JP2013040055A - Ceramic junction - Google Patents

Ceramic junction Download PDF

Info

Publication number
JP2013040055A
JP2013040055A JP2011175913A JP2011175913A JP2013040055A JP 2013040055 A JP2013040055 A JP 2013040055A JP 2011175913 A JP2011175913 A JP 2011175913A JP 2011175913 A JP2011175913 A JP 2011175913A JP 2013040055 A JP2013040055 A JP 2013040055A
Authority
JP
Japan
Prior art keywords
fine particles
copper fine
ceramic
plate
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011175913A
Other languages
Japanese (ja)
Other versions
JP5804838B2 (en
Inventor
Toshiaki Asada
敏明 浅田
Hidemichi Fujiwara
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011175913A priority Critical patent/JP5804838B2/en
Publication of JP2013040055A publication Critical patent/JP2013040055A/en
Application granted granted Critical
Publication of JP5804838B2 publication Critical patent/JP5804838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for joining metal parts by a copper microparticle sintering film, which hardly generates short circuit of the joining parts and provides a higher joining strength than plating and sputtering.SOLUTION: The ceramic junction is obtained by disposing a patterning material composed of a heat joining material containing a copper microparticle (P) and a dispersion medium (A), on a ceramic plate surface, further disposing a conductive metal plate on the patterning material, and thereafter heating and sintering the heat joining material to thereby form the ceramic plate and the conductive metal plate joined through a joining layer (L), wherein the copper microparticle (P) contains a copper microparticle (P1) having an average primary particle diameter of 2 to 500 nm; the porosity of the joining layer (L) is 3 to 30 vol%; the average pore diameter is 5 to 500 nm; and the thickness is 0.005 to 0.500 mm.

Description

本発明は、セラミック板表面と導電性金属板とが接合層を介して接合されたセラミック接合体に関する。   The present invention relates to a ceramic joined body in which a ceramic plate surface and a conductive metal plate are joined via a joining layer.

最近、半導体部品の大電力化、モジュール化、高集積化、高信頼性化および低価格化が急速に進んでいる。これらの実現のためにセラミックス基板上に銅回路板を積層し、放熱性を大幅に向上させると共に、銅回路板上に直接半導体を実装することのできる半導体装置用基板が知られている。
セラミックス基板に銅板を直接接合したDBC基板(Direct Bonding Copper Substrate)は、例えばパワートランジスタモジュール、高周波パワートランジスタ、大容量パワートランジスタあるいはイグナイタ用パワートランジスタ等に実用化されている。
Recently, semiconductor components have been rapidly increasing in power, modularization, high integration, high reliability, and low price. In order to realize these, there is known a substrate for a semiconductor device in which a copper circuit board is laminated on a ceramic substrate to greatly improve heat dissipation and a semiconductor can be directly mounted on the copper circuit board.
A DBC substrate (Direct Bonding Copper Substrate) in which a copper plate is directly bonded to a ceramic substrate has been put to practical use in, for example, a power transistor module, a high frequency power transistor, a large capacity power transistor, or an igniter power transistor.

例えば、特許文献1には、撓み性を高め、基板自身の薄形化と併せて放熱性の改善を目的として、セラミックス基板に銅板を直接接合した半導体装置用基板において、前記セラミックス基板が、アルミナにジルコニアを添加した焼成体よりなる半導体装置用基板が開示されている。
特許文献2には、従来技術として、「セラミック基板にCu板を接合させる際に、Cu板に大気中、300℃程度の温度で予備酸化処理を施して、その表面にCuO層を形成しておき、セラミック基板とCu板とを合わせて載置し、DBC接合炉に通し、1100℃程度の温度で加熱処理を施し、Cu板をセラミック基板に接合させる。」ことが記載され、該載置に使用する治具のMoメッシュも酸化を受けて接合炉内でCu板と反応して、Cu板にメッシュ痕が生じる不都合を防止するために、Cu板の非接合面に接合温度以下の温度で分解する樹脂層を予め形成しておいて、Cu板にメッシュ痕の発生を防止できることが記載されている。
For example, Patent Document 1 discloses a substrate for a semiconductor device in which a copper plate is directly bonded to a ceramic substrate for the purpose of improving flexibility and improving heat dissipation in conjunction with thinning of the substrate itself. A substrate for a semiconductor device made of a fired body in which zirconia is added to is disclosed.
In Patent Document 2, as a conventional technique, “When a Cu plate is bonded to a ceramic substrate, a pre-oxidation treatment is performed on the Cu plate at a temperature of about 300 ° C. in the atmosphere to form a Cu 2 O layer on the surface thereof. It is described that the ceramic substrate and the Cu plate are placed together, passed through a DBC bonding furnace, and subjected to heat treatment at a temperature of about 1100 ° C. to bond the Cu plate to the ceramic substrate. In order to prevent the inconvenience that the Mo mesh of the jig used for mounting also undergoes oxidation and reacts with the Cu plate in the bonding furnace to cause a mesh mark on the Cu plate, the non-bonding surface of the Cu plate is below the bonding temperature. It is described that a resin layer that decomposes at a temperature of 5 mm can be formed in advance to prevent generation of mesh marks on the Cu plate.

特許文献3には、DBC基板における銅回路板は、基板表面の酸化物とCuOの共融相を介して接着するものが一般的であったが、この基板は製造時の処理条件のコントロールが難しく、しかも接着強度の点でやや信頼性に欠ける欠点を有していた。この問題点を解決するために、接着面に形成した酸化銅と銅回路板の銅との共晶相を介してセラミック基板に接着することが開示されている。
特許文献4には、窒化アルミニウム基板に銅板を接合して回路基板を形成する際に、熱サイクルによって生じる熱応力に対する耐久性を向上するために、平均粒径が3〜4.5μm、粒径10μm以上の粗大粒子が15〜30%の窒化アルミニウム基板を使用することが開示されている。
特許文献5には、接合強度が高く、安価で、高基板強度、高放熱特性を有する半導体モジュール用基板を提供することを目的として、絶縁基板を主成分のアルミナ(Al)にジルコニア(ZrO)を添加し、更にイットリア(Y)等の焼結助剤を添加した焼成体から形成し、該絶縁基板と前記配線金属板が活性金属ろうで接合された半導体モジュール用基板が開示されている。
In Patent Document 3, a copper circuit board in a DBC substrate is generally bonded via a eutectic phase of oxide and CuO on the surface of the substrate, but this substrate has control of processing conditions at the time of manufacture. It has a drawback that it is difficult and is somewhat unreliable in terms of adhesive strength. In order to solve this problem, it is disclosed to bond to a ceramic substrate through a eutectic phase of copper oxide formed on the bonding surface and copper of the copper circuit board.
In Patent Document 4, when a circuit board is formed by bonding a copper plate to an aluminum nitride substrate, the average particle size is 3 to 4.5 μm in order to improve durability against thermal stress caused by a thermal cycle. It is disclosed to use an aluminum nitride substrate having 15-30% coarse particles of 10 μm or larger.
Patent Document 5 discloses that an insulating substrate is made of alumina (Al 2 O 3 ) as a main component and zirconia for the purpose of providing a semiconductor module substrate having high bonding strength, low cost, high substrate strength, and high heat dissipation characteristics. (ZrO 2 ) and a sintered body formed by adding a sintering aid such as yttria (Y 2 O 3 ), and the insulating substrate and the wiring metal plate are joined by an active metal brazing. A substrate is disclosed.

しかしながら特許文献1〜3に開示されている接合法では、セラミック板に直接銅板を接着させる際にいずれも1000℃以上の高温に晒される問題点がある。
また、ろう材を用いて銅板を貼り合わせる方法としては、いずれも750〜900℃程度の高温に晒される問題点がある。
However, the bonding methods disclosed in Patent Documents 1 to 3 have a problem that they are all exposed to a high temperature of 1000 ° C. or more when the copper plate is directly bonded to the ceramic plate.
Moreover, as a method of laminating a copper plate using a brazing material, there is a problem that all are exposed to a high temperature of about 750 to 900 ° C.

特開平07−038014号公報Japanese Patent Application Laid-Open No. 07-038014 特開平10−074864号公報Japanese Patent Laid-Open No. 10-074864 特開2003−188316号公報JP 2003-188316 A 特開平07−237973号公報Japanese Patent Application Laid-Open No. 07-237973 特開2004−047913号公報JP 2004-047913 A

本発明は、上記従来技術の問題点に鑑みてなされたものであり、被接合体表面にパターン化する際にマスク形成が不要であり、めっきによる接合と比較して接合層における不純物残渣が少なく、熱伝導率を高く保持したまま、熱サイクルによって生じるクラック等の損傷が低減できて接合信頼性が高い、半導体装置用基板用のセラミック接合体を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and does not require mask formation when patterning on the surface of an object to be bonded, and has fewer impurity residues in the bonding layer than bonding by plating. An object of the present invention is to provide a ceramic joined body for a substrate for a semiconductor device, which can reduce damage such as cracks caused by a thermal cycle while maintaining high thermal conductivity and has high joining reliability.

本発明者らは、上記従来技術に鑑みて、銅微粒子と分散媒を含む加熱接合材料からなるパターン化物を、セラミック板と導電性金属板の間に配置後、該加熱接合材料を加熱、焼結して銅微粒子焼結体からなる、多孔質状の接合層を形成することにより、上記課題が解決できることを見出し本発明を完成するに至った。
即ち、本発明は、以下の(1)〜(5)に記載する発明を要旨とする。
(1)セラミック板と導電性基板(K)とが銅微粒子(P)から形成された多孔質状の接合層(L)を介して接合されたセラミック接合体であって、
前記銅微粒子(P)が平均一次粒子径2〜500nmの銅微粒子(P1)を含み、接合層(L)の空孔率が3〜30体積%で平均空孔径が5〜500nmであり、厚みが0.005〜0.500mmであることを特徴とする、セラミック接合体。
(2)前記接合層(L)が銅微粒子(P)を焼結させて得られた焼結体であり、前記銅微粒子(P)が平均一次粒子径2〜500nmの銅微粒子(P1)50質量%以上と、平均一次粒子径0.5〜50μmの銅微粒子(P1)50質量%以下(質量%の合計は100質量%でない場合もある)からなることを特徴とする、前記(1)に記載のセラミック接合体。
In view of the above prior art, the present inventors placed a patterned product made of a heat bonding material containing copper fine particles and a dispersion medium between a ceramic plate and a conductive metal plate, and then heated and sintered the heat bonding material. The present inventors have found that the above problems can be solved by forming a porous bonding layer made of a copper fine particle sintered body, and have completed the present invention.
That is, the gist of the present invention is the invention described in the following (1) to (5).
(1) A ceramic joined body in which a ceramic plate and a conductive substrate (K) are joined via a porous joining layer (L) formed of copper fine particles (P),
The copper fine particles (P) include copper fine particles (P1) having an average primary particle diameter of 2 to 500 nm, the porosity of the bonding layer (L) is 3 to 30% by volume, the average pore diameter is 5 to 500 nm, and the thickness Is 0.005 to 0.500 mm. A ceramic joined body.
(2) The bonding layer (L) is a sintered body obtained by sintering copper fine particles (P), and the copper fine particles (P) are copper fine particles (P1) 50 having an average primary particle diameter of 2 to 500 nm. (1), characterized in that it consists of 50% by mass or less and copper fine particles (P1) having an average primary particle size of 0.5 to 50 μm (P1) of 50% by mass or less (the total of mass% may not be 100% by mass). The ceramic joined body according to 1.

(3)前記セラミック板(C)が金属酸化物であることを特徴とする、前記(1)または(2)に記載のセラミック接合体。
(4)前記セラミック板(C)がアルミナ、強化アルミナ(HPS)、又はジルコニアであることを特徴とする、前記(1)から(3)のいずれかに記載のセラミック接合体。
(5)前記導電性基板(K)が銅板、銅合金板、アルミ板、またはアルミ合金板であることを特徴とする、前記(1)から(4)のいずれかに記載のセラミック接合体。
(3) The ceramic joined body according to (1) or (2), wherein the ceramic plate (C) is a metal oxide.
(4) The ceramic joined body according to any one of (1) to (3), wherein the ceramic plate (C) is alumina, reinforced alumina (HPS), or zirconia.
(5) The ceramic joined body according to any one of (1) to (4), wherein the conductive substrate (K) is a copper plate, a copper alloy plate, an aluminum plate, or an aluminum alloy plate.

(イ)本発明の「セラミック接合体」は、セラミック板(C)と導電性基板(K)とが、比較的低温で焼結可能な銅微粒子焼結体からなる接合層(L)を介して接合されているので、熱伝導率を高く保持したままで、セラミックと銅の線膨張差によって生じる残留応力を小さく抑えることができ、熱サイクルにおいてクラック等の損傷を防ぐことができ、接合信頼性が高い。
また、従来技術におけるように、セラミック板(C)と導電性基板(K)とを貼り合わせる温度が1000℃以上のような高い温度では金属組織が粗くなるため表面に凹凸が出来てしまい、最終的に使用する際に銅板表面の研磨等の処理が必要となる。本発明方法では、金属組織に大きく影響がない温度領域での貼り付けが可能になるので、予め削られる分の厚い銅板を使用する必要がなく、材料コスト・後処理コストが抑えられる。更に、接合層(L)における不純物残渣が少なく、接合層(L)を含んだ導体層(LとK)をパターン化した場合にマイグレーションによるパターン間の短絡が生じにくくすることが可能である。
(A) The “ceramic bonded body” of the present invention is formed by connecting a ceramic plate (C) and a conductive substrate (K) through a bonding layer (L) made of a copper fine particle sintered body that can be sintered at a relatively low temperature. Therefore, while maintaining high thermal conductivity, the residual stress caused by the difference in linear expansion between ceramic and copper can be kept small, and damage such as cracks can be prevented in the thermal cycle. High nature.
Further, as in the prior art, when the temperature at which the ceramic plate (C) and the conductive substrate (K) are bonded is as high as 1000 ° C. or higher, the metal structure becomes rough, so that the surface is uneven, and the final When it is used, a process such as polishing of the copper plate surface is required. In the method of the present invention, it is possible to apply in a temperature range that does not significantly affect the metal structure, so that it is not necessary to use a thick copper plate that is cut in advance, and material costs and post-processing costs can be suppressed. Further, there are few impurity residues in the bonding layer (L), and when the conductor layers (L and K) including the bonding layer (L) are patterned, it is possible to make short circuit between patterns due to migration difficult to occur.

本発明の「セラミック接合体(以下、セラミック接合体(J)と記載することがある)」は、セラミック板(C)表面に、銅微粒子(P)と分散媒(A)を含む加熱接合材料(F)からなるパターン化物を配置し、更に該パターン化物上に導電性金属板(K)を配置後、該加熱接合材料(F)を加熱、焼結して銅微粒子(P)焼結体からなる接合層(L)を形成することにより、
セラミック板(C)と導電性金属板(K)とが接合層(L)を介して接合されたセラミック接合体(J)であって、
前記銅微粒子(P)が平均一次粒子径2〜500nmの銅微粒子(P1)を含み、接合層(L)の空孔率が3〜30体積%で平均空孔径が5〜500nmであり、厚みが0.005〜0.500mmであることを特徴とする。
The “ceramic bonded body (hereinafter sometimes referred to as ceramic bonded body (J))” of the present invention is a heated bonding material containing copper fine particles (P) and a dispersion medium (A) on the ceramic plate (C) surface. After placing the patterned product made of (F), and further placing the conductive metal plate (K) on the patterned product, the heat-bonding material (F) is heated and sintered to sinter the copper fine particles (P). By forming a bonding layer (L) consisting of
A ceramic joined body (J) in which a ceramic plate (C) and a conductive metal plate (K) are joined via a joining layer (L),
The copper fine particles (P) include copper fine particles (P1) having an average primary particle diameter of 2 to 500 nm, the porosity of the bonding layer (L) is 3 to 30% by volume, the average pore diameter is 5 to 500 nm, and the thickness Is 0.005 to 0.500 mm.

(1)セラミック板(C)
本発明のセラミック接合体(J)に使用できるセラミック板(C)としては、半導体装置用のDBC基板等に従来から使用されているものを使用することができる。
耐熱性、耐絶縁性、耐磨耗性、耐気密性等の特性や、電気的特性の点から、セラミック板(C)としては、アルミナ、強化アルミナ(HPS)、又はジルコニアの使用が好ましく、添加剤としてSiO、MgO、CaO等を含有させることができる。これらの添加剤は粘結剤として望ましいものである。
強化アルミナ(HPS)は一般的には、アルミナセラミックスにジルコニアを添加し緻密に焼結させたジルコニア強化アルミナセラミックスである。強化アルミナ(HPS)は従来のアルミナセラミックスに比べて機械的強度、破壊靭性が高く、特に耐摩耗部材として使われている。セラミック板(C)として、単層の他に上記成分からなる多層のセラミック板を使用することも可能である。
(1) Ceramic plate (C)
As the ceramic plate (C) that can be used for the ceramic joined body (J) of the present invention, those conventionally used for DBC substrates for semiconductor devices and the like can be used.
From the viewpoints of characteristics such as heat resistance, insulation resistance, abrasion resistance, airtightness, and electrical characteristics, the ceramic plate (C) is preferably alumina, reinforced alumina (HPS), or zirconia. As an additive, SiO 2 , MgO, CaO or the like can be contained. These additives are desirable as binders.
Reinforced alumina (HPS) is generally zirconia reinforced alumina ceramics obtained by adding zirconia to alumina ceramics and sintering them densely. Reinforced alumina (HPS) has higher mechanical strength and fracture toughness than conventional alumina ceramics, and is particularly used as a wear-resistant member. As the ceramic plate (C), in addition to a single layer, it is also possible to use a multilayer ceramic plate composed of the above components.

(2)導電性金属板(K)
導電性金属板(K)としては、導電性、熱伝導性等の点から銅板、銅合金板、アルミ板、またはアルミ合金板を使用することができる。尚、セラミック板(C)の導電性基板(K)と相対する側に放熱用金属板として銅板を接合することもできる。
(2) Conductive metal plate (K)
As the conductive metal plate (K), a copper plate, a copper alloy plate, an aluminum plate, or an aluminum alloy plate can be used in terms of conductivity, thermal conductivity, and the like. In addition, a copper plate can also be joined to the side of the ceramic plate (C) facing the conductive substrate (K) as a metal plate for heat dissipation.

(3)加熱接合材料(F)
加熱接合材料(F)は、以下に記載する銅微粒子(P)と分散媒(A)を含む。
(3−1)銅微粒子(P)
銅微粒子(P)は、焼結性を有する、平均一次粒子径2〜500nmの銅微粒子(P1)のみであってもよく、更に該銅微粒子(P1)に、平均一次粒子径0.5〜50μmの銅微粒子(P2)を併用することができる。加熱接合材料(F)に使用する銅微粒子(P)は、はんだペーストの場合と異なり、少なくとも1種以上の高純度銅微粒子をそのまま使用することができるので、接合強度と導電性に優れる接合体を得ることが可能になる。一般にはんだペーストの場合、実装対象である基板の銅パッド部分の酸化を取り除くためにフラックス(有機成分)を含有しており、更に金属材料に含まれる不純物として少量ではあるがAl、Zn、Cd、As等の金属が含まれることが多い。
(3) Heat bonding material (F)
The heat bonding material (F) includes copper fine particles (P) and a dispersion medium (A) described below.
(3-1) Copper fine particles (P)
The copper fine particles (P) may be only copper fine particles (P1) having a sinterability and having an average primary particle diameter of 2 to 500 nm, and further to the copper fine particles (P1), an average primary particle diameter of 0.5 to 50 μm copper fine particles (P2) can be used in combination. Unlike the case of the solder paste, the copper fine particles (P) used for the heat-bonding material (F) can be used at least one kind of high-purity copper fine particles as they are, so that the bonded body is excellent in bonding strength and conductivity. Can be obtained. In general, in the case of a solder paste, it contains a flux (organic component) in order to remove the oxidation of the copper pad portion of the substrate to be mounted, and further, Al, Zn, Cd, Often contains metals such as As.

(イ)銅微粒子(P1)
銅微粒子(P1)は、一次粒子の平均粒子径が2〜500nmの銅微粒子であれば特に制限されるものではない。銅微粒子(P1)の一次粒子の平均粒子径が2nm未満のものは製造上の困難性を伴い、一方、一次粒子の平均粒子径が500nm以下で精密な導電パターンを形成することができ、焼成も容易になる。
(A) Copper fine particles (P1)
The copper fine particles (P1) are not particularly limited as long as they are copper fine particles having an average primary particle diameter of 2 to 500 nm. When the average particle diameter of the primary particles of the copper fine particles (P1) is less than 2 nm, there are difficulties in production, and on the other hand, a precise conductive pattern can be formed when the average particle diameter of the primary particles is 500 nm or less, and firing. Will also be easier.

(ロ)銅微粒子(P2)
加熱接合材料(F)に、一次粒子の平均粒子径が2〜500nmの銅微粒子(P1)に加えて、一次粒子の平均粒子径0.5〜50μmの銅微粒子(P2)を分散させて使用することもできる。
銅微粒子(P)として、平均一次粒子径が2〜500nmの銅微粒子(P1)に、更に平均一次粒子径が0.5〜50μmの銅微粒子(P2)を使用すると、銅微粒子(P2)間に銅微粒子(P1)が分散して、加熱処理する際に銅微粒子(P1)の自由な移動を効果的に抑制することができ、前述の銅微粒子(P1)の分散性と安定性を向上するのでその結果、加熱焼成でより均質な粒子径と空孔を有する多孔質体を形成することが可能になる。銅微粒子(P2)の平均一次粒子径は、0.5〜50μmが好ましい。銅微粒子(P2)の平均一次粒子径が0.5μm未満では銅微粒子(P2)の添加効果が発現せず、50μmを超えると焼成が困難になるおそれがある。
(B) Copper fine particles (P2)
In addition to copper fine particles (P1) having an average primary particle diameter of 2 to 500 nm, copper fine particles (P2) having an average primary particle diameter of 0.5 to 50 μm are dispersed and used in the heat bonding material (F). You can also
When copper fine particles (P2) having an average primary particle size of 0.5 to 50 μm are used as copper fine particles (P) and copper fine particles (P1) having an average primary particle size of 2 to 500 nm, the copper fine particles (P2) When the copper fine particles (P1) are dispersed in the heat treatment, free movement of the copper fine particles (P1) can be effectively suppressed, and the dispersibility and stability of the copper fine particles (P1) are improved. As a result, a porous body having a more uniform particle size and pores can be formed by heating and firing. The average primary particle diameter of the copper fine particles (P2) is preferably 0.5 to 50 μm. If the average primary particle diameter of the copper fine particles (P2) is less than 0.5 μm, the effect of adding the copper fine particles (P2) does not appear, and if it exceeds 50 μm, firing may be difficult.

ここで、一次粒子の平均粒子径とは、二次粒子を構成する個々の銅微粒子の一次粒子の直径の意味である。該一次粒子径は、電子顕微鏡を用いて測定することができる。また、平均粒子径とは、一次粒子の数平均粒子径を意味する。
銅微粒子(P)として、銅微粒子(P1)と銅微粒子(P2)を併用する場合、その好ましい割合は、銅微粒子(P)中で銅微粒子(P1)が50質量%以上、銅微粒子(P2)が50質量%以下である。このような割合とすると、空孔率が3〜30体積%で平均空孔径が5〜500nmを形成し易くなる。
銅微粒子(P)として、平均一次粒子径0.5〜50μmの銅微粒子(P2)を配合しない場合には、加熱加圧で焼結により一体化するときの条件が低加圧に限定されるが、銅微粒子(P1)と銅微粒子(P2)を併用することにより、焼結の際の製造条件が広く(低加圧〜高加圧)できるメリットが得られる。
Here, the average particle diameter of primary particles means the diameter of primary particles of individual copper fine particles constituting the secondary particles. The primary particle diameter can be measured using an electron microscope. The average particle size means the number average particle size of primary particles.
When the copper fine particles (P1) and the copper fine particles (P2) are used in combination as the copper fine particles (P), the preferred proportion thereof is 50% by mass or more of the copper fine particles (P1) in the copper fine particles (P), and the copper fine particles (P2 ) Is 50 mass% or less. With such a ratio, it becomes easy to form a porosity of 3 to 30% by volume and an average pore diameter of 5 to 500 nm.
When copper fine particles (P2) having an average primary particle size of 0.5 to 50 μm are not blended as the copper fine particles (P), the conditions for integration by sintering under heat and pressure are limited to low pressure. However, by using the copper fine particles (P1) and the copper fine particles (P2) in combination, it is possible to obtain a merit that manufacturing conditions during sintering can be wide (low pressure to high pressure).

(3−2)分散媒(A)
分散媒(A)として、分子中に1又は2以上の水酸基を有するアルコール類(A1)が好ましく、更にアルコール類(A1)に他の溶媒を併用することができる。他の溶媒としては、アミド基を有する化合物(A2)、アミン化合物(A3)等を上げることができる。
(イ)アルコール類(A1)
アルコール類(A1)としては、分子中に1の水酸基を有する脂肪族アルコール、エチレングリコ−ル、ジエチレングリコ−ル、1,2−プロパンジオ−ル、1,3−プロパンジオ−ル、1,2−ブタンジオ−ル、1,3−ブタンジオ−ル、1,4−ブタンジオ−ル、2−ブテン−1,4−ジオール、2,3−ブタンジオ−ル、ペンタンジオ−ル、ヘキサンジオ−ル、オクタンジオ−ル、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、1,2,4−ブタントリオール、トレイトール、エリトリト−ル、ペンタエリスリト−ル、ペンチト−ル、1−プロパノール、2−プロパノール、2−ブタノール、2−メチル2−プロパノール、キシリトール、リビトール、アラビトール、ヘキシト−ル、マンニトール、ソルビトール、ズルシトール、グリセリンアルデヒド、ジオキシアセトン、トレオース、エリトルロース、エリトロース、アラビノース、リボース、リブロース、キシロース、キシルロース、リキソース、グルコ−ス、フルクト−ス、マンノース、イドース、ソルボース、グロース、タロース、タガトース、ガラクトース、アロース、アルトロース、ラクト−ス、イソマルト−ス、グルコヘプト−ス、ヘプト−ス、マルトトリオース、ラクツロース、及びトレハロースの中から選択される1種又は2種以上を上げることができる。
これらは還元性を有するので銅微粒子(P)表面が還元され、更に加熱処理を行うことでアルコール類(A1)が連続的に蒸発して、その液体および蒸気が存在する雰囲気で還元・焼成されると銅微粒子(P)の焼結が促進される
尚、加熱接合材料(F)の焼結性を考慮すると、アルコール類(A1)が加熱接合材料(F)中に、銅微粒子(P)100質量部に対して10質量部以上含有されていることが好ましい。
(3-2) Dispersion medium (A)
As the dispersion medium (A), alcohols (A1) having one or two or more hydroxyl groups in the molecule are preferable, and other solvents can be used in combination with the alcohols (A1). Examples of other solvents include amide group-containing compound (A2), amine compound (A3) and the like.
(I) Alcohols (A1)
Examples of alcohols (A1) include aliphatic alcohols having one hydroxyl group in the molecule, ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2 -Butanediol, 1,3-butanediol, 1,4-butanediol, 2-butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol Glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl-2-hydroxymethyl-1,3-propanediol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, 1, 2,4-butanetriol, threitol, erythritol, pentaerythritol, pentitol, 1-propanol, 2-propanol, 2-butyl Nord, 2-methyl 2-propanol, xylitol, ribitol, arabitol, hexitol, mannitol, sorbitol, dulcitol, glyceraldehyde, dioxyacetone, threose, erythrulose, erythrose, arabinose, ribose, ribulose, xylose, xylulose, lyxose, Glucose, fructose, mannose, idose, sorbose, growth, talose, tagatose, galactose, allose, altrose, lactose, isomaltose, glucoheptose, heptose, maltotriose, lactulose, and One or more selected from trehalose can be raised.
Since these have reducibility, the surface of the copper fine particles (P) is reduced, and by further heat treatment, the alcohols (A1) are continuously evaporated and reduced and calcined in an atmosphere where the liquid and vapor are present. Then, the sintering of the copper fine particles (P) is promoted. In consideration of the sinterability of the heat bonding material (F), the alcohols (A1) are contained in the copper fine particles (P) in the heat bonding material (F). It is preferable that 10 mass parts or more are contained with respect to 100 mass parts.

(ロ)アミド基を有する化合物(A2)
アミド基を有する化合物(A2)としては、N−メチルアセトアミド、N−メチルホルムアミド、N−メチルプロパンアミド、ホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ヘキサメチルホスホリックトリアミド、2−ピロリジノン、ε−カプロラクタム、及びアセトアミドの中から選択される1種又は2種以上を例示することができる。
アミド基を有する化合物(A2)は溶媒(A)中で10〜80体積%となるように配合することができる。
(B) Compound having an amide group (A2)
As the compound having an amide group (A2), N-methylacetamide, N-methylformamide, N-methylpropanamide, formamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N, Examples thereof include one or more selected from N-dimethylformamide, 1-methyl-2-pyrrolidone, hexamethylphosphoric triamide, 2-pyrrolidinone, ε-caprolactam, and acetamide.
The compound (A2) having an amide group can be blended so as to be 10 to 80% by volume in the solvent (A).

(ハ)アミン化合物(A3)
アミン化合物(A3)としては、脂肪族第一アミン、脂肪族第二アミン、脂肪族第三アミン、脂肪族不飽和アミン、脂環式アミン、芳香族アミン、及びアルカノールアミンの中から選択される1種又は2種以上のアミン化合物が挙げられ、その具体例としてはメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、n−プロピルアミン、ジ−n−プロピルアミン、トリ−n−プロピルアミン、n−ブチルアミン、ジ−n−ブチルアミン、トリ−n−ブチルアミン、t−プロピルアミン、t−ブチルアミン、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、テトラメチルプロピレンジアミン、ペンタメチルジエチレントリアミン、モノ−n−オクチルアミン、モノ−2エチルヘキシルアミン、ジ−n−オクチルアミン、ジ−2エチルヘキシルアミン、トリ−n−オクチルアミン、トリ−2エチルヘキシルアミン、トリイソブチルアミン、トリヘキシルアミン、トリイソオクチルアミン、トリイソノニルアミン、トリフェニルアミン、ジメチルココナットアミン、ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジメチルベヘニルアミン、ジラウリルモノメチルアミン、ジイソプロピルエチルアミン、メタノールアミン、ジメタノールアミン、トリメタノールアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、プロパノールアミン、イソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ブタノールアミン、N−メチルエタノールアミン、N−メチルジエタノールアミン、N,N−ジメチルエタノールアミン、N−エチルエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、N−n−ブチルエタノールアミン、N−n−ブチルジエタノールアミン、及び2−(2−アミノエトキシ)エタノールの中から選択される1種又は2種以上を挙げることができる。アミン化合物(A3)は分散媒(A)中で0.3〜30体積%となるように配合することができる。
(C) Amine compound (A3)
The amine compound (A3) is selected from aliphatic primary amines, aliphatic secondary amines, aliphatic tertiary amines, aliphatic unsaturated amines, alicyclic amines, aromatic amines, and alkanolamines. Examples of the amine compound include one or more kinds, and specific examples thereof include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, di-n-propylamine, and tri-n-propylamine. , N-butylamine, di-n-butylamine, tri-n-butylamine, t-propylamine, t-butylamine, ethylenediamine, propylenediamine, tetramethylenediamine, tetramethylpropylenediamine, pentamethyldiethylenetriamine, mono-n-octylamine , Mono-2Echi Hexylamine, di-n-octylamine, di-2ethylhexylamine, tri-n-octylamine, tri-2ethylhexylamine, triisobutylamine, trihexylamine, triisooctylamine, triisononylamine, triphenylamine , Dimethyl coconut amine, dimethyl octyl amine, dimethyl decyl amine, dimethyl lauryl amine, dimethyl myristyl amine, dimethyl palmityl amine, dimethyl stearyl amine, dimethyl behenyl amine, dilauryl monomethyl amine, diisopropyl ethyl amine, methanol amine, dimethanol amine, Trimethanolamine, ethanolamine, diethanolamine, triethanolamine, propanolamine, isopropanolamine, diisopropano Ruamine, triisopropanolamine, butanolamine, N-methylethanolamine, N-methyldiethanolamine, N, N-dimethylethanolamine, N-ethylethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, Nn -1 type, or 2 or more types selected from -butylethanolamine, Nn-butyldiethanolamine, and 2- (2-aminoethoxy) ethanol can be mentioned. An amine compound (A3) can be mix | blended so that it may become 0.3-30 volume% in a dispersion medium (A).

(3−3)加熱接合材料(F)
本発明の加熱接合材料(F)は、銅微粒子(P)が分散媒(A)中に分散している、常温で液状、高粘度体、固体であってもよい。加熱接合材料(F)は、被接合面(例えば、セラミック板(C)表面)に、加熱接合材料(F)からなるパターン化物を配置し、更に該パターン化物上に導電性金属板(K)を配置して、銅微粒子(P)が焼結する温度の範囲で加熱するとアルコール類(A1)が銅微粒子(P)表面を還元して活性化し、銅微粒子(P)同士の焼結を促進する。その結果、ナノサイズの銅微粒子を含むペーストを用いた場合と同様に、電極と基板を電気的、機械的に接合することが可能になる。尚、加熱接合材料(F)を加熱焼結する際に分散媒(A)は分解、蒸発等により除去される。
加熱接合材料(F)における、分散媒(A)/銅微粒子(P)の割合(質量比)は,パターニングと焼結性を考慮し、安定した接合力を得るためには10/90〜70/30が望ましい。加熱接合材料(F)は、公知の混合機、捏和機等を使用して、銅微粒子(P)を分散媒(A)に分散させることにより得ることができる。加熱接合材料(F)は、はんだペーストに含まれるような不純物を含まない、高純度の銅微粒子(P)を使用することが可能であるので、接合強度と導電率を向上することが可能になる。
(3-3) Heat bonding material (F)
The heat-bonding material (F) of the present invention may be liquid, high-viscosity, or solid at room temperature in which copper fine particles (P) are dispersed in the dispersion medium (A). In the heat bonding material (F), a patterned product made of the heat bonding material (F) is disposed on the surface to be bonded (for example, the surface of the ceramic plate (C)), and the conductive metal plate (K) is further formed on the patterned material. Is placed and heated within the temperature range where the copper fine particles (P) sinter, the alcohols (A1) reduce and activate the surface of the copper fine particles (P) to promote the sintering of the copper fine particles (P). To do. As a result, the electrode and the substrate can be electrically and mechanically joined as in the case of using the paste containing nano-sized copper fine particles. The dispersion medium (A) is removed by decomposition, evaporation or the like when the heat bonding material (F) is heated and sintered.
The ratio (mass ratio) of the dispersion medium (A) / copper fine particles (P) in the heat bonding material (F) is 10/90 to 70 in order to obtain a stable bonding force in consideration of patterning and sinterability. / 30 is desirable. The heat bonding material (F) can be obtained by dispersing the copper fine particles (P) in the dispersion medium (A) using a known mixer, kneader or the like. As the heat-bonding material (F), it is possible to use high-purity copper fine particles (P) that do not contain impurities as contained in the solder paste, so that the bonding strength and conductivity can be improved. Become.

(4)セラミック接合体(J)
セラミック接合体(J)は、セラミック板(C)と導電性金属板(K)とが、銅微粒子(P)と分散媒(A)を含む加熱接合材料(F)を焼結して形成された接合層(L)を介して接合された、半導体装置用基板である。
セラミック板(C)と導電性金属板(K)とは、銅微粒子(P)と分散媒(A)を含む加熱接合材料(F)を加熱・焼結して金属微粒子焼結体からなる接合層(L)で接合されるが、該接合は300℃程度以下の加熱・焼結によりおこなうことが可能であるので、従来のセラミック板(C)と導電性金属板(K)とを1000℃以上の温度で直接接合したり、ろう材を用いて750〜900℃程度の温度で貼り合わせる方法と対比して、加熱温度を大幅に低くできるので、セラミックと銅の線膨張差によって生じる残留応力を小さく抑えることができ、接合層(L)は、平均空孔径が2〜500nmの銅微粒子(P1)を主成分とする粒子の焼結体からなる、多孔質状物で形成されているのでクラックの発生を抑制できる。
(4) Ceramic joined body (J)
The ceramic joined body (J) is formed by sintering a heating joining material (F) containing copper fine particles (P) and a dispersion medium (A) between a ceramic plate (C) and a conductive metal plate (K). The semiconductor device substrate is bonded via the bonding layer (L).
The ceramic plate (C) and the conductive metal plate (K) are made of a metal fine particle sintered body by heating and sintering a heat bonding material (F) containing copper fine particles (P) and a dispersion medium (A). The layers (L) are joined together, but the joining can be performed by heating and sintering at about 300 ° C. or lower, so that the conventional ceramic plate (C) and conductive metal plate (K) are joined at 1000 ° C. Compared with the method of direct bonding at the above temperature or bonding at a temperature of about 750 to 900 ° C. using a brazing material, the heating temperature can be greatly reduced, so the residual stress caused by the difference in linear expansion between ceramic and copper The bonding layer (L) is formed of a porous material made of a sintered body of particles mainly composed of copper fine particles (P1) having an average pore diameter of 2 to 500 nm. Generation of cracks can be suppressed.

接合層(L)の平均空孔径は5〜500nmである。該平均空孔径が5nm未満では熱伝導性が向上するが、接続信頼性が低下する。一方、500nmを超えると剥がれの発生が抑制されて接続信頼性は向上するが、熱伝導率が低下するという不都合を生ずる。かかる観点から該平均空孔径は50〜400nmが好ましい。
接合層(L)の空孔率は3〜30体積%である。該空孔率が3体積%未満では、熱伝導性が向上するが、剥がれが発生し易くなり接続信頼性が低下する。一方、30体積%を超えると剥がれの発生が抑制されて接続信頼性は向上するが、熱伝導率が低下するという不都合を生ずる。かかる観点から該空孔率は5〜25体積%が好ましい。
また、接合層(L)の厚みは、0.005〜0.500mmである。該厚みが0.005mm未満では導電性金属板(K)上に大きな熱を発する部品(パワーデバイス)を実装した場合、部品から発生した熱を下の金属板に伝える際の熱抵抗は小さくなるが接続信頼性が低下する。一方、0.500mmを越えると熱抵抗が大きくなるという不都合を生ずる。
尚、上記接合層の厚み、空孔率、及び平均空孔径の測定は、セラミック接合体(J)をエポキシ樹脂に埋め込んで、その断面を研磨して露出させ、走査型電子顕微鏡により観察することにより行った。
The average pore diameter of the bonding layer (L) is 5 to 500 nm. When the average pore diameter is less than 5 nm, the thermal conductivity is improved, but the connection reliability is lowered. On the other hand, when the thickness exceeds 500 nm, the occurrence of peeling is suppressed and the connection reliability is improved, but there is a disadvantage that the thermal conductivity is lowered. From this viewpoint, the average pore diameter is preferably 50 to 400 nm.
The porosity of the bonding layer (L) is 3 to 30% by volume. When the porosity is less than 3% by volume, the thermal conductivity is improved, but peeling easily occurs and the connection reliability is lowered. On the other hand, if it exceeds 30% by volume, the occurrence of peeling is suppressed and the connection reliability is improved, but there is a disadvantage that the thermal conductivity is lowered. From this viewpoint, the porosity is preferably 5 to 25% by volume.
The thickness of the bonding layer (L) is 0.005 to 0.500 mm. When the thickness is less than 0.005 mm, when a component (power device) that generates a large amount of heat is mounted on the conductive metal plate (K), the thermal resistance when transferring the heat generated from the component to the lower metal plate is reduced. However, connection reliability decreases. On the other hand, if it exceeds 0.500 mm, there is a disadvantage that the thermal resistance increases.
The thickness of the bonding layer, the porosity, and the average pore diameter are measured by embedding the ceramic bonded body (J) in an epoxy resin, exposing the cross section, and observing it with a scanning electron microscope. It went by.

(6)セラミック接合体(J)の製造方法
セラミック接合体(J)は、セラミック板(C)表面に、銅微粒子(P)と分散媒(A)を含む加熱接合材料からなるパターン化物を配置し、更に該パターン化物上に導電性金属板(K)を配置して、加圧下に加熱接合材料を加熱、焼結して銅微粒子(P)焼結体からなる接合層(L)を形成することにより製造することができる。
(6) Manufacturing method of ceramic joined body (J) In the ceramic joined body (J), a patterned product made of a heat joining material containing copper fine particles (P) and a dispersion medium (A) is disposed on the surface of the ceramic plate (C). Further, a conductive metal plate (K) is placed on the patterned material, and the heat bonding material is heated and sintered under pressure to form a bonding layer (L) made of a copper fine particle (P) sintered body. Can be manufactured.

(イ)加熱接合材料
加熱接合材料は、パターニングと焼結性を考慮し、安定した接合力を得るためには銅微粒子(P)90〜30質量%と、分散媒(A)10〜70質量%(質量%の合計は100質量%)とからなることが好ましい。
銅微粒子(P)は前記の通り、焼結性を有する、平均一次粒子径2〜500nmの銅微粒子(P1)からなるものであってもよく、更に該銅微粒子(P1)に、平均一次粒子径0.5〜50μmの銅微粒子(P2)を併用することができる。
分散媒(A)として、分子中に1又は2以上の水酸基を有するアルコール類(A1)が好ましい。アルコール類(A1)の具体例は前記の通りである。分散媒(A)には、アルコール類(A1)に他の溶媒を併用することができる。他の溶媒としては、アミド基を有する化合物(A2)、アミン化合物(A3)等を上げることができる。
尚、アルコール類(A1)は、加熱接合材料(F)中に、銅微粒子(P)100質量部に対して10質量部以上含有されていることが好ましい。
加熱接合材料(F)は、公知の混合機、捏和機等を使用して、銅微粒子(P)を分散媒(A)に分散させることにより得ることができる。加熱接合材料(F)は、はんだペーストに含まれるような不純物を含まない、高純度の銅微粒子(P)を使用することが可能であるので、接合強度と導電率を向上することが可能になる。
(A) Heat-bonding material The heat-bonding material takes into account patterning and sinterability, and in order to obtain a stable bonding force, copper fine particles (P) 90-30% by mass and dispersion medium (A) 10-70% by mass. % (The total of mass% is 100 mass%).
As described above, the copper fine particles (P) may be composed of copper fine particles (P1) having a sinterability and having an average primary particle diameter of 2 to 500 nm, and the copper fine particles (P1) may further include an average primary particle. Copper fine particles (P2) having a diameter of 0.5 to 50 μm can be used in combination.
As the dispersion medium (A), alcohols (A1) having one or more hydroxyl groups in the molecule are preferable. Specific examples of the alcohols (A1) are as described above. In the dispersion medium (A), other solvents can be used in combination with the alcohols (A1). Examples of other solvents include amide group-containing compound (A2), amine compound (A3) and the like.
In addition, it is preferable that 10 mass parts or more of alcohols (A1) are contained in the heat-bonding material (F) with respect to 100 mass parts of the copper fine particles (P).
The heat bonding material (F) can be obtained by dispersing the copper fine particles (P) in the dispersion medium (A) using a known mixer, kneader or the like. As the heat-bonding material (F), it is possible to use high-purity copper fine particles (P) that do not contain impurities as contained in the solder paste, so that the bonding strength and conductivity can be improved. Become.

(ロ)加熱接合材料(F)からなるパターン化物の配置
加熱接合材料(F)をシリコンチップ等の被接合体面に塗布又はパターニング、又はパターニング後乾燥することにより、パターン化物を得ることができる。
前記塗布又はパターニング法としては、特に制限されず、グルーガン、ディッピング、スクリーンなどの印刷手段を用いることができる。
(B) Arrangement of Patterned Product Consisting of Heat Bonding Material (F) The patterned material can be obtained by applying or patterning the heat bonding material (F) on the surface of an object to be bonded such as a silicon chip, or drying after patterning.
The coating or patterning method is not particularly limited, and printing means such as glue gun, dipping, and screen can be used.

(ハ)加熱・焼結
前記パターン化した後、その後セラミック板(C)と導電性金属板(K)とが前記パターン化物を介して接触した状態で、加熱・焼結を行うことにより、加熱接合材料(F)中の銅微粒子(P)が焼結されて、多孔質状の接合層(L)が形成されるにより、セラミック板(C)と導電性金属板(K)とが接合されたセラミック接合体(J)が製造される。
加熱・終結条件は、使用する銅微粒子(P)の粒子径、分散媒(A)成分、ターニングの厚みにもよるが例えば焼結温度190〜300℃程度に達したら、10〜40分間程度保持することが好ましい。
(C) Heating / sintering After the patterning, heating is performed by heating / sintering in a state where the ceramic plate (C) and the conductive metal plate (K) are in contact with each other through the patterned product. By sintering the copper fine particles (P) in the bonding material (F) to form a porous bonding layer (L), the ceramic plate (C) and the conductive metal plate (K) are bonded. A ceramic joined body (J) is produced.
The heating and termination conditions depend on the particle size of the copper fine particles (P) to be used, the dispersion medium (A) component, and the thickness of the turning, but for example, when the sintering temperature reaches about 190 to 300 ° C., hold it for about 10 to 40 minutes. It is preferable to do.

(ニ)その他
前記セラミック接合体(J)の製造方法によると、セラミック板(C)と導電性基板(K)の貼り合わせを、銅微粒子(P)と分散媒(A)を含む加熱接合材料を用いて300℃以下の低温で行うことが可能であるので、セラミック板(C)と導電性基板(K)の線膨張差によって生じる残留応力を小さくする。主にDBC基板に好適に使用でき、従来の「直接貼り合わせ」や「ろう材による貼り合わせ」と比較して、低温で銅板を貼り合わせることが可能となるため、残留応力を低減できることで熱サイクルによって生じるクラック等の損傷が低減できる。
また、加熱接合材料(F)は、比較的低温での加熱、焼成が可能であり、銅微粒子(P)が焼結して形成される接合層(L)には微細なボイドが存在しているため、剛性率が低く、熱膨張率の異なる材料間での接合を行っても応力を緩和することができる。また、銅微粒子(P)として、銅微粒子(P)を使用するので、高熱伝導であり、電子部品の放熱性が向上する。
(D) Others According to the method for producing the ceramic joined body (J), the bonding of the ceramic plate (C) and the conductive substrate (K) is performed by heating the joining material containing the copper fine particles (P) and the dispersion medium (A). Therefore, the residual stress generated by the difference in linear expansion between the ceramic plate (C) and the conductive substrate (K) is reduced. Compared to conventional “direct bonding” and “bonding with brazing material”, it can be used mainly for DBC substrates, and it is possible to bond copper plates at a low temperature. Damage such as cracks caused by cycling can be reduced.
The heat bonding material (F) can be heated and fired at a relatively low temperature, and a fine void exists in the bonding layer (L) formed by sintering the copper fine particles (P). Therefore, the stress can be relieved even when joining is performed between materials having low rigidity and different thermal expansion coefficients. In addition, since the copper fine particles (P) are used as the copper fine particles (P), the heat conduction is high and the heat dissipation of the electronic component is improved.

次に、実施例により本発明をより具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。
本実施例、比較例における評価方法を以下に記載する。
(1)接合層の厚み、空孔率、平均空孔径
作製したセラミック接合体サンプルをエポキシ樹脂に埋め込んで、その断面を研磨して露出させ、走査型電子顕微鏡により観察を行った。
(2)クラック発生の有無、剥がれの場所、剥がれ面積
作製したサンプルを温度サイクル試験(−60℃で30分間保持後、+200℃で30分間保持を3,000サイクル行う試験)後の外観観察によりセラミック基板に発生したクラックの有無を判定し、超音波探傷による観察で剥がれの状態を判定した。
(3)熱伝導率
作製したセラミック接合体サンプルをエポキシ樹脂に埋め込んで、その断面を研磨して露出させ、サーモリフレクタンス法により熱伝導率の測定を行った。
Next, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
The evaluation method in a present Example and a comparative example is described below.
(1) The thickness of the joining layer, the porosity, and the average joined pore diameter of the ceramic joined body sample were embedded in an epoxy resin, the cross section was polished and exposed, and observed with a scanning electron microscope.
(2) By appearance observation after the temperature cycle test (test of holding for 30 minutes at + 200 ° C. for 30 minutes after holding for 30 minutes at −60 ° C.) for the presence / absence of crack occurrence, location of peeling and peeled area The presence or absence of a crack generated in the ceramic substrate was determined, and the state of peeling was determined by observation by ultrasonic flaw detection.
(3) Thermal conductivity The prepared ceramic joined body sample was embedded in an epoxy resin, the cross section was polished and exposed, and the thermal conductivity was measured by a thermoreflectance method.

[実施例1]
下記の3成分からなる材料を配合し、自転・公転ミキサー((株)シンキー製、商品名:あわとり練太郎AR−100)を使用して、2000rpmで5分間混合して加熱接合材料を調製した。
(1)平均一次粒子径50nmの銅微粒子50質量部
(2)エチレングリコール15質量部
(3)エタノール35質量部
次に、京セラ(株)製アルミナ板(サイズ:厚さ1mm、10cm×10cm)上に加熱接合材料を、80℃で60分間乾燥後の厚みが0.3mmとなるように塗布後、該条件で乾燥した。次に、乾燥した加熱接合材料上に日本製箔(株)製の圧延銅(サイズ:厚さ0.5mm、10cm×10cm、10wt%硫酸で10分間洗浄したもの)を重ねて、5MPaの加圧下に300℃で10分間の加熱により加熱接合材料を焼結させて、セラミック板と金属板とが接合層で接合されたセラミック接合体を得た。
得られた焼結後の接合層の厚みは0.1mmであった。評価結果を表1に示す。
[Example 1]
The following three components are blended and mixed with a rotating / revolving mixer (Sinky Corp., trade name: Aritori Nertaro AR-100) for 5 minutes at 2000 rpm to prepare a heated bonding material. did.
(1) 50 parts by mass of copper fine particles having an average primary particle size of 50 nm (2) 15 parts by mass of ethylene glycol (3) 35 parts by mass of ethanol Next, an alumina plate manufactured by Kyocera Corporation (size: thickness 1 mm, 10 cm × 10 cm) The heat bonding material was applied on the top so that the thickness after drying at 80 ° C. for 60 minutes was 0.3 mm, and then dried under the conditions. Next, rolled copper (size: thickness 0.5 mm, 10 cm × 10 cm, washed with 10 wt% sulfuric acid for 10 minutes) made by Nippon Foil Co., Ltd. is stacked on the dried heat bonding material, and 5 MPa is applied. The heated bonding material was sintered by heating at 300 ° C. for 10 minutes under pressure to obtain a ceramic bonded body in which the ceramic plate and the metal plate were bonded by the bonding layer.
The thickness of the obtained bonding layer after sintering was 0.1 mm. The evaluation results are shown in Table 1.

[実施例2]
下記の4成分からなる材料を配合し、自転・公転ミキサー((株)シンキー製、商品名:あわとり練太郎AR−100)を使用して、2000rpmで5分間混合して加熱接合材料を調製した。
(1)平均一次粒子径50nmの銅微粒子45質量部
(2)平均一次粒子径10μmの銅微粒子5質量部
(3)エチレングリコール15質量部
(4)エタノール35質量部
次に、京セラ(株)製アルミナ板(サイズ:厚さ1mm、10cm×10cm)上に加熱接合材料を、80℃で60分間乾燥後の厚みが0.3mmとなるように塗布後、該条件で乾燥した。次に、乾燥した加熱接合材料上に日本製箔(株)製の圧延銅(サイズ:厚さ0.5mm、10cm×10cm、10wt%硫酸10分間洗浄したもの)を重ねて、10MPaの加圧下に300℃で10分間の加熱により加熱接合材料を焼結させて、セラミック板と金属板とが接合層で接合されたセラミック接合体を得た。このとき焼結後の接合層の厚みは0.08mmであった。評価結果を表1に示す。
[Example 2]
Mix the following 4 ingredients and mix them for 5 minutes at 2000 rpm using a rotating / revolving mixer (Sinky Co., Ltd., trade name: Nertaro Awatori AR-100) to prepare a heated bonding material. did.
(1) 45 parts by mass of copper fine particles having an average primary particle diameter of 50 nm (2) 5 parts by mass of copper fine particles having an average primary particle diameter of 10 μm (3) 15 parts by mass of ethylene glycol (4) 35 parts by mass of ethanol Next, Kyocera Corporation A heat bonding material was applied on an alumina plate (size: thickness 1 mm, 10 cm × 10 cm) so that the thickness after drying at 80 ° C. for 60 minutes was 0.3 mm, and then dried under the conditions. Next, rolled copper (size: thickness 0.5 mm, 10 cm × 10 cm, washed with 10 wt% sulfuric acid for 10 minutes) made by Nihon Foil Co., Ltd. is stacked on the dried heat bonding material, and the pressure is 10 MPa. The heated bonding material was sintered by heating at 300 ° C. for 10 minutes to obtain a ceramic bonded body in which the ceramic plate and the metal plate were bonded by the bonding layer. At this time, the thickness of the bonding layer after sintering was 0.08 mm. The evaluation results are shown in Table 1.

[実施例3]
下記の3成分からなる材料を配合し、乳鉢で混合し加熱接合材料を調製した。
(1)平均一次粒子径50nmの銅微粒子45質量%
(2)グリセリン20質量%
(3)マンニトール35質量%
次に、京セラ(株)製アルミナ板(サイズ:厚さ1mm、10cm×10cm)上に加熱接合材料を、0.8mmとなるように塗布後、加熱接合材料上に日本製箔(株)製の圧延銅(サイズ:厚さ0.5mm、10cm×10cm、10wt%硫酸10分間洗浄したもの)を重ねて、5MPaの加圧下に300℃で10分間の加熱により加熱接合材料を焼結させて、セラミック板と金属板とが接合層で接合されたセラミック接合体を得た。このとき焼結後の接合層の厚みは0.08mmであった。評価結果を表1に示す。
[Example 3]
The materials consisting of the following three components were blended and mixed in a mortar to prepare a heat bonding material.
(1) 45% by mass of copper fine particles having an average primary particle diameter of 50 nm
(2) Glycerin 20% by mass
(3) Mannitol 35% by mass
Next, a heat-bonding material is applied on an alumina plate (size: thickness 1 mm, 10 cm × 10 cm) manufactured by Kyocera Corporation so as to be 0.8 mm, and then manufactured by Nippon Foil Co., Ltd. on the heat-bonding material. Rolled copper (size: thickness 0.5 mm, 10 cm × 10 cm, washed with 10 wt% sulfuric acid for 10 minutes), and the heated bonding material is sintered by heating at 300 ° C. for 10 minutes under a pressure of 5 MPa. Then, a ceramic joined body in which the ceramic plate and the metal plate were joined by the joining layer was obtained. At this time, the thickness of the bonding layer after sintering was 0.08 mm. The evaluation results are shown in Table 1.

[実施例4]
下記の2成分からなる材料を配合し、乳鉢で混合し加熱接合材料を調製した。
(1)平均一次粒子径50nmの銅微粒子75質量%
(2)エチレングリコール25質量%
次に、次に、京セラ(株)製アルミナ板(サイズ:厚さ1mm、10cm×10cm)上に加熱接合材料を、0.4mmとなるように塗布後、加熱接合材料上に日本製箔(株)製の圧延銅(サイズ:厚さ0.5mm、10cm×10cm、10wt%硫酸10分間洗浄したもの)を重ねて、10MPaの加圧下に300℃で10分間の加熱により加熱接合材料を焼結させて、セラミック板と金属板とが接合層で接合されたセラミック接合体を得た。このとき焼結後の接合層の厚みは0.1mmであった。評価結果を表1に示す。
[Example 4]
The following two components were blended and mixed in a mortar to prepare a heat bonding material.
(1) 75% by mass of copper fine particles having an average primary particle diameter of 50 nm
(2) Ethylene glycol 25% by mass
Next, after applying a heat bonding material on an alumina plate (size: thickness 1 mm, 10 cm × 10 cm) manufactured by Kyocera Corporation so as to be 0.4 mm, a Japanese foil ( Rolled copper (size: thickness 0.5 mm, 10 cm × 10 cm, washed with 10 wt% sulfuric acid for 10 minutes) is stacked, and the heated bonding material is baked by heating at 300 ° C. for 10 minutes under a pressure of 10 MPa. As a result, a ceramic joined body in which the ceramic plate and the metal plate were joined by the joining layer was obtained. At this time, the thickness of the bonding layer after sintering was 0.1 mm. The evaluation results are shown in Table 1.

Figure 2013040055
Figure 2013040055

[比較例1]
下記の2成分からなる材料を配合し、乳鉢で混合し加熱接合材料を調製した。
(1)平均一次粒子径50nmの銅微粒子75質量%
(2)エチレングリコール25質量%
次に、次に、京セラ(株)製アルミナ板(サイズ:厚さ1mm、10cm×10cm)上に加熱接合材料を、0.03mmとなるように塗布後、加熱接合材料上に日本製箔(株)製の圧延銅(サイズ:厚さ0.5mm、10cm×10cm、10wt%硫酸10分間洗浄したもの)を重ねて、5MPaの加圧下に300℃で10分間の加熱により加熱接合材料を焼結させて、セラミック板と金属板とが接合層で接合されたセラミック接合体を得た。このとき焼結後の接合層の厚みは0.003mmであった。評価結果を表2に示す。
[Comparative Example 1]
The following two components were blended and mixed in a mortar to prepare a heat bonding material.
(1) 75% by mass of copper fine particles having an average primary particle diameter of 50 nm
(2) Ethylene glycol 25% by mass
Next, after applying a heat bonding material on an alumina plate (size: thickness 1 mm, 10 cm × 10 cm) manufactured by Kyocera Corporation so as to be 0.03 mm, a Japanese foil ( Rolled copper (size: thickness 0.5 mm, 10 cm × 10 cm, washed with 10 wt% sulfuric acid for 10 minutes) is stacked, and the heated bonding material is baked by heating at 300 ° C. for 10 minutes under a pressure of 5 MPa. As a result, a ceramic joined body in which the ceramic plate and the metal plate were joined by the joining layer was obtained. At this time, the thickness of the bonding layer after sintering was 0.003 mm. The evaluation results are shown in Table 2.

[比較例2]
下記の4成分からなる材料を配合し、自転・公転ミキサー((株)シンキー製、商品名:あわとり練太郎AR−100)を使用して、2000rpmで5分間混合して加熱接合材料を調製した。
(1)平均一次粒子径50nmの銅微粒子25質量%
(2)平均一次粒子径30μmの銅微粒子25質量%
(3)エチレングリコール12.5質量%
(4)エタノール37.5質量%
次に、京セラ(株)製アルミナ板(サイズ:厚さ1mm、10cm×10cm)上に加熱接合材料を、80℃で60分間乾燥後の厚みが0.3mmとなるように塗布後、該条件で乾燥した。次に、乾燥した加熱接合材料上に日本製箔(株)製の圧延銅(サイズ:厚さ0.5mm、10cm×10cm、10wt%硫酸で10分間洗浄したもの)を重ねて、2MPaの加圧下に300℃で10分間の加熱により加熱接合材料を焼結させて、セラミック板と金属板とが接合層で接合されたセラミック接合体を得た。このとき焼結後の接合層の厚みは0.1mmであった。評価結果を表2に示す。
[Comparative Example 2]
Mix the following 4 ingredients and mix them for 5 minutes at 2000 rpm using a rotating / revolving mixer (Sinky Co., Ltd., trade name: Nertaro Awatori AR-100) to prepare a heated bonding material. did.
(1) 25% by mass of copper fine particles having an average primary particle diameter of 50 nm
(2) 25% by mass of copper fine particles having an average primary particle size of 30 μm
(3) 12.5% by mass of ethylene glycol
(4) 37.5% by mass of ethanol
Next, after applying the heat bonding material on an alumina plate (size: thickness 1 mm, 10 cm × 10 cm) manufactured by Kyocera Corporation so that the thickness after drying at 80 ° C. for 60 minutes is 0.3 mm, the conditions are And dried. Next, rolled copper (size: thickness 0.5 mm, 10 cm × 10 cm, washed for 10 minutes with 10 wt% sulfuric acid for 10 minutes) made by Nihon Foil Co., Ltd. is stacked on the dried heat bonding material, and 2 MPa is applied. The heated bonding material was sintered by heating at 300 ° C. for 10 minutes under pressure to obtain a ceramic bonded body in which the ceramic plate and the metal plate were bonded by the bonding layer. At this time, the thickness of the bonding layer after sintering was 0.1 mm. The evaluation results are shown in Table 2.

[比較例3]
下記の2成分からなる材料を配合し、乳鉢で混合し加熱接合材料を調製した。
(1)平均一次粒子径50nmの銅微粒子75質量%
(2)エチレングリコール25質量%
次に、次に、京セラ(株)製アルミナ板(サイズ:厚さ1mm、10cm×10cm)上に加熱接合材料を、0.4mmとなるように塗布後、加熱接合材料上に日本製箔(株)製の圧延銅(サイズ:厚さ0.5mm、10cm×10cm、10wt%硫酸10分間洗浄したもの)を重ねて、25MPaの加圧下に300℃で10分間の加熱により加熱接合材料を焼結させて、セラミック板と金属板とが接合層で接合されたセラミック接合体を得た。このとき焼結後の接合層の厚みは0.05mmであった。評価結果を表2に示す。
[Comparative Example 3]
The following two components were blended and mixed in a mortar to prepare a heat bonding material.
(1) 75% by mass of copper fine particles having an average primary particle diameter of 50 nm
(2) Ethylene glycol 25% by mass
Next, after applying a heat bonding material on an alumina plate (size: thickness 1 mm, 10 cm × 10 cm) manufactured by Kyocera Corporation so as to be 0.4 mm, a Japanese foil ( Rolled copper (size: thickness 0.5 mm, 10 cm × 10 cm, washed with 10 wt% sulfuric acid for 10 minutes) is stacked, and the heated bonding material is baked by heating at 300 ° C. for 10 minutes under a pressure of 25 MPa. As a result, a ceramic joined body in which the ceramic plate and the metal plate were joined by the joining layer was obtained. At this time, the thickness of the bonding layer after sintering was 0.05 mm. The evaluation results are shown in Table 2.

Figure 2013040055
Figure 2013040055

[評価結果]
銅微粒子(P)と分散媒(A)を含む加熱接合材料(F)を用いて、セラミック板(C)と導電性金属板(K)を接合することで得られるセラミック接合体(J)は、従来のDBC基板の製造方法と比較して低温でセラミック板と導電性金属板を接合することが可能となるので、残留応力を低減することができる。従来のDBC基板でクラックや割れが発生するような温度サイクル試験においてそのような不具合は発生しないことが確認された。
[Evaluation results]
A ceramic joined body (J) obtained by joining a ceramic plate (C) and a conductive metal plate (K) using a heat joining material (F) containing copper fine particles (P) and a dispersion medium (A) is as follows. Since the ceramic plate and the conductive metal plate can be joined at a low temperature as compared with the conventional DBC substrate manufacturing method, the residual stress can be reduced. It was confirmed that such a defect does not occur in a temperature cycle test in which cracks and cracks occur in a conventional DBC substrate.

Claims (5)

セラミック板と導電性金属板とが銅微粒子(P)から形成された多孔質状の接合層(L)を介して接合されたセラミック接合体であって、
前記銅微粒子(P)が平均一次粒子径2〜500nmの銅微粒子(P1)を含み、接合層(L)の空孔率が3〜30体積%で平均空孔径が5〜500nmであり、厚みが0.005〜0.500mmであることを特徴とする、セラミック接合体。
A ceramic joined body in which a ceramic plate and a conductive metal plate are joined via a porous joining layer (L) formed of copper fine particles (P),
The copper fine particles (P) include copper fine particles (P1) having an average primary particle diameter of 2 to 500 nm, the porosity of the bonding layer (L) is 3 to 30% by volume, the average pore diameter is 5 to 500 nm, and the thickness Is 0.005 to 0.500 mm. A ceramic joined body.
前記接合層(L)が銅微粒子(P)を焼結させて得られた焼結体であり、
銅微粒子(P)が平均一次粒子径2〜500nmの銅微粒子(P1)50質量%以上と、平均一次粒子径0.5〜50μmの銅微粒子(P2)50質量%以下からなることを特徴とする、請求項1に記載のセラミック接合体。
The bonding layer (L) is a sintered body obtained by sintering copper fine particles (P),
The copper fine particles (P) are composed of 50% by mass or more of copper fine particles (P1) having an average primary particle diameter of 2 to 500 nm and 50% by mass or less of copper fine particles (P2) having an average primary particle diameter of 0.5 to 50 μm. The ceramic joined body according to claim 1.
前記セラミック板が金属酸化物であることを特徴とする、請求項1または2に記載のセラミック接合体。   The ceramic joined body according to claim 1 or 2, wherein the ceramic plate is a metal oxide. 前記セラミック板がアルミナ、強化アルミナ(HPS)、又はジルコニアであることを特徴とする、請求項1から3のいずれかに記載のセラミック接合体。   The ceramic joined body according to any one of claims 1 to 3, wherein the ceramic plate is alumina, reinforced alumina (HPS), or zirconia. 前記導電性金属板が銅板、銅合金板、アルミ板、またはアルミ合金板であることを特徴とする、請求項1から4のいずれかに記載のセラミック接合体。



The ceramic joined body according to any one of claims 1 to 4, wherein the conductive metal plate is a copper plate, a copper alloy plate, an aluminum plate, or an aluminum alloy plate.



JP2011175913A 2011-08-11 2011-08-11 Ceramic joint Active JP5804838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175913A JP5804838B2 (en) 2011-08-11 2011-08-11 Ceramic joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175913A JP5804838B2 (en) 2011-08-11 2011-08-11 Ceramic joint

Publications (2)

Publication Number Publication Date
JP2013040055A true JP2013040055A (en) 2013-02-28
JP5804838B2 JP5804838B2 (en) 2015-11-04

Family

ID=47888811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175913A Active JP5804838B2 (en) 2011-08-11 2011-08-11 Ceramic joint

Country Status (1)

Country Link
JP (1) JP5804838B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108174618A (en) * 2015-09-30 2018-06-15 日东电工株式会社 Heat engagement sheet material and the heating engagement sheet material with cutting belt
JP2020075835A (en) * 2018-11-08 2020-05-21 日本特殊陶業株式会社 Joined body
JP2021116450A (en) * 2020-01-24 2021-08-10 大陽日酸株式会社 Joining material, joining material producing method and joined body
WO2023159076A1 (en) * 2022-02-18 2023-08-24 Kuprion, Inc. Metal-coated substrates, interposers, and methods for production thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021007870T5 (en) 2021-06-23 2024-04-04 Mitsubishi Electric Corporation SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256380A (en) * 1985-09-05 1987-03-12 株式会社東芝 Ceramic-metal joined member
JPH11292648A (en) * 1998-04-17 1999-10-26 Denki Kagaku Kogyo Kk Boron nitride-aluminum nitride laminate and its use
JP2004130371A (en) * 2002-10-11 2004-04-30 Ebara Corp Joined body
JP2006228804A (en) * 2005-02-15 2006-08-31 Fuji Electric Holdings Co Ltd Ceramic substrate for semiconductor module and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256380A (en) * 1985-09-05 1987-03-12 株式会社東芝 Ceramic-metal joined member
JPH11292648A (en) * 1998-04-17 1999-10-26 Denki Kagaku Kogyo Kk Boron nitride-aluminum nitride laminate and its use
JP2004130371A (en) * 2002-10-11 2004-04-30 Ebara Corp Joined body
JP2006228804A (en) * 2005-02-15 2006-08-31 Fuji Electric Holdings Co Ltd Ceramic substrate for semiconductor module and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108174618A (en) * 2015-09-30 2018-06-15 日东电工株式会社 Heat engagement sheet material and the heating engagement sheet material with cutting belt
EP3358607A4 (en) * 2015-09-30 2018-10-03 Nitto Denko Corporation Thermal bonding sheet, and thermal bonding sheet with dicing tape
US10685933B2 (en) 2015-09-30 2020-06-16 Nitto Denko Corporation Thermal bonding sheet and thermal bonding sheet with dicing tape
CN108174618B (en) * 2015-09-30 2021-05-18 日东电工株式会社 Heat-bonding sheet and heat-bonding sheet with dicing tape
JP2020075835A (en) * 2018-11-08 2020-05-21 日本特殊陶業株式会社 Joined body
JP7249759B2 (en) 2018-11-08 2023-03-31 日本特殊陶業株式会社 zygote
JP2021116450A (en) * 2020-01-24 2021-08-10 大陽日酸株式会社 Joining material, joining material producing method and joined body
WO2023159076A1 (en) * 2022-02-18 2023-08-24 Kuprion, Inc. Metal-coated substrates, interposers, and methods for production thereof

Also Published As

Publication number Publication date
JP5804838B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
KR102163532B1 (en) Semiconductor device, ceramic circuit board, and semiconductor device manufacturing method
KR101755749B1 (en) Conductive connecting member and manufacturing method of same
JP5416153B2 (en) Conductive paste, manufacturing method thereof, and conductive connecting member
JP5804838B2 (en) Ceramic joint
JPWO2011034075A1 (en) Ceramic circuit board and manufacturing method thereof
TWI781246B (en) Power module substrate with heatsink and method of producing power module substrate with heatsink
TWI642154B (en) Power module substrate, and method of producing the same; and power module
JP6265688B2 (en) Connection structure
JP6178850B2 (en) Connection structure and semiconductor device
JP2017071826A (en) Connection structure
JP2017123326A (en) Dispersion solution of metal particles
TWI726048B (en) Metal member with ag base layer, insulated circuit substrate with ag base layer, semiconductor devices, insulated circuit substrate with heat sink, and method for producing metal member with ag base layer
JP2012236743A (en) CERAMIC SINTERED PLATE CONTAINING UNIAXIALLY ORIENTED ACICULAR Si3N4 PARTICLE
JP2007230791A (en) Ceramic circuit board and method of manufacturing the same
JP2018029143A (en) Semiconductor device and method for manufacturing the semiconductor device
JP6053360B2 (en) Bonding method of electronic parts
JP5261263B2 (en) Brazing material and joining method of brazing material
JP2017157599A (en) Semiconductor device
JP6053386B2 (en) Bonding method of electronic parts
JP6182903B2 (en) Manufacturing method of ceramic circuit board
JP2017172029A (en) JOINT MATERIAL AND JOINT STRUCTURE USING Ni NANOPARTICLES
JP2016072622A (en) SUBSTRATE FOR POWER MODULE WITH Ag SUBSTRATE LAYER AND POWER MODULE
JP6160037B2 (en) Manufacturing method of joined body, manufacturing method of power module, joined body, power module, and substrate for power module
JP7336626B2 (en) Ceramic sintered body, ceramic substrate, mounting substrate, electronic device, and method for manufacturing ceramic sintered body
TW201831433A (en) Ceramic circuit board and method of manufacturing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130829

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R151 Written notification of patent or utility model registration

Ref document number: 5804838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350