceeds the standards envisaged by the Building Standards Act, there will be no damage or little damage, avoiding collapse or collapse, Seismic technology or vibration control technology that can make use of the building's applications and functions even after a disaster, and that can be constructed with structural planning and design that does not become excessively designed, and that satisfies economic efficiency and workability. The present situation is that the countermeasure technology which can be called a technology has not been heard yet.

本発明の目的は、建築基準法で想定する範囲を超えた、いわゆる「想定外」の超巨大地震動に襲われても被害がないか又は少なく、建物の倒壊や崩壊を免れて、震災後も建物の用途、機能を良く発揮させることができる制震構造及び制震方法であって、しかも過度の設計にならない構造計画、構造設計で実施可能であり、経済性と施工性を満足できる制震構造及び制震方法を提供することである。
更に言えば、「想定内」或いは「想定外」の超巨大地震動に襲われた場合でも、入力地震動の大きさ、或いは周期のバラツキに応じて抵抗構造(抵抗機構)が多段階に切り換わり、ステッピングスタンスが拡大変化して建物の安定性(ロバスト性)を向上させ、更には超巨大地震動に襲われても建物の倒壊や崩壊を防ぐ性能(冗長性)を備えた、多段階ステッピング制震構造及び多段階ステッピング制震方法を提供することである。
The purpose of the present invention is that there is little or no damage even if it is attacked by a so-called “unexpected” giant earthquake motion that exceeds the range assumed by the Building Standards Act, avoiding the collapse or collapse of the building, after the earthquake Can be implemented with structural planning and design that does not lead to excessive design, and can satisfy economic efficiency and workability. To provide seismic structure and seismic control method.
Furthermore, even in the event of a “given” or “unexpected” massive earthquake motion, the resistance structure (resistive mechanism) switches in multiple stages according to the magnitude of the input earthquake motion or the variation in period, Multi-step stepping vibration control with improved performance (redundancy) that improves the stability (robustness) of buildings by expanding and changing the stepping stance, and also prevents the building from collapsing or collapsing even if it is attacked by a massive earthquake motion It is to provide structure and multi-step stepping control method.

上記課題を解決する手段として、請求項1に記載した発明に係る多段階ステッピング制震構造は、
地震時の水平力Qを負担する連層耐震要素1は、その下端部が基礎4又は地下階柱頭と縁切りして上下方向への浮き上がり5が可能に構築され、
前記連層耐震要素1と同じ構面内で隣接する位置に、前記連層耐震要素1との間に上下方向のギャップ3を介して隣接するギャップ付き耐震要素2が、その下端部を基礎4又は地下階柱頭と縁切して上下方向への浮き上がり5が可能に構築されており、
中・小地震時Q1には、連層耐震要素1及びギャップ付き耐震要素2ともに下端部が基礎4又は地下階柱頭と接した基礎固定の状態で応答し、
建築基準法で想定する範囲内の大地震時Q2には、連層耐震要素1のみが浮き上がって地震入力を位置エネルギに変換し、且つ長周期化して建物10への地震入力を低減する挙動(第1段階ステッピング)で応答し、
建築基準法で想定する範囲内の巨大地震時Q3には、連層耐震要素1の浮き上がり5に伴ってギャップ付き耐震要素2とのギャップ3を解消して連層耐震要素1とギャップ付き耐震要素2とが一体化した状態に抵抗機構が切り換わり、両耐震要素1、2の下端のステッピングスタンスが(L1+L2 )に拡大された挙動(第1段階ステッピングから第2段階ステッピングへの移行)で応答してロバスト性を発揮し、
建築基準法では想定外の超巨大地震時Q4には、連層耐震要素1の浮き上がり5に伴ってギャップ付き耐震要素2とのギャップ3を解消して連層耐震要素1とギャップ付き耐震要素2とが一体化した状態に抵抗機構が切り換わり、両耐震要素1、2の下端のステッピングスタンスが(L1+L2 )に拡大された浮き上がり挙動(第2段階ステッピング)で応答して地震入力を大きな位置エネルギに変換し、且つ長周期化して建物10への地震入力を低減して倒壊を防ぐ冗長性を発揮することを特徴とする。
As means for solving the above problems, the multi-step stepping vibration control structure according to the invention described in claim 1 is:
The multi-layer seismic element 1 that bears the horizontal force Q at the time of an earthquake is constructed so that the lower end of the multi-layer seismic element 1 can be lifted up and down 5 by cutting off the foundation 4 or the basement of the basement,
A seismic element 2 with a gap adjacent to the multi-layer seismic element 1 through a vertical gap 3 at a position adjacent to the multi-layer seismic element 1 in the same plane is based on the lower end of the base 4. Or it is constructed so that it can be lifted up and down 5 by cutting off with the basement of the basement floor,
During medium and small earthquakes Q1, both the multi-layer seismic element 1 and the seismic element 2 with gaps respond with the bottom fixed in contact with the foundation 4 or the basement of the basement floor,
At the time of a large earthquake Q2 within the range assumed by the Building Standards Act, only the multi-layer seismic element 1 is lifted to convert the seismic input into potential energy, and to increase the period to reduce the seismic input to the building 10 ( Respond in step 1)
At Q3 during a huge earthquake within the range envisaged by the Building Standards Act, the gap 3 between the seismic element 2 with gap and the seismic element 1 with gap are eliminated by lifting up the multi-layer seismic element 1 2 is integrated into a state where the resistance mechanism is switched, and the stepping stance at the lower ends of both seismic elements 1 and 2 is expanded to (L1 + L2) (response from the first step stepping to the second step stepping). To demonstrate robustness,
In Q4, which is not expected by the Building Standards Act, the gap 3 between the seismic element 2 with gap and the seismic element 2 with gap is eliminated with the rising 5 of the multi-layer seismic element 1. The resistance mechanism switches to an integrated state, and the stepping stance at the lower end of both seismic elements 1 and 2 responds with a lifting behavior (second stepping) expanded to (L1 + L2), and the seismic input becomes a large potential energy. It is characterized by the fact that it is converted into, and the period is increased to reduce the earthquake input to the building 10 and to exhibit redundancy to prevent collapse.

請求項2に記載した発明は、請求項1に記載した多段階ステッピング制震構造において、
建物10の連層耐震要素1及びギャップ付き耐震要素2は、鉄筋コンクリート造又は鉄骨鉄筋コンクリート造であり、若しくは連層耐震要素1が鉄骨ブレース構造で、ギャップ付き耐震要素2はブレースの代わりに弛みを生じた引っ張り材を配置した鉄骨造であることを特徴とする。
The invention described in claim 2 is the multi-step stepping vibration control structure according to claim 1,
The multi-layer seismic element 1 and the gap seismic element 2 of the building 10 are reinforced concrete structure or steel reinforced concrete structure, or the multi-layer seismic element 1 is a steel brace structure, and the gap seismic element 2 is slack instead of the brace. It is characterized by a steel structure in which a pulling material is arranged.

請求項3に記載した発明は、請求項1又は2に記載した多段階ステッピング制震構造において、
連層耐震要素1及びギャップ付き耐震要素2と基礎4又は地下階柱頭との縁切りは、基礎4を構成する杭頭又は柱頭に凹部4aを設け、連層耐震要素1及びギャップ付き耐震要素2のステッピング架構6には下向きに突き出て前記凹部4aへ出入り自在に嵌る柱部材6aを設けて前記凹部4aへ嵌め合わせると共に、前記凹部4aと柱部材6aとの嵌め合わせ隙間に潤滑剤が充填されている構成を特徴とする。
The invention described in claim 3 is the multi-step stepping vibration control structure according to claim 1 or 2,
The multi-layer seismic element 1 and the seismic element 2 with the gap and the foundation 4 or the base of the basement are provided with a recess 4a in the pile head or the head of the base 4, and the multi-layer seismic element 1 and the seismic element 2 with the gap The stepping frame 6 is provided with a column member 6a that protrudes downward and fits freely into and out of the recess 4a and fits into the recess 4a. The fitting gap between the recess 4a and the column member 6a is filled with a lubricant. It is characterized by the configuration.

請求項4に記載した発明は、請求項1〜3のいずれか一に記載した多段階ステッピング制震構造において、
ギャップ付き耐震要素2は、矩形のフレーム架構7の面内に、フレーム上辺7aからぶら下げて、若しくはフレーム下辺7bから立ち上げて、フレーム架構7とは縁切りした上下方向のギャップ3が連層耐震要素1との間に形成されている構成を特徴とする。
The invention described in claim 4 is the multi-step stepping vibration control structure according to any one of claims 1 to 3,
The seismic element 2 with a gap is a multi-layer seismic element in which a vertical gap 3 that hangs from the upper side 7a of the frame or rises from the lower side 7b of the frame in the plane of the rectangular frame 7 and is cut off from the frame 7 1 is characterized in that it is formed between the two.

請求項5に記載した発明は、請求項1〜3のいずれか一に記載した多段階ステッピング制震構造において、
ギャップ付き耐震要素2は、矩形のフレーム架構7の面内に、その四辺を圧縮に効くダンパー8によりフレーム架構7の面内に支持された構成であり、上下方向のギャップ3が連層耐震要素1との隣接部位に形成されていることを特徴とする。
The invention described in claim 5 is the multi-step stepping vibration control structure according to any one of claims 1 to 3,
The seismic element 2 with a gap is a structure in which the four sides are supported in the plane of the frame frame 7 by a damper 8 that is effective for compression in the plane of the rectangular frame frame 7, and the vertical gap 3 is a multi-layer seismic element. It is formed in the site | part adjacent to 1.

請求項6に記載した発明は、請求項1〜5のいずれか一に記載した多段階ステッピング制震構造において、
ギャップ付き耐震要素2のギャップ3は、耐火性のゴム製緩衝材9で埋められていることを特徴とする。
The invention described in claim 6 is the multi-step stepping vibration control structure according to any one of claims 1 to 5,
The gap 3 of the seismic element 2 with gap is filled with a fire-resistant rubber cushioning material 9.

請求項7に記載した発明に係る多段階ステッピング制震方法は、
地震時の水平力Qを負担する連層耐震要素1は、その下端部を基礎4又は地下階柱頭と縁切りして上下方向への浮き上がり5が可能に構築し、
前記連層耐震要素1と同じ構面内の隣接位置に、前記連層耐震要素1との間に上下方向のギャップ3を介して隣接するギャップ付き耐震要素2を、その下端部を基礎4又は地下階柱頭と縁切りして上下方向への浮き上がり5が可能に構築し、
中・小地震時Q1には、連層耐震要素1及びギャップ付き耐震要素2ともに下端部が基礎4又は地下階柱頭と接した基礎固定の状態で応答させ、
建築基準法で想定する範囲内の大地震時Q2には、連層耐震要素1のみが浮き上がって地震入力を位置エネルギに変換し、且つ長周期化して建物10への地震入力を低減する挙動(第1段階ステッピング)で応答させ、
建築基準法で想定する範囲内の巨大地震時Q3には、連層耐震要素1の浮き上がり5に伴ってギャップ付き耐震要素2とのギャップ3を解消し連層耐震要素1とギャップ付き耐震要素2とが一体化した状態に抵抗機構を切り換え、両耐震要素1、2の下端のステッピングスタンスが(L1+L2 )に拡大された挙動(第1段階ステッピングから第2段階ステッピングへの移行)で応答させてロバスト性を発揮させ、
建築基準法では想定外の超巨大地震時Q4には、連層耐震要素1の浮き上がり5に伴ってギャップ付き耐震要素2とのギャップ3を解消して連層耐震要素1とギャップ付き耐震要素2とが一体化した状態に抵抗機構を切り換え、両耐震要素の下端のステッピングスタンスが(L1+L2 )に拡大された浮き上がり挙動(第2段階ステッピング)で応答させて地震入力を大きな位置エネルギに変換し、且つ超周期化して建物10への地震入力を低減して倒壊や崩壊を防ぐ冗長性を発揮させることを特徴とする。
The multi-step stepping vibration control method according to the invention described in claim 7 is:
The multi-layer seismic element 1 that bears the horizontal force Q at the time of an earthquake is constructed so that the lower end of the multi-layer seismic element 1 can be separated from the foundation 4 or the base of the basement floor, and the uplift 5 can be made up and down.
The seismic element 2 with the gap adjacent to the multi-layer seismic element 1 through the gap 3 in the vertical direction at the adjacent position in the same plane as the multi-layer seismic element 1, and the lower end of the base 4 or It is constructed so that it can be lifted up and down 5 by cutting off with the basement of the basement floor,
During medium and small earthquakes Q1, both the multi-layer seismic element 1 and the seismic element 2 with gaps respond with the bottom fixed in contact with the foundation 4 or the basement of the basement floor,
At the time of a large earthquake Q2 within the range assumed by the Building Standards Act, only the multi-layer seismic element 1 is lifted to convert the seismic input into potential energy, and to increase the period to reduce the seismic input to the building 10 ( In the first step)
At Q3 during a huge earthquake within the range envisaged by the Building Standards Act, the gap 3 between the seismic element 2 with gap and the seismic element 2 with gap are eliminated with the rising 5 of the multi-layer seismic element 1. The resistance mechanism is switched to an integrated state, and the stepping stance at the lower ends of both seismic elements 1 and 2 is expanded to (L1 + L2) (the transition from the first step to the second step). Shows robustness,
In Q4, which is not expected by the Building Standards Act, the gap 3 between the seismic element 2 with gap and the seismic element 2 with gap is eliminated with the rising 5 of the multi-layer seismic element 1. The resistance mechanism is switched to an integrated state, and the stepping stance at the lower end of both seismic elements is made to respond with a lifting behavior (second stepping) expanded to (L1 + L2) to convert the seismic input into a large potential energy, In addition, it is characterized by reducing the earthquake input to the building 10 by super-periodicity and exhibiting redundancy to prevent collapse and collapse.

本発明に係る多段階ステッピング制震構造及び多段階ステッピング制震方法は、地震時の水平力Qを負担する連層耐震要素1の下端部を、基礎4又は地下階柱頭と縁切りして上下方向への浮き上がり5が可能に構築され、更に前記連層耐震要素1と同じ構面内で隣接する位置に、連層耐震要素1との間に上下方向のギャップ3を介して隣接するギャップ付き耐震要素2を、やはり下端部を基礎4又は地下階柱頭と縁切りして上下方向への浮き上がり5が可能に構築されているが、弱小の中・小地震動Q1が入力したぐらいでは、建物10の連層耐震要素1及びギャップ付き耐震要素2はびくともせず、図4に例示した如く各耐震要素1、2の下端部は基礎4又は地下階柱頭と接した基礎固定の状態で応答して耐え、建物10の制震性及び耐震性に変化は生じない。
次に、建築基準法で想定する範囲内の大地震動Q2が作用した際には、図5に例示したように、建物10の連層耐震要素1のみが、その下端の幅寸L1をステッピングスタンスとする浮き上がり5を生じて、地震入力Q2を位置エネルギに変換し、且つ長周期化して建物10への地震入力を低減化する挙動(第1段階ステッピング)で応答し、建物10の安全性を保つ。
The multi-step stepping damping structure and the multi-step stepping damping method according to the present invention are such that the lower end portion of the multi-layer seismic element 1 bearing the horizontal force Q at the time of the earthquake is cut off from the foundation 4 or the basement capital and vertically A seismic structure with a gap which is constructed so as to be able to lift up to 5 and is adjacent to the multi-layer seismic element 1 through a vertical gap 3 at a position adjacent to the multi-layer seismic element 1 in the same plane. Element 2 is constructed so that it can be lifted up and down 5 by cutting off the lower end from the foundation 4 or the basement of the basement floor. The seismic element 1 and the seismic element 2 with gaps are not fluttering, and as shown in FIG. 4, the lower ends of the seismic elements 1 and 2 respond and endure in a fixed state in contact with the foundation 4 or the basement of the basement, Seismic control and earthquake resistance of building 10 Change does not occur in.
Next, when a large seismic motion Q2 within the range assumed by the Building Standards Act is applied, as illustrated in FIG. 5, only the multi-layer seismic element 1 of the building 10 steps the width dimension L1 at its lower end. The response to the behavior (first stepping) that converts the seismic input Q2 into potential energy and reduces the seismic input to the building 10 by reducing the seismic input to the building 10 is generated. keep.

更に、建築基準法で想定する範囲内の巨大地震時Q3には、建物10の連層耐震要素1の上記浮き上がり5に伴ってギャップ付き耐震要素2との間のギャップ3が解消され(閉じられ)、連層耐震要素1とギャップ付き耐震要素2とは構造的に一体化した抵抗機構に切り換わる。そのため両耐震要素1、2は、それぞれの下端の幅寸L1とL2を合計した大きなステッピングスタンス(L1+L2)で合一の浮き上がり5を生ずる抵抗機構に切り換わり、前記拡大されたステッピングスタンス(L1+L2)の挙動(第1段階ステッピングから第多段階ステッピングへの移行動作)で応答し、地震入力Q3を大きな位置エネルギに変換し、且つ長周期化して建物10の安全性を保つ、所謂「ロバスト性」を発揮する。
のみならず、建築基準法では「想定外」の超巨大地震動Q4に建物10が襲われた場合にも、やはり連層耐震要素1の浮き上がり5に伴って、ギャップ付き耐震要素2との間のギャップ3が解消され(閉じられ)、連層耐震要素1とギャップ付き耐震要素2とが構造的に一体化した抵抗機構に切り換わる。そして、両耐震要素1、2はそれぞれの下端の幅寸L1とL2を合計した大きなステッピングスタンス(L1+L2)で浮き上がり5を生ずる挙動(第2段階ステッピング)で応答し、地震入力を大きな位置エネルギに変換し、且つ長周期化して建物10への地震入力を低減化し、建物10の倒壊や崩壊を未然に防ぐ所謂「冗長性」を発揮する。
Furthermore, at Q3 during a huge earthquake within the range assumed by the Building Standard Law, the gap 3 between the seismic element 2 with a gap is eliminated (closed) with the above-described lifting 5 of the multi-layer seismic element 1 of the building 10. ), The multi-layer seismic element 1 and the seismic element 2 with a gap are switched to a structurally integrated resistance mechanism. Therefore, both seismic elements 1 and 2 are switched to a resistance mechanism that produces a unitary lift 5 with a large stepping stance (L1 + L2) that is the sum of the widths L1 and L2 of the respective lower ends, and the expanded stepping stance (L1 + L2) So-called “robustness” in which the seismic input Q3 is converted into a large potential energy and the period is increased to maintain the safety of the building 10. Demonstrate.
Not only that, but when the building 10 is attacked by an extremely large earthquake motion Q4 that is “unexpected” in the Building Standards Act, the gap between the seismic element 2 with the gap and the seismic element 2 with the gap is also increased. The gap 3 is eliminated (closed), and the multilayered seismic element 1 and the seismic element 2 with the gap are switched to a resistance mechanism that is structurally integrated. Both seismic elements 1 and 2 respond with a behavior (second stepping) that causes lift 5 in a large stepping stance (L1 + L2) that is the sum of the width dimensions L1 and L2 at the lower ends of each of the seismic elements 1 and 2. It is converted and lengthened to reduce the earthquake input to the building 10, thereby exhibiting so-called “redundancy” that prevents the building 10 from collapsing and collapsing.

本発明に係る多段階ステッピング制震構造を実施した建物モデルの斜視図である。It is a perspective view of the building model which implemented the multistep stepping vibration control structure concerning the present invention. 図1に示した建物の構造計画解析モデルの斜視図である。It is a perspective view of the structural plan analysis model of the building shown in FIG. 図2に示した建物モデルの基準階床伏せ図である。FIG. 3 is a reference floor plan view of the building model shown in FIG. 2. 上記多段階ステッピング制震構造建物が基礎固定の挙動を示した立面図である。It is the elevation which showed the behavior of the foundation fixed of the above-mentioned multi-step stepping control structure. 上記多段階ステッピング制震構造建物が第1段階ステッピングの抵抗機構に切り換わった挙動を例示した立面図である。It is the elevation which illustrated the behavior where the above-mentioned multi-step stepping damping structure building switched to the resistance mechanism of the first stepping. 上記多段階ステッピング制震構造建物が第2段階ステッピングの抵抗機構に切り換わりつつある挙動を例示した立面図である。It is the elevation which illustrated the behavior where the above-mentioned multi-step stepping damping structure building is switching to the resistance mechanism of the second stepping. 上記多段階ステッピング制震構造建物が第2段階ステッピングの抵抗機構に切り換わった挙動を例示した立面図である。It is the elevation which illustrated the behavior where the above-mentioned multi-step stepping damping structure building switched to the resistance mechanism of the second stepping. Aは上記多段階ステッピング制震構造建物の抵抗機構が第1段階ステッピングに切り換わった挙動を誇張して示し、Bは同第2段階ステッピングに切り換わった挙動を誇張して示した説明図である。A is an explanatory diagram showing exaggeratedly the behavior of the resistance mechanism of the multi-step stepping damping structure building switched to the first stepping, and B is an explanatory diagram exaggerating the behavior of switching to the second stepping. is there. Aは連層耐震壁およびギャップ付き耐震壁が上下方向のギャップを介して隣接する構造部分を示した主要部の正面図、BはA図に付記したb−b線矢視の拡大した断面図である。A is a front view of a main part showing a structural portion where a multi-story shear wall and a shear wall with a gap are adjacent to each other via a gap in the vertical direction, and B is an enlarged sectional view taken along line bb in FIG. It is. Aは連層耐震要素又はギャップ付き耐震要素の下端部の浮き上がり架構と、基礎を構成する杭との縁切り構造の一例を浮き上がり挙動の状態で示した斜視図、Bは同前の基礎固定状態を示した立面図である。A is a perspective view showing an example of an edge-cutting structure between a floating structure at the lower end of a multi-layer seismic element or a seismic element with a gap and a pile that constitutes the foundation in a state of lifting behavior, and B is a foundation fixing state before FIG. Aは本発明による多段階ステッピング制震構造建物の応答解析に用いた地震動波形図、Bはレベル2の絶対加速度応答スペクトル図である。A is a ground motion waveform diagram used for response analysis of a multi-step stepping control structure according to the present invention, and B is a level 2 absolute acceleration response spectrum diagram. 上記レベル2の地震動を基準とし、加速度スケールを変化させた場合の応答値の推移を示す解析図である。It is an analysis figure which shows transition of the response value at the time of changing an acceleration scale on the basis of the said level 2 earthquake motion. A、Bはギャップ付き耐震壁の構成例と応答形態を示すモデル図である。A and B are model diagrams showing a configuration example and a response form of a shear wall with a gap. A、Bはギャップ付き耐震壁の異なる構成例と応答形態を示すモデル図である。A and B are model diagrams showing different configuration examples and response forms of a shear wall with a gap. A、Bはギャップ付き耐震壁の異なる構成例と応答形態を示すモデル図である。A and B are model diagrams showing different configuration examples and response forms of a shear wall with a gap. A、Bはギャップ付き耐震壁の異なる構成例と応答形態を示すモデル図である。A and B are model diagrams showing different configuration examples and response forms of a shear wall with a gap. A、Bはギャップ付き耐震壁の異なる構成例と応答形態を示すモデル図である。A and B are model diagrams showing different configuration examples and response forms of a shear wall with a gap. 本発明による多段階ステッピング制震構造建物モデルの異なる実施例の基準階床伏せ図である。It is a standard floor-flooring figure of the different Example of the multistep stepping damping structure building model by this invention. A〜Dは本発明に係る多段階ステッピング制震構造建物モデルの異なる実施例を示した立面図である。A to D are elevation views showing different embodiments of the multi-step stepping damping structure building model according to the present invention. 本発明に係る多段階ステッピング制震構造建物が、連層耐震壁はブレース構造で、ギャップ付き耐震壁は弛みを生じた引っ張り材を用いた鉄骨造で構成された建物モデルを示す立面図である。The multi-step stepping vibration control structure building according to the present invention is an elevational view showing a building model composed of a steel structure using a bracing structure with a multi-layered seismic wall and a seismic wall with a gap, which is a slackened tensile material. is there. A〜Cは本発明に係る多段階ステッピング制震構造建物モデルの異なる実施例を示した立面図である。A to C are elevation views showing different embodiments of the multi-step stepping damping structure building model according to the present invention.

発明を実施する最良の形態Best Mode for Carrying Out the Invention

本発明による多段階ステッピング制震構造及び多段階ステッピング制震方法は、地震時の水平力Q(地震動)を負担する連層耐震要素1は、その下端部が基礎4又は地下階柱頭と縁切りして上下方向への浮き上がり5が可能に構築される。
前記連層耐震要素1と同じ構面内で隣接する位置に、前記連層耐震要素1との間に上下方向のギャップ3を介して隣接するギャップ付き耐震要素2が、その下端部を基礎4又は地下階柱頭と縁切りして上下方向への浮き上がり5が可能に構築される。
したがって、中・小地震時Q1には、連層耐震要素1及びギャップ付き耐震要素2ともに下端部が基礎4又は地下階柱頭と接した基礎固定の状態で応答し、建物10の制震性能及び耐震性能を発揮する(図4参照)。
建築基準法で想定する範囲内の大地震時Q2には、連層耐震要素1のみが浮き上がって地震入力を位置エネルギに変換し、且つ長周期化して、建物10への地震入力を低減する挙動(第1段階ステッピング)で応答し建物10の安全性を保つ(図5参照)。
同じく建築基準法で想定する範囲内の巨大地震時Q3には、連層耐震要素1の浮き上がり5に伴ってギャップ付き耐震要素2とのギャップ3を解消し(閉じ)、連層耐震要素1とギャップ付き耐震要素2とが一体化した状態に抵抗機構が切り換わり、両耐震要素1、2の下端のステッピングスタンスが(L1+L2 )に拡大された挙動(第1段階ステッピングから第多段階ステッピングへの移行期)により建物10への地震入力を大きな位置エネルギに変換し、且つ長周期化する応答により建物10への地震入力を低減して、同建物10のロバスト性を発揮する(図6参照)。
更に、建築基準法では「想定外」の超巨大地震動Q4に襲われた場合には、連層耐震要素1の浮き上がり5に伴ってギャップ付き耐震壁2のギャップ3を解消し(閉じ)、連層耐震要素1とギャップ付き耐震要素2とが一体化した状態に抵抗機構が切り換わり、両耐震要素1、2の下端のステッピングスタンスが(L1+L2 )に拡大された浮き上がり挙動(第2段階ステッピング)の応答により建物10への地震入力を大きな位置エネルギに変換し、且つ長周期化することにより建物19への地震入力を低減し、建物10の倒壊や崩壊を防ぐ「冗長性」を発揮する。
かくしてギャップ付き耐震壁2の個数を更に増やすことにより抵抗機構の切り換え段数を更に増やすことができ、ステッピングスタンスの拡大段数を増やすなどして、更に多段階のステッピング制震構造及びステッピング制震方法を実施することが出来る。
In the multi-step stepping control structure and multi-step stepping control method according to the present invention, the multi-layer seismic element 1 that bears the horizontal force Q (earthquake motion) at the time of an earthquake is cut off at the lower end from the foundation 4 or the basement capital. Thus, the up and down 5 can be constructed.
A seismic element 2 with a gap adjacent to the multi-layer seismic element 1 through a vertical gap 3 at a position adjacent to the multi-layer seismic element 1 in the same plane is based on the lower end of the base 4. Or it is constructed so that it can be lifted up and down 5 by cutting off with the basement of the basement floor.
Therefore, during Q1 during medium and small earthquakes, both the multi-layer seismic element 1 and the seismic element 2 with gap respond with the bottom fixed to the foundation 4 or the base of the basement, and the seismic performance of the building 10 Demonstrates seismic performance (see Figure 4).
At the time of a large earthquake Q2 within the range assumed by the Building Standards Act, only the multi-layer seismic element 1 is lifted to convert the seismic input into potential energy and lengthen the period to reduce the seismic input to the building 10 Responding (first stepping) keeps the safety of the building 10 (see FIG. 5).
Similarly, in Q3 during a huge earthquake within the range assumed by the Building Standards Act, the gap 3 with the seismic element 2 with a gap was eliminated (closed) with the rising 5 of the multi-layer seismic element 1, and the multi-layer seismic element 1 and The resistance mechanism is switched to the state where the seismic element 2 with the gap is integrated, and the stepping stance at the lower ends of both seismic elements 1 and 2 is expanded to (L1 + L2) (from the first step stepping to the multistep stepping) In the transition period, the earthquake input to the building 10 is converted into a large potential energy, and the earthquake input to the building 10 is reduced by a long-period response, thereby exhibiting the robustness of the building 10 (see FIG. 6). .
In addition, when the building standard law struck by an “unexpected” super-quake ground motion Q4, the gap 3 of the shear wall 2 with gaps is eliminated (closed) with the rising 5 of the multi-layer seismic element 1 (closed). The resistance mechanism switches to the state where the layered seismic element 1 and the seismic element 2 with gap are integrated, and the stepping stance at the lower end of both seismic elements 1 and 2 is expanded to (L1 + L2) (second stepping) In response to this, the earthquake input to the building 10 is converted into a large potential energy, and the seismic input to the building 19 is reduced by increasing the period, thereby exhibiting “redundancy” that prevents the building 10 from collapsing and collapsing.
Thus, by further increasing the number of shear walls 2 with gaps, it is possible to further increase the number of switching steps of the resistance mechanism, and to increase the number of steps of the stepping stance. Can be implemented.

以下に、本発明を図示した実施例に基づいて説明する。
先ず図1〜図3は、本発明による2段階ステッピング制震構造及び2段階ステッピング制震方法を実施した建物モデルの斜視図と、構造計画解析モデル及び基準階床伏せ図を示している。
図1〜図3に示した実施例の2段階ステッピング制震構造建物10は、平面が正方形に近い矩形状で、その四隅位置のX・Y2方向の構面に沿って左右対称な配置で、地震時の水平力を負担する連層耐震壁1(連層耐震要素)が、屋上レベルに届く高さと、1スパンの柱間に及ぶ幅寸で形成され、その下端部は基礎4と縁切りして上下方向への浮き上がりが可能に構築されている(ただし、連層耐震壁1は前記の規模や形状に限らない。以下同じ)。
また、前記連層耐震壁1と同じ構面内、即ち、図1及び図2の例で言えばX方向及びY方向の構面内で隣接する位置であって、地上1階層部分に、且つ1スパンの柱間に及ぶ幅寸で、前記連層耐震壁1との間に、詳細な構造は後述する上下方向のギャップ3を介して隣接するギャップ付き耐震壁2(ギャップ付き耐震要素)が、同じくその下端部を基礎4と縁切りして上下方向への浮き上がりが可能に構築されている(ただし、ギャップ付き耐震壁2も前記1層分の形状、構成に限らない。以下、同じ。)。
なお、図1〜図7は、上記の連層耐震壁1とギャップ付き耐震壁2が共通の構面において、左右対称な配置に構築された構成を示しているが、この限りではない。例えば図18と図19に示す構成でも実施可能であることを予め申し上げておく。
Hereinafter, the present invention will be described based on illustrated embodiments.
First, FIG. 1 to FIG. 3 show a perspective view of a building model, a structural plan analysis model, and a reference floor-flooring diagram in which a two-step stepping damping structure and a two-step stepping damping method according to the present invention are implemented.
The two-step stepping damping structure building 10 of the embodiment shown in FIG. 1 to FIG. 3 is a rectangular shape whose plane is almost square, and is symmetrically arranged along the X and Y2 direction planes at the four corner positions. The multi-story earthquake-resistant wall 1 (multi-story earthquake-resistant element) that bears the horizontal force at the time of an earthquake is formed with a height that reaches the rooftop level and a width that spans between columns of one span. Therefore, it is constructed so that it can be lifted up and down (however, the multistory earthquake-resistant wall 1 is not limited to the above-mentioned scale and shape. The same applies hereinafter).
Further, in the same construction plane as the multi-layer earthquake-resistant wall 1, that is, in the example of FIGS. 1 and 2, the adjacent positions in the construction plane in the X direction and the Y direction, The width of the span spans between the columns, and the detailed structure is between the earthquake-resistant wall 1 and the adjacent earthquake-resistant wall 2 (gapped earthquake-resistant element) with an adjacent gap 3 in the vertical direction. Similarly, it is constructed so that the lower end portion thereof is cut off from the foundation 4 and can be lifted in the vertical direction (however, the earthquake-resistant wall 2 with a gap is not limited to the shape and configuration of the one layer. The same applies hereinafter). .
Although FIGS. 1-7 has shown the structure constructed | assembled by the left-right symmetric arrangement | positioning in the construction surface where the above-mentioned multi-layer earthquake-resistant wall 1 and the earthquake-resistant wall 2 with a gap are common, it is not this limitation. For example, it should be mentioned in advance that the configuration shown in FIGS. 18 and 19 can be implemented.

ここで上記連層耐震壁1と、同耐震壁が上下方向のギャップ3を介して隣接するギャップ付き耐震壁2の詳しい構造を、図9に基づいて更に説明する。
図9A、Bは、連層耐震壁1及びギャップ付き耐震壁2が鉄筋コンクリート造又は鉄骨鉄筋コンクリート造として構築された場合を示す。この場合、ギャップ付き耐震壁2は、連層耐震壁1との境界部位に、上下方向のギャップ3を開けて、連層耐震壁1と同じ構面内で隣接する構成で構築されている。
また、ギャップ付き耐震壁2は、図10A、Bに例示した鋼構造のステッピング架構6を構成する下辺フレーム6b(図10Aを参照)との間にもギャップ3’を開けている(図9A参照)。つまり、図9A及び図13、図14に示すギャップ付き耐震壁2は、矩形の外周フレーム7の面内に、上辺フレーム7aからぶら下げた構造に構築されている。
もっとも、後で説明する図16〜図17のとおり、ギャップ付き耐震壁2は、建物の矩形フレーム7の面内に、種々な態様に構築して実施できる。
Here, the detailed structure of the above-mentioned multi-layer earthquake-resistant wall 1 and the earthquake-resistant wall 2 with a gap adjacent to the same earthquake-resistant wall via a gap 3 in the vertical direction will be further described with reference to FIG.
FIGS. 9A and 9B show a case where the multi-layer earthquake-resistant wall 1 and the earthquake-resistant wall 2 with a gap are constructed as a reinforced concrete structure or a steel reinforced concrete structure. In this case, the earthquake-resistant wall 2 with a gap is constructed with a configuration in which a gap 3 in the vertical direction is opened at a boundary portion with the multi-layer earthquake-resistant wall 1 and adjacent in the same plane as the multi-layer earthquake-resistant wall 1.
In addition, the shear wall 2 with a gap also opens a gap 3 ′ with the lower frame 6b (see FIG. 10A) constituting the steel stepping frame 6 illustrated in FIGS. 10A and 10B (see FIG. 9A). ). In other words, the earthquake-resistant wall 2 with a gap shown in FIGS. 9A, 13, and 14 is constructed in a structure that hangs from the upper frame 7 a in the plane of the rectangular outer peripheral frame 7.
However, as shown in FIGS. 16 to 17 to be described later, the earthquake-resistant wall 2 with a gap can be constructed and implemented in various modes within the plane of the rectangular frame 7 of the building.

上記した上下方向のギャップ3の隙間寸法は、2段階ステッピング制震作用を効果的に機能させるタイミング(抵抗機構の切り換え時期)との兼ね合いを考慮してその大きさが決定される。具体的には数ミリメートル〜数10ミリメートルの範囲で隙間寸法の大きさを適宜に設計して実施される。
上記ギャップ3には、図9Bに示したように、耐火性のゴム製緩衝材9を詰めてきっちり塞ぐ。図9Bの場合、前記ゴム製緩衝材9は、同ゴム製緩衝材9の内縁と外縁にブチルゴム製の支持部材9aを取り付けて、連層耐震壁1及びギャップ付き耐震壁2と緊密な関係に一体化した構成とされる。更に、外縁側の支持部材9aの内側には、耐火性のセラミックファイバー材9bを挟んだ構成とされている。
もとより上記した下辺フレーム6bとの間に形成したギャップ3’についても、同様な閉塞処理が行われる。
上記耐火性のゴム製緩衝材9及びブチルゴム製支持部材9a並びに耐火性のセラミックファイバー材9bは、後述する連層耐震壁1の浮き上がり挙動(ステッピング又はロッキング)に追従しつつ段階的に変形と硬化を生じ、隣接する連層耐震壁1とギャップ付き耐震壁2とを一体化させる耐摩耗機構として機能する。
The size of the gap 3 in the vertical direction 3 described above is determined in consideration of the balance with the timing at which the two-step stepping vibration control function effectively functions (the switching timing of the resistance mechanism). Specifically, the gap size is appropriately designed in the range of several millimeters to several tens of millimeters.
As shown in FIG. 9B, the gap 3 is filled with a fire-resistant rubber cushioning material 9 so as to be completely closed. In the case of FIG. 9B, the rubber cushioning material 9 has a butyl rubber support member 9a attached to the inner edge and the outer edge of the rubber cushioning material 9, and has a close relationship with the multi-layer earthquake resistant wall 1 and the earthquake resistant wall 2 with a gap. It is an integrated configuration. Further, a fire-resistant ceramic fiber material 9b is sandwiched inside the outer edge side support member 9a.
A similar closing process is performed on the gap 3 ′ formed between the lower frame 6b and the lower frame 6b.
The fire-resistant rubber cushioning material 9, the butyl rubber support member 9a, and the fire-resistant ceramic fiber material 9b are deformed and cured step by step while following uplift behavior (stepping or rocking) of the multi-layer seismic wall 1 described later. And functions as a wear-resistant mechanism for integrating the adjacent multi-layer earthquake-resistant wall 1 and the earthquake-resistant wall 2 with a gap.

次に、図10A、Bに基づいて、上記連層耐震壁1及び/又はギャップ付き耐震壁2と基礎4との縁切り構造を説明する。
図10A、Bに例示したとおり、建物10の基礎を構成する杭4の杭頭中心部に鋼製の箱枠を埋め込み、スタッドを利用する等の手段で強固に一体化した凹部4aを設けており、前記鋼製の箱枠が支圧材としても働く構成とされている。
もっとも、基礎4の異なる構成としては、後の図21A〜Cに示して後述するとおり、地下階構造物の柱頭に同様な凹部4aを設けて同様に実施することが出来る。
一方、上記した連層耐震壁1及び/又はギャップ付き耐震壁2の下端部を構成する鋼製のステッピング架構6からは、下向きに突き出て前記凹部4aへ出入り自在(上下動が自在)に嵌る柱部材6aを設けて、前記凹部4aへ柱部材6aを嵌めた構成で浮き上がり可能な縁切りが行われている。もっとも凹部4a及び柱部材6aは図示した角形の構成に限らず、丸形状その他の形状でも実施される。
更に、上記2段階ステッピング制震(浮き上がり制震)の実効をあらしめるため、杭頭の凹部4aと柱部材6aとの嵌め合い隙間にはグリース等の潤滑剤が充填され、恒久的な浮き上がり動作を保全する縁切り構造が構築されている。
上記構成のステッピング制震(浮き上がり制震)構造及びステッピング制震方法は、杭頭の凹部4aへ、連層耐震壁1及び/又はギャップ付き耐震壁2のステッピング架構6から下向きに突き出された柱部材6aを、前記凹部4aへ出入り自在に嵌めた簡便な構造であるから、既往の鉄骨柱脚と同様に簡便な施工で実施できる。したがって、既往のいわゆる免震装置の設置施工の如き高い施工精度は不要であり、施工性に優れ、工費も安価に実施できる。
Next, based on FIG. 10A and 10B, the edge-cutting structure of the said multi-layer earthquake-resistant wall 1 and / or the earthquake-resistant wall 2 with a gap, and the foundation 4 is demonstrated.
As illustrated in FIGS. 10A and 10B, a recessed portion 4a that is firmly integrated by means such as embedding a steel box frame in the center of the pile head of the pile 4 constituting the foundation of the building 10 and using a stud is provided. The steel box frame also serves as a bearing material.
However, as a different configuration of the foundation 4, as shown in FIGS. 21A to 21C later and described later, a similar recess 4 a can be provided in the stigma of the basement structure, and the same can be implemented.
On the other hand, from the steel stepping frame 6 constituting the lower end of the above-mentioned multi-layer earthquake-resistant wall 1 and / or the earthquake-resistant wall 2 with a gap, it protrudes downward and fits in and out of the recess 4a (movable up and down). The column member 6a is provided, and the edge cutting which can be lifted by the structure which fitted the column member 6a to the said recessed part 4a is performed. However, the concave portion 4a and the column member 6a are not limited to the illustrated rectangular configuration, but may be implemented in a round shape or other shapes.
Furthermore, in order to demonstrate the effectiveness of the above-described two-step stepping damping (lifting damping), the fitting gap between the pile head recess 4a and the column member 6a is filled with a lubricant such as grease, so that the permanent lifting action is performed. The edge cutting structure that preserves
The stepping vibration control (lifting vibration suppression) structure and the stepping vibration control method having the above-described structure are the columns protruding downward from the stepping frame 6 of the multi-layered shear wall 1 and / or the shear wall 2 with a gap to the recess 4a of the pile head. Since the member 6a has a simple structure in which the member 6a is freely fitted in and out of the concave portion 4a, it can be implemented by simple construction as in the case of the existing steel column base. Therefore, high construction accuracy as in the past installation of so-called seismic isolation devices is not required, the construction is excellent, and the construction cost can be reduced.

上記の構成で実施される本発明の2段階ステッピング制震構造建物10は、中・小の弱小地震動Q1が作用した際には、図4に示した如く、連層耐震壁1及びギャップ付き耐震壁2はともに、その下端部(ステッピング架構6)が基礎4と接した基礎固定状態で応答し、建物10の安全性と安定性は十分に保たれる。
また、建築基準法で想定する範囲内の大地震動Q2(レベル2)が襲った際には、図5に示した如く、連層耐震壁1にのみ、入力側の支点(図5では左側の浮き上がり可能な縁切り構造部)に浮き上がり5を生じて、地震入力を位置エネルギに変換し、且つ長周期化して、建物10への地震入力を低減化する挙動(第1段階ステッピング)で応答し、建物10の安全性と安定性が保たれる。
As shown in FIG. 4, the two-step stepping vibration control structure building 10 of the present invention implemented in the above-described configuration is subjected to the multi-layer earthquake-resistant wall 1 and the earthquake-resistant with gap as shown in FIG. Both the walls 2 respond in a fixed state where the lower end portion (stepping frame 6) is in contact with the foundation 4, and the safety and stability of the building 10 are sufficiently maintained.
In addition, when a large earthquake motion Q2 (level 2) within the range assumed by the Building Standard Law hits, as shown in FIG. 5, only the multi-layer seismic wall 1 has a fulcrum on the input side (the left side in FIG. 5). Responsible with a behavior (first stepping) that reduces the seismic input to the building 10 by converting the seismic input into potential energy and lengthening the period 5 The safety and stability of the building 10 are maintained.

更に図6に示すように、建築基準法で想定する範囲内の巨大地震動Q3が建物10を襲った場合には、連層耐震壁1は地震入力側の支点のみならず、反対側の支点(つまり両側の浮き上がり可能な縁切り構造部)にも浮き上がり5を生じる。その結果、両壁間の上下方向のギャップ3を閉じて連層耐震壁1と一体化したギャップ付き耐震壁2の入力側の支点(図6で左側の浮き上がり可能な縁切り構造部)にもそれなりの浮き上がり5を生じさせ、地震入力を大きな位置エネルギに変換し、且つ長周期化して建物10への地震入力を低減化する挙動(第1段階ステッピングから第2段階ステッピングへの移行)を呈し、やはり建物10の安全性と安定性が保たれる。   Furthermore, as shown in FIG. 6, when a large earthquake motion Q3 within the range assumed by the Building Standard Law hits the building 10, the multi-layer seismic wall 1 is not only a fulcrum on the earthquake input side but also a fulcrum on the opposite side ( That is, the lift 5 is also generated in the edge-cutting structure portions that can be lifted on both sides. As a result, the gap 3 in the vertical direction between the two walls is closed and the fulcrum on the input side of the earthquake-resistant wall 2 with the gap integrated with the multi-layer earthquake-resistant wall 1 (the edge-cutting structure that can be lifted on the left side in FIG. 6). And the behavior of converting the seismic input into a large potential energy and increasing the period to reduce the seismic input to the building 10 (shift from the first step stepping to the second step stepping) After all, the safety and stability of the building 10 are maintained.

のみならず、建築基準法で想定する範囲外の超巨大地震動Q4が建物10を襲った場合には、図7に示したように、連層耐震壁1は入力側の支点のみならず反対側の支点(両側の浮き上がり可能な縁切り構造部)に浮き上がり5を生じ、この連層耐震壁1と一体化することで抵抗機構が切り換わり、ギャップ付き耐震壁2の入力側の支点(図7で左側の浮き上がり可能な縁切り構造部)にも一体的な浮き上がり5を生じさせ、地震入力を位置エネルギに変換し、且つ長周期化して、建物10への地震入力を低減化する挙動(第2段階ステッピング)により、建物10の倒壊や崩壊を防止する「冗長性」を発揮して、安全性と安定性を保つ。
なお、以上の説明では、上記第1段階ステッピングおよび第2段階ステッピングの挙動を、主に図4〜図7に示した左側の連層耐震壁1及びギャップ付き耐震壁2について説明したが、この限りではない。図4〜図7の例で明らかなように、建物10の一つの共通構面には左右対称な配置に連層耐震壁1及びギャップ付き耐震壁2を配置した構成で構築されているので、やはり上記した抵抗機構が切り換わり、地震入力を位置エネルギに変換し、且つ長周期化して建物10への地震入力を低減化する挙動(第2段階ステッピング)は、必然的に左右逆向きの挙動として呈されることを念のため申し添える。
In addition, as shown in FIG. 7, the multistory earthquake-resistant wall 1 is not only the fulcrum on the input side, but also on the opposite side when a huge earthquake motion Q4 outside the range assumed by the Building Standard Law hits the building 10. The lift mechanism 5 is generated at the fulcrum (the edge-cutting structure that can be lifted on both sides), and the resistance mechanism is switched by integrating with the multi-layer earthquake resistant wall 1, and the fulcrum on the input side of the earthquake resistant wall 2 with a gap (in FIG. 7) A behavior (second stage) in which an integral lift 5 is also generated in the left-side liftable edge-cutting structure portion, and the earthquake input is converted into potential energy and lengthened to reduce the earthquake input to the building 10. Stepping) demonstrates “redundancy” that prevents the building 10 from collapsing and collapsing, thus maintaining safety and stability.
In the above description, the behavior of the first step stepping and the second step stepping has been described mainly with respect to the left multi-layer earthquake-resistant wall 1 and gap-type earthquake-resistant wall 2 shown in FIGS. Not as long. As is clear from the examples of FIGS. 4 to 7, the common structural surface of the building 10 is constructed in a configuration in which the multi-layer earthquake-resistant wall 1 and the earthquake-resistant wall 2 with a gap are arranged in a symmetrical arrangement. The behavior (second stepping) in which the above-described resistance mechanism is switched, the earthquake input is converted into potential energy, and the seismic input to the building 10 is reduced by increasing the period is inevitably a reverse behavior. I would like to remind you that it will be presented.

以上の説明を踏まえて、図8A、Bは、上記第1段階及び第2段階ステッピングの挙動を更に概念的に示している。これを以下に説明する。
図8Aは、建築基準法で想定する範囲内の巨大地震動Q2が作用した場合(図5に対応する)の挙動を示す。この場合、回転角をθとすると、連層耐震壁1のステッピングスタンスは、同連層耐震壁1の下端幅相当のスタンスL1のみであるため小さい。したがって、重心Gの高さ位置h1の変化も小さいから、位置エネルギへの変換量も小さいが、小さい地震動には対応することができる。
図8Bは、建築基準法で想定する範囲内の巨大地震動Q3、又は想定範囲外の超巨大地震動Q4が襲った場合(図7に対応する)の挙動を示す。この場合は、連層耐震壁1の地震入力側(左側)の支点に浮き上がり5を生じるだけでなく、前記浮き上がり動作が進行拡大して上下方向のギャップ3が解消される(閉じられる)結果、隣接のギャップ付き耐震壁2へ連層耐震壁1が接して一体化し、同ギャップ付き耐震壁2の地震入力側(左側)の支点にも浮き上がり5を生じる状態となって抵抗機構が切り換わる(第1段階ステッピングから第1段階ステッピングへ移行する)挙動を示す。
その結果、図8Bで明らかな通り、図8Bのステッピングスタンスは、隣接する二つの耐震壁1、2の下端相当幅のスタンスL1とL2を加算したに等しい大きさ(L1+L2)に拡大された浮き上がり挙動(第1段階ステッピングから第1段階ステッピングへ移行した挙動)を呈す。その結果、回転角を図8Aと同じθとすると、と連層耐震壁1の重心Gの高さ位置h1の変化も大きくなるから、地震入力の位置エネルギへの変換量が大きくなり、大きな地震動にまで対応できる。このようにシステムが変化する(抵抗機構が切り換わる)ことにより小さな地震動から大きな地震動まで効率よく対応でき、やはり建物10の安全性と安定性を保つ、所謂「ロバスト性」が良く発揮される。
そして、建築基準法で想定する範囲外の超巨大地震動Q4(レベル2)が建物10を襲った場合には、図8Bに示した回転角θが一段と大きくなるから、連層耐震壁1及びギャップ付き耐震壁2が一体の浮き上がり5に伴う重心Gの高さ位置h2の変化も一層大きくなる。そのため位置エネルギへの変換量が一層大きくなって、建物10の倒壊や崩壊を防ぐ、所謂「冗長性」が十分に発揮されるのである。
Based on the above description, FIGS. 8A and 8B further conceptually show the behavior of the first step and the second step. This will be described below.
FIG. 8A shows the behavior when a giant earthquake motion Q2 within the range assumed in the Building Standard Law is applied (corresponding to FIG. 5). In this case, when the rotation angle is θ, the stepping stance of the multi-layer seismic wall 1 is small because it is only the stance L1 corresponding to the lower end width of the multi-layer seismic wall 1. Therefore, since the change in the height position h1 of the center of gravity G is small, the amount of conversion to potential energy is small, but small earthquake motion can be dealt with.
FIG. 8B shows the behavior when a giant earthquake motion Q3 within the range assumed in the Building Standard Law or a super giant earthquake motion Q4 outside the assumed range hits (corresponding to FIG. 7). In this case, not only is the lift 5 generated at the fulcrum on the earthquake input side (left side) of the multi-layer shear wall 1, but the upward movement is advanced and the vertical gap 3 is eliminated (closed). The multi-story shear wall 1 is in contact with and integrated with the adjacent shear wall 2 with a gap, and the resistance mechanism is switched to a state where a lift 5 is generated at the fulcrum on the earthquake input side (left side) of the shear wall 2 with the gap. The behavior from the first step stepping to the first step stepping) is shown.
As a result, as is apparent from FIG. 8B, the stepping stance of FIG. 8B is lifted to a size (L1 + L2) that is equal to the sum of the stances L1 and L2 of the width corresponding to the lower ends of the adjacent two seismic walls 1 and 2 Exhibiting behavior (behavior shifted from first step stepping to first step stepping). As a result, when the rotation angle is the same as θ in FIG. 8A, the change in the height position h1 of the center of gravity G of the multistory shear wall 1 also increases, so the amount of conversion of the seismic input into potential energy increases and large earthquake motions. Can handle up to. Thus, by changing the system (the resistance mechanism is switched), it is possible to efficiently cope with small earthquake motions to large earthquake motions, and so-called “robustness” that maintains the safety and stability of the building 10 is also exhibited well.
And, when the giant ground motion Q4 (level 2) outside the range assumed by the Building Standard Law hits the building 10, the rotation angle θ shown in FIG. The change in the height position h2 of the center of gravity G accompanying the raised wall 5 with the attached seismic wall 2 is further increased. Therefore, the amount of conversion into potential energy is further increased, and so-called “redundancy” that prevents the building 10 from collapsing or collapsing is sufficiently exhibited.

因みに図11Aは、上記「レベル2」の大地震動Q2の一例として、最大加速度4850mm/Sの地震動波形図を示す。図11Bには前記レベル2の地震動の絶対加速度応答スペクトルを示す。そして、図12は、前記レベル2の地震動を基準とし、加速度スケールを変動させた場合の応答値の推移を示している。
検証事例は、基礎固定制震構造の場合と、通常の第1段階ステッピング制震構造の場合、及び第多段階ステッピング制震構造の3例に分けて示している。第2段階ステッピング制震構造の場合でも、前記2例に比して入力地震動の大きさのバラツキに対する安定性(ロバスト性)が確保されている。また、レベル2×3.0倍までは倒壊せず、安全性(冗長性)が確保されていることを明りょうに示している。
Incidentally, FIG. 11A shows a seismic motion waveform diagram with a maximum acceleration of 4850 mm / S as an example of the above-mentioned “level 2” large seismic motion Q2. FIG. 11B shows an absolute acceleration response spectrum of the level 2 earthquake motion. FIG. 12 shows the transition of the response value when the acceleration scale is changed with the level 2 earthquake motion as a reference.
The verification examples are divided into three cases: a basic fixed damping structure, a normal first stepping damping structure, and a multistage stepping damping structure. Even in the case of the second stepping damping structure, stability (robustness) against variations in the magnitude of the input ground motion is ensured as compared to the above two examples. Further, it clearly shows that safety (redundancy) is ensured without collapsing up to level 2 × 3.0 times.

(その他の実施例)
次に、図13〜図17は、上記ギャップ付き耐震壁2が、上下方向のギャップ3を形成しつつ如何なる構成で構築されるかの実施例を示している。
先ず図13A、Bは、建物の矩形フレーム7の面内に、フレーム上辺7aからぶら下げたギャップ付き耐震壁2を相似な矩形状に構築して成り、地震入力で矩形フレーム7がせん断変形を生ずると、右側辺の下方隅部Pが矩形フレーム7へ当接して、上下方向のギャップ3を閉じた効果を生ずる構成の例を示す。
図14A、Bは、同じく建物の矩形フレーム7の面内に、フレーム上辺7aからぶら下げたギャップ付き耐震壁2を逆台形に構築して成り、地震入力で矩形フレーム7がせん断変形を生ずると、右側縁辺が矩形フレーム7へ面状に当接して、上下方向のギャップ3を閉じる構成の例を示す。
図15A、Bは、図13とは逆に、建物の矩形フレーム7の面内に、フレーム下辺7bから立ち上がるギャップ付き耐震壁2を相似な矩形に構築して成り、地震入力で矩形フレーム7がせん断変形を生ずると、左側辺の上方隅部Pが矩形フレーム7へ点状に当接して上下方向のギャップ3を閉じた効果を生ずる構成の例を示す。
図16A、Bは、図14とは逆に、建物の矩形フレーム7の面内に、フレーム下辺7bから立ち上がるギャップ付き耐震壁2を逆台形状に構築して成り、地震入力で矩形フレーム7がせん断変形を生ずると、左側縁辺が矩形フレーム7へ面状に当接して上下方向のギャップ3を閉じる構成の例を示す。
図17A、Bは、建物の矩形フレーム7の面内に、ギャップ付き耐震壁2が、その四辺を圧縮に効くダンパー8により矩形フレーム7の内面に支持された構成で、上下方向のギャップ3が形成された構成の実施例を示している。地震入力で矩形フレーム7がせん断変形を生ずると、前記ダンパー8のうち該当位置のものが強く圧縮されて上下方向のギャップ3を閉じたに等しい効果を奏する構成の例である。
(Other examples)
Next, FIGS. 13 to 17 show an example of how the above-mentioned earthquake-resistant wall 2 with a gap is constructed by forming a gap 3 in the vertical direction.
First, FIGS. 13A and 13B are constructed by constructing a gap-like earthquake-resistant wall 2 suspended from the upper side 7a of the frame in the plane of the rectangular frame 7 of the building in a similar rectangular shape, and the rectangular frame 7 undergoes shear deformation by an earthquake input. And the example of the structure which produces the effect which the lower corner part P of the right side contact | abuts to the rectangular frame 7, and closed the gap 3 of the up-down direction is shown.
FIGS. 14A and 14B are constructed by constructing an inverted trapezoidal earthquake-resistant wall 2 suspended from the frame upper side 7a in the plane of the rectangular frame 7 of the building, and when the rectangular frame 7 undergoes shear deformation by an earthquake input, An example of a configuration in which the right side edge abuts the rectangular frame 7 in a planar shape and closes the gap 3 in the vertical direction is shown.
15A and 15B, conversely to FIG. 13, in the plane of the rectangular frame 7 of the building, the seismic wall 2 with a gap rising from the frame lower side 7b is constructed in a similar rectangle. An example of a configuration in which when the shear deformation occurs, the upper corner P on the left side abuts the rectangular frame 7 in a dot shape to close the vertical gap 3 will be described.
In contrast to FIG. 14, FIGS. 16A and 16B are constructed by constructing the earthquake-resistant wall 2 with a gap rising from the frame lower side 7 b in the plane of the rectangular frame 7 of the building in an inverted trapezoidal shape. When shear deformation occurs, an example of a configuration in which the left side edge abuts on the rectangular frame 7 in a planar manner to close the vertical gap 3 is shown.
FIGS. 17A and 17B show a structure in which the earthquake-resistant wall 2 with a gap is supported on the inner surface of the rectangular frame 7 by dampers 8 that are effective in compression in the plane of the rectangular frame 7 of the building. An example of the formed configuration is shown. When the rectangular frame 7 undergoes shear deformation due to an earthquake input, the damper 8 is strongly compressed and the effect equivalent to closing the gap 3 in the vertical direction is obtained.

次に、図18は、上記図3の実施例とは大きく異なる床伏せ図の建物に、本発明の多段階ステッピング制震構造及び多段階ステッピング制震方法を実施した場合の実施例を示している。
この実施例の建物10は、いわゆる学校建物の床伏せ図をイメージしたもので、X・Y2次元方向に見て、X方向の構面の両端位置に、上記の連層耐震壁1とギャップ付き耐震壁2とが上下方向のギャップを介して隣接する配置に構築されている。
本発明の多段階ステッピング制震構造を実施した図18の学校建物の場合も、上述した多段階ステッピングの挙動により建物の用途、機能が震災後も健全に保たれるから、いわゆる避難施設として有効利用できる。
Next, FIG. 18 shows an embodiment in which the multi-step stepping vibration control structure and the multi-step stepping vibration control method of the present invention are applied to a building with a floor plan that is significantly different from the embodiment of FIG. Yes.
The building 10 in this embodiment is an image of a floor plan of a so-called school building. When viewed in the X and Y two-dimensional directions, the multi-layer seismic wall 1 and a gap are provided at both ends of the X-direction composition. The seismic wall 2 is constructed so as to be adjacent to each other via a vertical gap.
In the case of the school building of FIG. 18 in which the multi-step stepping vibration control structure of the present invention is implemented, the use and function of the building are kept healthy after the earthquake due to the behavior of the multi-step stepping described above. Effective use.

次に、図19A〜Dは、図4と同様な構造計画解析モデルの建物10について、本発明の多段階ステッピング制震構造及び多段階ステッピング制震方法を実施した異なる実施例を示している。
先ず図19Aに示す実施例は、建物10の一つの構面における中央部位に連層耐震要素1を配置し、同じ構面において前記連層耐震要素1の両側位置に、上下方向のギャップ3を介して隣接するギャップ付き耐震要素2を構築した例である。
この実施例によっても、上記した2段階ステッピングによる制震作用と制震効果を期待できる。
次に、図19Bに示した実施例は、上記図4の実施例と同様に、建物10の一つの構面における両端部に連層耐震要素1、1を配置し、同じ構面において前記二つの連層耐震要素1より内側の三つの柱間位置に、上下方向のギャップ3を介して隣接するギャップ付き耐震要素2を三つ(但し、三つの限りではない。)構築した例である。
この実施例の場合は、上記した抵抗機構の切り換えが、内方側の柱間に構築した三つのギャップ付き耐震要素2により抵抗機構が順次に3段階に切り換わり、段階的な3段階ステッピングによる制震作用を期待できる。
更に、図19Cに示した実施例は、上記図4の実施例と同様に、建物10の一つの構面の両端部位に連層耐震要素1、1を配置し、同じ構面において前記二つの連層耐震要素1、1より内方側三つの柱間位置に、先ず連層耐震要素1に隣接する位置の柱間には上下方向のギャップ3を介して隣接するギャップ付き耐震要素2、2’を上下2層にわたって二つ(但し、二つの限りではない。)構築し、更に中央側位置の柱間にもギャップ付き耐震要素2を一層分構築した、4段階ステッピングによる制震構造及び制震方法の実施例を示している。
この実施例の場合は、上記した抵抗機構の切り換えが、連層耐震要素1に隣接する上下二層分のギャップ付き耐震要素2、2’によって3段階まで行われ、更に中央側位置の柱間に構築した一つギャップ付き耐震要素2による1段階の抵抗機構の切り換えを加えた4段階ステッピングによる制震作用を期待できる。
図19Dに示した実施例は、建物10の一つの構面の両端部に連層耐震要素1、1を配置し、同じ構面において前記の各連層耐震要素1、1の内方側に隣接する柱間位置に、上下2層に及ぶ二つのギャップ付き耐震要素2、2’を二つ(ただし、二つの限りではない。)を構築した、3段階ステッピングによる制震構造及び制震方法の例を示している。
Next, FIGS. 19A to 19D show different embodiments in which the multi-step stepping damping structure and the multi-step stepping damping method of the present invention are applied to the building 10 of the structural plan analysis model similar to FIG.
First, in the embodiment shown in FIG. 19A, a multi-layer seismic element 1 is arranged at a central portion of one construction surface of a building 10, and a vertical gap 3 is formed at both side positions of the multi-layer seismic element 1 on the same construction surface. It is the example which constructed | assembled the earthquake-resistant element 2 with a gap which adjoins via.
Also according to this embodiment, it is possible to expect the vibration control effect and the vibration control effect by the above-described two-step stepping.
Next, in the embodiment shown in FIG. 19B, similarly to the embodiment of FIG. 4 above, the multi-layer seismic elements 1 and 1 are arranged at both ends of one construction surface of the building 10, and the two This is an example in which three (but not limited to three) seismic elements 2 with gaps adjacent to each other through three gaps 3 in the vertical direction are constructed at positions between three columns inside one multi-layer seismic element 1.
In the case of this embodiment, the switching of the resistance mechanism described above is performed in three stages by the three-step stepping by stepping the resistance mechanism by the three gapd seismic elements 2 constructed between the inner pillars. Anti-seismic action can be expected.
Further, in the embodiment shown in FIG. 19C, similarly to the embodiment of FIG. 4 described above, the multi-layer seismic elements 1 and 1 are arranged at both end portions of one construction surface of the building 10, and the two constructions in the same construction surface. Gap seismic elements 2, 2 adjacent to each other at positions between three columns inward of the multi-layer seismic elements 1, 1, with a gap 3 in the vertical direction between the columns adjacent to the multi-layer seismic elements 1. 'Is constructed in two layers (but not limited to two) in the upper and lower layers, and a seismic element 2 with gaps is further constructed between the pillars at the center side. An example of the seismic method is shown.
In the case of this embodiment, the switching of the resistance mechanism described above is performed up to three stages by the two seismic elements 2 and 2 'with gaps adjacent to the upper and lower layers adjacent to the multi-layer seismic element 1, and further between the columns at the center side position. We can expect a seismic control effect by four-step stepping with a one-step switching of the resistance mechanism by the one seismic element 2 with gap.
In the embodiment shown in FIG. 19D, the multi-layer seismic elements 1 and 1 are arranged at both ends of one structural surface of the building 10, and the multi-layer seismic elements 1 and 1 are arranged on the inner side of the multi-layer seismic elements 1 and 1 on the same surface. Seismic control structure and seismic control method by three-step stepping constructed of two (but not limited to) two gapd seismic elements 2, 2 'extending over two layers at the upper and lower layers between adjacent columns An example is shown.

以上に説明した各実施例の多段階ステッピング制震構造における連層耐震要素(連層耐震壁1)及びギャップ付き耐震要素(耐震壁2)は、上記の実施例では一応鉄筋コンクリート造又は鉄骨鉄筋コンクリート造として構築した実施例を説明したが、この限りではない。
例えば図20は、連層耐震要素を鉄骨ブレース構造8として構築し、ギャップ付き耐震要素は、ブレースの代わりに弛みを生じた引っ張り材9を配置した鉄骨造として構築した実施例を示している。この場合も、同様に実施でき同様な作用効果を期待できる。この場合、上下方向のギャップ3は、フレーム間の隙間として形成し実施することができる。
In the multi-step stepping damping structure of each embodiment described above, the multi-layer seismic element (multi-layer seismic wall 1) and the seismic element with gap (seismic wall 2) are reinforced concrete structure or steel reinforced concrete structure in the above embodiment. However, the present invention is not limited to this.
For example, FIG. 20 shows an embodiment in which the multi-layer seismic element is constructed as a steel brace structure 8 and the seismic element with a gap is constructed as a steel structure in which a tension member 9 having a slack is placed instead of the brace. In this case as well, the same operation can be expected. In this case, the vertical gap 3 can be formed as a gap between the frames.

最後に、図21A〜Cは、多段階ステッピング制震構造建物10が、基礎4と浮き上がり可能の関係に構築される場合の異なる実施例を示している。
先ず図21Aは、地面下の地下階構造物20から立ち上がらせた柱頭4を基礎に用いた多段階ステッピング制震構造建物10の実施例を示している。
図21Bは、多段階ステッピング制震構造建物10の下部が、地面下に根入れされた構成で杭頭を基礎4に用いた実施例を示している。
更に図21Cは、地面上に突き出る形態に構築された地上階構造物21から立ち上がらせた柱頭4を基礎に用いた多段階ステッピング制震構造建物10の実施例を示している。
したがって、図21A〜Cに示す実施例を更に応用すると、多段階ステッピング制震構造建物10は、地上レベルでの免震構造、或いは地下階での免震構造、或いは地上階での中間階免震構造と組み合わせて、あるいは既存建物の免震改修を兼ねて実施できることも理解されるであろう。
Lastly, FIGS. 21A to 21C show different embodiments when the multi-step stepping damping structure 10 is constructed in a liftable relationship with the foundation 4.
First, FIG. 21A shows an embodiment of a multi-step stepping vibration control structure building 10 using a capital 4 raised from an underground floor structure 20 below the ground as a basis.
FIG. 21B shows an embodiment in which a pile head is used for the foundation 4 in a configuration in which the lower part of the multi-step stepping damping structure 10 is embedded below the ground.
Furthermore, FIG. 21C has shown the Example of the multistep stepping damping structure 10 using the capital 4 raised from the ground floor structure 21 constructed | assembled in the form which protrudes on the ground as a foundation.
Therefore, when the embodiment shown in FIGS. 21A to 21C is further applied, the multi-step stepping vibration control structure building 10 has a seismic isolation structure on the ground level, a base isolation structure on the ground floor, or an intermediate floor immunity on the ground floor. It will also be understood that it can be implemented in combination with seismic structures or in combination with seismic isolation of existing buildings.

以上に本発明を図示した実施例に基づいて説明したが、もとより本発明は実施例の構成に限定されるものではない。いわゆる当業者が必要に応じて行うであろう設計変更その他の応用、改変の範囲まで含むことを念のため申し添える。特に言えば、本発明の多段階ステッピング制震構造及び多段階ステッピング制震方法は、新築建物への実施のみならず、既存建物の制震改修にも同様に実施することが可能である。    Although the present invention has been described based on the illustrated embodiment, the present invention is not limited to the configuration of the embodiment. I would like to remind you that it includes the scope of design changes and other applications and modifications that will be performed by those skilled in the art as needed. In particular, the multi-step stepping control structure and multi-step stepping control method of the present invention can be applied not only to a new building but also to a seismic retrofit of an existing building.

Q 地震力(水平力)
1 連層耐震要素
4 基礎
5 浮き上がり(ロッキング又はステッピング)
3 上下方向のギャップ
2、2’ ギャップ付き耐震要素
L1、L2 ステッピングスタンス
10 建物
4 杭
4a 杭頭の凹部
6 ステッピング架構
6a 柱部材
7 フレーム架構
7a 上辺フレーム
7b 下辺フレーム
9 ゴム製緩衝材
Q Seismic force (horizontal force)
1 Multi-layer seismic element 4 Foundation 5 Lifting (rocking or stepping)
3 Vertical gap 2, 2 'Gap-proof seismic elements L1, L2 Stepping stance 10 Building 4 Pile 4a Pile head recess 6 Stepping frame 6a Column member 7 Frame frame 7a Upper frame 7b Lower frame 9 Rubber cushioning material

Claims (7)

地震時の水平力を負担する連層耐震要素は、その下端部が基礎又は地下階柱頭と縁切りして上下方向への浮き上がりが可能に構築され、
前記連層耐震要素と同じ構面内で隣接する位置に、前記連層耐震要素との間に上下方向のギャップを介して隣接するギャップ付き耐震要素が、その下端部を基礎又は地下階柱頭と縁切りして上下方向への浮き上がりが可能に構築されており、
中・小地震時には、連層耐震要素及びギャップ付き耐震要素ともに下端部が基礎又は地下階柱頭と接した基礎固定の状態で応答し、
建築基準法で想定する範囲内の大地震時には、連層耐震要素のみが浮き上がって地震入力を位置エネルギに変換し、且つ長周期化して建物への地震入力を低減する挙動(第1段階ステッピング)で応答し、
建築基準法で想定する範囲内の巨大地震時には、連層耐震要素の浮き上がりに伴ってギャップ付き耐震要素のギャップを解消して連層耐震要素とギャップ付き耐震壁とが一体化した状態に抵抗機構が切り換わり、両耐震要素の下端のステッピングスタンスが拡大された挙動(第1段階ステッピングから第多段階ステッピングへの移行)で応答してロバスト性を発揮し、
建築基準法では想定外の超巨大地震時には、連層耐震要素の浮き上がりに伴ってギャップ付き耐震要素のギャップを解消して連層耐震要素とギャップ付き耐震要素とが一体化した状態に抵抗機構が切り換わり、両耐震要素の下端のステッピングスタンスが拡大された浮き上がり挙動(第多段階ステッピング)で応答して地震入力を位置エネルギに変換し、且つ長周期化して建物への地震入力を低減し倒壊を防ぐ冗長性を発揮する構成であることを特徴とする、多段階ステッピング制震構造。
The multi-layer seismic element that bears the horizontal force at the time of an earthquake is constructed so that the lower end of the multi-layer seismic element can be lifted up and down with the foundation or the basement of the basement.
A seismic element with a gap adjacent to the multi-layer seismic element at a position adjacent to the multi-layer seismic element through a vertical gap between the multi-layer seismic element and a base or basement capital It is constructed to be able to lift up and down by cutting the edge,
During medium- and small-scale earthquakes, both the multi-layer seismic elements and the seismic elements with gaps respond with the bottom fixed in contact with the foundation or the basement of the basement floor,
In the event of a large earthquake within the range envisaged by the Building Standards Act, only the multi-layer seismic elements are lifted to convert the earthquake input into potential energy, and the period is increased to reduce the earthquake input to the building (first step stepping) Respond with
In the event of a huge earthquake within the range envisaged by the Building Standards Act, the resistance mechanism is such that the gap between the seismic elements with gaps is eliminated and the multi-layer seismic elements and the seismic walls with gaps are integrated as the seismic elements rise. Is switched and responds with an expanded behavior of the stepping stance at the lower end of both seismic elements (shift from first step stepping to multi-step stepping) and exhibits robustness.
In the event of a huge earthquake unexpected under the Building Standards Act, the resistance mechanism is in a state where the gap between the seismic elements with gaps is eliminated and the seismic elements with gaps are integrated as the seismic elements with gaps are lifted. The seismic input is converted into potential energy in response to the rising behavior (multi-step stepping) with the expanded stepping stance at the lower ends of both seismic elements, and the period is increased to reduce the seismic input to the building and collapse Multi-step stepping vibration control structure, characterized by a configuration that exhibits redundancy to prevent damage.
建物の連層耐震要素及びギャップ付き耐震要素は、鉄筋コンクリート造又は鉄骨鉄筋コンクリート造であり、若しくは連層耐震要素が鉄骨ブレース構造で、ギャップ付き耐震要素はブレースの代わりに弛みを生じた引っ張り材を配置した鉄骨造であることを特徴とする、請求項1に記載した多段階ステッピング制震構造。   The multi-story seismic elements and the seismic elements with gaps are reinforced concrete or steel reinforced concrete, or the multi-story seismic elements are steel brace structures, and the seismic elements with gaps are provided with a slacking material instead of braces. The multi-step stepping vibration control structure according to claim 1, wherein the multi-step stepping vibration control structure is a steel structure. 連層耐震要素及びギャップ付き耐震要素と基礎又は地下階柱頭との縁切りは、基礎又は地下階柱頭を構成する杭頭又は柱頭に凹部を設け、連層耐震要素及びギャップ付き耐震要素のステッピング架構からは下向きに突き出て前記凹部へ出入り自在に嵌る柱部材を設けて前記凹部へ嵌め合わせて成り、凹部と柱部材との嵌め合わせ隙間に潤滑剤が充填されていることを特徴とする、請求項1又は2に記載した多段階ステッピング制震構造。   The edge cut between the multistory seismic element and the seismic element with gap and the foundation or basement capital is provided with a recess in the pile head or capital that constitutes the foundation or basement capital, and from the stepping frame of the multistory seismic element and seismic element with gap A column member that protrudes downward and fits into the recess is provided and fitted into the recess, and the fitting gap between the recess and the column member is filled with a lubricant. The multi-step stepping vibration control structure described in 1 or 2. ギャップ付き耐震要素は、矩形のフレーム架構の面内に、フレーム上辺からぶら下げて、若しくはフレーム下辺から立ち上げて、フレーム架構とは縁切りした上下方向のギャップが連層耐震要素との間に形成されていることを特徴とする、請求項1〜3のいずれか一に記載した多段階ステッピング制震構造。   A seismic element with a gap is formed between the multi-layer seismic elements in the plane of a rectangular frame frame, hanging from the upper side of the frame, or raised from the lower side of the frame, and erected from the frame frame. The multi-step stepping vibration control structure according to any one of claims 1 to 3, wherein ギャップ付き耐震要素は、矩形のフレーム架構の面内に、その四辺を圧縮に効くダンパーによりフレーム架構の面内に支持された構成であり、上下方向のギャップが連層耐震要素との隣接部位に形成されていることを特徴とする、請求項1〜3のいずれか一に記載した多段階ステッピング制震構造。   A seismic element with a gap is a structure in which a rectangular frame frame is supported on the frame frame by dampers that act on the four sides of the rectangular frame frame. The multi-step stepping vibration control structure according to any one of claims 1 to 3, wherein the multi-step stepping vibration control structure is formed. ギャップ付き耐震壁のギャップは、耐火性のゴム製緩衝材で埋められていることを特徴とする、請求項1〜5のいずれか一に記載した多段階ステッピング制震構造。   The multi-step stepping damping structure according to any one of claims 1 to 5, wherein the gap of the earthquake-resistant wall with a gap is filled with a fire-resistant rubber cushioning material. 地震時の水平力を負担する連層耐震要素は、その下端部を基礎又は地下階柱頭と縁切りして上下方向への浮き上がりが可能に構築し、
前記連層耐震要素と同じ構面内の隣接位置に、前記連層耐震要素との間に上下方向のギャップを介して隣接するギャップ付き耐震要素を、その下端部を基礎又は地下階柱頭と縁切りして上下方向への浮き上がりが可能に構築し、
中・小地震時には、連層耐震要素及びギャップ付き耐震要素ともに下端部が基礎又は地下階柱頭と接した基礎固定の状態で応答させ、
建築基準法で想定する範囲内の大地震時には、連層耐震要素のみが浮き上がって地震入力を位置エネルギに変換し、且つ長周期化して建物への地震入力を低減する挙動(第1段階ステッピング)で応答させ、
建築基準法で想定する範囲内の巨大地震時には、連層耐震要素の浮き上がりに伴ってギャップ付き耐震要素のギャップを解消し連層耐震要素とギャップ付き耐震要素とが一体化した状態に抵抗機構を切り換え、両耐震要素の下端のステッピングスタンスが拡大された挙動(第1段階ステッピングから第2段階ステッピングへの移行)で応答させてロバスト性を発揮させ、
建築基準法では想定外の超巨大地震時には、連層耐震要素の浮き上がりに伴ってギャップ付き耐震要素のギャップを解消し連層耐震要素とギャップ付き耐震要素とが一体化した状態に抵抗機構を切り換え、両耐震要素の下端のステッピングスタンスが拡大された浮き上がり挙動(第2段階ステッピング)で応答させて地震入力を位置エネルギに変換し、且つ長周期化して建物への地震入力を低減し倒壊を防ぐ冗長性を発揮させることを特徴とする、多段階ステッピング制震方法。
The multi-layer seismic element that bears the horizontal force at the time of an earthquake is constructed so that it can be lifted in the vertical direction by cutting its lower end with the foundation or basement capital,
Gap seismic element adjacent to the multi-layer seismic element in the same plane as the multi-layer seismic element with a gap in the vertical direction between the seismic element and the lower end of the seismic element with the foundation or basement capital And can be lifted up and down,
During medium- and small-scale earthquakes, both the multi-layer seismic elements and the seismic elements with gaps respond with the bottom fixed in contact with the foundation or the basement of the basement floor,
In the event of a large earthquake within the range envisaged by the Building Standards Act, only the multi-layer seismic elements are lifted to convert the earthquake input into potential energy, and the period is increased to reduce the earthquake input to the building (first step stepping) To respond with
In the event of a huge earthquake within the range envisaged by the Building Standards Act, the gap mechanism of the seismic elements with gaps is eliminated as the multi-layer seismic elements rise, and the resistance mechanism is integrated with the multi-layer seismic elements and seismic elements with gaps. Switching, making the bottom stepping stance of both seismic elements respond with expanded behavior (transition from the first step stepping to the second step stepping) to demonstrate robustness,
In the event of a huge earthquake unexpected under the Building Standards Act, the gap between the seismic elements with gaps is eliminated as the multi-layer seismic elements rise, and the resistance mechanism is switched to a state where the multi-layer seismic elements and seismic elements with gaps are integrated. , The stepping stance at the bottom of both seismic elements is made to respond with an extended lifting behavior (second stepping) to convert seismic input into potential energy, and lengthen the period to reduce seismic input to the building and prevent collapse A multi-step stepping vibration control method characterized by redundancy.
JP2011176605A 2011-08-12 2011-08-12 Multi-step stepping damping structure and method Active JP5762879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011176605A JP5762879B2 (en) 2011-08-12 2011-08-12 Multi-step stepping damping structure and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011176605A JP5762879B2 (en) 2011-08-12 2011-08-12 Multi-step stepping damping structure and method

Publications (2)

Publication Number Publication Date
JP2013040460A true JP2013040460A (en) 2013-02-28
JP5762879B2 JP5762879B2 (en) 2015-08-12

Family

ID=47889081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011176605A Active JP5762879B2 (en) 2011-08-12 2011-08-12 Multi-step stepping damping structure and method

Country Status (1)

Country Link
JP (1) JP5762879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108053749A (en) * 2018-01-29 2018-05-18 泰州职业技术学院 The mechanism displaying model and its implementation of a kind of groups of building continuous collapse

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736262A (en) * 1980-08-13 1982-02-27 Tobishima Construct Co Ltd TAISHINHEKINOFUREEMUHENOSETSUGOSOCHI
JPS58569A (en) * 1981-06-22 1983-01-05 東急建設株式会社 Earthquake-proof wall
JPH0427084A (en) * 1990-05-22 1992-01-30 Takenaka Komuten Co Ltd Earthquake resisting wall of reinforced concrete construction
JP2000328810A (en) * 1999-05-18 2000-11-28 Shimizu Corp Vibration control frame
JP2002276192A (en) * 2001-03-21 2002-09-25 Takenaka Komuten Co Ltd Lifting allowable seismic-response controlled structure
JP2004278212A (en) * 2003-03-18 2004-10-07 Ohbayashi Corp Earthquake resistant wall
JP2006138074A (en) * 2004-11-10 2006-06-01 Fujita Corp Building structure allowing uplift of foundation part

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736262A (en) * 1980-08-13 1982-02-27 Tobishima Construct Co Ltd TAISHINHEKINOFUREEMUHENOSETSUGOSOCHI
JPS58569A (en) * 1981-06-22 1983-01-05 東急建設株式会社 Earthquake-proof wall
JPH0427084A (en) * 1990-05-22 1992-01-30 Takenaka Komuten Co Ltd Earthquake resisting wall of reinforced concrete construction
JP2000328810A (en) * 1999-05-18 2000-11-28 Shimizu Corp Vibration control frame
JP2002276192A (en) * 2001-03-21 2002-09-25 Takenaka Komuten Co Ltd Lifting allowable seismic-response controlled structure
JP2004278212A (en) * 2003-03-18 2004-10-07 Ohbayashi Corp Earthquake resistant wall
JP2006138074A (en) * 2004-11-10 2006-06-01 Fujita Corp Building structure allowing uplift of foundation part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108053749A (en) * 2018-01-29 2018-05-18 泰州职业技术学院 The mechanism displaying model and its implementation of a kind of groups of building continuous collapse
CN108053749B (en) * 2018-01-29 2024-05-03 江苏永泰建造工程有限公司 Mechanism display model for continuous collapse of building group and implementation method thereof

Also Published As

Publication number Publication date
JP5762879B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5406631B2 (en) Seismic isolation structure and seismic isolation structure
JP2015227605A (en) Vibration control device and building comprising the same
JP3858432B2 (en) Vibration control method for linked structures
JP5762879B2 (en) Multi-step stepping damping structure and method
JP4391335B2 (en) Intermediate seismic isolation structure of existing buildings
JP2005187185A (en) Device for horizontally supporting mast of tower crane
JP5666807B2 (en) 3D seismic isolation device
JP2006249756A (en) Frame structure of building
JP5236574B2 (en) Steel structure floor structure system
JP6241096B2 (en) Seismic isolation building and seismic isolation method
JP5697872B2 (en) Movement amount control device, structure
JP2010189903A (en) Damping frame for building
JP2006090078A (en) Base-isolated building and construction method for the same
JP2001200654A (en) Vibration control building
JP5620883B2 (en) Damping structure
JP7286904B2 (en) building
JPH11117568A (en) Construction of vibration isolation used for vibration control
JP7239459B2 (en) Pull-out/overturn prevention structure for seismically isolated buildings
JP7438154B2 (en) vibration damping building
JP2014156707A (en) Vibration control structure
JPH10266620A (en) Vibration damping frame structure and construction method therefor
JP2007270550A (en) Partial base isolation structure
JP2012233374A (en) Seismic reinforcement structure
JP7244286B2 (en) Structure
JP2009197501A (en) Vibration control structure for building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5762879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150