JP2013038262A - Superconducting magnetic shield body - Google Patents

Superconducting magnetic shield body Download PDF

Info

Publication number
JP2013038262A
JP2013038262A JP2011173889A JP2011173889A JP2013038262A JP 2013038262 A JP2013038262 A JP 2013038262A JP 2011173889 A JP2011173889 A JP 2011173889A JP 2011173889 A JP2011173889 A JP 2011173889A JP 2013038262 A JP2013038262 A JP 2013038262A
Authority
JP
Japan
Prior art keywords
superconducting
conductor
magnetic shield
composite
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011173889A
Other languages
Japanese (ja)
Other versions
JP5809873B2 (en
Inventor
Hirokazu Tsubouchi
宏和 坪内
Kota Katayama
功多 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2011173889A priority Critical patent/JP5809873B2/en
Publication of JP2013038262A publication Critical patent/JP2013038262A/en
Application granted granted Critical
Publication of JP5809873B2 publication Critical patent/JP5809873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting magnetic shield body which can be manufactured at a low cost by a simple method, and a method for manufacturing the same.SOLUTION: The cylindrical superconducting magnetic shield body including a normal conducting conductor and a superconductor is characterized in that the superconductor is divided into a plurality of pieces in the circumferential direction of the cylinder and continuously extends in the axial direction of the cylinder.

Description

本発明は、外界からの磁界侵入を防止するか又は外部からの磁界変動を補正するための超電導磁気シールド体に関する。   The present invention relates to a superconducting magnetic shield for preventing magnetic field intrusion from the outside or correcting magnetic field fluctuations from outside.

超電導体は、内部に磁界を侵入させないという物理的特性を有することから、外部磁界に対する磁気シールドとして用いることが出来る。これは、外部磁界の侵入や磁界の変動をキャンセルするような遮蔽電流が超電導体に流れるからである。   Since the superconductor has a physical characteristic of preventing a magnetic field from entering the superconductor, it can be used as a magnetic shield against an external magnetic field. This is because a shielding current that cancels the penetration of the external magnetic field and the fluctuation of the magnetic field flows through the superconductor.

一般に、超電導体は冷却しないとその物理特性を発揮することが出来ないため、NbTiやNbSnでは液体ヘリウムで冷却され、また、高温超電導体では液体窒素で冷却されて使用される。この他、冷凍機を使用して冷却されることもある。 In general, since the physical properties of a superconductor cannot be exhibited unless cooled, NbTi and Nb 3 Sn are cooled with liquid helium, and high-temperature superconductors are cooled with liquid nitrogen. In addition, it may be cooled using a refrigerator.

しかし、超電導体は熱的に不安定であり、自己の動きや冷却の除去によりクエンチと呼ばれる常電導転移を発生し、超電導体としての特性を失ってしまう。このため、一般に超電導体を用いる際には、銅やアルミまたはそれらの合金からなる安定化材と複合して熱的裕度を与える必要がある。   However, the superconductor is thermally unstable, and a normal conduction transition called quench occurs due to the movement of itself or the removal of cooling, and the characteristics as a superconductor are lost. For this reason, in general, when a superconductor is used, it is necessary to provide thermal tolerance in combination with a stabilizer made of copper, aluminum, or an alloy thereof.

工業用途として多く用いられる超電導磁気シールドに用いる超電導材料としては、一般にNbTi等の金属超電導体が使用されるが、上記理由により、通常、銅などの安定化材と複合化される。複合化方法は、Nb合金板を銅板と接合するか、または図8に示すように、複数のNb合金板41と安定化銅板42とを交互に積層してクラッド化する方法(特許文献1)が採られる。この方法で製造された超電導磁気シールドは、超電導材料として薄い板状体を用意する必要があるが、板状の超電導材料は高価であり、また、板同士を接合するためには、高圧でプレスする必要がある。   As a superconducting material used for a superconducting magnetic shield often used for industrial applications, a metal superconductor such as NbTi is generally used. For the above reason, it is usually combined with a stabilizing material such as copper. As a composite method, a Nb alloy plate is bonded to a copper plate, or a plurality of Nb alloy plates 41 and a stabilized copper plate 42 are alternately laminated and clad as shown in FIG. 8 (Patent Document 1). Is taken. The superconducting magnetic shield manufactured by this method needs to prepare a thin plate-like body as a superconducting material, but the plate-like superconducting material is expensive, and in order to join the plates together, it is pressed at a high pressure. There is a need to.

また、図9に示すような、複数のNb合金51と安定化銅52とを交互に積層してクラッド化した円筒状の超電導磁気シールドを製造するためには、図8のようにクラッド化された超電導磁気シールド板を深絞りによって円筒を形成し、端部を機械加工する方法が採られ、その製造方法は複雑でかつ高コストであった。   Further, in order to manufacture a cylindrical superconducting magnetic shield clad by alternately laminating a plurality of Nb alloys 51 and stabilizing copper 52 as shown in FIG. 9, it is clad as shown in FIG. In addition, a method of forming a cylinder by deep drawing the superconducting magnetic shield plate and machining an end portion thereof was adopted, and the manufacturing method thereof was complicated and expensive.

特開平5−243778号公報JP-A-5-243778

本発明は、かかる問題点に鑑みてなされたものであり、簡単な方法でかつ低コストで製造可能な超電導磁気シールド体を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a superconducting magnetic shield that can be manufactured by a simple method and at a low cost.

上記課題を解決するため、本発明の第1の態様は、常電導導体と超電導導体とを具備する円筒状の超電導磁気シールド体であって、前記超電導導体は、円筒の周方向において複数個に分割され、かつ円筒の軸方向に連続して延びていることを特徴とする超電導磁気シールド体を提供する。   In order to solve the above problems, a first aspect of the present invention is a cylindrical superconducting magnetic shield body comprising a normal conducting conductor and a superconducting conductor, and the superconducting conductor is provided in plural in the circumferential direction of the cylinder. A superconducting magnetic shield is provided which is divided and extends continuously in the axial direction of a cylinder.

また、前記超電導導体は、複数の超電導フィラメントからなり、円筒の径方向に多数列同心円に沿って配置するものとすることができる。多数列の超電導フィラメントを配置することで、磁気シールド特性を向上することができる。   The superconducting conductor may be composed of a plurality of superconducting filaments and arranged along multiple rows of concentric circles in the radial direction of the cylinder. By arranging multiple rows of superconducting filaments, the magnetic shield characteristics can be improved.

かかる超電導磁気シールド体において、超電導フィラメントは、どの径方向にも少なくも1列存在するように配置されたものとすることができる。どの径方向にも少なくも1列存在するように配置されることで、径方向からの侵入磁界を効果的に遮蔽することができ、磁気シールド特性をより向上することができる。   In such a superconducting magnetic shield body, the superconducting filaments can be arranged so that there is at least one row in any radial direction. Arrangement so that there is at least one row in any radial direction can effectively shield the intruding magnetic field from the radial direction, and the magnetic shield characteristics can be further improved.

また、前記超電導導体は、複数の超電導テープからなり、円筒状の常電導導体の内面及び/又は外面に沿って配置されたものとすることができる。この場合、前記超電導導体及び常電導導体を、良熱伝導性樹脂により接合することができる。   The superconducting conductor may be composed of a plurality of superconducting tapes and may be disposed along the inner surface and / or outer surface of the cylindrical normal conducting conductor. In this case, the superconducting conductor and the normal conducting conductor can be joined with a good heat conductive resin.

本発明の第2の態様は、常電導導体円柱体と、その外周に配置された、外周面が常電導導体により被覆された複数の超電導フィラメントからなる複合導体層と、この複合導体層の外周に配置された常電導導体シースとを備える複合円柱体を形成する工程、及び前記複合体を切削加工して、常電導導体と超電導導体とを具備し、前記超電導導体が円筒の周方向において複数個に分割され、かつ円筒の軸方向に連続して延びている超電導磁気シールド体を形成する工程を具備することを特徴とする超電導磁気シールド体の製造方法を提供する。   According to a second aspect of the present invention, there is provided a normal conductor cylinder, a composite conductor layer comprising a plurality of superconducting filaments disposed on the outer periphery of the cylinder, and an outer periphery of the composite conductor layer. A step of forming a composite cylindrical body having a normal conducting conductor sheath disposed on the substrate, and cutting the composite to provide a normal conducting conductor and a superconducting conductor, wherein the superconducting conductor has a plurality in the circumferential direction of the cylinder. There is provided a method of manufacturing a superconducting magnetic shield body comprising a step of forming a superconducting magnetic shield body that is divided into pieces and continuously extends in the axial direction of a cylinder.

かかる超電導磁気シールド体の製造方法において、前記複合円柱体を形成する工程は、常電導導体円柱体の外周に、常電導導体からなるパイプ内に超電導導体からなるロッドを挿入して押出し加工を行うことにより形成された複数の一次素線を配置して、常電導導体円柱体及び一次素線からなる複合体を形成すること、前記複合体を常電導導体円筒体内に挿入して複合ビレットを形成すること、前記複合ビレットに対し、押し出し加工を行うこと、前記押し出し加工された複合ビレットに対し、引き抜き加工を行うことを備えるものとすることができる。   In the method of manufacturing a superconducting magnetic shield body, the step of forming the composite cylindrical body is performed by inserting a rod made of a superconducting conductor into a pipe made of a normal conducting conductor and extruding the outer circumference of the normal conducting conductor cylinder. A plurality of primary strands are formed to form a composite composed of a normal conducting cylinder and a primary strand, and the composite is inserted into the normal conducting cylinder to form a composite billet. It is possible to include performing an extrusion process on the composite billet and performing a drawing process on the extruded composite billet.

本発明によると、熱的に安定であり、簡単な方法でかつ低コストで製造可能な超電導磁気シールド体が提供される。   According to the present invention, there is provided a superconducting magnetic shield that is thermally stable and can be manufactured by a simple method and at a low cost.

本発明の第1の実施形態に係る円筒状の超電導磁気シールドを示す断面図である。It is sectional drawing which shows the cylindrical superconducting magnetic shield which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る円筒状の超電導磁気シールドを示す斜視図である。It is a perspective view which shows the cylindrical superconducting magnetic shield which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る円筒状の超電導磁気シールドの部分断面を示す図である。It is a figure which shows the partial cross section of the cylindrical superconducting magnetic shield which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る円筒状の超電導磁気シールドを示す断面図である。It is sectional drawing which shows the cylindrical superconducting magnetic shield which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る円筒状の超電導磁気シールドを示す断面図である。It is sectional drawing which shows the cylindrical superconducting magnetic shield which concerns on the 4th Embodiment of this invention. 本発明の第2の実施形態に係る超電導磁気シールドを板状にした部分断面図である。It is the fragmentary sectional view which made the superconducting magnetic shield which concerns on the 2nd Embodiment of this invention into plate shape. 本発明の第4の実施形態に係る超電導磁気シールドを板状にした部分断面図である。It is the fragmentary sectional view which made the superconducting magnetic shield which concerns on the 4th Embodiment of this invention into plate shape. 従来の板状の超電導磁気シールドを示す断面図である。It is sectional drawing which shows the conventional plate-shaped superconducting magnetic shield. 従来の円筒状の超電導磁気シールドを示す断面図である。It is sectional drawing which shows the conventional cylindrical superconducting magnetic shield.

以下、本発明の実施形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の実施形態に係る超電導磁気シールドは、円筒状であって、安定化材としての中空円筒状常電導導体と、円筒の周方向において複数個に分割され、かつ円筒の軸方向に連続して延びている超電導導体とを具備することを特徴とする。   A superconducting magnetic shield according to an embodiment of the present invention has a cylindrical shape, a hollow cylindrical normal conductive conductor as a stabilizing material, and is divided into a plurality in the circumferential direction of the cylinder, and is continuous in the axial direction of the cylinder. And a superconducting conductor that extends.

このような超電導磁気シールドにおいて、常電導導体としては、通常、常電導導体の安定化材として機能する金属、例えば、Cu、Cu合金、Al、Al合金、Ag、Ag合金等を挙げることが出来る。また、超電導導体としては、特に限定されないが、例えば、NbTi、NbSn、NbAl、MgB、Bi2212、Bi2223、REBCO(RE:希土類元素、YBCO等)等を挙げることができる。 In such a superconducting magnetic shield, examples of the normal conductive conductor include metals that function as a stabilizer for the normal conductive conductor, such as Cu, Cu alloy, Al, Al alloy, Ag, and Ag alloy. . Further, the superconducting conductor is not particularly limited, and examples thereof include NbTi, Nb 3 Sn, Nb 3 Al, MgB 2 , Bi2212, Bi2223, REBCO (RE: rare earth element, YBCO, etc.) and the like.

円筒の周方向における超電導導体と常電導導体の割合(体積比または断面面積比)は、5:1〜5:3であるのが好ましい。超電導導体の割合が5:1を超える場合には、常電導導体の割合が小さくなるために熱的に不安定になりやすくなり、5:3より小さい場合には、超電導導体の割合が小さくなるために磁気シールドの性能が低くなり、好ましくない。   The ratio (volume ratio or cross-sectional area ratio) between the superconducting conductor and the normal conducting conductor in the circumferential direction of the cylinder is preferably 5: 1 to 5: 3. When the ratio of the superconducting conductor is more than 5: 1, the ratio of the normal conducting conductor is small, so that it is likely to become thermally unstable. When the ratio is smaller than 5: 3, the ratio of the superconducting conductor is small. For this reason, the performance of the magnetic shield is lowered, which is not preferable.

以下、本発明の種々の実施形態に係る超電導磁気シールドについて、図面を参照して説明する。   Hereinafter, superconducting magnetic shields according to various embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る円筒状の超電導磁気シールドを示す断面図、図2は、その斜視図である。図1及び図2に示す超電導磁気シールドは、安定化材である円筒状常電導導体1内に複数のフィラメント状超電導導体2が埋め込まれた円筒状の超電導磁気シールドである。   FIG. 1 is a sectional view showing a cylindrical superconducting magnetic shield according to the first embodiment of the present invention, and FIG. 2 is a perspective view thereof. The superconducting magnetic shield shown in FIGS. 1 and 2 is a cylindrical superconducting magnetic shield in which a plurality of filamentous superconducting conductors 2 are embedded in a cylindrical normal conducting conductor 1 that is a stabilizing material.

この超電導磁気シールドは、円柱状常電導導体の断面周方向に、軸方向に延びる複数の孔を形成し、この孔内にロッド状超電導導体を挿入し、次いで押出し加工をした後、外周及び内側を切削加工することにより形成することが出来る。   This superconducting magnetic shield is formed with a plurality of axially extending holes in the circumferential direction of the cross section of the cylindrical normal conducting conductor. After inserting the rod-shaped superconducting conductor into this hole and then extruding it, the outer and inner sides Can be formed by cutting.

図3は、本発明の第2の実施形態に係る円筒状の超電導磁気シールドの一部を示す断面図である。図3に示す超電導磁気シールドでは、円筒の周方向に複数のフィラメント状超電導導体12が径方向に2列、同心円に沿って配置されており、隣接するフィラメント状超電導導体12同士の間には安定化材である常電導導体層11が介在している。   FIG. 3 is a sectional view showing a part of a cylindrical superconducting magnetic shield according to the second embodiment of the present invention. In the superconducting magnetic shield shown in FIG. 3, a plurality of filamentous superconducting conductors 12 are arranged along the concentric circle in the radial direction in the circumferential direction of the cylinder, and stable between adjacent filamentous superconducting conductors 12. A normal conducting conductor layer 11 as a chemical material is interposed.

図3に示す超電導磁気シールドは、常電導導体からなるパイプ内に超電導導体からなるロッドを挿入して押出し加工を行い、一次素線を形成し、これを複数本、円柱状常電導導体の外周に配置して複合導体層を形成し、更に、複合導体層の外側に円筒状常電導導体を配置し、次いで押出し加工をした後、外周及び内側を切削加工することにより形成することが出来る。   The superconducting magnetic shield shown in FIG. 3 is formed by inserting a rod made of a superconducting conductor into a pipe made of a normal conducting conductor and extruding it to form primary strands. The composite conductor layer can be formed by disposing the cylindrical conductive conductor on the outside of the composite conductor layer, and the outer periphery and the inner side of the composite conductor layer can be formed by extruding and then cutting the outer periphery and the inner side.

図4は、本発明の第3の実施形態に係る円筒状の超電導磁気シールドを示す断面図である。図4に示す超電導磁気シールドは、円筒状常電導導体21内に、安定化材である円筒状常電導導体22の内面及び外面に複数のテープ状超電導導体23を接合した複合導体層が埋め込まれた円筒状の超電導磁気シールドである。   FIG. 4 is a cross-sectional view showing a cylindrical superconducting magnetic shield according to the third embodiment of the present invention. In the superconducting magnetic shield shown in FIG. 4, a composite conductor layer in which a plurality of tape-like superconducting conductors 23 are joined to the inner and outer surfaces of a cylindrical ordinary conducting conductor 22 that is a stabilizing material is embedded in a cylindrical ordinary conducting conductor 21. A cylindrical superconducting magnetic shield.

この超電導磁気シールドは、テープ状超電導導体23が、常電導導体シース21内に、径方向に2列、同心円に沿って配置された構造を有する。円筒状常電導導体22の内面及び外面への複数のテープ状超電導導体23の接合は、液体窒素温度等の低温においても亀裂等が生じず、接着力が維持される極低温用接着剤であり、たとえば、エポキシ系樹脂系接着剤、ポリイミド系樹脂系接着剤、ビニルエステル系樹脂系接着剤等を用いることができる。極低温用接着剤としては良熱伝導性の接着剤を用いて行うことが好ましい。良熱伝導性の接着剤としては、例えば、日東電工製NFニトフェックスSK−299を挙げることが出来る。   This superconducting magnetic shield has a structure in which the tape-shaped superconducting conductors 23 are arranged in two rows in the radial direction along concentric circles in the normal conducting conductor sheath 21. The joining of the plurality of tape-shaped superconducting conductors 23 to the inner and outer surfaces of the cylindrical normal conducting conductor 22 is an extremely low temperature adhesive that does not cause cracks or the like even at a low temperature such as liquid nitrogen temperature and maintains the adhesive force. For example, an epoxy resin adhesive, a polyimide resin adhesive, a vinyl ester resin adhesive, or the like can be used. As the cryogenic adhesive, it is preferable to use a highly heat conductive adhesive. Examples of the good heat conductive adhesive include NF Nitofex SK-299 manufactured by Nitto Denko.

図5は、本発明の第4の実施形態に係る円筒状の超電導磁気シールドを示す断面図である。図5に示す超電導磁気シールドは、安定化材である円筒状常電導導体31内に、複数のテープ状超電導導体32が埋め込まれた円筒状の超電導磁気シールドである。   FIG. 5 is a sectional view showing a cylindrical superconducting magnetic shield according to the fourth embodiment of the present invention. The superconducting magnetic shield shown in FIG. 5 is a cylindrical superconducting magnetic shield in which a plurality of tape-shaped superconducting conductors 32 are embedded in a cylindrical normal conducting conductor 31 that is a stabilizing material.

この超電導磁気シールドでは、テープ状超電導導体32が、円筒状常電導導体31内に、径方向に3列、同心円に沿って埋め込まれている。   In this superconducting magnetic shield, tape-shaped superconducting conductors 32 are embedded in cylindrical normal conducting conductors 31 along three concentric circles in the radial direction.

なお、第3及び第4の実施形態に係る超電導磁気シールドにおいては、NbTiなどの低温超電導体よりも高温超電導体(テープ形状又は薄膜素子形状)を使用することが好ましい。テープ形状の高温超電導体は、例えば、長尺の金属基板上に中間層、超電導層が形成されたRE系超電導テープ線や、銀マトリクス中にBi2223等が配されたBi系超電導テープ線を用いることができる。また、薄膜素子形状の高温超電導体は、板状の基板上に中間層、超電導層が形成されたRE系超電導薄膜素子を用いることができる。薄膜素子形状の高温超電導体の場合は、板状の基板を予め湾曲させて形成されたものを用いることが好ましい。   In the superconducting magnetic shield according to the third and fourth embodiments, it is preferable to use a high temperature superconductor (tape shape or thin film element shape) rather than a low temperature superconductor such as NbTi. As the tape-shaped high-temperature superconductor, for example, an RE-based superconducting tape wire in which an intermediate layer and a superconducting layer are formed on a long metal substrate, or a Bi-based superconducting tape wire in which Bi2223 or the like is arranged in a silver matrix is used. be able to. As the high-temperature superconductor in the form of a thin film element, an RE-based superconducting thin film element in which an intermediate layer and a superconducting layer are formed on a plate-like substrate can be used. In the case of a high-temperature superconductor in the form of a thin film element, it is preferable to use a plate-shaped substrate formed in advance by bending.

高温超電導体は液体窒素により性能を発揮し、低温超電導体に比較して安定性も高いため、製造コスト、ランニングコストともに優れている。   High-temperature superconductors exhibit performance with liquid nitrogen and are more stable than low-temperature superconductors, so that both manufacturing costs and running costs are excellent.

磁気シールドの性能は、超電導体の臨界電流密度(Jc)と体積(断面積)で決定し、両方が高い(大きい)方が、磁気シールド性能が良いことが知られている。一方、熱的安定性の為には、常電導導体(安定化材)との接触面積(冷却周長)が大きい方が好ましい。   The performance of the magnetic shield is determined by the critical current density (Jc) and volume (cross-sectional area) of the superconductor, and it is known that the higher (larger) both the better the magnetic shield performance. On the other hand, for thermal stability, it is preferable that the contact area (cooling circumference) with the normal conductor (stabilizing material) is large.

ここで、従来の電導磁気シールド体と本実施形態に係る超電導磁気シールド体における熱安定性の検討を行う。図8に示す従来の磁気シールド板と、図6に示す第2の実施形態に係る超電導磁気シールド板、図7に示す第4の実施形態に係る超電導磁気シールド板を用いて常電導導体(安定化材)との接触面積(冷却周長)を検討する。   Here, the thermal stability of the conventional conductive magnetic shield body and the superconducting magnetic shield body according to the present embodiment is examined. 8 using the conventional magnetic shield plate shown in FIG. 8, the superconducting magnetic shield plate according to the second embodiment shown in FIG. 6, and the superconducting magnetic shield plate according to the fourth embodiment shown in FIG. Consider the contact area (cooling circumference) with the chemical material.

なお、図6〜図8は便宜上、板状の超電導シールド体としたが、円筒の場合も従来例との関係においては同様の効果を有している。   6 to 8 are plate-like superconducting shields for the sake of convenience, the cylindrical case also has the same effect in relation to the conventional example.

<熱安定性の検討>
(1)第2の実施形態の冷却周長
図6に示す第2の実施形態に係る磁気シールド体は、幅(円周長)L、厚さtからなり、厚さ(直径)dの超電導フィラメントをN本有しているとする。また、磁気シールド体における常電導導体(安定化材)と超電導導体の断面積比はλ:1とする。
<Examination of thermal stability>
(1) Cooling circumference of the second embodiment The magnetic shield body according to the second embodiment shown in FIG. 6 has a width (circumferential length) L 1 and a thickness t 1 , and a thickness (diameter) d. 1 of superconducting filaments and has one N. The cross-sectional area ratio of the normal conducting conductor (stabilizing material) and the superconducting conductor in the magnetic shield body is λ 1 : 1.

このとき、超電導導体の全断面積Sは、

Figure 2013038262
In this case, the total sectional area S 1 of the superconducting conductor,
Figure 2013038262

となる。 It becomes.

また、超電導フィラメントの本数Nは、

Figure 2013038262
In addition, the number N 1 of the superconducting filaments,
Figure 2013038262

となる。 It becomes.

以上より、第2実施形態における冷却周長xは、超電導フィラメントの周長と超電導フィラメントの本数の積となるため、

Figure 2013038262
From the above, the cooling circumference x 1 in the second embodiment is the product of the circumference of the superconducting filament and the number of superconducting filaments.
Figure 2013038262

となる。 It becomes.

(2)第4の実施形態の冷却周長
図7に示す第4の実施形態に係る磁気シールド体は、幅(円周長)L、厚さtからなり、厚さd、幅wの超電導フィラメントを1周につきn本有し、全超電導フィラメント数がN本であるとする。なお、このときの周方向における超電導導体と常電導導体のサイズ(幅)比は5:aとする。また、磁気シールド体における常電導導体(安定化材)と超電導導体の断面積比はλ:1とする。
(2) Cooling circumference of the fourth embodiment The magnetic shield body according to the fourth embodiment shown in FIG. 7 has a width (circumferential length) L 2 and a thickness t 2 , and has a thickness d 2 and a width. It is assumed that there are n 2 superconducting filaments of w 2 per circumference and the total number of superconducting filaments is N 2 . In this case, the size (width) ratio between the superconducting conductor and the normal conducting conductor in the circumferential direction is 5: a. Further, the cross-sectional area ratio of the normal conducting conductor (stabilizing material) and the superconducting conductor in the magnetic shield body is λ 2 : 1.

このとき、超電導導体の全断面積Sは、

Figure 2013038262
In this case, the total sectional area S 2 of the superconducting conductor,
Figure 2013038262

となる。 It becomes.

このときの超電導フィラメントの断面積sは、

Figure 2013038262
The cross-sectional area s 2 of the superconducting filament at this time is
Figure 2013038262

となることから、超電導フィラメントの本数Nは、

Figure 2013038262
Therefore, the number N 2 of superconducting filaments is
Figure 2013038262

となる。 It becomes.

以上より、第4実施形態における冷却周長xは、

Figure 2013038262
Thus, cooling perimeter x 2 in the fourth embodiment,
Figure 2013038262

となる。 It becomes.

(3)従来例の冷却周長
図8に示す従来の磁気シールド体は、幅(円周長)L、厚さtからなり、厚さdの超電導層をN層有しているとする。また、磁気シールド体における常電導導体(安定化材)と超電導導体の断面積比はλ:1とする。
(3) Cooling Perimeter of Conventional Example The conventional magnetic shield shown in FIG. 8 has a width (circumferential length) L 3 and a thickness t 3 , and has N 3 superconducting layers with a thickness d 3. Suppose that Further, the cross-sectional area ratio of the normal conducting conductor (stabilizing material) and the superconducting conductor in the magnetic shield is λ 3 : 1.

このとき、超電導導体の全断面積Sは、

Figure 2013038262
In this case, the total sectional area S 3 of the superconducting conductor,
Figure 2013038262

となる。 It becomes.

また、超電導フィラメントの本数Nは、

Figure 2013038262
In addition, the number N 3 of the superconducting filaments,
Figure 2013038262

となる。 It becomes.

以上より、従来の磁気シールド体における冷却周長xは、

Figure 2013038262
From the above, the cooling circumference x 3 in the conventional magnetic shield body is
Figure 2013038262

となる。 It becomes.

(4)冷却周長の比較
上記式(1)〜(3)で得られた冷却周長x〜xを比較する。磁気シールド体全体の断面積(t×L=S)と銅比(λ)が各シールド体で同じ(t=t=t=t、L=L=L=L、λ=λ=λ=λ)とすると、
式(1)は、

Figure 2013038262
(4) Comparison above type cooling circumference (1) to compare - cooling perimeter x 1 ~x 3 obtained in (3). The cross-sectional area (t × L = S) and the copper ratio (λ) of the entire magnetic shield body are the same for each shield body (t 1 = t 2 = t 3 = t, L 1 = L 2 = L 3 = L, λ 1 = λ 2 = λ 3 = λ)
Equation (1) is
Figure 2013038262

式(2)は、

Figure 2013038262
Equation (2) is
Figure 2013038262

式(3)は、

Figure 2013038262
Equation (3) is
Figure 2013038262

となる。 It becomes.

ここで、超電導体(超電導フィラメント、超電導層)の厚み(d〜d)については、上述したように、磁気シールド特性を保持するためにはある程度の厚みが必要となる。そのため、ここでは、超電導導体の厚みについても、各シールド体で同じ(d=d=d=d)とすると、
式(1)は、

Figure 2013038262
Here, with respect to the thickness (d 1 to d 3 ) of the superconductor (superconducting filament, superconducting layer), as described above, a certain amount of thickness is required to maintain the magnetic shield characteristics. Therefore, here, the thickness of the superconducting conductor is also the same for each shield body (d 1 = d 2 = d 3 = d).
Equation (1) is
Figure 2013038262

式(2)は、

Figure 2013038262
Equation (2) is
Figure 2013038262

式(3)は、

Figure 2013038262
Equation (3) is
Figure 2013038262

となる。 It becomes.

式(4)〜(6)より、x、x、xの関係は以下のようになる。

Figure 2013038262
From Expressions (4) to (6), the relationship between x 1 , x 2 , and x 3 is as follows.
Figure 2013038262

Figure 2013038262
Figure 2013038262

以上のことから、第2の実施形態に係る磁気シールド体は従来例に比べて約2倍の熱安定性を、第4の実施形態に係る磁気シールド体では従来例に比べて下記式分だけ優れた熱安定性を有することが判る。

Figure 2013038262
From the above, the magnetic shield body according to the second embodiment has about twice the thermal stability as compared with the conventional example, and the magnetic shield body according to the fourth embodiment is equivalent to the following formula compared with the conventional example. It can be seen that it has excellent thermal stability.
Figure 2013038262

このように周方向における超電導導体を分割することにより、磁気シールド特性を保持できる程度の超電導導体を有しつつ、常電導導体(安定化材)との接触面積を大きくすることができる。そのため、磁気シールド特性を保持しつつ、超電導体の熱除去、冷却を促進することができ、クエンチ防止を図ることができる。   By dividing the superconducting conductor in the circumferential direction in this manner, the contact area with the normal conducting conductor (stabilizing material) can be increased while having a superconducting conductor that can maintain the magnetic shield characteristics. Therefore, heat retention and cooling of the superconductor can be promoted while maintaining the magnetic shield characteristics, and quenching can be prevented.

なお、第4の実施形態に係る磁気シールド体において、nは1周における超電導導体のフィラメント数であり、周方向における分割数を意味する。よって、周方向における分割数は多い方が好ましいが、磁気シールド特性を保持するため、円筒の周方向における超電導導体と常電導導体の割合が、5:1〜5:3の範囲内になるように分割することが好ましい。 Incidentally, the magnetic shield body according to a fourth embodiment, n 2 is the number of filaments of the superconducting conductors in one turn, means a number of divisions in the circumferential direction. Therefore, although it is preferable that the number of divisions in the circumferential direction is large, the ratio of the superconducting conductor and the normal conducting conductor in the circumferential direction of the cylinder is in the range of 5: 1 to 5: 3 in order to maintain the magnetic shielding characteristics. It is preferable to divide into two.

また、第2の実施形態に係る磁気シールド体のように超電導フィラメントの断面形状を円状にすることでより高い熱安定性を得ることができる。   Further, higher thermal stability can be obtained by making the cross-sectional shape of the superconducting filament circular as in the magnetic shield body according to the second embodiment.

第2の実施形態に係る磁気シールド体のような断面形状が円状の超電導フィラメントを有する磁気シールド体は次のように製造することができる。   A magnetic shield body having a superconducting filament with a circular cross-section like the magnetic shield body according to the second embodiment can be manufactured as follows.

まず、銅管内にNbTiロッドを挿入して単芯ビレットを作成し、これを押し出し加工して、一次素線を形成する。次いで、銅の円筒の周囲に一次素線を配置し、これを銅管内に挿入して多芯ビレットを作成し、この多芯ビレットを押し出し加工し、更に引き抜き加工する。その後、押し出し及び引き抜き加工された多芯ビレットの内部及び外周を切削加工する。   First, a NbTi rod is inserted into a copper tube to create a single-core billet, which is extruded to form a primary strand. Next, a primary strand is arranged around a copper cylinder, and this is inserted into a copper tube to create a multi-core billet. The multi-core billet is extruded and further drawn. Thereafter, the inside and the outer periphery of the extruded and drawn multi-core billet are cut.

以上のように製造することで、図3に示すような、円筒状常電導導体(銅シリンダ)11内に複数のロッド状超電導導体(NbTiフィラメント)12が埋め込まれた、円筒状の超電導磁気シールドを製造することができる。   By manufacturing as described above, a cylindrical superconducting magnetic shield in which a plurality of rod-shaped superconducting conductors (NbTi filaments) 12 are embedded in a cylindrical normal conducting conductor (copper cylinder) 11 as shown in FIG. Can be manufactured.

超電導磁気シールドでは、超電導導体の冷却を効果的に行うために、超電導導体をある程度薄くする必要があるが、以上説明した実施形態1,2に係る超電導磁気シールドは、押し出し及び引き抜きにより製造されるため、圧下率、押出比を大きくすることで、超電導導体を容易に薄くすることができる。また、製造工程で行われる圧延や押出は、従来の超電導磁気シールドにおけるクラッド板の製造より低コストであるという利点もある。   In the superconducting magnetic shield, it is necessary to make the superconducting conductor thin to some extent in order to effectively cool the superconducting conductor. However, the superconducting magnetic shield according to the first and second embodiments described above is manufactured by extrusion and drawing. Therefore, the superconducting conductor can be easily made thin by increasing the rolling reduction and the extrusion ratio. In addition, rolling and extrusion performed in the manufacturing process also has an advantage that the cost is lower than that of manufacturing a clad plate in a conventional superconducting magnetic shield.

以上説明した超電導磁気シールドは、医療用画像診断装置であるMRIの超電導マグネットに好適に用いることが出来る。この超電導マグネットの上部には、内部部材を冷却するため例えばGM型ヘリウム冷凍機が設置される。冷凍機の内部には磁性蓄冷材が内蔵されるが、冷却に伴ってこの磁性蓄冷材が運動し、超電導マグネットの磁気の均一性を乱す原因となる。これに対し、本実施形態に係る超電導磁気シールドを冷凍機の蓄冷材運動部の外側に配置することにより、超電導マグネットに対し、磁性蓄冷材からの磁気遮蔽を確実に行うことが可能となる。   The superconducting magnetic shield described above can be suitably used for an MRI superconducting magnet which is a medical diagnostic imaging apparatus. For example, a GM type helium refrigerator is installed above the superconducting magnet to cool the internal members. The refrigerating machine contains a magnetic regenerator material, but this magnetic regenerator material moves with cooling, which causes disturbance in the magnetic uniformity of the superconducting magnet. On the other hand, by arranging the superconducting magnetic shield according to the present embodiment outside the regenerator moving part of the refrigerator, it is possible to reliably shield the superconducting magnet from the magnetic regenerator.

なお、本実施形態に係る超電導磁気シールドは、軸と同一方向の磁界に対してよりも、超電導体の軸に対して垂直方向に作用する磁界のシールドに特に有効である。従って、本実施形態に係る超電導磁気シールドは、MRIに付属する極低温冷凍機の磁気シールドに好適に用いることができる。   The superconducting magnetic shield according to the present embodiment is particularly effective for shielding a magnetic field acting in a direction perpendicular to the axis of the superconductor rather than a magnetic field in the same direction as the axis. Therefore, the superconducting magnetic shield according to the present embodiment can be suitably used for the magnetic shield of the cryogenic refrigerator attached to the MRI.

1,21,22,31…円筒状常電導導体、2,12…フィラメント状超電導導体、13…常電導導体層、32…テープ状超電導導体。   1, 2, 22, 31... Cylindrical normal conductor, 2, 12 Filament superconductor, 13 Normal conductor layer, 32 Tape superconductor.

Claims (7)

常電導導体と超電導導体とを具備する円筒状の超電導磁気シールド体であって、
前記超電導導体は、円筒の周方向において複数個に分割され、かつ円筒の軸方向に連続して延びていることを特徴とする超電導磁気シールド体。
A cylindrical superconducting magnetic shield body comprising a normal conducting conductor and a superconducting conductor,
The superconducting magnetic shield is characterized in that the superconducting conductor is divided into a plurality of pieces in the circumferential direction of the cylinder and extends continuously in the axial direction of the cylinder.
前記超電導導体は、複数の超電導フィラメントからなり、円筒の径方向に多数列略同心円に沿って配置されていることを特徴とする請求項1に記載の超電導磁気シールド体。   The superconducting magnetic shield body according to claim 1, wherein the superconducting conductor is composed of a plurality of superconducting filaments, and is arranged along a plurality of rows in a concentric circle in the radial direction of the cylinder. 前記超電導フィラメントは、どの径方向にも少なくも1列存在するように配置されていることを特徴とする請求項2に記載の超電導磁気シールド体。   The superconducting magnetic shield body according to claim 2, wherein the superconducting filaments are arranged so as to exist in at least one row in any radial direction. 前記超電導導体は、複数の超電導テープ及び超電導薄膜素子又はその一方からなり、円筒状の常電導導体の内面及び外面又はそのいずれかに沿って前記超電導テープ及び前記超電導薄膜素子又はその一方が配置されていることを特徴とする請求項1に記載の超電導磁気シールド体。   The superconducting conductor is composed of a plurality of superconducting tapes and / or superconducting thin film elements, and the superconducting tape and / or superconducting thin film elements are disposed along the inner surface and / or outer surface of a cylindrical normal conducting conductor. The superconducting magnetic shield body according to claim 1, wherein the superconducting magnetic shield body is provided. 前記超電導導体及び前記常電導導体は、良熱伝導性樹脂により接合されていることを特徴とする請求項4に記載の超電導磁気シールド体。   The superconducting magnetic shield body according to claim 4, wherein the superconducting conductor and the normal conducting conductor are joined together by a highly heat conductive resin. 常電導導体円柱体と、その外周に配置された、外周面が常電導導体により被覆された複数の超電導フィラメントからなる複合導体層と、この複合導体層の外周に配置された常電導導体シースとを備える複合円柱体を形成する工程、及び
前記複合円柱体を切削加工して、常電導導体と超電導導体とを具備し、前記超電導導体が円筒の周方向において複数個に分割され、かつ円筒の軸方向に連続して延びている超電導磁気シールド体を形成する工程
を具備することを特徴とする超電導磁気シールド体の製造方法。
A normal conductor cylinder, a composite conductor layer comprising a plurality of superconducting filaments, the outer peripheral surface of which is arranged on the outer periphery thereof, and a normal conductor sheath disposed on the outer periphery of the composite conductor layer; Forming a composite cylindrical body, and cutting the composite cylindrical body to provide a normal conducting conductor and a superconducting conductor, the superconducting conductor being divided into a plurality in the circumferential direction of the cylinder, and A method of manufacturing a superconducting magnetic shield comprising the step of forming a superconducting magnetic shield extending continuously in the axial direction.
前記複合円柱体を形成する工程は、
常電導導体円柱体の外周に、常電導導体からなるパイプ内に超電導導体からなるロッドを挿入して押出し加工を行うことにより形成された複数の一次素線を配置して、常電導導体円柱体及び一次素線からなる複合体を形成する工程と、
前記複合体を常電導導体円筒体内に挿入して複合ビレットを形成する工程と、
前記複合ビレットに対し、押し出し加工を行う工程と、
前記押し出し加工された複合ビレットに対し、引き抜き加工を行う工程と
を備えることを特徴とする請求項6に記載の超電導磁気シールド体の製造方法。
The step of forming the composite cylindrical body includes
A plurality of primary strands formed by inserting a rod made of a superconducting conductor into a pipe made of a normal conducting conductor and extruding the pipe are arranged on the outer periphery of the normal conducting conductor cylindrical body. And forming a composite composed of primary strands;
Inserting the composite into a normal conducting cylinder and forming a composite billet;
Extruding the composite billet;
The method for producing a superconducting magnetic shield body according to claim 6, further comprising a step of performing a drawing process on the extruded composite billet.
JP2011173889A 2011-08-09 2011-08-09 Superconducting magnetic shield Active JP5809873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011173889A JP5809873B2 (en) 2011-08-09 2011-08-09 Superconducting magnetic shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011173889A JP5809873B2 (en) 2011-08-09 2011-08-09 Superconducting magnetic shield

Publications (2)

Publication Number Publication Date
JP2013038262A true JP2013038262A (en) 2013-02-21
JP5809873B2 JP5809873B2 (en) 2015-11-11

Family

ID=47887579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173889A Active JP5809873B2 (en) 2011-08-09 2011-08-09 Superconducting magnetic shield

Country Status (1)

Country Link
JP (1) JP5809873B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400262B1 (en) * 2017-03-30 2018-10-03 住友重機械工業株式会社 Cryogenic refrigerator and magnetic shield
EP3893012A1 (en) * 2020-04-07 2021-10-13 Koninklijke Philips N.V. A compound material for a magnetic shield of a magnetic resonance imaging system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313897A (en) * 1987-06-17 1988-12-21 Hitachi Ltd Magnetic shielding body
JPH01151298A (en) * 1987-12-08 1989-06-14 Fujikura Ltd Superconducting electromagnetic shield body
JPH05243778A (en) * 1992-02-28 1993-09-21 Nippon Steel Corp Intermetallic compound superconductive magnetic shield body and its manufacture
JPH11224161A (en) * 1998-02-04 1999-08-17 Pfu Ltd Character input device and recording medium
US20050110602A1 (en) * 2003-11-22 2005-05-26 Bruker Biospin Gmbh Low resistance shield
JP2009293909A (en) * 2008-06-09 2009-12-17 Sumitomo Heavy Ind Ltd Cooling storage expander, pulse tube refrigerating machine, magnetic resonance imaging device, nuclear magnetic resonator, superconductive quantum interference device fluxmeter, and magnetic shielding method of cooling storage expander

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313897A (en) * 1987-06-17 1988-12-21 Hitachi Ltd Magnetic shielding body
JPH01151298A (en) * 1987-12-08 1989-06-14 Fujikura Ltd Superconducting electromagnetic shield body
JPH05243778A (en) * 1992-02-28 1993-09-21 Nippon Steel Corp Intermetallic compound superconductive magnetic shield body and its manufacture
JPH11224161A (en) * 1998-02-04 1999-08-17 Pfu Ltd Character input device and recording medium
US20050110602A1 (en) * 2003-11-22 2005-05-26 Bruker Biospin Gmbh Low resistance shield
JP2009293909A (en) * 2008-06-09 2009-12-17 Sumitomo Heavy Ind Ltd Cooling storage expander, pulse tube refrigerating machine, magnetic resonance imaging device, nuclear magnetic resonator, superconductive quantum interference device fluxmeter, and magnetic shielding method of cooling storage expander

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400262B1 (en) * 2017-03-30 2018-10-03 住友重機械工業株式会社 Cryogenic refrigerator and magnetic shield
CN110446897A (en) * 2017-03-30 2019-11-12 住友重机械工业株式会社 Ultra-low temperature refrigerating device and magnetic shield
US11342100B2 (en) 2017-03-30 2022-05-24 Sumitomo Heavy Industries, Ltd. Cryocooler and magnetic shield
EP3893012A1 (en) * 2020-04-07 2021-10-13 Koninklijke Philips N.V. A compound material for a magnetic shield of a magnetic resonance imaging system

Also Published As

Publication number Publication date
JP5809873B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5588303B2 (en) Precursor of Nb3Sn superconducting wire and Nb3Sn superconducting wire using the same
JP4791309B2 (en) Nb3Sn superconducting wire and precursor therefor
JP4185548B1 (en) Nb3Sn superconducting wire and precursor therefor
JP2013206532A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD BY INTERNAL Sn METHOD, Nb3Sn SUPERCONDUCTING WIRE ROD, AND MANUFACTURING METHODS THEREFOR
CN103794297B (en) Be applicable to the high-temperature superconductor conductor structure of high field super magnet technology
WO2003065383A2 (en) Superconducting cable having a flexible former
JP5809873B2 (en) Superconducting magnetic shield
US7718898B2 (en) Precursor for manufacturing Nb3Sn superconducting wire and Nb3Sn superconducting wire
US20080287303A1 (en) Nb3Sn superconducting wire, precursor or same, and method for producing precursor
JPWO2010016302A1 (en) Precursor wire of oxide superconducting wire, manufacturing method thereof, and oxide superconducting wire using the precursor wire
JP4838199B2 (en) Oxide superconducting current lead
JP2019186167A (en) PRECURSOR OF Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
US20160351781A1 (en) Ternary molybdenum chalcogenide superconducting wire and manufacturing thereof
CN218159772U (en) High-temperature superconducting CICC conductor based on multilayer cladding stranded wires
JP2007294375A (en) Nb3Sn SUPERCONDUCTING WIRING MATERIAL FABRICATION PRECURSOR, METHOD FOR FABRICATION THEREOF AND Nb3Sn SUPERCONDUCTING WIRING MATERIAL
CN217061586U (en) Stepped high-temperature superconducting CICC conductor with high current-carrying capacity
CN115312258A (en) Improved preparation method of iron-based superconducting long wire
JP2023041520A (en) MgB2 SUPERCONDUCTIVE WIRE MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2010282930A (en) Nb3Al MULTICORE SUPERCONDUCTIVE WIRE ROD
JP2007149494A (en) METHOD OF MANUFACTURING Nb3Sn SUPERCONDUCTIVE WIRE, AND PRECURSOR THEREFOR
JP2010182470A (en) Nb3Al SUPERCONDUCTING MULTI-CORE WIRE
US11631508B2 (en) Methods for manufacturing a superconductor
JP2002140943A (en) Superconductive cable
JP2010135215A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE MATERIAL AND Nb3Sn SUPERCONDUCTING WIRE MATERIAL
JP2011090788A (en) Nb3Al SUPERCONDUCTING WIRE ROD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R151 Written notification of patent or utility model registration

Ref document number: 5809873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350